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Segal-type algebraic models of n–types

DAVID BLANC

SIMONA PAOLI

For each n� 1 , we introduce two new Segal-type models of n–types of topological
spaces: weakly globular n–fold groupoids and their lax version. We show that any
n–type can be represented up to homotopy by such models via an explicit algebraic
fundamental n–fold groupoid functor. We compare these models to Tamsamani’s
weak n–groupoids, and extract from them a model for .k�1/–connected n–types.

55S45; 18G50, 18B40

1 Introduction and summary

Many homotopy invariants of a topological space T , such as its homotopy, homology
and cohomology groups, are graded by dimension so that we do not need to know all
of T to determine �nT , HnT or H n.T IG/, but only a skeleton or Postnikov section
of T . Thus, for many purposes a good first approximation to homotopy theory is the
study of n–types: spaces T whose homotopy groups �k.T; t0/ vanish for k > n.

One advantage of such approximations is that they have algebraic models: the classical
example is the homotopy category of connected 1–types, which is equivalent to the
category of groups. More generally, all 1–types are modeled by groupoids via the
fundamental groupoid functor y�1W Top! Gpd.

The arrows of y�1T are homotopy classes of paths, so higher-order approximations
should encode higher homotopies (see Grothendieck [32]), and thus involve higher
categorical structures.

Many such structures have been shown to model the homotopy category hoPnTop of n–
types of topological spaces: in the path-connected case, these include the catn –groups of
Loday [38], the crossed n–cubes of Ellis and Steiner [28] and Porter [43], the n–hyper-
crossed complexes of Carrasco and Cegarra [21], and the weakly globular catn –groups
of Paoli [42]. Special models exist for n D 2; 3, starting with the crossed modules
of Mac Lane and Whitehead [39], and including the homotopy double groupoids
of Brown, Hardie, Kamps and Porter [16], the homotopy bigroupoids of Hardie,
Kamps and Kieboom [33], the strict 2–groupoids of Moerdijk and Svensson [41],
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the double groupoids of Cegarra, Heredia and Remedios [22], the double groupoids
with connections of Brown and Spencer [18], the Gray groupoids of Leroy [37],
Berger [10] and Joyal and Tierney [36], and the quadratic modules of Baues [4]. In
the general case, such models include Batanin’s higher groupoids (see Batanin [3]
and Cisinski [23]), the n–hypergroupoids of Glenn [30], and Tamsamani’s weak n–
groupoids (see Tamsamani [48] and Simpson [47]).

In this paper we discuss three algebraically defined categories of Segal-type objects
which can be used to model all n–types of topological spaces. All three are full subcat-
egories of the category Œ�n�1op

; Gpd � of .n�1/–fold simplicial objects in groupoids.

1.1 The three models The first is the known category Tamn of Tamsamani weak n–
groupoids. The second is a new category Gpdn

wg of weakly globular n–fold groupoids.
This is a full subcategory of the category Gpdn of n–fold groupoids (iteratively defined
as groupoids internal to Gpdn�1 ). The third is another new category PsGpdn

wg of
weakly globular pseudo n–fold groupoids.

To grasp the idea behind these notions, it is useful to consider another higher categorical
structure which embeds in all three of the above, the category n–Gpd of strict n–
groupoids (iteratively defined as groupoids enriched in .n�1/–Gpd).

There are full and faithful inclusions:

(1-2)

PsGpdn
wg

Tamn Gpdn
wg

n–Gpd

The category n–Gpd admits a multi-simplicial description as the full subcategory of
those .n�1/–fold simplicial objects X 2 Œ�n�1op

; Gpd � satisfying the following:

(i) X
.1/
0
2 Œ�n�2op

; Gpd � and X
.1;:::;rC1/
1

r
���10

2 Œ�n�r�2op
; Gpd� are discrete – that is,

constant multi-simplicial sets – for all 1� r � n� 2. Here we use the notation
of Section 2.6(b).

(ii) The Segal maps (see Definition 2.3 below) in all directions are isomorphisms.

In addition, we require that after applying �0W Gpd! Set in each simplicial dimension
we obtain a strict .n�1/–groupoid.
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The sets in (i) corresponds to the set of r –cells .1� r � n�2/ in the strict n–groupoid.
By (ii), their composition is associative and unital.

