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The T–algebra spectral sequence:
Comparisons and applications

JUSTIN NOEL

In previous work with Niles Johnson the author constructed a spectral sequence for
computing homotopy groups of spaces of maps between structured objects such
as G–spaces and En –ring spectra. In this paper we study special cases of this
spectral sequence in detail. Under certain assumptions, we show that the Goerss–
Hopkins spectral sequence and the T–algebra spectral sequence agree. Under further
assumptions, we can apply a variation of an argument due to Jennifer French and
show that these spectral sequences agree with the unstable Adams spectral sequence.

From these equivalences we obtain information about the filtration and differentials.
Using these equivalences we construct the homological and cohomological Bockstein
spectral sequences topologically. We apply these spectral sequences to show that
Hirzebruch genera can be lifted to E1–ring maps and that the forgetful functor from
E1–algebras in H xFp –modules to H1–algebras is neither full nor faithful.

55P99, 55S35; 13D03, 18C15

1 Introduction

In [15] the author and Niles Johnson constructed the T–algebra spectral sequence which,
as a special case, can be used to calculate the homotopy groups of the space of E1–
algebra maps between two spectra. The purpose of this spectral sequence is to analyze
the filtration between maps of E1–algebras “up to homotopy”, ie H1–algebras, and
actual E1–algebra maps.

Goerss and Hopkins also constructed a spectral sequence for computing E1–algebra
maps [12] and below we will show that these two spectral sequences agree after
restricting to algebras in Hk–modules for a field k . Although there is a direct argument
for this equivalence due to Bousfield [4, Theorem 6.2], we will use a more general
argument due to French [11].

By taking function spectra one obtains a natural map

Top.X;Y yp/ �!E1–ModH xFp
.H xFY

p ;H
xFX

p /;
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where Y yp is the p–nilpotent completion of Y ; see Bousfield and Kan [5]. French
showed that, under mild hypotheses, this map induces an isomorphism between the
unstable Adams spectral sequence of Bousfield and Kan, which computes the homotopy
groups of the source, and the Goerss–Hopkins spectral sequence, which computes the
homotopy groups of the target. This result has an obvious rational analogue and her
argument can be applied to prove this case as well. Roughly speaking, these results
show how rational and p–adic unstable homotopy theory embed into the homotopy
theory of E1–ring spectra. Since we would like to use these results to analyze the
latter categories we recall her argument in Section 4.

We state these results and their immediate consequences in Section 2. In Section 3 we
apply the T–algebra spectral sequence and these comparisons to show:

(1) Hirzebruch genera admit unique E1–lifts (Theorem 3.1).

(2) Some of the results about E1–maps from [15] can be recovered using classical
unstable homotopy theory (Section 3.2).

(3) If X is a 2–connected spectrum, then every H1–map from †1C�
1X to a

K.1/–local E1–ring spectrum can be lifted to an E1–map (Proposition 3.3).

(4) In the category of E1–algebras in H xFp –modules, there is an uncountable family
of homotopy classes of maps which induce the same H1–algebra map (see
part (1) of Theorem 3.4).

(5) For each n � 0, there is an H1–map in H xFp –modules for which the first n

obstructions to lifting to an E1–algebra map vanish, but which fails to lift to an
E1–map (Theorem 3.4(2)).

(6) The Bockstein spectral sequences can be constructed as special examples of the
T–algebra spectral sequence (Theorem 3.5).

Acknowledgements This paper was written while the author was a visitor at the Max
Planck Institute. He would like to thank the institute for their support and for providing
a stimulating work environment. He would also like to thank the anonymous referee
for their careful reading of this paper and their helpful comments.

2 Comparisons

2.1 The T–algebra spectral sequence

Let T be a simplicial monad acting on a simplicial model category C. Under frequently
satisfied hypotheses, the Eilenberg–Moore category of algebras CT inherits a simplicial
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model structure such that a morphism of T–algebras is a weak equivalence if and only
if it is a weak equivalence after forgetting down, via U , to C.

Let T D UF be the decomposition of T into the left adjoint

F W C �! CT

followed by the right adjoint U . Given T–algebras X and Y , one can form the
standard cotriple/bar resolution

B�.F;T;UX /D B�X �!X

of X and then map this resolution into Y to obtain a cosimplicial space CT .B�X;Y /.
Now for any cosimplicial space one can construct the associated Tot spectral sequence
of Bousfield and Kan [7; 3]. One might hope that in our case this spectral sequence
computes the homotopy groups of the derived mapping space CT .X;Y /. This turns
out to be too much to expect, even if X and Y are both cofibrant and fibrant.

It is important to note that the Bousfield–Kan spectral sequence is not a spectral sequence
in the conventional sense. There are obstructions to obtaining a well-defined En term
for n> 1, some of the terms are not abelian groups, and some of the differentials are
relational. Moreover, there are generally obstructions to obtaining a basepoint in the
totalization. Although the details are intricate, they are carefully treated in [3], where
it is shown that the spectral sequence simplifies when “certain Whitehead products
vanish”. In these cases, the E2 term is well defined and every term except for E

0;0
2

is
an abelian group.

As explained in [15, Theorem 4.5] this condition holds for all of the examples considered
in this paper because, in each cosimplicial degree, we have an H –space. For this
simplification, we do not require, nor is it usually true, that the cosimplicial structure
maps be maps of H –spaces. In these nice cases, the obstructions to the existence of
a basepoint lie in E

s;s�1
2

for s � 2. In our examples, we will either have an obvious
basepoint or we will show that these groups vanish.

