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Pixelations of planar semialgebraic sets
and shape recognition

LIVIU I NICOLAESCU

BRANDON ROWEKAMP

We describe an algorithm that associates to each positive real number " and each
finite collection C" of planar pixels of size " a planar piecewise linear set S" with
the following property: If C" is the collection of pixels of size " that touch a given
compact semialgebraic set S , then the normal cycle of S" converges in the sense
of currents to the normal cycle of S . In particular, in the limit we can recover the
homotopy type of S and its geometric invariants such as area, perimeter and curvature
measures. At its core, this algorithm is a discretization of stratified Morse theory.

53A04; 53C65, 58A35

Introduction

This paper is a natural sequel of the investigation begun by the second author in his
dissertation [15]. To formulate the main problem discussed in [15] and in this paper
we need to introduce a bit of terminology.

For " > 0 we define an "–pixel to be a square of the form

Œ.m� 1/";m"�� Œ.n� 1/"; n"��R2; m; n 2 Z:

The number " is called the resolution. A pixelation is a union of finitely many pixels.
A column of the pixelation is the intersection of the pixelation with a vertical strip of
the form f.m� 1/" < x <m"g. The "–pixelation of a set S �R2 is the union of all
the pixels that touch S . We denote it by P".S/. The pixelation P".S/ can be viewed
as a discretization of the tube

T".S/D
n
p 2R2

ˇ̌̌
min
q2S
kp� qk1 �

"

2

o
; k.x;y/k1 WDmaxfjxj; jyjg:

More precisely, if ƒ" denotes the (affine) lattice consisting of the centers of all the
"–pixels, then the set of centers of the pixels in P".S/ is T".S/\ƒ" .
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The main problem Produce an algorithm that associates to P".S/ a PL set S" which
approximates S very well as "& 0. More precisely, for " > 0 sufficiently small, the
approximation S" must have the same homotopy type as S and the curvature features
of S" must closely resemble those of S .

We will be more accurate about what we mean by curvature features. For now it helps
to think that S is a C 2 curve in the plane describing the contour of a planar shape.
Then the sharp angles of the PL set S" should be located near the points of high
curvature of the contour S . Similarly, the concavities and convexities of S" should
closely track those of S . Thus, if S" is known to approximate a contour from a finite
list L of contours, then for " > 0 sufficiently small we should be able to recognize
which contour in L corresponds to S" .

The only input we have for the PL approximation consists of rather blurry information
about S , namely the pixelation P".S/. This pixelation is also a PL set, and one could
reasonably ask why we don’t use P".S/ as the sought-for PL approximation. One
geometric obstruction is immediately visible: the pixelation P".S/ is very jagged and
there is no hope that its curvature properties are similar to those of S . In fact there is a
more insidious reason why the pixelation is a poor approximation for S .

Figure 1: The pixelation of the angle A
�
1; 2

3

�
contains two holes.

Consider the pixelation of an angle A.1; 2
3
/ with vertex at the origin whose edges have

slopes 2
3

and 1. Figure 1 shows that this pixelation is not contractible and in fact its
first Betti number is 2. These two “holes” will not disappear at any resolution because
all the pixelations of this angle are rescalings of each other.

Things can get a lot worse. For example, if n is a positive integer and Sn is the union of
the two line segments connecting the origin to the points .n; 2nC1/ and .1; 2/, then for
any " > 0 sufficiently small we have b1.P".Sn//D 2n, while obviously b1.Sn/D 0.
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In [15] the second author solved the Main problem in the special case where S itself
is a PL set. The resulting algorithm is based on two key principles inspired by Morse
theory.

Principle 1 Suppose that S is the graph of a continuous piecewise C 2 function
f W Œa; b�!R, and the second order derivatives of f are bounded. We fix a function
� W .0;1/! Z>0 , called the spread, such that

.� / lim
"&0

"�."/D 0 and lim
"&0

"�."/2 D1:

For any " > 0 every column of the pixelation P".S/ is connected. For each " > 0 we
obtain by linear interpolation a PL function �" (resp. ˇ" ) whose graph is produced by
connecting with straight line segments the centers of the top (resp. bottom) pixels of
every �."/th column of the pixelation of the graph of f ; see Figure 2 where � D 3.

�

ˇ

Figure 2: Linear interpolations with spread � D 3

The result of the algorithm is the PL region S" between the graphs of ˇ" and �" . This
is a very narrow two-dimensional PL set very close to the graph of f . Moreover,
condition .� / guarantees that the curvature of S" resembles that of S .

An identical strategy works when S is a set of the form

S D f.x;y/ 2R2
j x 2 Œa; b�; ˇ.x/� y � �.x/g;

where ˇ; � W Œa; b� ! R are Hölder continuous, piecewise C 2 functions such that
ˇ.x/� �.x/ for all x 2 Œa; b�.

We will refer to these two types of sets as elementary. Thus, the Main problem has a
solution for elementary sets.

Algebraic & Geometric Topology, Volume 14 (2014)
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Principle 2 Suppose that S �R2 is a generic PL set, ie its 1–dimensional skeleton
does not contain vertical segments. Consider the linear map h.x;y/D x . The Morse-
theoretic properties of the restriction of h to P".S/ closely mimic the Morse-theoretic
properties of the restriction of h to S if " is sufficiently small. Here are the details.

For x0 2R, denote by nS .x0/ the number of connected components of the intersection
of S with the vertical line fx D x0g and denote by JS the set of discontinuities of
the function x 7! nS .x/. Then JS is a finite subset of R and there exists  > 0 such
that for any r 2 .0;  / the set S 0r obtained from S by removing the vertical strips
fjx� j j< rg, j 2 JS , is a disjoint union of elementary regions.

The set JS is difficult to determine from a pixelation, but one can algorithmically
produce a very small region containing it. Here is roughly the strategy.

For " > 0 and x0 2R we denote by nS;".x0/ the number of connected components
of the intersection of the vertical line fx D x0g with the pixelation P".S/. We denote
by JS;" the set of discontinuities of the function x 7! nS;".x/. The set JS;" is finite
and one can prove the following remarkable robustness result.

.R0/ There exist „; �0 > 0 depending only on S , such that for " < „ we have

dist.JS ;JS;"/ < �0":

Above, dist refers to the Hausdorff distance. We define the noise region to be the set

N" WD fx 2R j dist.x;JS;"/� 2�"g:

For " sufficiently small, the noise region is a finite union of disjoint compact intervals

Ij ."/; j D 1; : : : ;N WD #JS ;

called noise intervals.

We denote by P 0".S/ the closure of the set obtained from P".S/ by removing the
vertical strips fx 2 Ij ."/g, j D 1; : : : ;N . Each of the connected components of P 0".S/

is the pixelation of an elementary set and as such it can be PL approximated using
Principle 1.

The approximation above the noise intervals, ie the intersection of P".S/ with the above
vertical strips, is rather coarse. Every component of such a region is approximated by
the smallest rectangle that contains it. Here, by rectangle, we mean a region of the
form Œa; b�� Œc; d �, a� b , c � d .

It turns out that the approximation S" of S obtained in this fashion from P".S/ is very
good in the following sense: The normal cycle of S" converges in the sense of currents
to the normal cycle of S . For a nice introduction to the subject of normal cycles we
refer to [12]. A brief description of this concept can also be found in Section 4.
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Our goal is to extend the above program to the more general case of compact, semi-
algebraic subsets of R2 . While Principle 1 extends with only little extra effort to the
semialgebraic case, Principle 2 requires a more delicate analysis. This requires that S

be a generic semialgebraic set in the sense that the restriction to S of the linear function
h.x;y/D x be a stratified Morse function in the sense of Goresky and MacPherson;
see [9], Pignoni [14] or Section 1. In this case the set JS can be alternatively described
as the set of critical values of hjS corresponding to critical points whose Morse data in
the sense of Goresky and MacPherson [9] are homotopically nontrivial.

We know that the stratified Morse function hjS is stable [14]. Remarkably the function h

is also robust: some of the topological features of hjS are preserved if we slightly
alter S in a rather irregular way, by replacing it with one of its pixelations. More
precisely we have the following counterpart of .R0/.

.R/ Suppose that S �R2 is a generic, compact semialgebraic set. Then there exist
„> 0, �0 > 0 and �0 2 .0; 1�, depending only on S , such that for " < „ we have

dist.JS ;JS;"/ < �0"
�0 :

The main difference between .R/ and .R0/ is the presence of the exponent �0 2 .0; 1�.
This exponent takes into account the possibility that the 1–dimensional skeleton of S

may have cusps such as jyjp D xq , x � 0, ˛ D q
p
� 1. The higher the orders of

contact ˛ of such cusps, the lower the exponent �0 . In fact, �0 �
1
˛

for any order of
contact ˛ . However, the choice �0 D

1
2

will work for many compact semialgebraic
sets S .

The PL approximation S" of S is obtained as before, using the two principles. To
prove that the normal cycle of S" converges in the sense of currents to the normal cycle
of S we rely on an approximation theorem of J Fu [7]. That theorem states that the
convergence of the normal cycles is guaranteed once we prove two things:

� Uniform bounds for the perimeter and total curvature of S" .
� For almost any closed half-plane H we have

lim
"&0

�.H \S"/D �.H \S/;

where � denotes the Euler characteristic.

Of the above two facts, the second is by far the most delicate, and its proof takes up
the bulk of this paper.

Let us say a few words about the organization of the paper. In Section 1 we introduce
the terminology used throughout the paper. Principle 1 is proved in Section 2, while
the robustness principle .R/ is proved in Section 3.
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In Algorithm 4.3 of Section 4 we give an explicit and detailed description of the process
that builds the approximation S" starting from the pixelation P".S/. This section
contains the proof of the main result of the paper, Theorem 4.5, which states that the
normal cycle of S" converges to the normal cycle of S as "! 0.

The paper concludes with two appendices. In Appendix A we collect a few basic facts
of real algebraic geometry used throughout paper together with a few other technical
results. In Appendix B we give a more formal description of the approximation
algorithm in a way that makes it easily implementable on a computer.

Remark After this work was completed we became aware of a recent work [3] where
Chazal, Cohen-Steiner, Lieutier and Thibert investigate a similar problem in arbitrary
dimensions. They used a completely different approach to produce an algorithm for
approximating the curvature measures of a compact region R in Rn . However the tech-
niques used in [3] apply only to regions satisfying a so called positive �–reach condition.
This condition prohibits the existence of cusp-like singularities in R. For example, the
techniques in [3] are not applicable to the region consisting of two tangent disks.

Acknowledgments We are very grateful to the anonymous referee for the many very
useful and detailed comments, questions, suggestions and corrections which have
helped us improve the quality of the paper. The first author was partially supported by
the NSF grant DMS-1005745.

1 Basic facts

We begin by recalling some basic notions introduced in [15].

Definition 1.1 (a) Let " > 0. An "–pixel is the square in R2 of the form

Si;j ."/D Œ.i � 1/"; i"/�� Œ.j � 1/"; j "/��R2; i; j 2 Z:

Its center is
ci;j ."/ WD .i"; j "/� .

"
2
; "

2
/:

(b) A union of finitely many "–pixels is called an "–pixelation. The variable " is
called the resolution of the pixelation.

(c) For any compact subset S �R2 we define the "–pixelation of S to be the union
of all the "–pixels that intersect S . We denote the "–pixelation of S by P".S/.
The pixelation of a function f is defined to be the pixelation of its graph �.f /.
We will denote this pixelation by P".f /.