Condition (i) is also called the globularity condition, since it determines the globular
shape of the cells in a strict n–groupoid. For instance, when nD 2 we can picture the
2–cells as globes:

�

��

�

f

��

g

BB �

Although strict n–groupoids have applications in homotopy theory, especially in their
equivalent form of crossed n–complexes (see Brown, Higgins and Sivera [17]), they
cannot model all n–types of topological spaces (see Simpson [46, Section 5] for a
counterexample in dimension 3). Therefore, we must relax the strict structure in order
to recover all n–types.

We consider three approaches to this:
(a) In the first approach, we preserve condition (i) and relax (ii), by allowing the

Segal maps to be suitable iteratively defined equivalences. The composition of
cells is then no longer strictly associative and unital. This leads to the category
Tamn of Tamsamani weak n–groupoids (Definition 5.1).

(b) In this paper we offer a second approach, in which condition (ii) is preserved,
while (i) is replaced by weak globularity, so that the multi-simplicial objects in
(i) are no longer required to be discrete, but only “homotopically discrete” (in a
way that allows iteration). This leads to the category Gpdn

wg of weakly globular
n–fold groupoids (Definition 3.19).

(c) We also describe a third approach, in which both (i) and (ii) are relaxed. This
yields the category PsGpdn

wg of weakly globular pseudo n–fold groupoids
(Definition 6.4).

Moreover, we have a realization functor BW PsGpdn
wg! Top; the composite

(1-3) PsGpdn
wg ,! Œ�n�1op

; Gpd �
N
��! Œ�nop

; Set �
Diag.n/
����! Œ�op; Set �

k�k
���! Top;

where Diag.n/ is the n–fold diagonal. The same is therefore true of the two subcate-
gories Tamn and Gpdn

wg . In all three categories, maps which induce weak homotopy
equivalences on realizations are called geometric weak equivalences.

The precise definitions of these three categories appear as cited above; here we will
only highlight some key features common to all three:
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(1) The construction of each category is by induction, starting in all three cases from
the category of groupoids for nD 1. A weakly globular pseudo n–fold groupoid
is in particular a simplicial object X in PsGpdn�1

wg , (and similarly for the other
two categories).

(2) Moreover, X0 is a homotopically discrete weakly globular pseudo .n�1/–fold
groupoid (Definition 6.1) and similarly for Gpdn

wg , while in the case of a Tam-
samani weak n–groupoid

X 2 Œ�op; Tamn�1 �;

X0 is actually discrete.

(3) Since PsGpdn
wg is a subcategory of Œ�n�1op

; Gpd �, we can apply the functor �0

to each groupoid of any weakly globular pseudo n–fold groupoid X to obtain

x�
.n/
0

X 2 Œ�n�1op
; Set �:

In each of our three categories the functor x�.n/
0

lifts to functors

…
.n/
0
W PsGpdn

wg! PsGpdn�1
wg ;

…
.n/
0
W Gpdn

wg! Gpdn�1
wg ;

…
.n/
0
W Tamn

! Tamn�1:

These serve as algebraic .n�1/–Postnikov section functors, so we have a natural
Postnikov tower

PsGpdn
wg

…
.n/

0
���! PsGpdn�1

wg

…
.n�1/

0
�����! � � � �! Gpd

�0
�! Set:

and similarly for the other two categories.

(4) In all three categories, let  W X0!X d
0

denote the weak equivalence from the
homotopically discrete object X0 to its discretization (so  is the identity for
X 2 Tamn ). For each k � 2 the composite of the maps

(1-4) Xk

�k
���!X1�X0

k
� � � �X0

X1

�
��!X1�Xd

0

k
� � � �

Xd
0

X1

(see Definition 2.3) is called the k th induced Segal map. We require these maps
to be geometric weak equivalences.
When X 2Tamn , the second map in (1-4) is the identity, while when X 2Gpdn

wg ,
the first map is an isomorphism.
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1.5 Main results The process of discretizing the homotopically discrete sub-objects
in Gpdn

wg and PsGpdn
wg gives rise to discretization functors Dn that make the diagram

(1-6)

PsGpdn
wg

Tamn Gpdn
wg

Dn

Dn

commute. All three categories PsGpdn
wg , Gpdn

wg and Tamn share some useful features.

First, the realization functor BW PsGpdn
wg! Top actually lands in the category PnTop

of n–types, so the same is true of the categories Gpdn
wg and Tamn .

Furthermore, all three models have algebraic homotopy groups !k.X;x/ (see also
Section 3.26), which allow one to extract �kBX directly from the model X . In addition,
we have higher-dimensional analogues of the categorical notion of an equivalence of
groupoids. Together, these two notions allow to define algebraic weak equivalences
in each of the categories, and show that these are the same as the geometric weak
equivalences (see Corollary 4.8, [45, Section 6], Section 6.35, and Remark 6.37). Thus
each of these models is entirely algebraic.