Using model categories, one can construct this spectral sequence by either first replac-
ing B�X with a Reedy cofibrant simplicial diagram, or if CT is cofibrantly generated,
taking a cofibrant replacement in the projective model structure. The new simplicial
diagram has a geometric realization (resp. homotopy colimit over �op ) which admits a
well-behaved filtration by its skeleta (resp. homotopy colimits over �op

�n ), which gives
rise to a tower of fibrations. Taking homotopy groups at a fixed basepoint (which we
will usually suppress), one obtains interweaving long exact sequences and an associated
spectral sequence.1

1Using [18, Remark A.2.9.27] one can see the two approaches are equivalent if CT is combinatorial.
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Unfortunately, even when this spectral sequence collapses and there are no lim1

issues it still may not converge to the homotopy groups of ��CT .X;Y / because we
have changed the homotopy type of the objects being studied. To obtain the correct
convergence properties we assume that X is resolvable [15, Definition 3.18]. This
hypothesis is often satisfied and guarantees that B�X is already Reedy cofibrant. This is
enough to construct a spectral sequence converging to ��CT .jB�X j;Y /. Finally if T

commutes with geometric realizations or equivalently, the forgetful functor U W CT !C

preserves geometric realizations, then jB�X j!X is a weak equivalence of T–algebras
and we obtain the desired convergence. As shown in [15, Sections 3 and 5.2] each of
these hypotheses will be satisfied in all of the examples we will consider.

Proposition 2.1 Let k be a field. For any En –algebras X and Y in Hk–modules
there is a T–algebra spectral sequence converging to

��En–ModHk.X;Y /:

Moreover, the E2 term of this spectral sequence is always defined and there are
identifications

E
0;0
1
Š hoModHk.X;Y /ŠModk.��X; ��Y /;

E
0;0
2
ŠHn–ModHk.X;Y /

such that the edge homomorphisms are the evident forgetful functors. Here hoModHk is
equivalent to Modk , the category of graded k–modules and Hn–ModHk is the category
of Hn –algebras (or homotopy En –algebras) in hoModHk ; see Bruner, May, McClure
and Steinberger [8].

Proof The proof is exactly as in [15, Sections 4.4.3 and 5.2] once we have shown that
every X is resolvable. To do this we need an En –operad O which is cofibrant and
whose first component O.1/ is a point. The combinatorial En –operad constructed by
Berger [2] from Smith’s filtration [29] satisfies the latter property. If we then apply
the Boardman–Vogt W� construction to Berger’s operad, we obtain an operad O with
both of the desired properties by [15, Lemma 4.12].

When computing spaces of maps of E1DA1–algebras, H1 –algebras in hoModHk can
be identified with associative graded k–algebras and the remainder of the E2 term can
be identified with the Quillen cohomology of the associative k–algebra ��X [15, Sec-
tion 5.2]. In positive cohomological degrees these cohomology groups can be identified
with Hochschild cohomology groups; see Quillen [26, Proposition 3.6].

As described in May [20] and [8, Section III.1], when n D 1 and k is a field of
characteristic p , ��X admits the structure of a graded commutative k–algebra with
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an action by the extended Dyer–Lashof algebra. In other words, in addition to the
Bockstein, there are operations Qi acting on ��X for each integer i which satisfy
Adem and instability relations. The category of such algebras is an algebraic category
in the sense of [26] and as a consequence one can construct a model structure on
simplicial algebras over the extended Dyer–Lashof algebra and define cohomology
with coefficients in an abelian group object in this category. As an example, if t is
positive, ��Y S t

Š ��Y ˚��CtY is an abelian group object over ��Y .

Proposition 2.2 [15, Theorem B] If we set n D 1 in the spectral sequence of
Proposition 2.1 and let f W ��Y ! ��X be a map of algebras over the extended
Dyer–Lashof algebra, then

E
s;t
2
D HQs

��Y

�
��X I��Y

S t �
for t > 0. Here the right-hand side is the Quillen cohomology of the algebra ��X over
the extended Dyer–Lashof algebra over ��Y , via f , with coefficients in the abelian
group object ��Y S t

.

Remark 2.3 Assuming that the functorial identifications of the homology of free
En –algebras in based spaces of Cohen, Lada and May [9, Section III] can be extended
to spectra and that one can form the associated algebraic category of Hn –algebras,
then the remainder of the E2 term in Proposition 2.1 can be identified with appropriate
Quillen cohomology groups just as in the A1 and E1 cases.

Remark 2.4 If k is a field of characteristic zero, then there are no Dyer–Lashof
operations and the homotopy theory of E1–algebras is equivalent to the homotopy
theory of graded commutative differential graded algebras over k . Moreover, the H1–
algebras can be identified with graded commutative k–algebras. As in Proposition 2.2,
we can then identify the E2 term with the classical André–Quillen cohomology
groups [15, Section 5.2].

2.2 The Goerss–Hopkins spectral sequence

The Goerss–Hopkins spectral sequence is another spectral sequence that can be used to
calculate the space of O–algebra maps for a suitable operad O . This spectral sequence
is generally constructed by resolving both the source and the target of the space of
maps and forming the total complex. The resolution of the source uses a resolution
model structure which will be described in some detail in Section 4. For the target
one uses an Adams resolution with respect to some nice homology theory E . This
latter resolution is unnecessary when E D Hk and we are working in the category of
Hk–modules instead of spectra.
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As described in [12, Section 6], the E2 terms of the Goerss–Hopkins spectral sequences
computing E1–algebra maps are abstractly isomorphic with the E2 terms appearing
in Proposition 2.2 and Remark 2.4.

Proposition 2.5 Let k be a field and X;Y 2En–ModHk . The T–algebra and Goerss–
Hopkins spectral sequences abutting to ��En–ModHk.X;Y / are isomorphic from
the E2 term on.

Proof It suffices to show that the bar resolution used to construct the T–algebra
spectral sequence is a resolution in the sense of the resolution model structure. This
follows from the dual of [4, Theorem 6.2], and from French’s argument in Section 4.

Now we recall one of the main results of French’s thesis.