Algebraic & Geometric Topology, Volume 14 (2014)



Pixelations of semialgebraic sets 3351

Definition 1.2 Fix " > 0 and a compact set S �R2 .

(1) A point a 2 R will be called "–generic if a 2 R n "Z. For such a point a we
denote by I".a/ the interval of the form .n"; .nC 1/"/, n 2 Z, that contains a.

(2) For a< b we define the vertical strip

Sa;b WD .a; b/�R:

For every k 2 Z we denote by S";k the vertical strip Sk";.kC1/" . For any
"–generic point a 2R we denote by S".a/ the strip S";k , k WD ba="c.

(3) A column of P".S/ is the intersection of P".S/ with a vertical strip S";k , k 2Z.
The connected components of a column are called stacks.

(4) For every "–generic a 2R, we define the column of a pixelation P".S/ over a

to be the set
C".S; a/ WD S".a/\P".S/:

In other words, C".S; a/ is the union of the pixels in P".S/ which intersect the
vertical line fx D ag. When S is the graph of a function f , we will use the
notation C".f; a/ to denote the column over a of the pixelation P".f /.

Theorem 1.3 [15, Theorem 2.2] If f W Œa; b�!R is a continuous function, then for
any " > 0 the columns of the "–pixelation of the graph of f consist of single stacks.

In this paper we will be concerned with pixelations of generic planar semialgebraic sets,
where the genericity has a very precise meaning. To describe it we need to introduce
some terminology from stratified Morse theory [9; 14].

For any subset X �R2 we denote by cl.X / its closure and by @topX its topological
boundary

@top.X / WD cl.X / nX:

We define a good stratification of a compact semialgebraic set S � R2 to be an
increasing filtration

F W F .0/ � F .1/ � F .2/ D S

satisfying the following properties:

� Each of the sets F .i/ , i D 0; 1; 2 is closed.

� dim F .i/ � i , i D 0; 1; 2; in particular F .0/ is a finite collection of points called
the vertices of the good stratification.

Algebraic & Geometric Topology, Volume 14 (2014)
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� The connected components of F .1/ nF .0/ are open real analytic arcs, ie images
of injective real analytic maps .0; 1/!R2 . We will refer to these components
as the arcs or the edges of the stratification.

� The connected components of F .2/ nF .1/ are open subsets of R2 . They are
called the faces of the stratification.

� We have

@top
�
F .2/ nF .1/

�
� F .1/; @top

�
F .1/ nF .0/

�
� F .0/:

Definition 1.4 Suppose that v is a vertex of a good stratification of a compact semial-
gebraic set S �R2 . The tangent cone C1.v;S/ to S at v consists of finitely many
one-dimensional subspaces of R2 . More precisely, a line L1 � R2 belongs to the
tangent cone C.v;S/ if and only if there exists an arc A of the stratification of S with
the following properties:

� v 2 cl.A/.
� There exists a sequence of points vn 2A such that as n!1 we have vn! v

and the tangent spaces Tvn
A converge to L1 .

Suppose that S � R2 is a compact semialgebraic set equipped with a good strati-
fication F , and f W R2 ! R. A point p 2 S is said to be a critical point of the
restriction f jS if either p is a vertex, or p is the critical point of the restriction of f
to an arc or to a face. The critical point p is said to be nondegenerate if it satisfies one
of the following conditions:

.C0/ The point p is a vertex and for any L1 2 C1.p;S/, the differential of f
at p does not vanish along L1 .

.C1/ The point p belongs to an arc A of the stratification and as such it is a
nondegenerate point of f jA .

.C2/ The point p belongs to a face F of the stratification and as such it is a
nondegenerate point of f jF .

A function f W R2! R is said to be a stratified Morse function with respect to the
semialgebraic set S equipped with the good stratification F if all its critical points are
nondegenerate, and no two critical points lie on the same level set of f .

A compact semialgebraic set S�R2 is called generic if it admits a good stratification F
such that projection onto the x–axis .x;y/ 7! x is a stratified Morse function with
respect to .S;F/. Denote this projection by h.
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Observe that if F is a good stratification of a compact semialgebraic set S �R2 , then p

is a critical point of h relative to .S;F/ if either p is a vertex of the stratification,
or p is a point on an arc of F where the tangent space is vertical. At such a point the
arc is locally on one side of that vertical tangent.

A

Figure 3: The curve on the right is generic, while the curve on the left is not.

In Figure 3 we have depicted two one-dimensional planar semialgebraic curves (arcs
of circles). The marked points are critical points of h. The point A on the left-hand
side curve is a degenerate critical point because condition .C0/ is violated: the vertical
line is tangent to the curve at that point.

In the left-hand side of Figure 4 we have depicted further examples of pathologies
prohibited by the genericity condition. (The pathologies involve the points with vertical
tangencies.) The right-hand side depicts generic sets obtained by small perturbations
from the nongeneric sets in the left-hand side.

Figure 4: The curves on the left-hand side are nongeneric. They become
generic after a small perturbation.

2 Approximations of elementary sets

In this section we study the pixelations of simple two-dimensional sets.

Algebraic & Geometric Topology, Volume 14 (2014)
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Definition 2.1 Fix " > 0 and a compact set S .

(1) An "–profile of S is a set …" of points in the plane with the following properties.

(a) Each point in …" is the center of an "–pixel that intersects S .
(b) Every column of P".S/ contains precisely one point of …" .

(2) The top/bottom "–profile is the profile consisting of the centers of the high-
est/lowest pixels in each column of P".S/.

(3) An "–sample of S is a subset of an "–profile. An upper/lower "–sample of S

is an "–sample of the upper/lower "–profile of S .

(4) Two "–samples are called compatible if they have the same projections on the
x–axis.

Definition 2.2 Suppose p1; : : : ;pN is a finite sequence of points in R2 . (The points
need not be distinct). We denote by

hp1;p2; : : : ;pni

the PL curve defined as the union of the straight line segments Œp1;p2�; : : : ; Œpn�1;pn�.

Observe that each "–profile …" of a set is equipped with a linear order �. More
precisely, if p1;p2 are points in …" , then

p1 � p2” x.p1/� x.p2/;

where xW R2! R denotes the projection .x;y/ 7! x . In particular, this shows that
any "–sample of S carries a natural total order.

Definition 2.3 If „ is an "–sample of S , then the PL interpolation determined by the
sample „ is the continuous, piecewise linear function LDL„ obtained as follows.

� Arrange the points in „ in increasing order, with respect to the above total order,

V D f�0 � �1 � �2 � � � � � �ng; nC 1D j„j:

� The graph of L„ is the PL curve h�0; �1; : : : ; �ni.

In applications, the sample sets „ will be chosen to satisfy certain regularity.
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Definition 2.4 (1) A spread function is a nonincreasing function � W .0;1/!Z>0

with the following properties:

lim
"&0

�."/D1;(2-1a)

lim
"&0

"�."/D 0:(2-1b)

(2) If � is a positive integer and …" is an "–profile, then an "–sample with spread �
is a subset

„D f�0 � � � � � �ng �…".S/

such that the following hold:

� The points �0 and �n are the left and rightmost points in the profile, ie for
each p 2…" , x.�0/� x.p/� x.�n/.

� We have

1
2
"�."� jx.�k/�x.�k�1/j � "�."/ for all k D 1; : : : ; n:

Definition 2.5 A subset S �R2 is said to be elementary over the interval Œa; b� if it
can be defined as

S D S.ˇ; �/ WD f.x;y/ j x 2 Œa; b�; ˇ.x/� y � �.x/g;

where ˇ; � W Œa; b�!R are continuous semialgebraic functions such that ˇ.x/� �.x/,
for all x 2 Œa; b�.

The function ˇ is called the bottom of S while � is called the top of S . If

(2-2) ˇ.x/ < �.x/ for all x 2 .a; b/;

then the elementary set is said to be nondegenerate. If

(2-3) ˇ.x/D �.x/ for all x 2 Œa; b�;

then the set S is called degenerate. The elementary set is called mixed if both sets

fx 2 .a; b/ j �.x/�ˇ.x/ > 0g and fx 2 .a; b/ j �.x/�ˇ.x/D 0g

are nonempty.

Observe that an elementary set S.ˇ; �/ over the compact interval Œa; b� admits good
partitions, ie partitions

aD c0 < c1 < c1 < � � �< cn D b; n� 2;
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such that each of the elementary sets Œci�1; ci ��R\S.ˇ; �/ is either degenerate or
nondegenerate. The good partition with minimal n is called the minimal good partition;
see Figure 5.

� �

ˇ
� D ˇ ˇ

c0 c1 c2 c3

Figure 5: The minimal good partition of a mixed elementary set

In the remainder of this section S will indicate an elementary set. We first note that
like the pixelation of a function, each column of P".S/ consists of a single stack, ie a
single connected component.

Proposition 2.6 If S D S.ˇ; �/ is an elementary set over a compact interval Œa; b�,
then for every x 2 Œa; b� n "Z, the column C".S;x/ consists of exactly one stack.

Proof Fix an "–generic x 2 Œa; b�. By Theorem 1.3 the columns C".ˇ;x/ and
C".�;x/ consist of single stacks. If these two columns intersect, then the conclusion is
obvious. If they do not intersect, then any pixel in the strip S".x/ situated below the
stack C".�;x/ and above the stack C".ˇ;x/ is a pixel of P".S/. This proves that the
column C".S;x/ consists of a single stack.

Definition 2.7 Fix " > 0 and an elementary set S D S.ˇ; �/. Suppose that „˙" are
compatible upper/lower samples of S

„˙" D
˚
�˙0 � �

˙
1 � � � � � �

˙
n

	
:

The PL-approximation of S determined by these two samples is the compact PL set
bounded by the closed PL curve˝

��0 ; �
�
1 ; : : : ; �

�
n ; �
C
n ; �

C

n�1
; : : : ; �C

0
; ��0

˛
:

The total curvature of a C 1 immersion  W Œa; b�!R2 which is C 2 on .a; b/ is defined
as follows. We set

v.t/ WD
1

j P .t/j
P .t/; �.t/ WD j Pv.t/j:
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The scalar �.t/ is called the curvature of  at the point  .t/. We define the total
curvature of  to be

K. / WD

Z b

a

�.t/ dt:

Suppose now that  W Œa; b�! R2 is a continuous and piecewise C 2 immersion, ie
there exists a finite subset ft0; : : : ; t�g � Œa; b� such that

aD t0 < t1 < � � �< t��1 < t� D b;

the restriction i WD  jŒti�1;ti � is a C 1 immersion, and the restriction of  to the
open interval to .ti�1; ti/ is C 2 , for any i D 1; : : : ; � . The curvature of  at a jump
point  .ti/ is the quantity

�.ti/ WD lim
"&0

distS1.v.ti C "/; v.ti � "//;

where distS1.p; q/ 2 Œ0; �� denotes the geodesic distance between two points p; q on
the unit circle. We define the total curvature of  to be

K. / WD

�X
iD1

K.i/C

��1X
iD1

�.ti/C

�
0  .b/¤  .a/;

distS1
.v.b�/; v.aC/  .b/D  .a/:

For more details we refer to Milnor [11] and Morvan [12, Section 2.2].

We define a semialgebraic arc to be the image of a continuous, injective semialgebraic
map

'W Œa; b�!R2:

Suppose that 'W Œa; b�!R2 is a continuous, injective, semialgebraic map whose image
is the semialgebraic arc C . Set A WD '.a/ and B WD '.b/ so that C connects A to B .
The semialgebraic map ' is piecewise C 2 and has a total curvature which a priori
could be infinite.