Our main results are as follows:

Theorem A For each n� 1:

(a) The functor yQ.n/ induces a faithful embedding

hoPnTop ,! hoGpdn
wg ;

so for each T 2 PnTop there is an isomorphism in hoPnTop between T and
B yQ.n/T .

(b) There exists a functor ….n/
0
W Gpdn

wg! Gpdn�1
wg with a natural isomorphism

…
.n/
0
yQ.n/ Š

yQ.n�1/ , so we can extract the model for the .n�1/st Postnikov
section Pn�1T from yQ.n/T algebraically.

(c) There are algebraic homotopy group functors !k W Gpd
n
wg ! Gp such that

�k.BGIx0/Š !k.GIx0/ .0� k � n/.

(See Theorem 4.32, Proposition 4.28 and Theorem 4.6.)

Theorem B The functors yQ.n/ and B induce equivalences of categories

hoPnTop� hoPsGpdn
wg:
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(See Theorem 6.28.)

Furthermore, every object of PsGpdn
wg is weakly equivalent through a zig-zag to an

object of Gpdn
wg as well as to an object of Tamn (see Remark 6.32). Thus we can

regard Tamn and Gpdn
wg as two different types of partial strictifications of the category

PsGpdn
wg which preserve the homotopy type. The passage from PsGpdn

wg to Tamn

strictifies the globularity condition, while the passage from PsGpdn
wg to Gpdn

wg strictifies
the Segal maps.

The fundamental n–fold groupoid functor yQ.n/W Top! Gpdn
wg provides an explicit

form for the algebraic model of an n–type. This is a desirable feature of an algebraic
model, especially in view of applications.

We discuss an application to the modeling of .k�1/–connected n–types in Section 7.A.
To this end we identify suitable subcategories PsGpd

.n;k/
wg and Gpd

.n;k/
wg of PsGpdn

wg
and Gpdn

wg respectively, which are algebraic models of .k�1/–connected n–types,
and we also establish a connection with iterated loop spaces (Proposition 7.9).

1.7 Organization of the paper In Section 2 we describe the construction of the
fundamental n–fold groupoid functor yQ.n/ : to obtain a multi-simplicial algebraic
model from a space, we first take a fibrant simplicial set model using the singular
functor SW Top! Œ�op; Set �. We can associate to any simplicial set X an “n–fold
resolution” Or.n/X , which is an object of Œ�nop

; Set � representing the same homotopy
type (Lemma 2.13). We then obtain an n–fold groupoid by applying the left adjoint
P.n/W Œ�

nop
; Set �! Gpdn to the n–fold nerve N.n/W Gpd

n
! Œ�nop

; Set �. Thus yQ.n/

is the composite

Top
S
��! Œ�op; Set �

Or.n/
���! Œ�nop

; Set �
P.n/
���! Gpdn

(see Definition 2.30).

For a general n–fold simplicial set Y , P.n/Y does not have a simple and explicitly
computable expression. However, we show that the fibrancy of ST induces a property
of Or.n/ ST , which we call .n; 2/–fibrancy (see Definition 2.31 and Proposition 2.39).
We then show that to apply P.n/ to an .n; 2/–fibrant n–simplicial set, we need only
apply the usual fundamental groupoid functor in each of the n�1 simplicial directions.
We thus have (see Theorem 2.40)

yQ.n/T D y�
.1/
1 y�

.2/
1 � � � y�

.n/
1 Or.n/ ST:

Algebraic & Geometric Topology, Volume 14 (2014)
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In Section 3, we describe certain features of those n–fold groupoids which are in the
image of the functor yQ.n/ (and thus will be used to represent n–types). These are
encoded in the notion of weakly globular n–fold groupoids. As explained in Section 1.1,
we first identify a suitable subcategory of homotopically discrete objects (Section 3.A),
which are needed for the weak globularity condition in the definition of weakly globular
n–fold groupoid (Section 3.B).