Theorem 2.6 [11, Theorem 2.6.7] Suppose that X and Y are spaces of Fp –finite
type and Y is p–nilpotent. Then there is a natural isomorphism between the unstable
Adam spectral sequence

E
s;t
2;UA

H) ��Top.X;Y yp/

and the Goerss–Hopkins spectral sequence

E
s;t
2;E1 H) ��E1–ModH xFp

�
H xFY

p ;H
xFX

p

�
from the E2 page on.

The two E2 pages of these spectral sequences are ostensibly different and their identi-
fication depends on a crucial result of Mandell. In particular

E
0;0
2;UA Š UA.H�.Y IFp/;H

�.X IFp//;

the maps of unstable algebras over the Steenrod algebra over Fp , while

E
0;0
2;E1 ŠH1

�
H xFX

p ;H
xFY

p

�
Š EUA

�
H�.Y I xFp/;H

�.X I xFp/
�

consists of the maps of unstable algebras over the extended Dyer–Lashof algebra
over xFp . The remainder of the E2 terms can be identified with the corresponding
Quillen cohomology groups in these respective categories. These groups are also
sometimes called nonabelian Ext groups; see Miller [22] and [3, Section 9]. Although
we defer to [10; 11; 19] for the details of this identification, we will recall a variation of
French’s argument for comparing these spectral sequences in Section 4 that is general
enough to also prove this:
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Theorem 2.7 Suppose that X and Y are spaces of Q–finite type and Y is Q–
nilpotent. Then there is a natural isomorphism between the unstable Adam spectral
sequence converging to ��Top.X;YQ/ and the Goerss–Hopkins spectral sequence
converging to ��E1–ModH Q.HQY ;HQX /.

Combining Proposition 2.5 with Theorems 2.6 and 2.7 we see that the unstable Adams
spectral sequences can be recovered as special cases of the T–algebra spectral sequence.
Since the former has been studied off and on for the last forty years, we have many
powerful results that we can apply to analyze this filtration on E1–maps (see Section 3.2
for some examples).

3 Applications

3.1 Hirzebruch genera

Recall that BGL1S is the classifying space for stable spherical fibrations (see, for
example, May [21], where this is called BF ). This is an infinite loop space and
associated to any infinite loop map G!GL1S is an E1 Thom spectrum MG. Standard
examples include the J–homomorphisms from SO, Spin, String and their complex
analogues. The homotopy groups of these Thom spectra correspond to the bordism
rings of the corresponding categories of manifolds.

Now a Hirzebruch genus is a graded commutative ring map

x�W ��MG �!R�

whose target is a graded commutative Q–algebra (compare Milnor and Stasheff [24, Sec-
tion 19]). In geometric examples a genus is a function that assigns to each closed
manifold an element in a Q–module which is a cobordism invariant, takes disjoint
unions to sums and takes finite cartesian products to ordinary products.

Theorem 3.1 There exists an E1–ring spectrum R such that ��RŠR� and

�0E1.MG;R/Š CommA lg.��MG;R�/:

In other words, every Hirzebruch genus x� can be lifted to a map of E1–ring spectra
and this lift is unique up to homotopy through E1–ring maps.

Proof First note that we can apply the Eilenberg–MacLane functor to R� to obtain
an E1–ring spectrum HR with ��HRŠR� . This is an arbitrary choice, but it will
turn out the conclusion of the theorem does not depend on this choice.
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Now any such genus factors as

��MG �! ��MG˝QŠH�.MGIQ/ �!R�

and similarly there is a canonical weak equivalence of derived mapping spaces

E1.MGQ;HR/
�

�! E1.MG;HR/:

Here MGQ is the Bousfield localization of MG with respect to HQ.

We will now apply one of the above equivalent spectral sequences to compute

��E1.MGQ;HR/Š ��E1–ModH Q.MGQ;HR/

and show that the obstructions to lifting x� vanish. Since the resulting spectra are
rational we can use [15, Section 5.2] to identify the E2 term as

E
0;0
2
Š CommA lgQ.��MGQ;R�/Š CommA lg.��MG;R�/;

E
s;t
2
ŠH s

AQ;R�

�
��MGQI��HRS t �

for t > 0:

If MG is Q–oriented, then we have a Thom isomorphism

H�.BGIQ/ŠH�.MGIQ/Š ��MGQ

of graded-commutative Q–algebras. Now H�.BGIQ/ is a connected bicommutative
Hopf algebra over Q and by the Milnor–Moore theorem [23, Section 7] such Hopf
algebras have free underlying graded commutative algebras.

So if MG is Q–oriented, ��MG˝Q Š ��MGQ is a free, and hence formal, Q–
algebra and by [26, Theorem 2.4.(ii)] the positive André–Quillen cohomology groups
for ��MGQ vanish with any coefficients. By the identification of the E2 DE1 page,
the Hurewicz map

�0E1.MGQ;HR/ �! CommA lgQ.��MG˝Q;R/Š CommA lg.��MG;R/

is an isomorphism, so � can be lifted uniquely up to homotopy. Moreover in this case
there is a bijection between homotopy classes of E1–maps and H1–ring maps.

Now by Lewis, May, Steinberger and McClure [17, Proposition IX.4.5], Thom spectra
are Q–oriented if and only if they are Z–oriented, which happens if and only if the
classifying map G! GL1S lifts to the connected cover SL1S . Moreover, if the map
does not lift, then �0MG is Z=2, which implies that ��MG is a Z=2–algebra. In this
case there are no maps to a Q–algebra, so the theorem vacuously holds.
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Remark 3.2 Although the proof of Theorem 3.1 was not entirely formal, the only
nonformal input was classical. The author expects that this result was surely known
to experts by alternative methods which avoid the above spectral sequence arguments.
In particular, the classical part of the argument above shows that MGQ corresponds
to a formal graded commutative Q–algebra via the Quillen equivalence between
rational E1–ring spectra and differential graded commutative Q–algebras. It follows
immediately that any such Hirzebruch genus can be lifted to any E1–map uniquely up
to homotopy.