Lemma 2.8 The total curvature of a semialgebraic arc C �R2 is finite.

Proof The arc C has finitely many singularities and their complement is a finite
union of oriented, bounded, semialgebraic, C 1 arcs. If Ci is such an arc, then its total
curvature is the length of the oriented Gauss path �i W Ci ! S1 , where �i.p/ is the
unique unit vector in TpCi determined by the orientation of Ci . Since the Gauss map
is semialgebraic and Ci has finite length we deduce that the length of �i is finite. The
contributions to the total curvatures of the finitely many singular points of C are all
finite.
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Suppose that C is a semialgebraic arc defined by the continuous, semialgebraic injection
'W Œa; b�!R2 . An ordered sampling of C is an ordered collection of points

P WD fP1; : : : ;Png �C ;

such that the collection

'�1.P/ WD ft1 D '�1.P1/; : : : ; tn WD '
�1.Pn/g � Œa; b�

satisfies
t1 < t2 < � � �< tn:

The mesh of the ordered sampling P is the positive number

kPk WDmax
˚
dist.A;P1/; dist.P1;P2/; : : : ; dist.Pn�1;Pn/; dist.Pn;B/

	
:

We denote by C .P/ the PL curve hP1; : : : ;Pni.

A result of J Milnor [11, Theorem 2.2] shows that the total curvature of a C 2 curve can
be approximated by the total curvature of inscribed polygons. The next result, whose
proof is delegated to Appendix A, shows that if the curve is semialgebraic, then the
C 2 requirement is not necessary.

Proposition 2.9 Suppose that C is a semialgebraic arc and for every " > 0 we are
given an ordered sampling P" of C . Denote by L (resp. K ) the length (resp. total
curvature) of C and by L" (resp. K" ) the length (resp. total curvature) of C .P"/. If

lim
"&0
kP"k D 0;

then
lim
"&0

L" DL and lim
"&0

K" DK:

Theorem 2.10 Suppose that hW Œa; b�!R is a continuous semialgebraic function and
" 7! �."/ is a spread function satisfying the additional condition

(2-4) lim
"&0

"�."/2 D1:

For every " > 0 we choose an "–sample „" with spread �."/ of the graph � of h.
Denote by C" the graph of the PL function L„" described in Definition 2.3. Then as
"& 0 we have

length.C"/! length.�/ and K.C"/!K.�/:
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Proof We use a simple strategy: For every " > 0 we construct an ordered sampling
P" of � such that

(2-5) lim
"&0
kP"k D 0;

and if �" denotes the PL curve �.P"/ determined by the ordered sampling P" , then
as "& 0 we have

length.C"/D length.�"/CO
�

1

�."/

�
;(2-6a)

K.C"/DK.�"/CO
�

1

"�."/2

�
:(2-6b)

The desired conclusions will then follow from Proposition 2.9.

Suppose that „" consists of the points Q"
0
;Q"

1
; : : : ;Q"

n."/ arranged in the increasing
order defined by their x–coordinates. Observe that since „" has spread �."/ then

(2-7) n."/ <
2.b�a/

"�."/
:

Each of the points of „" is the center of a pixel that touches � . Thus, for any
k D 0; 1; : : : ; n."/ there exists a point P "

k
2 � that lies in the same pixel as Q"

k
. We

obtain in this fashion an ordered sampling

P" D fP "
0 ;P

"
1 ; : : : ;P

"
n."/g

of � . The function h is continuous and semialgebraic and thus it is Hölder continuous
with some Hölder exponent ˛ 2 .0; 1�. This proves that

kP"k DO
�
."�."//˛

�
:

The condition (2-5) now follows from the property (2-1b) of a spread function.

From the choice of the points P "
k

we deduce that for any k D 1; : : : ; n."/ we have

�"
p

2< dist.P "
k�1;P

"
k/� dist.Q"

k�1;Q
"
k/ < "

p
2;

so that by summing over k we deduce

�
2
p

2.b�a/

�."/

(2-7)
� �n."/"

p
2< length.�"/� length.C"/� n."/"

p
2

(2-7)
�

2
p

2.b�a/

�."/
:

The equality (2-6a) now follows from the property (2-1a) of a spread function.

Now we turn to the total curvature. For any point P 2 R2 we denote by x.P /,
y.P / its coordinates. For k D 1; : : : ; n."/ we denote by m"

k
the slope of the segment
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�
P "

k�1
;P "

k

�
and by xm"

k
the slope of the segment

�
Q"

k�1
;Q"

k

�
,

m"
k D

y
�
P "

k

�
�y

�
P "

k�1

�
x
�
P "

k

�
�x

�
P "

k�1

� ; xm"
k D

y
�
Q"

k

�
�y

�
Q"

k�1

�
x
�
Q"

k

�
�x

�
Q"

k�1

� :
Note that for any " > 0 and any k D 1; : : : ; n."/ we have from the definition of a
spread that

1
2
"�."/� x.Q"

k/�x.Q"
k�1/� "�."/:

Furthermore we have shown that

dist.Q"
k ;P

"
k/� "

p
2:

These two inequalities imply that

jm"
k � xm

"
k j DO

�
1

�."/

�
:

There exist �"
k
; x�"

k
2
�
�
�
2
; �

2

�
such that

m"
k D tan �"k ; xm"

k D tan x�"k :

The formula for the tangent of a difference of angles implies that

�"k �
x�"k D arctan

�
m"

k
� xm"

k

1Cm"
k
xm"

k

�
:

Using the above equality and the fact that jm"
k
� xm"

k
j D O. 1

�."/
/, we see that there

exists a positive constant C independent of " such that

j�"k �
x�"k j �

C

�."/

and therefore

jK.�"/�K.C"/j �
C n."/

�."/

(2-7)
�

C.b�a/

"�."/2
:

The equality (2-6b) now follows from (2-4).

Corollary 2.11 Let S.ˇ; �/ be an elementary set. Fix a spread function �."/ satis-
fying condition (2-4). For each " we choose compatible "–upper/lower profiles „˙"
of S with spread �."/. We denote by S" the PL approximation of S defined by these
samples. Then

lim
"&0

length.@S"/D length.@S/;(2-8a)

lim
"&0

K.@S"/DK.@S/:(2-8b)

Algebraic & Geometric Topology, Volume 14 (2014)



Pixelations of semialgebraic sets 3361

Proof The semialgebraic functions ˇ and � are differentiable outside a finite subset
of .a; b/ and the limits

ˇ0.a/ WD lim
x&a

ˇ0.x/; � 0.a/ WD lim
x&a

� 0.x/;

ˇ0.b/ WD lim
x%b

ˇ0.x/; � 0.b/ WD lim
x%b

� 0.x/;

exist in Œ�1;1�. Let

„˙" D
˚
�˙0 � �

˙
1 � � � � � �

˙
n."/

	
; �˙k DW

�
x˙k ;y

˙
k

�
:

The compatibility condition implies that

x�k D xC
k
DW xk ; y�k � yC

k
for all k D 0; 1; : : : ; n:

Let ˇ" be the PL function whose graph is L„�" and �" be the PL function whose
graph is L„C" . Let mˇ

i ."/ indicate the slope of the i th line segment of the graph of ˇ"
and similarly let m�

i ."/ indicate the slope of the i th line segment of the graph of �" .
We have

length
�
@S"

�
D length

�
�ˇ"

�
C length

�
��"

�
C dist

�
��0 ; �

C

0

�
C dist

�
��n."/; �

C

n."/

�
:

Theorem 2.10 implies that as "& 0 we have

length.�ˇ"/! length.�ˇ/; length.��"/! length.�� /:

Moreover, as "& 0 we have

dist
�
��0 ; �

C

0

�
! dist

�
ˇ.a/; �.a/

�
; dist

�
��n."/; �

C

n."/

�
! dist

�
ˇ.b/; �.b/

�
:

This proves (2-8a).

Similarly

K.@S"/D
ˇ̌
� � arctan

�
m
ˇ
1
."/
�ˇ̌
C
ˇ̌
� � arctan

�
m�

1."/
�
j

C

nX
iD2

ˇ̌
arctan

�
m
ˇ
i ."/

�
� arctan

�
m
ˇ
i�1
."/
�ˇ̌
C
ˇ̌
arctan

�
mˇ

n."/
�
��

ˇ̌
C

nX
iD2

ˇ̌
arctan

�
m�

i ."/
�
� arctan

�
m�

i�1."/
�ˇ̌
C
ˇ̌
arctan

�
m�

n."/
�
��

ˇ̌
which can be rewritten as

(2-9) K.@S"/D
ˇ̌
� � arctan

�
m
ˇ
1
."/
�
jC

ˇ̌
arctan

�
mˇ

n."/
�
��

ˇ̌
C
ˇ̌
� � arctan

�
m�

1."/
�ˇ̌
C
ˇ̌
arctan

�
m�

n."/
�
��

ˇ̌
CK.ˇ"/CK.�"/:
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Theorem 2.10 implies

(2-10) lim
"&0

K.ˇ"/DK.ˇ/ and lim
"&0

K.�"/DK.�/:

Now note that each line segment is defined by connecting two points in the pixelation
of ˇ or � over an interval of at most "�."/. As "! 0 we have

(2-11)
lim
"&0

m
ˇ
1
."/D ˇ0.a/; lim

"&0
mˇ

n."/D ˇ
0.b/;

lim
"&0

m�
1."/D �

0.a/; lim
"&0

m�
n."/D ˇ

0.b/:

Combining (2-9), (2-10) and (2-11), we find that

(2-12) lim
"&0

K.@S"/D
ˇ̌
� � arctan

�
ˇ0.a/

�ˇ̌
C
ˇ̌
arctan

�
ˇ0.b/

�
��

ˇ̌
C
ˇ̌
� � arctan.� 0.a//

ˇ̌
C
ˇ̌
arctan

�
� 0.b/

�
��

ˇ̌
CK.ˇ/CK.�/:

Note that j� � arctan.ˇ0.a//j is the value of the angle between the vertical line x D a

and the tangent line to the graph of ˇ at .a; ˇ.a//. Similarly each other difference
on the right-hand side of (2-12) corresponds to an angle at one of the corners of @S .
Therefore the right-hand side of the (2-12) is equal to the K.@S/, so the corollary
holds.

3 Separation results

In the previous section we have dealt only with the elementary regions and we have
investigated mainly geometric properties of these regions and their pixelation. In
this section we turn our attention to the relationship between the topologies of a
semialgebraic set and those of its pixelations.

Surprisingly, this is a nontrivial matter. As shown in the introduction the homotopy
type of a planar set may be quite different from those of its pixelations and this can
happen even for a simple PL set. The next result provides a first ray of hope. For any
compact set X �R2 we denote by C.X / the set of connected components of X .

Proposition 3.1 Let S � R2 be a compact semialgebraic set. Then for sufficiently
small ", the number of connected components of P".S/ agrees with the number of
connected components of S .

Proof We have a natural map C.S/! C.P".S// that associates to each connected
component C of S the unique connected component of P".S/ containing C . For "
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sufficiently small this map is injective. Since P".S/ contains only pixels that inter-
sect S , we deduce that each connected component of P".S/ contains at least one
connected component of S . Thus, P".S/ has at most as many components as S .