In Section 4 we show that the n–Postnikov section PnT and B yQ.n/T have the same
homotopy type (Proposition 4.28), so Gpdn

wg represents all n–types. In Section 4.A
we show that the realization of a weakly globular n–fold groupoid is an n–type (an
alternative proof using a comparison with Tamsamani’s model is given in Section 5).
Section 4.B provides a new iterative description of the fundamental n–fold groupoid
functor Q.n/ . This is used in Proposition 4.28 of Section 4.C, where we show that
the functor yQ.n/ lands in the category Gpdn

wg . This leads to one of our main results,
Theorem 4.32, saying that B and yQ.n/ induce functors

(1-8) hoPnTop
B // hoGpdn

wg
yQ.n/

oo

with B ı yQ.n/ Š Id.

In Section 5 we provide an equivalent definition of Tamsamani’s weak n–groupoids
(see Section 5.A), and in Section 5.B we construct a discretization functor

DnW Gpd
n
wg! Tamn

that replaces a weakly globular n–fold groupoid G 2 Gpdn
wg by a Tamsamani weak

n–groupoid DnG of the same homotopy type (Theorem 5.19).

In Section 6 we consider the wider context of weakly globular pseudo n–fold groupoids.
These are defined in Section 6.A, and compared to Tamsamani’s model in Section 6.B,
where we again construct a discretization functor

DnW PsGpd
n
wg! Tamn;

and in Theorem 6.23 we show that for any X 2 PsGpdn
wg , there is a zig-zag of weak

equivalences in PsGpdn
wg between X and DnX . Our main Theorem 6.28 then follows.

In Section 7 we describe an application, and indicate some directions for future work:
In Section 7.A, we show how to extract from our results an algebraic model for .k�1/–
connected n–types (Proposition 7.7), and thus for iterated loop spaces. In Section 7.B
we define n–track categories (one of the original motivations for our work), with
possible future applications.

Appendix A proves some technical facts about Or.n/ needed in Section 2.

Algebraic & Geometric Topology, Volume 14 (2014)
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1.A Index of terminology and notation

BG realization of an n–fold (pseudo)
groupoid G

Definition 2.21

cX discrete groupoid on a set X Definition 2.23
xc .n/, c.n/ discrete groupoid functor

applied to an .n�1/–fold
Definition 3.12, Remark 3.13

simplicial groupoid or an
.n�1/–fold groupoid

Dn discretization functors for
Gpdn

wg and PsGpdn
wg

Definition 5.18, Definition 6.22

Disc0 0–discretization functor on
weakly globular n–fold
groupoids

Definition 5.13

Dec, Dec0 décalage functors on simplicial
sets

Section 2.7

Diag.n/ n–fold diagonal functor Section 2.6
Œ�nop

; C � category of n–fold simplicial
objects in C

Section 2.5

Fn
Tm Tamsamani’s Poincaré

n–groupoid functor
Theorem 5.7

Gpd category of groupoids Section 2.5
n–Gpd category of strict n–groupoids Section 1.1
Gpd.V/ category of internal groupoids

in V

Definition 2.16

Gpdn category of n–fold groupoids Definition 2.16
Gpdn

wg category of weakly globular
n–fold groupoids.

Definition 3.19

Gpd
.n;k/
wg category of .n; k/–weakly

globular pseudo n–fold
groupoids

Definition 7.3

Gpdn
hd category of homotopically

discrete n–fold groupoids
Definition 3.3

LkX simplicial “bar-path
construction”

Definition 4.10

�k k th Segal map Equation (2-4)
y�k k th induced Segal map Equation (1-4)
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N .i/ nerve functor of an n–fold
groupoid in the i th direction

Notation 2.18

N.n/ multinerve functor on n–fold
groupoids

Definition 2.19

Or.n/ n–fold ordinal sum of a
simplicial set

Section 2.9

P .i/ left adjoint to N .i/ Proposition 2.38
P.n/ left adjoint to N.n/ Definition 2.30
PsGpdn

hd category of homotopically
discrete pseudo n–fold
groupoids

Definition 6.1

PsGpd
.n;k/
wg category of .n; k/–weakly

globular pseudo n–fold
groupoids

Definition 7.3

PnTop full subcategory of n–Postnikov
sections in Top

Definition 3.28

y�1 fundamental groupoid of a
topological space

Definition 2.17

…
.n/
0

algebraic .n�1/st Postnikov
section functor

Lemma 3.15, Definition 3.19,
Definition 5.1, Definition 6.1

Q.n/; yQ.n/ fundamental n–fold groupoid
functors

Definition 2.30

T
wg
.n/

fundamental groupoid functor
for Gpdn

wg

Notation 5.15

T Tm
.n/

Tamsamani fundamental
groupoid functor

Tamsamani’s original definition
5.2

T
ps
.n/

fundamental groupoid functor
for PsGpdn

wg

Notation 6.18

Tamn; Tamn two equivalent formulations of
the category of Tamsamani weak
n–groupoids