Theorem 3.1 says that the problem of lifting genera to E1–maps is easy rationally.
In important cases, geometric arguments show that the Hirzebruch genus lifts to a
nonrational ring. Integrally or even p–locally this problem is significantly harder
and related to deeper mathematical questions (see, for example, Ando, Hopkins and
Rezk [1]).

3.2 Examples from earlier work

The equivalence between the unstable Adams spectral sequence and the T–algebra spec-
tral sequence sheds light on [15, Examples 5.9 and 5.12] where the T–algebra spectral
sequence is used to calculate ��E1.HQS2

;HQS3

/ and ��E1.HQK.G;1/;HQS1

/.
Here G is the Heisenberg group. We can now identify these examples as calculations
of ��Top.S3;S2

Q/ and ��Top.S2;K.G; 1/Q/, respectively.

By evaluating at a basepoint of the sphere, we see that each of these spaces sits in a
split fibration. For example we have

�2K.G; 1/Q �! Top.S2;K.G; 1/Q/
ev
�!K.G; 1/Q:

These splittings decompose the spectral sequence into a product of spectral sequences
computing the homotopy groups of based spaces.

The importance of the first example was that it gave examples of nontrivial elements
detected in positive filtration and hence were undetectable in the category of H1–ring
spectra. These elements we can now identify as rational multiples of the Hopf map
S3! S2 and by convergence we see that these are permanent cycles. Moreover we
can now bypass the direct computation in [15] to see that these elements must be
in positive cohomological degree. Namely by Bousfield and Kan [6] we know that
Whitehead products always raise filtration degree and the Hopf map can be identified
with the Whitehead product ŒIdS2 ; IdS2 � up to a rational unit.

The second computation involving the Heisenberg group was important because it gave
an example of a nontrivial differential (ie an obstruction). Now that we can see that we
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are computing the space of maps from S2 into K.G; 1/, we see that although the E2

term is quite large, nearly all groups must be annihilated in the spectral sequence. The
only nonbasepoint elements to survive are in E

0;1
2
DQ˚Q and E

1;2
2
DQ. These

groups fit into the defining (nonsplit) exact sequence for the rational Heisenberg group.
Again we can identify E

1;2
2

as generated by a Whitehead product, which in this instance
is just the commutator of the two generators in E

0;1
2

.

Finally we note that the differential constructed in [15] arises from the existence of a
nontrivial Massey product in H�.K.G; 1/IQ/. Using Gugenheim and May [14] or gen-
eral staircase lemma arguments, one expects this Massey product to induce a differential
in the Eilenberg–Moore spectral sequence converging to H�.�K.G; 1/IQ/ŠQŒG�.
This forces a differential in the original spectral sequence by the results of [6, Section 15]
which show that the E2 term of the rational unstable Adams spectral sequence embeds
(with a shift) into the E2 term of the Eilenberg–Moore spectral sequence.

3.3 K.1/–local examples

In Theorem 3.1 we lifted genera to E1–maps using a simple trick: although the
spectrum MG is not weakly equivalent to a free E1–ring spectrum, it is after rational
localization. It follows that one can completely describe the space of E1–maps
from MG to any rational E1–ring spectrum.

A similar argument was used in [15, Example 5.15] to analyze the space of E1–maps
out of †1C Coker J to any K.2/–local E1–ring spectrum. That example depended
both on Kuhn [16, Theorem 2.21], which gave criteria for suspension spectra of infinite
loop spaces to be K.n/–locally free, and joint work of the author with Nick Kuhn
which showed that Coker J satisfies the required hypotheses when n is 2. When n

is 1 we have the following:

Proposition 3.3 Suppose X is a simply connected spectrum, �2X is a finite tor-
sion group, and R is a K.1/–local E1–ring spectrum. Then the T–algebra spectral
sequence converging to

��E1.†1C�1X;R/

collapses onto the 0–line. Moreover

��E1.†1C�1X;R/ŠR��.X /

and each H1–map can be lifted uniquely, up to homotopy, to an E1–map.

Proof By hypothesis �1X satisfies the hypotheses of [16, Theorem 2.21], so
†1C�

1X is K.1/–equivalent to the free E1–algebra on X . See [15, Example 5.15]
for further details.
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3.4 Eilenberg–MacLane spaces and Bockstein spectral sequences

Now let us use the unstable Adams spectral sequence, as a special case of the above
spectral sequences to compute the homotopy groups of

K.Z yp; n/'K.Z; n/ yp ' Top.�;K.Z; n/ yp/'E1–ModH xFp

�
H xFK.Z;n/

p ;H xFp

�
for n> 0. To base this spectral sequence we can take any basepoint of K.Z; n/. The
calculation of this particular E2 term is easy and well known to experts, but since the
author could not find it in the literature we include a brief sketch. To reduce clutter,
unless otherwise stated, we will implicitly take cohomology with Fp –coefficients.

Now
E

0;0
2;UA Š UA.H�.K.Z; n//;Fp/D f�g

which is the image of our basepoint. For positive t we have

E
s;t
2;UA ŠH s

UA;Fp
.H�.K.Z; n//IH�.S t //:

While one could construct an explicit resolution of H�.K.Z; n// in the category of sim-
plicial unstable algebras over the Steenrod algebra following the method of [15, Exam-
ple 5.9], we will instead use the composite functor spectral sequence of Miller [22, The-
orem 2.5] which converges to our desired E2 term. Since we will only use this spectral
sequence here and it collapses at E2 we will just say that the two derived functors
being used are those arising from the derived indecomposables of H�.K.Z; n//, as an
Fp –algebra, and the higher Ext groups in the category of unstable modules over the
Steenrod algebra (see Schwartz [27] for a detailed study of this category).