The above result guarantees that the 0th Betti number of a compact semialgebraic set
coincides with those of its sufficiently fine pixelations. Proposition 3.1 also suggests
that, for small ", the only way that the homotopy type of P".S/ can disagree with that
of S is if P".S/ has holes, ie cycles in P".S/ that are not contained in the image of
the inclusion-induced morphism

H1.S;Z/ �!H1.P".S/;Z/:

Thus, the recovery of S from P".S/ will depend on distinguishing the cycles of P".S/

that correspond to real cycles of S from those that are merely artifacts of the pixelation.
To discard these holes, we adopt a strategy inspired from Morse theory.

Definition 3.2 Let S �R2 be a compact set and " > 0.

(1) For every "–generic x we set

n".x/D nS;" WD number of connected components of C".S;x/:

(When the set S is understood from context we use the simpler notation n"
instead of nS;" .) We will refer to n".x/ as the stack counter function of S .

(2) For any x0 2R we define

n.x0/D nS .x/ WD number of components of the intersection of S
with the vertical line x D x0:

We will refer to nS as the component counter of S .

(3) A jumping point of nS is a real number x0 such that

nS .x0/¤ nS .x
�
0 / WD lim

x%x0

nS .x/ or nS .x/¤ nS .x
C

0
/ WD lim

x&x0

nS .x/:

We denote by JS the set of jumping points of nS . We will refer to JS as the
jumping set of S .

(4) A jumping point of n" is a real number x0 2 "ZC
"
2

such that

n".x0� "/¤ n".x0/:

We denote by JS;" the set of jumping points of nS;" . We will refer to it as the
"–jumping set of S .
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Let us point out that if S is semialgebraic, then its jumping set JS is finite and it is
contained in the set of critical values of the restriction to S of the function h.x;y/D x .
The function n" tells us how many stacks are in a column. The jumps of n" are a first
indicator of the presence of cycles in P".S/. To decide whether they are holes, as
opposed to cycles coming from S , we will rely on the next key technical result.

Theorem 3.3 (Separation theorem) Let f;gW Œa; b�!R be two semialgebraic con-
tinuous functions such that f .x/ < g.x/, for all x 2 Œa; b�. Denote by G the union of
the graphs of f and g . Fix L> 0, ˛ 2 .0; 1� and x0 2 Œa; b� such that either

jg.x/�g.y/j �Ljx�yj˛ or jf .x/�f .y/j �Ljx�yj˛;(3-1)

g.x0/�f .x0/� g.x/�f .x/;(3-2)

for all x;y 2 Œa; b�. Then for any " > 0 such that

(3-3) 3"CL"˛ < g.x0/�f .x0/

and any "–generic x 2 Œa; b�n "Z the column C".G;x0/ has two components. In other
words, if

min
x2Œa;b�

.g.x/�f .x//� 3"CL"˛;

then for any "–generic x 2 Œa; b� we have

nG;".x/D nG.x/:

Proof We deal with the case that jg.x/�g.y/j �Ljx�yj˛ . For any "–generic x we
denote by T".f;x/ (resp. B".f;x/) the altitude of the center of the top (resp. bottom)
pixel of the column C".f;x/. B".g;x/ and T".g;x/ are defined similarly.

For a "–generic x we have

C".G;x/D C".f;x/[C".g;x/;

and furthermore, Theorem 1.3 implies that each of these columns is connected. There-
fore C".G;x/ will have two components exactly when the columns C".f;x/ and
C".g;x/ do not intersect. Since f � g and x is "–generic, this will occur when

T".f;x/ < B".g;x/;

or equivalently,

B".g;x/�T".f;x/ > ":
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Now fix x2 Œa; b� and let i 2Z such that i"<x<.iC1/". Choose xf ;xg2 Œi"; .iC1/"�

such that

f .xf /D max
x2Œi";.iC1/"�

f .x/; g.xg/D min
x2Œi";.iC1/"�

g.x/:

Therefore we have

B".g;x/� g.xg/� "; T".f;x/� f .xf /C ";

so that
B".g;x/�T".f;x/� g.xg/�f .xf /� 2":

Thus

B".g;x/�T".f;x/ � g.xg/�g.xf /Cg.xf /�f .xf /� 2"

(3-2)
� g.xg/�g.xf /Cg.x0/�f .x0/� 2"

(3-1)
� g.x0/�f .x0/�L"˛ � 2"

(3-3)
> ";

which completes the proof for the case that jg.x/�g.y/j �Ljx�yj˛ .

The case when jf .x/� f .y/j � Ljx � yj˛ can be obtained from the above case by
working with a new pair of functions g1 D�f and f1 D�g .

This important Separation theorem can be used to prove the following two results,
which will tell us exactly when n and n" correspond, using only information from
the pixelation. With these theorems we will be able to distinguish real cycles of the
original set from fake cycles created by the pixelation.

Theorem 3.4 Let S �R2 be a compact semialgebraic set with jumping set JS . Then
there exist �0 D �0.S/ 2 .0; 1�, �0 D �0.S/ > 0, "0 D "0.S/ > 0, depending only
on S , such that, if 0< " < "0 and x is "–generic and satisfies

dist.x;JS /� �0"
�0 ;

then nS;".x/D nS .x/.

Proof Let x0 < x1 < � � �< x` be the jumping points of nD nS . We set

�xi WD xi �xi�1 for all i D 1; : : : ; `; � WD min
1�i�`

�xi :

Note that n.x/ is constant on each of the intervals .xi�1;xi/. For i D 1; : : : ; ` we set

Si WD
˚
.x;y/ 2 S

ˇ̌
x 2 Œxi�1;xi �

	
:
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The set Si is a union of elementary sets

S.ˇi;j ; �i;j /; j D 0; : : : ;pi ;

over the same interval Œxi�1;xi �, “stacked one above the other”, ie

(3-4) ˇi;0.x/� �i;0.x/ < ˇi;1.x/� �i;1.x/ < � � �< ˇi;pi
.x/� �i;pi

.x/;

for all x 2 .xi�1;xi/. From Proposition 2.6 we deduce that for any "–generic x 2

.xi�1;xi/ we have n.x/D pi .

Both of the functions ˇi;j and �i;j are continuous and semialgebraic. For any
i D 1; : : : ; `, any j D 1; : : :pi and any „2 .0; 1

4
�/ we denote by i;j .„/ the minimum

of ˇi;j � �i;j�1 on the interval Œxi�1C„;xi �„�. Using Łojasewicz’s inequality (A-1)
in the special case f .„/D i;j .„/�i;j .0/ and g.„/D„, we deduce that there exists
C DC.S/ > 0 and r D r.S/ 2Z>0 such that for any i D 1; : : : ; `, any j D 1; : : : ;pi

and any „ 2 .0; 1
4
�/ we have

(3-5) i;j .„/ > C„r :

Fix L > 0 and ˛ > 0 such that for any i D 1; : : : ; `, j D 1; : : : ;pi and any x;y 2

Œxi�1;xi � we have

jˇi;j .x/�ˇi;j .y/jC j�i;j .x/� �i;j .y/j �Ljx�yj˛:

Fix �0 > 0 such that r�0 <min.1; ˛/. Since

lim
"&0

"r�0

3"CL"˛
D1;

we can choose "0 > 0, �0 > 0 such that

(3-6) C.�0"
�0/r > 3"CL"˛ for all " 2 .0; "0�:

The desired follows by letting „ D �0"
�0

0
in (3-5) and then invoking (3-6) and

Theorem 3.3.

Definition 3.5 The constant �0.S/ guaranteed by Theorem 3.4 is called the separation
exponent of the set S .

Theorem 3.4 tells us that the jumps of n" occur within �0"
�0�1 pixels from the jumps

in n. A priori, it could be possible that, given a jumping point x0 of n, there is no
jump in n" within �0"

�0 pixels of x0 . Our next theorem shows that in fact this cannot
happen.
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Theorem 3.6 Let S be a generic compact semialgebraic set, and "0 D "0.S/, �0 D

�0.S/ as in Theorem 3.4. Let �0D �0.S/ be the separation exponent of S . Then, there
exist "1D "1.S/ > 0 such that if " <min."0; "1/ and x0 is a jumping point of nD nS ,
then n" D nS;" has at least one jumping point in the interval Œx0� �0"

�0 ;x0C �0"
�0 �.

Proof Fix a good stratification F of S such that the function h.x;y/ D x is a
stratified Morse function with respect to .S;F/. Then there exists exactly one critical
point p0 2 S of h such that h.p0/D x0 . Let p0 D .x0;y0/.

Since x0 is a jumping point of n we have

n.xC
0
/¤ n.x0/ or n.x0/¤ n.x�0 /:

We discuss only the case n.x�
0
/¤ n.x0/ because the other case reduces to this case

applied to the region obtained from S via a reflection in the y –axis. For every " > 0

fix an "–generic point x0
0
."/ such that

x00."/D

�
x0 if x0 2R n "Z,
x0� "=2 if x0 2 "Z.

We distinguish several cases.

Case 1: n.x�
0
/ > n.x0/ We can find ı > 0 sufficiently small such that the interval

.x0� ı;x0/ will contain no jumping points of S . The set

SŒx0�ı;x0� WD f.x;y/ 2 S j x 2 Œx0� ı;x0�g

is a union of elementary regions

S. ǰ ; �j /; j D 0; : : : ;mD n.x�0 /;

“stacked one above the other”, ie

ˇ0.x/� �0.x/ < ˇ1.x/� �1.x/ < � � �< ˇm.x/� �m.x/ for all x 2 .x0� ı;x0/;

where ǰ ; �j are continuous semialgebraic functions. Since n.x0/ < n.x�
0
/ we deduce

that there exist j0; j1 2 f1; : : : ;mg such that j0 � j1 and

ǰ1
.x0/D �j0�1.x0/ and j WD ǰ .x0/� �j�1.x0/ > 0; for all j 62 Œj0; j1�:

Thus the elementary sets

S. ǰ1
; �j1

/; : : : ; S. ǰ0
; �j0

/; S. ǰ0�1; �j0�1/

have a point in common, namely the critical point p0 ; see Figure 6. In particular, for
any " > 0, the "–stacks over x0

0
."/ of these sets also have a point in common.
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p0

x0� " x0

Figure 6: Near a jump point x0

Now choose "1 sufficiently small so that for j 62 Œj0; j1� and " < "1 , the "–stack of
S. ǰ ; �j / over x0

0
."/ is disjoint from the "–stack of S. ǰ�1; �j�1/ over x0

0
."/. Fix

" <min."0; "1/. The above discussion shows that

n.x0/D n".x
0
0."//:

If we set

x000."/ WD "
jx0� �0"

�0

"

k
�
"

2
;

then Theorem 3.4 now implies that

n".x
00
0."//D n.x000."// > n.x00."//D n".x

0
0."//:

This proves that the interval Œx0� �0"
�0 ;x0� contains a jumping point of n" .

p0

x0� " x0

Figure 7: Near a jump point x0
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Case 2: n.x�
0
/ < n.x0/ This implies that there exist a critical point p0 on the

vertical line fx D x0g and a tiny disk D centered at p0 such that (see Figure 7)

(3-7) D\f.x;y/ 2 S j x < x0g D∅:

To see why this is the case note that the condition n.x�
0
/ < n.x0/ implies that a

component K of S \fx D x0g is disjoint from the closure of S \fx0� "� x < x0g

for " sufficiently small. The component K is either a point, or a nontrivial compact
interval. The second possibility is prohibited by the genericity of S because any point
of K is a stratified critical point of the projection of S onto the x–axis. This K

consists of a single point p0 which is critical and, by construction, it satisfies (3-7).