Definition 5.1,
Tamsamani’s original definition
5.2

Top category of topological spaces.
W.n;k/ k–fold object of arrows of an

n–fold groupoid
Definition 3.23

!k.GIx0/ k th algebraic homotopy group Section 3.26, Section 6.35

See also the list of special notations for n–fold simplicial objects in Section 2.6, in
particular for the notation xF for any functor F .
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2 The fundamental n–fold groupoid of a space

As noted above, the fundamental groupoid y�1T of a (not necessarily connected) space
T is an algebraic model for its 1–type. We now show how the notion of the fundamental
2–typical double groupoid defined in our paper [11, Section 2.21] generalizes to all n.
We consider the standard model structure on Top, so that hoTop means its localization
with respect to the class of weak homotopy equivalences.

2.A Simplicial constructions

Given a topological space T , we construct its fundamental n–fold groupoid from a
fibrant simplicial set model for T , such as its singular set X WD ST 2 Œ�op; Set �. We
therefore first recall some notation and constructions for simplicial sets.

2.1 Definition For any category C, Œ�op; C � is the category of simplicial objects
in C, where � denotes the category of finite ordered sets: Œ0�; Œ1� and so on. As
usual, we write Xn for X.Œn�/. If C is concrete, the n–skeleton skn X 2 Œ�op; C �

of any X 2 Œ�op; C � is generated under the degeneracy maps by X0; : : : ;Xn . The
n–coskeleton functor csknW Œ�

op; C �! Œ�op; C � is left adjoint to skn . We say that X

is n–coskeletal if the natural map X ! cskn X is an isomorphism.

2.2 Remark There is an order-reversing involution I W � ! �, which induces a
functor I�W Œ�op; C �! Œ�op; C � (sending di W Xn!Xn�1 to dn�i ). This functor I�

is not generally an isomorphism, but for a Kan complex X 2 Œ�op; Set � we have a
natural isomorphism of fundamental groupoids .y�1I�X /op Š y�1X (see Goerss and
Jardine [31, I.8]).

2.3 Definition Let X 2 Œ�op; C � be a simplicial object in any category C with
pullbacks. For each 1� j � k , let �j W Xk !X1 be induced by the map Œ1�! Œk� in
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� sending 0 to j � 1 and 1 to j . Then the diagram

(2-4)

Xk
�1

uu
�2��

�k

((
X1

d1

��

d0

��

X1
d1

��

d0

��

� � � X1
d1

||

d0

��
X0 X0 X0 � � � X0 X0

commutes. If we let X1�X0

k
� � � �X0

X1 denote the limit of the lower part of Dia-
gram (2-4), the k th Segal map for X is the unique map

�k W Xk !X1�X0

k
� � � �X0

X1

such that prj �k D �j , where prj is the j th projection (see Segal [45]).

Note that X is the nerve of an internal category in C if and only if all the Segal maps
are isomorphisms.

2.5 n–fold simplicial objects An n–fold simplicial object in C is a functor �nop
!

C, and we denote the category of such by Œ�nop
; C �. Thus X 2 Œ�nop

; C � consists
of objects Xi1i2���in

in C for each n–fold multi-index i1; i2; : : : ; in 2 N , along with
face and degeneracy maps in each of the n directions, satisfying the usual simplicial
identities. We assume a fixed ordering of these directions as first, second and so on.

2.6 Notation and conventions

(a) We can identify Œ�nop
; C � with Œ�op; Œ�n�1op

; C � � in n different ways: thus,
given an n–fold simplicial object X 2 Œ�nop

; C �, for each 1 � i � n we write
X .i/ 2 Œ�op; Œ�n�1op

; C � � to indicate that the primary simplicial direction is the
i th one of the original X .

(b) More generally, if we choose k of the n directions 1� j1 < j2 < � � �< jk � n,
we obtain a k–fold simplicial object X .j1;j2;:::;jk/ in Œ�n�kop

; C �. Thus

X .j1;j2;:::;jk/ 2 Œ�kop
; Œ�n�kop

; C � �

is a diagram of objects X
.j1;j2;:::;jk/
i1���ik

in Œ�n�kop
; C �. For example, X

.1;:::;k/
i1���ik

D

X.Œi1�; : : : Œik �;�/ in the notation of Definition 2.1.
Equivalently, for each object a2�n�k , X .j1;j2;:::;jk/.a/2 Œ�kop

; C � is a k–fold
simplicial object in C, natural in a.