Now by classical computations of Cartan and Serre, H�.K.Z; n// is a free graded
commutative algebra on a module Q. Here Q is the free module on those admissible
monomials over the Steenrod algebra acting on an element in degree n, of excess no
greater than n, modulo those admissible monomials beginning with a Bockstein. This
is ˇ for odd primes and Sq1 at the prime 2. This implies the higher André–Quillen
homology groups vanish and the composite functor spectral sequence collapses to yield

E
s;t
2;UA

Š ExtsUM .†�1Q; †t�1Fp/:

These Ext groups are defined with respect to a cohomological grading, so we will
temporarily switch our grading convention. Let F.i/ denote the free unstable module
on a generator of degree i [27]. Now to calculate these Ext groups we will construct a
“periodic” resolution of †�1Q,

� � �
ˇ
�! F.nC 1/

ˇ
�! F.n/

ˇ
�! F.n� 1/

i
�!†�1Q;
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where ˇ is the first Bockstein operation and i is the canonical map hitting the desus-
pended fundamental class. It is easy to see that the relation ˇ2 D 0 and the definition
of F.i/ imply this sequence is exact.

This immediately gives us the E2 term shown in Figure 3.1. Clearly the spectral
sequence collapses and by convergence, every possible group extension is nontrivial.

∗

s

2

0

�1 0 � � � n � � � t � s

s

2

0

�1 0 � � � n � � � t � s

Figure 3.1: E2 D E1 pages for ��E1–ModH xFp
.H xFK.Z;n/

p ;H xFp/ and
��E1–ModH xFp

.H xFK.Z;n/
p ;H xFSn

p / respectively

To determine the behavior of the spectral sequences above converging to ��K.Z=pk ; n/,
we use the fibration sequence

K.Z=pk ; n/ �!K.Z; nC 1/
pk

�!K.Z; nC 1/

and the corresponding Eilenberg–Moore spectral sequence

Tors;t
H �.K.Z;nC1//

.H�.K.Z; nC 1//;Fp/

Š Tors;t
H �.K.Z;nC1//

.Fp;Fp/˝H�.K.Z; nC 1//H)H t�s.K.Z=pk ; n//:

Comparing with the classical computations of Serre and Cartan we see that, for all
k � 1, this spectral sequence collapses.

If we assign the indecomposable generators of H�.K.Z; n// filtration degree 1 and the
other generators degree 0, then the E2 DE1 term of the Eilenberg–Moore spectral
sequence is isomorphic to the associated graded of H�.K.Z; n//˝H�.K.Z; nC 1//.
Since these algebras are all free as graded commutative Fp –algebras there are no
additive or multiplicative extensions. However when k D 1 the Bockstein connects
the fundamental classes of these two algebras yielding a free unstable algebra over the
Steenrod algebra. In general these algebras will be connected by a k th order Bockstein.

So for k > 1 we see that

H�.K.Z=pk ; n//ŠH�.K.Z; n//˝H�.K.Z; nC 1//

as unstable algebras over the Steenrod algebra. André–Quillen cohomology takes
coproducts of algebras over the Steenrod algebra, which are represented by tensor

Algebraic & Geometric Topology, Volume 14 (2014)



The T–algebra spectral sequence 3407

products, to products. It follows that the E2 term of the spectral sequence computing
��K.Z=pk ; n/ is concentrated in the t � s D n and nC 1 columns. Convergence of
this spectral sequence forces the pattern of differentials in Figure 3.2:

∗

s

k

0

�1 0 � � � n nC1 � � � t � s

s

k

0

�1 0 � � � n nC1 � � � t � s

Figure 3.2: Ek /E1 pages for ��E1–ModH xFp
.H xFK.Z=pk ;n/

p ;H xFp/ and
��E1–ModH xFp

.H xFK.Z=pk ;n/
p ;H xFSnC1

p / , for k > 1 , respectively

Just as for the examples in Section 3.2, we can “loop” these examples down to see that
the E

s;s
1 terms in the spectral sequence computing

��E1–ModH xFp

�
H xFK.Z=pk ;n/

p ;H xFSn

p

�
are each nontrivial for 0� s < k . While in the spectral sequence computing

��E1–ModH xFp

�
H xFK.Z;n/

p ;H xFSn

p

�
;

we see that E
s;s
1 is nontrivial for all s � 0 as in the right-hand diagram of Figure 3.1.

We also see there are elements in E
0;0
k

in the spectral sequences computing

��E1–ModH xFp

�
H xFK.Z=pk ;n/

p ;H xFSnC1

p

�
which support a nontrivial dk as in the right-hand diagram of Figure 3.2. The last two
observations yield the following:

Theorem 3.4 (1) In the category of E1–algebras in H xFp –modules there is an
uncountable family of homotopy classes of E1–maps inducing the same H1–
map.

(2) Moreover, for each n�0, there is an H1–map for which the first n–obstructions
to lifting to an E1–algebra map in H xFp –modules vanish but which fails to lift
to an E1–map.

When X is a degreewise finite product of Eilenberg–MacLane spaces of finitely
generated abelian groups, the calculations above dictate the behavior of the spectral
sequences computing Top.�;Xp/. Namely, the dk differentials are always induced by
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nontrivial k th order Bockstein operations. In particular this holds if we set X to be the
reduced infinite symmetric power of a connected space Y of finite type. In this case,
by the Dold–Thom theorem,

X '
Y
i�1

K. zHi.Y IZ/; i/:

Similarly if Y is an n–dimensional finite CW–complex, then X DTop.Y;K.Z; nC1//

is a connected space weakly equivalent to a product of Eilenberg–MacLane spaces
such that ��X ŠH nC1��.Y IZ/.