In particular, this shows that p0 is an isolated point of the set

Sx�x0
D f.x;y/ 2 S j x � x0g:

If n.x�
0
/D 0, the conclusion is obvious. We assume that n.x�

0
/ > 0. Choose ı > 0

such that the interval Œx0� ı;x0/ contains no jumping point of S . Set

R WD cl.SŒx0�ı;x0� n fp0g/:

Then R is a union of simple regions

S. ǰ ; �j /; j D 0; 1; : : : ;mD n.x�0 /� 1;

where ǰ and �j are continuous semialgebraic functions such that

ˇ0.x/� �0.x/ < ˇ1.x/� �1.x/ < � � �< ˇm.x/� �m.x/ for all x 2 Œx0� ı;x0�:

We can find "1 D "1.S/ such that for any " < "1 and any "–generic x 2 Œx0� ı;x0�

we have:

� nR;".x/D nS .x/DmC 1D nS .x
�
0
/.

� The "–column of SŒx0�ı;x0� over x0 consists of n.x0/DmC 2 stacks.

Theorem 3.4 implies that

nS;".x/D nS .x/D nS .x
�
0 /DmC 1 for all x 2 Œx0� ı;x0� �0"

�0 � nZ":

On the other hand, nS;".x
�
0
/DmC2. Thus the interval Œx0��0"

�0 ;x0� must contain
a jumping point of nS;" .

Remark 3.7 Theorem 3.4 states that the two functions n and n" coincide at points
situated at a distance at least �0.S/"

�0�1 pixels away from the jumping points of n. On
the other hand, Theorem 3.6 shows, for a generic semialgebraic set, within �0.S/"

�0�1

pixels from a jumping point of n there must be jumping points of n" .
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Definition 3.8 Let S be a generic semialgebraic set in R2 and the constants "0.S/

and "1.S/ as defined in Theorems 3.4 and 3.6. We set

„.S/ WDmin."0.S/; "1.S//;

and we will refer to it as the critical resolution of S .

4 Approximation of generic semialgebraic sets

This section is the heart of the paper. Here we will describe an algorithm which will
approximate a generic semialgebraic set using only its pixelations, and then prove a very
strong convergence result for this approximation. This algorithm is based on the central
algorithm of [15], updated to handle the additional complexities of semialgebraic sets.

We first observe that when narrow vertical strips around the jumping set JS are
removed from a semialgebraic set S , the remainder is a disjoint union of elementary sets.
Corollary 2.11 indicates a good way to approximate continuous semialgebraic functions,
and Theorems 3.4 and 3.6 indicate that for small ", the jumping points of S become
close to the jumping points of P".S/. Therefore a viable approximation technique is
to treat parts of P".S/ which occur near jumping points as noise (to be approximated
crudely) and to approximate outside of this noise by means of Corollary 2.11.

There are two quantities which must be used in this approximation. The first is the
previously mentioned spread function � which determines the width of line segments
to be used in approximating outside of noise. From Corollary 2.11 we know that this
spread function should satisfy the following limits:

lim
"&0

"�."/D 0; lim
"&0

".�."//2 D1:

The second quantity determines the width of the noise, measured in pixels, about
jumping points. We will call this quantity � and refer to it as the noise width. It is
defined as follows:

Definition 4.1 Let S be a semialgebraic set and �0 be its separation exponent. Then
a noise width � is a function �W RC! ZC which satisfies the following equations:

lim
"&0

"�."/D 0;(4-1a)

lim
"&0

"�."/

"�0
D1:(4-1b)
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The first property in this definition ensures that noise is a highly localized phenomenon.
The second property implies that "�."/ increases faster than "�0 so that the noise will
eventually contain all fake cycles (consult Remark 3.7). For a reasonable approximation
we must have an a priori estimate of �0 . The choice �0 D

1
2

works for many S . We
could then set �."/D d"�2=3e.

Definition 4.2 Let S be a semialgebraic set and P".S/ its "–pixelation. If A � R
then the part of P" over A is the set

P".S/\ .A�R/:

Algorithm 4.3 (1) Choose a spread � such that "�."/2!1 and "�."/! 0 as
"! 0.

(2) Choose a separation exponent �0 > 0 and noise width � D �."/ such that
"�."/="�0 !1 and "�."/! 0 as "! 0.

(3) For each point p 2 JS;" set

��" .p/ WD �"�."/C "
�p
"

˘
�
"
2
; �C" .p/ WD "�."/C "

˙p
"

�
C
"
2
;

�".p/ WD Œ�
�
" .p/; �

C
" .p/�:

The set
�" WD

[
p2J"

�".p/:

is called the noise set of P".S/ and its connected components are called the
noise intervals of P".S/.

(4) Define R" to be the closure of R n�" . We call R" the regular set of P".S/,
and its connected components are called regular intervals of P".S/.

(5) For each bounded regular interval I �R" and each connected component C of
P".S/\ .I �R/, the part of P".S/ over the regular intervals I :

(a) Choose compatible upper and lower samples „C" and „�" with spread � .
(b) Generate the PL approximation determined by the above upper and lower

samples.
(c) The union of all PL approximations found in the above step is called the

regular approximation which we denote by S
reg
" .

(6) For each noise interval I ��" denote by C".I/ the set of connected components
of P".S/ over I .

(a) For every C 2 C".I/ we denote by UC (resp. LC ) the highest (resp. lowest)
y –coordinate of the center of a pixel in C .
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Figure 8: Covering up the noise

(b) Denote by P".C / the rectangle I � ŒLC ;UC �; see Figure 8.
(c) The noise approximation over I, which we denote by P".I/, is the union

P".I/ WD
[

C2C".I /

P".C /:

(7) The union of all P".I/, where I are the noise intervals in �" , is called the
noise approximation which we denote by Snoise

" .

(8) The final approximation S" is the union of the noise and regular approximations:

S" D Snoise
" [S

reg
"

This final set S" will be piecewise linear by construction.

Example 4.4 If we apply the above algorithm applied to the "–pixelation of the unit
circle fx2Cy2 D 1g, where "� 1

16
, we obtain the region depicted in Figure 9. The

noise blocks are the two rectangles that cover the noise region.

Figure 9: Recovering a circle from a rough pixelation

We can “beautify” the final product a bit by running the algorithm on the pixelation
obtained by a ninety degree rotation, ie by reversing the roles of x and y–axes. We
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obtain two PL approximations. The intersection of the two is another PL approximation
with smaller noise blocks. The final product is a region which closely resemble an
annular region of width approximately ". The unit circle is the “median” circle of this
annular region.

The approximation S" produced by the above algorithm is “good”, meaning that
it captures both topological and geometric information such as area, perimeter and
curvature measures. The precise notion of “good approximation” relies on the concept
of normal cycle.

The normal cycle is a correspondence that associates to each compact planar semialge-
braic set X a 1–dimensional current NX on the unit sphere tangent bundle of R2 :

S .T R2/D f.v;p/ 2R2
�R2

j jvj D 1g:

For a precise definition of this object we refer to Bernig [1], Fu [8], Morvan [12] and
the first author [13]. Here we will content ourselves with a brief description of its
construction.

For a semialgebraic compact domain D�R2 with C 2 boundary the normal cycle ND

has a simple description. It is the current of integration given by the closed curve
GD � S .T R2/,

GD D f.n.p/;p/ 2 S .T R2/ j p 2 @Dg;

where n.p/ denotes the unit outer normal to @D at p 2 @D . Equivalently, GD is the
graph of the Gauss map

@D 3 p 7! n.p/ 2 S1:

Clearly, in this case, the normal cycle contains all the curvature information concerning
the boundary of D .

More generally, if S is a compact semialgebraic set, the we can find a C 3 , proper semi-
algebraic function f W R2! Œ0;1/ such that S D f �1.0/. For all " > 0 sufficiently
small the region S" WD ff � "g is a compact semialgebraic domain with C 2 boundary
so we can define the normal cycle NS" as above. One can show that as "! 0 the
currents NS" converge weakly to a current which by definition is the normal cycle
of S . The hard part is to prove that this current is independent of the choice of defining
function f . This current is a current of integration along a finite number of oriented
semialgebraic arcs in S .T R2/. We refer to [12] for a more in-depth description of the
normal cycle of planar semialgebraic sets. In particular, in [12] one can see how this
current captures the various curvature properties of S .

The following is the main result of this paper.
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Theorem 4.5 Let S be a generic compact semialgebraic subset of the plane. For
each ", let S" be the PL set constructed using Algorithm 4.3. Denote by NS

(resp. NS" ) the normal cycle of S (resp. S" ). Then NS" converges to NS weakly
and in the flat topology as "! 0.

Proof First we note that the approximation converges in the Hausdorff metric to the
original set. This is because each vertex of a line segment is taken from a pixel which
contains a piece of the boundary of the original set. Since every pixel of the pixelation
can be at most "

p
2 far from the original set, this forces the approximation into a tube

around the original set which becomes arbitrarily small as " goes to 0.

From here the strategy of the proof will make heavy use of the inclusion-exclusion
principle satisfied by the normal cycle correspondence X 7!NX . More precisely, this
means that for any compact semialgebraic sets X and Y , we have

NX[Y
DNX

CNY
�NX\Y :

We will use this principle to reduce the calculation of the normal cycle of S" to
calculations of the normal cycle of simpler subsets of S" .

First, we need to introduce some more notation. We set S0 D S . For each " > 0 and
each c 2JS;" we indicate by I".c/ the "–noise interval containing c . For each c 2JS

we set I0.c/ WD fcg. We then define, for each "� 0, the noise strip N".c/ as

N".c/ WD f.x;y/ j x 2 I".c/g
and set

N" WD
[

c2JS;"

N".c/; yR" WDR2
nN":

For each "�0 we construct a graph �" as follows. The vertex set is the set of connected
components of N"\S" . The edge set is the set of connected components of yR"\S" ,
so that two vertices v1; v2 are connected by an edge if and only if there is a component
of yR"\S" whose closure intersects the two components of N"\S" defining v1; v2 .
This graph is the Reeb graph of the projection of S" onto the x–axis. (We refer to
Edelsbrunner and Harer [6, Section VI.3] for a definition of the Reeb graph.)

Observe that there is a ı > 0 such that for all " 2 .0; ı� the graph �" is isomorphic to
the graph �0 . Let

"2 WDminf„.S/; ıg;

where „.S/ is the critical resolution defined in Definition 3.8. For the remainder of
the proof we will deal only with " 2 Œ0; "2�.
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Let V" be the set of vertices of �" and E" be the set of edges of �" . By the above
equivalence of Reeb graphs, for " 2 Œ0; "2�, there is a natural bijection between the
vertices of �" with those of �0 and similarly for the edges. Given a vertex v of �0

we set

Ev WD the set of edges of �0 incident to v .

For any vertex v of V0 and " 2 Œ0; "2� we indicate by Cv;" the connected component
of N"\S" corresponding to the vertex. Similarly, for any edge e of �0 we indicate
by Ce;" the closure of the connected component of yR"\S" corresponding to e . We
have the following result, (compare [15, Lemma 5.3]).

Lemma 4.6 For any " 2 Œ0; "2� we have

(4-2) NSe D

X
v2V0

NCv;" C

X
e2E0

NCe;" �

X
v2V0

X
e2E0

NCv;"\Ce;" :

Proof Note that we have a decomposition

(4-3) S" D

� [
v2V0

Cv;"

�
[

� [
e2E0

Ce;"

�
:

We need to discuss separately the cases " > 0 and "D 0.

(1) Assume that " 2 .0; "2�. In this case we have

(4-4) Cv;"\Cv0;" D∅D Ce;"\Ce0;" for all v ¤ v0; e ¤ e0:

The equality (4-2) now follows from the inclusion-exclusion principle applied to the
decomposition (4-3) satisfying the overlap conditions (4-4).

(2) If "D 0, the overlap conditions are more complicated. We have

Cv;0\Cv0;0 D∅ for all v ¤ v0;(4-5a)

Ce;0\Ce0;0 D∅” e \ e0 D∅;(4-5b)

where the condition e \ e0 D ∅ signifies that the edges e and e0 have no vertex in
common. Recall that Ev denotes the set of edges of �0 incident to the vertex v . We
have

(4-6)
\
e2A

Ce;0 D Cv;0 for all v 2 V0; ∅¤A�Ev :
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Using (4-3), (4-5a), (4-5b), (4-6) and the inclusion-exclusion principle we deduce

NS
D

X
v2V0

NCv;0 C

X
e2E0

NCe;0 �

X
v2V0

X
e2Ev

NCv;0\Ce;0

C

X
v2V0

X
∅¤A�Ev

.�1/jAjC1N
Cv\

�T
e2A Ce;0

�
C

X
v2V0

X
∅¤A�Ev

.�1/jAjN
T

e2A Ce;0

D

X
v2V0

NCv;0 C

X
e2E0

NCe;0 �

X
v2V0

X
e2Ev

NCv;0\Ce;0

C

X
v2V0

� X
∅¤A�Ev

�
.�1/jAjC1

C .�1/jAj
��

„ ƒ‚ …
D0

NCv;0

This completes the proof.

The above lemma shows that Theorem 4.5 will follow once we prove that the three
equalities below are satisfied for every edge e and vertex v in �0 :

lim
"&0

NCv;" DN Cv;0 ;(4-7a)

lim
"&0

NCv;"\Ce;" DNCv;0\Ce;0 ;(4-7b)

lim
"&0

NCe;" DNCe;0 ;(4-7c)

where the convergence in each limit is meant in the weak sense of currents.

Each of these equations will rely on an approximation result of normal cycles proved
by Joseph Fu in [7]. A restricted version of this theorem, which shall suffice for the
purposes of this paper, is stated below.

Theorem 4.7 (Approximation theorem) Suppose S is a compact semialgebraic
subset of the plane and for each " > 0 we are given a compact semialgebraic subset S"
of the plane with the following properties.

(1) There is a compact set K �R2 which contains each S" .
(2) There is a M 2R such that

mass.NS"/�M for all ":

(3) For almost every � 2 Hom.R2;R/ and almost every c 2R we have

lim
"&0

�.S"\f� � cg/D �.S \f� � cg/

Then NS" converges to NS as "! 0 weakly and in the flat metric.
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Equations (4-7a) and (4-7b) will both follow from applying this approximation theorem
to the case of rectangles. Therefore, the following lemma will be useful.

Lemma 4.8 Suppose .S"/">0 is a family of compact convex polygons in the plane that
converge in the Hausdorff metric to a compact convex polygon S as "& 0. Then NS"

converges weakly to NS as "& 0.

Proof We argue by proving the conditions of Fu’s theorem. Observe first that there
exists R> 0 such that

dist.S";S/ <R for all ";

and thus we have condition (1) of the approximation theorem. The computations
of [12, Chapter 23] show that the mass of the normal cycle of a convex polygon P is
equal to 2� C length.P /. From Hadwiger’s characterization theorem (see Klain and
Rota [10, Theorem 9.1.1]) we deduce that

lim
"!0

length.S"/D length.S/

and thus condition (2) is also satisfied.

Therefore we must show that for almost every � 2Hom.R2;R/ and almost every c 2R
we have

lim
"&0

�.S"\f� � cg/D �.S \f� � cg/:

Note that S and each S" are all convex subsets of the plane. Therefore any intersection
with a half-plane is either empty, or a contractible set. Therefore to prove the conver-
gence of Euler characteristic on half-planes we need only prove that a half plane H will
only intersect S" for small " if and only if it intersects S . This is true since H \S"
converges in the Hausdorff metric to H \S .

Proof of (4-7a) Fix a vertex v 2 V0 . The set Cv;0 is a subset of a vertical line over a
jumping point, and so it is either a point or a line segment. For every " 2 Œ0; "2�, the
set Cv;" is a rectangle which spans a noise interval I" and contains Cv;0 . The width
of I" (and so the width of Cv;" ) is proportional to "�."/, and so vanishes as "! 0

(by choice of � ).

The rectangle Cv;" is constructed by choosing the highest and lowest pixels from
the component of I" \ P".S/ containing Cv;0 . For sufficiently small ", the noise
interval I" will be thin enough so that Cv;"\S can be described as a number of regions
lying between the graphs of functions which are C 2 everywhere except possibly at the
jumping point. This implies that for small ", the height of Cv;" differs from the height
of Cv;0 by an arbitrarily small amount.
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Since the height and width of Cv;" converge to the height and width of Cv;0 and since
each Cv;" contains Cv;0 , the rectangles Cv;" converge in the Hausdorff metric to Cv;0 .
Therefore by Lemma 4.8 lim"&0 NCv;" DNCv;0 .

Proof of (4-7b) Fix an edge e 2 E0 and a vertex v 2 V0 . If Ce;0 \Cv;0 D ∅, then
for sufficiently small " the component Ce;" will also not intersect Cv;" and so the
convergence in normal cycle follows.

If the sets Ce;0 and Cv;0 do in fact intersect, then note that Ce;0 \ Cv;0 D Cv;0

(since the vertex is a connected component over a point, and the edges is a connected
component over an interval which overlaps that point).

The intersection Ce;"\Cv;" is a vertical line segment. In fact it is either the right or
left edge of Cv;" . However, since Ce;" converges to a vertical line segment Ce;0 , it
follows that its left right and right edges converge to the same line segment. Therefore
(4-7b) follows from (4-7a).

Proof of (4-7c) We again plan to use the approximation theorem. Theorem 4.7(1)
is plainly satisfied while condition (2) follows from Corollary 2.11 and the explicit
description of the mass of the normal cycle of a planar set given in [12, Chapter 23].
All that is left to do is to verify condition (3) of the approximation theorem.

The component Ce;0 is an elementary region defined by continuous semialgebraic
functions

ˇe ; �e W Œa; b�!R:

More precisely, this means that

ˇe.x/� �e.x/ for all x 2 Œa; b�;

Ce;0 D
˚
.x;y/ 2R2

ˇ̌
x 2 Œa; b�; ˇe.x/� y � �e.x/

	
:

There exists an integer n> 0 and points

aD c0 < c1 < � � �< cn D b

such that for any i D 1; : : : ; n the restrictions of ˇe and �e to .ci�1; ci/ are real
analytic. Moreover, since the set S is generic, the derivatives ˇ0e and � 0e are bounded
near c1; : : : ; cn�1 . In particular, the functions ˇe and �e are locally Lipschitz on the
open interval .a; b/. We will refer to the points

.cj ; ˇe.cj //; .cj ; �e.cj //; j D 0; 1; : : : ; n;

as the vertices of Ce;0 . The other points on these graphs are called regular. Now fix a
constant c 2R and a linear map �W R2!R, �.x;y/D uxC vy , with the following
generic properties:
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(G1) The restriction of � to Ce;0 is a stratified Morse function, and v ¤ 0, ie the
level sets of � are not vertical lines.

(G2) The constant c is not a critical value of �jCe;0
.

(G3) The line L�;c WD f� D cg does not contain any of the vertices of Ce;0 .

We will show that

(4-8) lim
"&0

�.Ce;"\f� � cg/D �.Ce;0\f� � cg/:

For " > 0 sufficiently small we set

(4-9) a" WD aC �."/"; b" WD b� �."/"; C "
e;0 D Ce;0\ .Œa"; b"��R/:

Above we assume that " is small enough so that a" < b" .

Conditions (G1), (G2) and (G3) imply that for " sufficiently small we have

�.Ce;0\f� � cg/D �.C "
e;0\f� � cg/:

Thus, to prove (4-8) it suffices to show that

(4-10) �.Ce;"\f� � cg/D �.C "
e;0\f� � cg/ for all "� 1:

The region C "
e;0

is an elementary region defined by the PL functions

ˇe;"; �e;"W Œa"; b"�!R; ˇe;".x/� �e;".x/ for all x 2 Œa"; b"�:

It is the part of the component Ce;0 outside the "–noise strips.

We need to develop some terminology to handle the intersections of these PL boundary
functions. If f W Œs; t �!R is a piecewise C 2 function, then we say that the line L�;c
intersects the graph of f transversally at a point p0 D .x0; f .x0// if there exists a
ı > 0 such that the function

x 7! �.x; f .x//

is differentiable on the set 0< jx�x0j � ı and its derivative has constant sign on this
set. We will denote by sign.p0; f / 2 f˙1g this sign. Thus, if sign.p0; f /D 1, then
the curve

x 7! .x; f .x//; jx�x0j � ı

intersects the line L�;c at p0 coming from the half-plane f� < cg and entering the
half-plane f� > cg.

For any point p 2R2 and any r > 0 we denote by †r .p/ the closed square

†r .p/ WD
˚
.x;y/ 2R2

ˇ̌
jx�x.p/j � r; jy �y.p/j � r

	
:
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†r .p/ �

p
L�;c

ˇ

y

c1 c2 x

Figure 10: Isolating the intersection points of L�;c with the graphs of ˇ and �
so that the squares †r .p/ do not touch any of the vertical lines containing
the singular points of these graphs

We need to discuss separately three cases.

Case 1: The elementary set Ce;0 is nondegenerate, ie ˇe.x/ < �e.x/, for all
x 2 .a;b/ The conditions (G1), (G2) and (G3) imply that there exists a compact
subinterval I D Œa�; b�� � .a; b/ such that the line L�;c intersects the graphs of ˇe

and �e transversally in regular points on these graphs whose x–coordinates are con-
tained in the interval I . Denote by I0

ˇ
(resp. I0

� ) the intersection of L�;c with the
graph of ˇe (resp. �e .) The superscript 0 in I0

ˇ
comes from our convention that

S D S0 . Finally we set
I0
WD I0

ˇ [ I0
� :

Fix a small positive real number r with the following properties (see Figure 10).

� The closed squares †r .p/, p 2 I0 are pairwise disjoint.
� For each point p 2 I0 , there exists i D 0; 1; : : : ; n such that the projection of
†r .p/ onto the x–axis is contained in a compact subinterval Jp � .ci�1; ci/.

We set
†r .I

0
ˇ/ WD

[
p2Iˇ

†r .p/; †r .I
0
� / WD

[
p2I�

†r .p/:

Lemma 4.9 (a) Denote by I"
ˇ

the intersection of L�;c with the graph of ˇe;" .
There exists "ˇ > 0 with the following properties.

(1) For any "� "ˇ we have

I"ˇ �†r .Iˇ/:
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(2) For any p 2 I0
ˇ

and any "� "ˇ the line L�;c intersects the portion of the
graph of ˇe;" inside †r .p/ in a unique point p."/. This intersection is
transversal and

(4-11) sign.p; ˇe;0/D sign.p."/; ˇe;"/:

(b) Similar statements are true with the functions ˇe;" replaced by the top func-
tions �e;" .

We defer the proof of this result to the end of this section.

Set I"DI"
ˇ
[I"� . We will refer to the intersection of L�;c with @C "

e;0
as the 0–crossing

set and, for "> 0, we will refer to the intersection of L�;c with @Ce;" as the "–crossing
set. (The set C "

e;0
is defined in (4-9).) For "� 0 we denote by K" the "–crossing set.