Applying our analysis above to these examples we obtain:

Theorem 3.5 Let Y be a connected space of finite type and Z an n–dimensional
finite CW–complex. Then the T–algebra spectral sequences converging to

��E1–ModH xFp

�
H xF

Sym1� Y
p ;H xFp

�
Š zH�.Y IZp/;

��E1–ModH xFp

�
H xFTop.Z;K.Z;nC1//

p ;H xFp

�
ŠH nC1��.ZIZp/

agree with the corresponding Bockstein spectral sequences from the E2 page on.

4 The E2–model structure and a comparison result

Let P� hoModHk be the class of spectra containing all suspensions and desuspensions
of Hk where k is a field. Following [4] we will say a map f W C !D is P–epi if the
induced map

hoModHk.P;C / �! hoModHk.P;D/

is surjective for all P 2 P, or equivalently, if the induced map on homotopy groups is
a surjection. An Hk–module P is P–projective if

hoModHk.P;C / �! hoModHk.P;D/

is surjective for all P–epi maps C !D . A morphism A!B is called a P–projective
cofibration if it has the left lifting property against all P–epi maps. Clearly ModHk

has enough P–projectives in the sense that every X 2ModHk is the target of a P–epi
map from a P–projective.
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Definition 4.1 (1) A map f W A! B of simplicial Hk–modules is a P– or res-
olution weak equivalence if the induced map ��A! ��B is an equivalence
of graded simplicial abelian groups. Equivalently, by the Dold–Kan correspon-
dence, f is a P–weak equivalence if, for each n, the induced map between
normalized chain complexes N.�nA/!N.�nB/ is a quasi-isomorphism.

(2) A map f is a P–fibration if it is a Reedy fibration and for all n, �nf is
a fibration of simplicial k–modules or equivalently, N.�nA/ ! N.�nB/ is
surjective in positive degrees.

(3) Finally we will say that f is a P–cofibration if each of the induced latching
maps

An

a
LnA

LnB �! Bn

is a P–projective cofibration.

By [4, Theorem 3.3; 12, page 19] the P–fibrations, P–cofibrations, and P–weak
equivalences form a simplicial cofibrantly generated model structure on sModHk which
we will call the resolution model structure.

Now the forgetful functor

U W E1–ModHk �!ModHk

is a simplicial monadic right Quillen functor. Here a map f of E1–algebras is a
weak equivalence/fibration if and only if Uf is a weak equivalence/fibration. If we let
sCD C�

op
denote the category of simplicial objects in C, then the forgetful functor

above extends to a simplicial monadic right Quillen functor

U W sE1–ModHk �! sModHk;

where sModHk is equipped with the resolution model structure above [12, Theo-
rem 3.12].

Indeed, since these are simplicial categories, we have a natural path object and by
standard arguments with cofibrantly generated model categories (eg Schwede [28, The-
orem 3.1]), the only essential point to check is the existence of a fibrant replacement
functor. For this purpose one can take the fibrant replacement in the Reedy model
structure.

We can regard a given E1–algebra R as a constant simplicial object and take its
cofibrant replacement R� in the resolution model structure. As in [12, Theorem 3.12],
by taking a levelwise weakly equivalent diagram we can further assume, by a process
they call “subdivision”, that the underlying degeneracy diagram of R� is obtained
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by a left Kan extension from a levelwise free diagram on a discrete category.2 This
immediately implies the diagram is Reedy cofibrant which in turn implies that the
natural maps jsknR�j ! jsknC1R�j are cofibrations of E1 algebras and that jR�j
is cofibrant.

By mapping into a fibrant E1–ring spectrum Y , we now obtain a Reedy fibrant cosim-
plicial space E1–ModHk.R�;Y /, from which we obtain a corresponding Bousfield–
Kan spectral sequence [3]:

�s�tE1–ModHk.R�;Y /H) �t�sE1–ModHk.jR�j;Y /:

The E2 term exists because R� is a simplicial resolution by H –cogroup objects and,
as a consequence, the cosimplicial mapping space is an H –space in each degree. By
the results of [12, Section 3] we see that jR�j

�

�!R, so this spectral sequence converges
to the desired target.

Now, associated to any operad O is a monad TO on ModHk such that the categories of
algebras over the operad O is equivalent to the category of algebras over the monad TO .
As a functor, TO takes a module to the free O–algebra on that module. When the
category of O–algebras admits a model structure induced from ModHk and we have a
functorial identification of the free algebras, the monad TO descends to a monad TH�O
on hoModHk . Since k is a field, the latter category is equivalent to the category of
graded k–vector spaces. In our case, ODE1 , and the category of TH�O–algebras is the
category of algebras over the extended Dyer–Lashof algebra which satisfy admissibility
relations. Rationally this is just the category of graded commutative Q–algebras.

Now ��R is naturally an H�O–algebra which we can regard as a constant simplicial
object in simplicial H�O–algebras. Using the machinery of Quillen [25] the category
of such objects, sH�O–A lg, inherits the structure of a simplicial model category, where
the weak equivalences and fibrations are those of the underlying simplicial sets.

By construction of our resolution, R� has a free underlying degeneracy diagram,
so ��R� has a free underlying degeneracy diagram. It follows from [12, Proposi-
tion 4.1] that ��R� ! ��R is a cofibrant replacement in sH�O–A lg. Moreover,
taking homotopy groups levelwise induces an isomorphism

(4-1) hoE1–ModHk.R�;Y /
'
�!H�O–A lg.��R�; ��Y /:

2As explained by Goerss and Schemmerhorn in [13], in the context of simplicial commutative algebras,
the subdivided complex can be obtained by taking the canonical cellular replacement arising from the
cofibrantly generated resolution model structure on sE1–ModHk .
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This is the �0 –analogue of the following equivalence for positive t :

�t .E1–ModHk.R�;Y /; f /

Š ho.E1–ModHk/Y .R�;Y
S t

/
'
�!H�O–A lg��Y .��R�; ��Y

S t

/:

Now ��Y
S t

Š ��Y ˚��CtY as graded modules, and as algebras it is a square zero
extension.