Observe that the set I" is contained in K" but the "–crossing set may contain additional
points, namely, the intersection of L�;c with the vertical lines xDa"; b" . The Hausdorff
distance between the K" and K0 goes to zero as "& 0. Moreover, Lemma 4.9 implies
that for any " sufficiently small there exists a bijection

‰"W K0!K"

defined by
‰".p/DK"\†r .p/:

For " > 0 we denote by CC" the intersection of Ce;" with the half-plane f� � cg.
Similarly, we define CC

0
to be the intersection of C "

e;0
with the same half-plane. We

have to prove that

(4-12) �.CC" /D �.C
C

0
/ for all "� 1:

For " � 0 the connected components of CC" are all homeomorphic to closed 2–
dimensional disks so that the Euler characteristic of CCe;" is equal to the number of
boundary components of @CC" .

Observe that if K0 D∅, then K" D∅ for all " sufficiently small. In this case CCe;" is
homeomorphic to a closed disk for all " sufficiently small and (4-12) is obviously true.
We need to investigate the case K0 ¤∅.

For " > 0 we define an equivalence relation �" on K" by declaring p�" q if and only
if p and q belong to the same component of @CC" . Similarly, we define an equivalence
relation �0 on K0 by declaring p �0 q if and only p and q belong to the same
connected component of @CC

0
. Thus for "� 0 the number of connected components
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of @CC" is equal to the number of equivalence classes of �" . To prove the equality
(4-12) it suffices to show that

(4-13) p �0 q)‰".p/�" ‰".q/:

Indeed, if (4-13) holds, then we deduce that the number of equivalence classes of �" is
not larger than the number of equivalence classes of �0 . Since the number of connected
components of CC

0
is independent of " if " is small and

dist.CC" ;C
C

0
/! 0 as "& 0;

we deduce that CCe;" has at least as many components as CC
0

.

Fix a component R of CC
0

and p; q 2 @R. We denote by Œp; q�R the arc of @R
obtained by traveling counterclockwise from p to q . Along this arc there could be
additional crossing points p0 D p; : : : ;pk D q 2K0 , arranged in counterclockwise
order. We set

p"j WD‰".pj /:

Each of the arcs Œpj�1;pj �R is of one of the following two types:

(I) A line segment contained in L�;c .

(II) A subarc of @C "
e;0

that intersects L�;c only at its endpoints.

type I

R

�

ˇ

type II

L�;c

y

x

Figure 11: An elementary region S.ˇ; �/ cut by a line L�;c : the intersec-
tion of this region with the lower half-plane determined by L�;c has one
component R whose boundary is decomposed in arcs of two types.

If Œpj�1;pj �R is of type I, so that it is contained in L�;c , then the points p"
j�1

and p"j
are also contained in L�;c and we denote by Œp"

j�1
;p"j �R the oriented line segment
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going from p"
j�1

to p"j . Clearly

p"j�1 �" p"j :

Suppose now that Œpj�1;pj �R is of type II. The points p"
j�1

and p"j divide the
boundary @Ce;" into two arcs, one of which approaches Œpj�1;pj �R in the Hausdorff
distance as "! 0. We denote this arc by Œp"

j�1
;p"j �R . Lemma 4.9 implies that the arc

Œp"
j�1

;p"j �R intersects L�;c only at its end points if " is sufficiently small. For such ",
the arc Œp"

j�1
;p"j �R lies on the same side of L�;c as Œpj�1;pj �R so that p"

ji1
� p"j .

By transitivity we now deduce that

‰".p/D p"0 �" p"k D‰".q/:

This proves (4-13) and thus proves (4-10) in the case when the elementary set Ce;0 is
nondegenerate.

Case 2: The elementary set Ce;0 is degenerate, ie ˇe;0 D �e;0 We denote by J 0

the set consisting of the endpoints of the graph of ˇe;0 and the intersection of this
graph with L�;c . Similarly, denote by J "

ˇ
(resp. J "� ) the set consisting of the endpoints

of the graph of ˇe;" (resp. �e;" ) and the intersection of this graph with the line L�;c .
As in Case 1 we can invoke Lemma 4.9 to obtain bijections

‰ˇ" W J
0
! J "ˇ ; ‰�" W J

0
C! J "� :

We continue to use the notation CC
0

and CC" introduced in the proof of Case 1. In this
case CC

0
is a finite union of subarcs of the graph of ˇe;0 . Let these arcs be A1; : : : ;Ak .

Each of these arcs carry a natural orientation. Denote by pj the initial point of Aj and
by qj the final point of Aj . We set

p
ˇ
j ."/ WD‰

ˇ
" .pj /; p�j ."/ WD‰

�
" .pj /:

We define q
ˇ
j ."/ and q�j ."/ in a similar fashion. Consider the simple closed curve A"j

which is the union of four arcs (see Figure 12):

� The line segment from p�j ."/ to p
ˇ
j ."/.

� The arc of ˇe;" from p
ˇ
j ."/ to q

ˇ
j ."/.

� The line segment from q
ˇ
j ."/ to q�j ."/.

� The arc of �e;" from q�j ."/ to p�j ."/.

Lemma 4.9 implies that for " sufficiently small the closed curve A"j is contained
entirely in the half-plane f� � cg so the bounded region it surrounds is contained in
this half-plane as well. The region CC" consists precisely of the regions surrounded by
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�"

ˇ"

p
ˇ
j ."/ pj

p�j ."/

Aj

q�j ."/ qj

q
ˇ
j ."/

�0 D ˇ0

L�;c

Figure 12: The arc Aj and the simple closed curve A"j , p�j ."/! p
ˇ
j ."/!

q
ˇ
j ."/! q�j ."/! p�j ."/

the closed curves A"j , j D 1; : : : ; k so that �.CC
0
/D �.CC" /D k for all " sufficiently

small. This proves (4-10) in Case 2.

Case 3: Ce;0 is a mixed elementary set It has a minimal good partition

aD t0 < t1 < � � �< tn D b; n� 2;

where for each j D 1; : : : ; n the intersection of Ce;0 with the strip Œtj�1; tj ��R is
either degenerate or nondegenerate. The intersection of the graphs of ˇ and � with
each of the vertical lines xD tj , j D 0; : : : ; n, is a singular point of Ce;0 ; see Figure 13.
Since c is not a critical value of the restriction of � to Ce;0 , we conclude that the line
L�;c does not contain any of these singular points.

�
�

ˇ D �
�

ˇ ˇ

ˇ

t0 t1 t2 t3 t4

x

Figure 13: The minimal good partition of a mixed elementary set

Set HC
�;c
WD f� � cg. For j D 1; : : : ; n and " > 0 we set

Ri WD .Œtj�1; tj ��R/\C "
e;0; Ri;" WD .Œtj�1; tj ��R/\Ce;":

For k D 1; : : : ; n� 1 and " > 0 we set

Vk WD fx D tkg\C "
e;0; Vk;" WD fx D tkg\Ce;":
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To prove (4-10) it suffices to show that

�.Rj \HC
�;c
/D �.Rj ;"\HC

�;c
/ for all "� 1; j D 1; : : : ; n;(4-14a)

�.Vk \HC
�;c
/D �.Vk;"\HC

�;c
/ for all "� 1; k D 1; : : : ; n� 1:(4-14b)

The equalities (4-14a) follow from Cases 1 and 2 investigated above. The equalities
(4-14b) are consequences of the following simple facts.

� For any k D 1; : : : ; n�1, the set Vk consists of a single point that does not line
on the line L�;c .

� For any k D 1; : : : ; n� 1, and " > 0 the set Vk;" consists of a single vertical
line segment.

� For any k D 1; : : : ; n� 1, the set Vk;" converges in the Hausdorff metric to the
set Vk . In particular, for "� 1 we have

Vk �HC
�;c
” Vk;" �HC

�;c
:

This completes the proof of Theorem 4.5.

Proof of Lemma 4.9 The inclusion (a1) follows from the fact that the distance between
the graph of ˇe;" and the graph of ˇe;0 approaches zero as "! 0. To prove (a2) let
us denote by .x0;y0/ the coordinates of p . From the choice of r we deduce that for "
sufficiently small the interval

J" WD Œx0� r � �."/";x0C r C �."/"�

is contained entirely in an interval of the form .cj�1; cj / for some j D 1; : : : ; n (where
the cj were defined much earlier in the proof to be the x–coordinates such that either ˇ"
or �" fail to be real analytic) so that ˇe;0 is C 2 on J" . We set

K1 D sup
x2J"

jˇ0e;0.x/j; K2 D sup
x2J"

jˇ00e;0.x/j:

We denote by m� the slope of L�;c and by m0 the slope of the tangent to the graph
of ˇe;0 at p ,

m0 D ˇ
0
e;0.x0/:

Because L�;c intersects the graph of ˇe;0 transversally at p we deduce m0¤m� . We
deduce that for every x 2 J" we have

(4-15) jˇ0e;0.x/�m0j �K2jx�x0j:
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The function ˇe;" is piecewise linear. Consider the portion of the graph˝
p"0; : : : ;p

"
`."/

˛
with the property that p"

1
; : : : ;p"

`."/�1
are successive vertices on the graph of ˇe;"

such that ˝
p"1; : : : ;p

"
`."/�1

˛
�†r .p/; p"0;p

"
`."/ 62†r .p/:

Denote by .x"j ;y
"
j / the coordinates of p"j , j D 0; : : : ; `."/, and set z"j D ˇe;0.x

"
j /.

Observe that

jy"j � z"j j � .K1C 4/" for all j D 0; : : : ; `."/;

1

x"
k
�x"

k�1

DO
�

1

"�."/

�
for all 1� k � `."/:

We deduce that

m"
j WD

y"j �y"
j�1

x"j �x"
j�1

D
z"j � z"

j�1

x"j �x"
j�1

CO
� 1

�."/

�
;

where the constant implied by the O symbol is independent of ". The mean value
theorem implies that the difference quotient on the right-hand side of the above equality
is equal to the derivative of ˇe;0 at a point �"j 2 .x

"
j�1

;x"j /. Using (4-15) we deduce
that

(4-16) jm"
j �m0j DO

�
1

�."/
Cjx"j�1�x0jC jx

"
j �x0j

�
:

Since �."/!1 we deduce that given

 <min
˚
r; 1

4
jm� �m0j

	
;

there exist constants ı D ı. / > 0 and ". / > 0 such that, for any " < ". / the
segments of the graph of ˇe;" situated in the strip jx�x0j �  have slopes m"

j located
in the range .m0� ;m0C  /. In particular, none of these slopes can be equal to m� ,
and they are all situated on the same side of m� as m0 .

If we fix  as above we can find "1. / > 0 such that, for " < "1. / all the intersection
points of L�;c with the graph of ˇe;" located in †r .p/ are in fact located in the narrow
vertical strip jx�x0j<  . The above discussion then shows that all these intersections
must be transversal and they all have the same sign, sign.p; ˇe;0/. Denote by N". /

the number of such intersections. Set

P˙0 D .x0˙ ; ˇe;0.x0˙  //; P˙" D .x0˙ ; ˇe;".x0˙  //:

Consider now the closed curve C "
 obtained as follows.
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� Travel from the point P�" to PC" along the graph of ˇe;" .

� Next, travel on the vertical segment connecting PC" to PC
0

.

� Travel along the graph of ˇe;0 from PC
0

to P�
0

.

� Finally, travel along the vertical segment connecting P�
0

to P�" .