Since such square zero extensions represent abelian group objects in the overcategory
H�O–A lg��Y ,

H�O–A lg��Y

�
��R�; ��Y

S t �
is a cosimplicial abelian group, which by Dold–Kan corresponds to a cochain com-
plex. Since ��R� ! ��R is a cofibrant replacement in sH�O–A lg, the sth coho-
mology group of this complex is, by definition, the sth Quillen cohomology group
H s

H�O–A lg.��RI��Y
S t

/. Similarly (4-1) defines a cosimplicial set. Applying �0 , or
equivalently, taking the equalizer of d0 and d1 , we obtain

�0�0E1–ModHk.R�;Y /
'
�!H�O–A lg.��R; ��Y /:

These observations combine to give a complete description of the E2 term of the
Goerss–Hopkins spectral sequence. We will call the groups �s�tE1–ModHk.R�;Y /

the .s; t/–derived functors of R (with respect to Y ).

Now suppose we take an alternative resolution f W zR�!R, such that f is a resolution
weak equivalence and E1–ModHk. zR�;Y / is a Reedy fibrant diagram of H –spaces.
We are interested in the case when zR� is not cofibrant in the resolution model structure.
Associated to these resolutions we have two spectral sequences

�s�tE1–ModHk.R�;Y /H)�t�sE1–ModHk.jR�j;Y /;

�s�tE1–ModHk. zR�;Y /H)�t�sE1–ModHk.j zR�j;Y /:

It is natural to ask under which hypotheses the spectral sequences agree.

Theorem 4.2 Suppose zR�!R is a resolution weak equivalence satisfying the above
conditions. Let P� zRn !

zRn be a cofibrant replacement in the resolution model
structure. Suppose that for each n and pair .s; t/ of positive integers, the cohomotopy
groups �s�tE1–ModHk.P� zRn;Y /; f / vanish for all potential basepoints f . Then
there is a natural isomorphism between the totalization spectral sequences associated to
the cosimplicial spaces obtained by applying E1–ModHk.�;Y / to zR� and a cofibrant
resolution of R. Moreover, this isomorphism induces a weak equivalence between the
totalizations.
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Proof Following ideas from homological algebra, to compare these spectral sequences
we will construct a biresolution which maps to both. For this we consider the Reedy
model structure on simplicial objects in the resolution model structure on sE1–ModHk ,
which we call the Reedy–resolution model structure.3 The first/horizontal simplicial
direction we will refer to as the Reedy direction and the second/vertical direction as
the resolution direction.

Regard zR� as a constant bisimplicial algebra in the resolution direction. By apply-
ing cofibrant replacement and subdivision to the map zR�! R we obtain a map of
bisimplicial algebras

P� zR� �!R�;

which is levelwise free and cofibrant.

So we have a zigzag of diagrams

(4-2) zR� � P� zR� �!R�:

After taking diagonalizations and mapping into Y we obtain maps of cosimplicial
spaces:

(4-3) E1–ModHk. zR�;Y /�!E1–ModHk.d.P� zR�/;Y / �E1–ModHk.R�;Y /:

We want to see that these maps induce isomorphisms of spectral sequences from the E2

page onward for each choice of potential basepoint f . In particular, we want to see
that the E

0;0
2

terms, which are the sets of potential basepoints and do not depend
on any fixed choice of basepoint, are isomorphic. Once we have constructed these
equivalences of spectral sequences, we can apply [3, page 73] to see that these spectral
sequence isomorphisms induce weak equivalences between their totalizations.

Now the left arrow in (4-2) is a Reedy–resolution weak equivalence by construction
and by the dual of [4, Lemma 6.9] the induced map on diagonalizations is a resolution
weak equivalence. The diagonal functor from the Reedy–resolution model structure to
the resolution model structure also preserves cofibrations by [4, Lemma 6.10]. So after
diagonalizing (4-2) the right two objects become resolution cofibrant. In each case,
applying subdivision if necessary and using our assumption on zR� , we see that (4-3)
is a diagram of Reedy fibrant cosimplicial spaces which are H –spaces in each degree.
As a consequence, we see that the associated Bousfield–Kan spectral sequences have
well-defined E2 terms and the maps in (4-3) induce morphisms of spectral sequences
once we have chosen a compatible system of basepoints.

3French uses an analogously defined injective-resolution model structure. By using the Reedy variant
we can use any of the categories of spectra considered in [12] and not just the combinatorial models. We
can also directly apply the results of [4].
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Now the induced map d.P� zR�/! R� is a map over resolution weak equivalences
to R and hence a resolution weak equivalence. Since these are both cofibrant in the
resolution model structure and the Goerss–Hopkins spectral sequence is invariant under
choice of cofibrant resolution [12, page 24], this map induces a morphism of spectral
sequences which is an isomorphism at E2 .

Now we will want to use the “totalization” spectral sequence (see Remark 4.4)

(4-4) �v�h�tE1–ModHk.P� zR�;Y /H) �vCh�tE1–ModHk.d.P� zR�/;Y /

whose edge homomorphism

�v�tE1–ModHk. zR�;Y / ,! �v�h�tE1–ModHk.P� zR�;Y /

is given by the inclusion of the 0th horizontal cohomotopy groups. Here we finally
apply our assumption that zRn has no higher derived functors. This implies that the
above spectral sequence collapses to the 0th column. So the edge homomorphism gives
the desired equivalence

�v�tE1–ModHk. zR�;Y /Š �
v�tE1–ModHk.d.P� zR�/;Y /

of E2 terms.