The above discussion shows that the intersection number between the line L�;c and the
curve C "

 is ˙.N". /�1/. On the other hand, since this curve is homologically trivial
we deduce that the intersection number L�;c and C "

 is 0. Therefore we conclude that
N". /D 1, which completes the lemma in the case of the function ˇe;" .

The above proof can be repeated replacing ˇe;" with �e;" for the upper boundary
case.

Appendix A: Semialgebraic geometry

A set X �Rn is called semialgebraic if it can be written as a finite union

X DX1[ � � � [XN ;

where each of the sets Xi is described by a finite system of polynomial inequalities.

A map F W X0 ! X1 between two semialgebraic sets Xi 2 Rni , i D 0; 1, is called
semialgebraic if its graph �F is a semialgebraic subset of Rn0Cn1 .

Here is a list of basic properties of semialgebraic sets and functions. For proofs and
more details we refer to Bochnak, Coste and Roy [2], Coste [4] and van den Dries [5].

� The union, the intersection and the Cartesian product of two semialgebraic sets
are semialgebraic.

� If X;Y are semialgebraic subsets of Rn then so is their difference.

� A subset of R is semialgebraic if and only if it is a finite union of open interval
and points.

� (Tarski–Seidenberg) The image and preimage of a semialgebraic set via a
semialgebraic map are semialgebraic sets.

� If I is an interval of the real axis and f W I ! R is semialgebraic, then there
exists a finite subset F � I such that the restriction of F to any component of
I nF is monotone and real analytic.
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� (Curve selection) If X is a semialgebraic subset of Rn and x0 2 cl.X / nX ,
then there exists a continuous semialgebraic map  W .0; 1/!X such that

lim
t&0

 .t/D x0:

� (Łojasewicz’ inequality) Suppose that X is a compact semialgebraic set and
f;gW X !R are continuous semialgebraic functions such that

ff D 0g � fg D 0g:

Then there exists a positive integer N and a positive real number C such that

(A-1) jg.x/jN � C jf .x/j for all x 2X:

� Suppose that X is a compact semialgebraic set and f W X !R is a continuous
semialgebraic function. Then the function R! Z that associates to each t 2R
the Euler characteristic of the level set ff D tg is a semialgebraic function.

� A semialgebraic set is connected if and only if it is path connected.

� A semialgebraic set has finitely many connected components and each of them
is also a semialgebraic set.

Proof of Proposition 2.9 We prove only the statement about the total curvature. The
statement about the perimeter follows the same pattern and has fewer complications.
First some terminology.

A continuous function f W Œa; b�!R is piecewise C 2 if there exists a finite set

S D faD s0 < s1 < � � �< s` D bg

such that for any j D 1; : : : ; `, and any k D 1; 2 the restriction of f to the open
interval .sj�1; sj / is a C 2 function and the limits

lim
x&sj�1

f 0.x/; lim
x%sj

f 0.x/;

exist. Note that the last condition implies that as s ! sj ˙ 0 the oriented tangent
space to the graph of f at .s; f .s// has a limit in the Grassmannian of oriented
one-dimensional subspaces of R2 .

We say the arc C is convenient if there exists a piecewise C 2 function f W Œa; b�!R
and an orthonormal system of coordinates .xx; xy/ on R2 such that

C D f.xx; xy/ j xy D f .xx/; xx 2 Œa; b�g:

When C is convenient, Proposition 2.9 is a special case of [15, Proposition 3.6].
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To deal with the general case let us observe that since C is semialgebraic arc, for
any point p 2 C there exists a closed disk D centered at p such that the intersection
D\C is a convenient arc. (As xx–axis we can choose any line that is not perpendicular
to the lines in the tangent cone to C at p described in Definition 1.4. )

Since any continuous semialgebraic function is piecewise C 2 we deduce there exists
an ordered sampling of C

QD fQ0; : : : ;QN g

with the following properties.

(a) The arc C starts at Q0 and ends at QN .

(b) The arc C is smooth at each of the points Q1; : : : ;QN�1 .

(c) For any j D 1; : : : ;N , the portion of C between Qj�1 and Qj is convenient.
We denote by Cj this portion.

Denote by Pj
" the ordered sampling of Cj determined by the points in P" contained

in Cj . We denote by K
j
" the total curvature of the PL curve C .Pj

" /. Since each of
the curves Cj is convenient we have

lim
"&0

Kj
" DK.Cj / for all j D 1; : : : ;N;

so that

lim
"&0

NX
jD1

Kj
" DK.C /:

On the other hand, since C is smooth at the points Q1; : : : ;QN�1 we deduce that

lim
"&0

�
K"�

NX
jD1

Kj
"

�
D 0:

Appendix B: The approximation algorithm

In this section we give a more formal description of the approximation algorithm.

Assume that S sits on a screen consisting of m � m pixels so that " D 1
m

. We
convert P".S/ into an m�m matrix A of 1 and 0, where AŒi; j �D 1 if and only if
the pixel of center ci;j ."/ touches S .

Given this matrix A we will generate a PL set S" which approximates the original set
S . We will assume that " is fixed throughout the description of the algorithm.
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The algorithm depends on two parameters, both positive integers: the spread � and the
noise width � which we regard as functions of m. These should be chosen so that

lim
m!1

�.m/

m
D 0; lim

m!1

.�.m//2

m
D1;

lim
m!1

�.m/

m
D 0; lim

m!1

�.m/

m1��0
D1;

where �0 2 .0; 1� is a constant dependent on S introduced in Theorem 3.4. However,
for most applications we can choose �0 D

1
2

and then

� �m.1=2/Cs; � �m.1=2/Cr ; s; r 2 .0; 1
2
/:

The algorithm uses several smaller subroutines. The first subroutine stack obtains
information about the various columns of A which will be used to determine both the
noise intervals as well as to select the vertices of S" . The input of stack is a list

C D c1; : : : ; cm; ci D 0; 1;

where C is one of the columns of A. The output of stack is a list of nonnegative
integers

n.C / W b1 � t1 < b2 � t2 < � � �< bn.C / � tn.C /;

where n.C / is the number of stacks in the column encoded by C , and the location of
the bottom and top pixel in the j th stack is determined by the integers bj ; tj . More
formally,

ck D 1 ” there exists 1� j � n.C /; bj � k � tj :

If C D Ci , the i th column of A, ie

Ci D ai;1; : : : ; ai;m;

then we will denote the output stack.Ci/ by

ni ; bi;1 � ti;1 < � � �< bi;ni
� ti;ni

:

A number 1� i �m� 1 is called a jump point if

ni ¤ niC1:

The next subroutine is called jump. Its input is an integer k 2 Œ1;m/ and the output is
an integer jk D jump.k/, where jk is the next jump point, ie if˚

i 2 Œk;m/\Z
ˇ̌
i is a jump point

	
D∅;
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then we set
jump.k/ WDmC 1:

Otherwise
jump.k/Dmin

˚
i 2 Œk;m/\Z

ˇ̌
i is a jump point

	
:

Using these subroutines we can construct the noise regions of the approximation. These
are simply the columns which are within 2� columns of a jump point. Specifically we
create a certain number of intervals

Œ`1; r1�; : : : ; Œ`˛; r˛ �� Œ1;m�;

where the integers `k ; rk are determined inductively as follows:

`1 Dmax.jump.1/� 2�; 1/; r1 Dmin.m; jump.1/C 2�/:

Suppose that `1; r1; : : : ; j̀ ; rj are determined. If jump.rj / >m we stop. Otherwise
we set

j̀C1 Dmax.jump.rj /� 2�; 1/; rjC1 Dmin.m; jump.rj /C 2�/:

The intervals Œ`1; r1�; : : : ; Œ`˛; r˛ � may not be disjoint, but their union is a disjoint union
of intervals

Œa1; b1�; : : : ; ŒaJ ; bJ �; bi < aiC1:

The intervals Œaj ; bj �; 1� j � J are the noise intervals. The intervals

Œ1; a1�; Œb1; a2�; : : : ; ŒbJ�1; aJ �; ŒbJ ;m�

are the regular intervals.

Now that we have determined the noise and regular intervals, we can create the approx-
imation S" . We do this with separate procedures on the noise or regular intervals. In
either case the approximation will be formed by (possibly degenerate) trapezoids whose
bases are vertical. We call any set which is a union of finitely many such trapezoids
a polytrapezoid. The approximations on the regular and noise intervals will both be
polytrapezoids, and S" itself will also be a polytrapezoid.

First some notation. Given a collection of points

B0;T0; : : : ;BN ;TN 2R2

such that

x.Bi/D x.Ti/; y.Bi/� y.Ti/ for all i D 0; : : : ;N;

x.Bj�1/ < x.Bj / for all 1� j �N;
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we denote by polygon.B0;T0; : : : ;BN ;TN / the region surrounded by the simple
closed PL curve obtained as the union of line segments

ŒB0;B1�; : : : ; ŒBN�1;BN �;

ŒBN ;TN �; : : : ; ŒT1;T0�; ŒT0;B0�:

Note that each of the quadrilaterals Bi�1BiTiTi�1 is a (possibly degenerate) trapezoid
with vertical bases.

Consider first the regular intervals. Given a regular interval I WD Œp; q� we observe that
the number of stacks ni is independent of i 2 Œp; q�. We denote this shared number by
nD n.I/.

We construct inductively a sequence of numbers i0 < � � �< iN as follows:

� We set i0 D p .

� If q�p < 2� we set N D 1 and i1 D q .

� If i0; : : : ; ik are already constructed, then, if q� ik < 2� we set N D kC1 and
ikC1 D q , else ikC1 D ik C � .

Note that if q�p > � , then N � 1, i0 D p , iN D q and

N D 1 if q�p < �:

We have
stack.Cik

/D n; bik ;1; tik ;1; : : : ; bik ;n; tik ;n:

For j D 1; : : : ;n, and k D 0; : : : ;N we denote by Bk;j the center of the "–pixel
corresponding to the element entry bik ;j in the column Cik

. Similarly we denote
by Tk;j the center of the pixel corresponding to the entry tik ;j of the column Cik

. For
1� j � n.I/; we set

Pj .I/ WD polygon
�
B0;j ;T0;j ; : : : ;BN;j ;TN;j

�
:

Define

P.I/D
n.I /[
jD1

Pj .I/; Pregular WD
[

I regular interval

P.I/:

Suppose now that I D Œp; q� is a noise interval. We modify the column

Cp D ap;1; : : : ; ap;m

to a column
C 0p D a0p;1; : : : ; a

0
p;m;
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by setting

a0p;k WD

8̂̂<̂
:̂

1 if
qP

iDp

ai;k > 0;

0 if
qP

iDp

ai;k D 0:

We apply the subroutine stack to the new column C 0p and the output is

stack.C 0p/D n.I/; b1 � t1 < � � �< bn.I / � tn.I /:

For j D 1; : : : ;n.I/ we set

B0;j WDAŒp; bj �; T0;j WDAŒp; tj �;

B1;j WDAŒq; bj �; T0;j WDAŒq; tj �;

where we recall that AŒi; j � is defined as the center of the pixel associated to ai;j .
Next, for j D 1; : : : ;n.I/ we define the rectangle

Rj .I/ WD polygon
�
B0;j ;T0;j ;B1;j ;T1;j

�
;

and we set

R.I/D
n.I /[
jD1

Rj .I/; Pnoise WD
[

I noise interval

R.I/:

The output of the algorithm is the polytrapezoid

P".A/ WD Pregular[Pnoise:
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