Remark 4.3 Although we stated Theorem 4.2 in terms of E1–algebras it should be
clear that the arguments above are general and can be applied to other Bousfield–Kan
spectral sequences constructed from Bousfield’s resolution model structure such as
those in [4, Section 5.8].

Remark 4.4 Although the totalization spectral sequence has appeared previously in
the literature, the author does not know of any formal account of it. The construc-
tion is standard, but there are a couple of subtleties. With the exception of the part
containing �0 this is a graded sequence of spectral sequences.

First, for each positive t we will construct a different totalization spectral sequence for
the bicosimplicial group �tE1–ModHk.P� zR�;Y /. Since in each bidegree we have
an H –space, these are bicosimplicial abelian groups for each choice of basepoint in
tridegree .0; 0; 0/. So we can apply the Dold–Kan correspondence to rephrase the
construction in terms of bicochain complexes and use the standard spectral sequence
converging to the cohomology of the total complex.

There is no accepted definition of the higher cohomotopy of a cosimplicial set. So for
t D 0, there is only a single defined term on either side of (4-4) and there is no room
for differentials. So this “spectral sequence” is just the claim

�0�0�0E1–ModHk.P� zR�;Y /Š �
0�0E1–ModHk.d.P� zR�/;Y /:
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This is a general fact about bicosimplicial sets, which we will now verify.

The lower terms of a bicosimplicial set fit into the following diagram:

X00 X10

X01 X11

d0
a

d0
e

d1
a

d1
e

d1
c d1

bd0
c d0

b

The dashed arrows are the codegeneracies s0
?

. The claim we would like to verify is
that the intersection of the equalizers of the pairs .d0

a ; d
1
a / and .d0

c ; d
1
c / is equal to

the equalizer of .d0
e d0

c ; d
1
e d1

c /.

Note that if d0
a .x/D d1

a .x/ then

d0
e .d

0
c .x//D d0

b .d
0
a .x//D d0

b .d
1
a .x//D d1

e .d
0
c .x//:

So the intersection of the equalizers of .d0
a ; d

1
a / and .d0

c ; d
1
c / is in the equalizer

of .d0
e d0

c ; d
1
e d1

c /. To see the other containment suppose d0
e d0

c .x/ D d1
e d1

c .x/. By
applying s0

e to both sides and using the cosimplicial identities we see that d0
c .x/D

d1
c .x/. The commutativity of the diagram shows that d0

e d0
c .x/ D d1

e d1
c .x/ implies

d0
b

d0
a .x/D d1

b
d1

a .x/. Applying the codegeneracy s0
b

then shows d0
a .x/D d1

a .x/.

In homological algebra one can use flat resolutions of a module to compute Tor–groups.
We can regard Theorem 4.2 as a nonabelian analogue of this result. This is also a
generalization of [4, Theorem 6.2].

To apply Theorem 4.2 we need to find Reedy cofibrant resolutions of homotopy
comonoids whose terms have no higher derived functors. It is immediate from the
definitions that the bar resolutions for algebras over operads in ModHk considered
in [15] are levelwise homotopy comonoids and projective in the resolution model
structure. It follows that the algebras BnR appearing in this construction have no
higher derived functors. By [15, Proposition 4.11] these resolutions are Reedy cofibrant,
so the argument above gives an alternate proof of Proposition 2.5.

Now the unstable Adams spectral sequence of Bousfield–Kan arises from mapping a
space X into the cobar cosimplicial resolution F�C1

p Y . This resolution is constructed
from the monad Fp which takes a simplicial set to the free simplicial Fp –vector
space on that simplicial set. To compare the unstable Adams spectral sequence of
Bousfield–Kan to the Goerss–Hopkins spectral sequence the first step is to show the
following:
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Theorem 4.5 (1) If X is a connected space of Q–finite type, then the .s; t/–
derived functors of HQQX with respect to any rational E1–algebra Y vanish
for s positive.

(2) If X is a connected space of Fp –finite type, then the .s; t/–derived functors
of H xF FpX

p with respect to any E1–algebra of the form H xFY
p vanish for s

positive. Moreover the .0; t/–derived functors can be identified with E
0;t
2;UA

.

Proof By the identification in [15, Section 5.2], to prove (1) we have to show the
higher André–Quillen cohomology groups of H�.QX IQ/ vanish as graded com-
mutative Q–algebras. These groups will vanish if the cohomology ring is free as a
graded commutative algebra. Since X is of finite Q–type, QX is of finite type and
weakly equivalent to a product of rational Eilenberg–MacLane spaces. Using Künneth
isomorphisms it suffices to show H�.K.Q; n/IQ/ is free as a graded commutative
algebra for n> 0. This is both easy and classical.

The proof of (2) depends on Mandell’s explicit resolution [19, Section 6] of E1–
algebras of this form and appears in [11, Section 2.3].

The functor Topop ! E1–ModH xFp
which sends a space X to the function spec-

trum H xFX
p defines a map of cosimplicial spaces

Top
�
X;F�C1

p Y
�
�!E1–ModH xFp

�
H xF

F�C1
p Y

p ;H xFX
p

�
:

After replacing H xF
F�C1

p Y
p with a Reedy cofibrant replacement, we obtain a map

from the unstable Adams spectral sequence to the latter spectral sequence which,
by Proposition 2.5 and Theorems 4.2 and 4.5, agrees with the Goerss–Hopkins and
T–algebra spectral sequences.

Using Theorem 4.5(2) we can identify the E2 term of the latter spectral sequence
with E2;UA as described above and in [11, Section 2.3]. Although the E2 term of
the classical unstable Adams spectral sequence consists of Ext–groups of unstable
coalgebras over the Steenrod algebra, the map between the spectral sequences is a
duality map, and our algebras are of finite type, so we obtain Theorem 2.6.
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