Algebraic & Geometric Topology, Volume 14 (2014)



3430 David Blanc and Simona Paoli

(c) In particular,

X .y{/
DX .1;:::;i�1;iC1;:::;n/

2 Œ�n�1op
; Œ�op; C � �

is an .n�1/–fold simplicial object in Œ�op; C � (in the i th direction).

(d) Given X 2 Œ�nop
; C � and a functor F W Œ�op; C �! C, we denote by

F .k/X 2 Œ�n�1op
; C �

the object obtained by applying F objectwise to X .yk/ (thought of as a �n�1op
–

indexed diagram in Œ�op; C �).
Thus for every i1; : : : ; in�1 2N , we have

.F .k/X /i1;:::;in�1
D FX

.1;:::;k�1;kC1;:::;n/
i1;:::;in�1

:

(e) The composite F .1/F .2/ � � �F .n�1/F .n/ will be denoted by F.n/W Œ�
nop
; C �!C.

(f) In particular, the n–fold diagonal functor Diag.n/W Œ�
nop
; C �! Œ�op; C � is given

by .Diag.n/X /m WDXm;m;:::;m . (In this case, the order does not matter.)

(g) For any functor F W C!D, the prolongation of F to simplicial objects is denoted
by xF W Œ�op; C �! Œ�op; D �.

(h) In particular, for a functor GW Œ�n�1op
; C �! D, the result of applying G to an

n–fold simplicial object X 2 Œ�nop
; C � in each simplicial dimension in the k th

direction will be denoted by xG.k/X 2 Œ�op; D �. Thus for every j 2N we have

. xG.k/X /j DGX
.k/

j :

2.7 Décalage Recall from Duskin [25, Section 2.6] the comonad DecW Œ�op; Set �!

Œ�op; Set � on simplicial sets, where .Dec X /n D XnC1 , forgetting the last face and
degeneracy operators in each dimension (see also Illusie [34]). The counit "W Dec X !

X is given by dnW XnC1! Xn in simplicial dimension n. It has a section � W X !
Dec X , given by snW Xn!XnC1 .

There is also a version forgetting the first face and degeneracy operators, which we
denote by Dec0W Œ�op; Set �! Œ�op; Set �. In the notation of Remark 2.2, Dec0X WD
I�Dec I�X .

The comonad Dec yields a simplicial resolution Y� 2 Œ�
op; Œ�op; Set � � for any X 2

Œ�op; Set �, with

Yk�1 WD Deck X WD Dec.Dec � � �Dec X � � � /„ ƒ‚ …
k

in Œ�op; Set �;
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and the counit " for Dec induces a map of bisimplicial sets "W Y ! c.2/X , where
c.2/X is the constant simplicial object on X in Œ�op; Œ�op; Set � � (thinking of the outer
simplicial direction of Œ�op; Œ�op; Set � � as second). The bisimplicial set Y� is depicted
in Figure 1, viewed as a horizontal simplicial object over Œ�op; Set � (degeneracy maps
and " are not shown).

The corresponding resolution using Dec0 is also depicted in Figure 1, viewed as a
vertical simplicial object over Œ�op; Set �.

� � � // X5

d5 //
d4

//

d3

//

d1

��

d2

��

d0

��

X4

d4 //

d3

//

d1

��

d2

��

d0

��

X3

d1

��

d2

��

d0

��
� � � // X4

d4 //
d3

//

d2

//

d1

��

d0

��

X3

d3 //

d2

//

d1

��

d0

��

X2

d1

��

d0

��
� � � // X3

d3 //
d2

//

d1

// X2

d2 //

d1

// X1

Figure 1: Corner of Or.2/ X

2.8 Remark Note that if X is a fibrant simplicial set, then so is Dec X , and the
augmentation "W Dec X !X is a fibration (with section � W X ! Dec X ). Similarly
for Dec0 .

2.9 Ordinal sum In order to produce an n–fold simplicial set out of a Kan complex
X 2 Œ�op; Set �, with the same homotopy type (that is, an n–fold resolution of X ), we
shall use the functor Or.n/ WD or�nW Œ�

op; Set �! Œ�nop
; Set �, induced by the ordinal

sum ornW �
n!� (see Ehlers and Porter [27, Section 2]). Thus

(2-10) .Or.n/X /p1���pn
WDXn�1Cp1C���Cpn

:

If we define Or
.i/

.n�1/W Œ�
2op
; Set � ! Œ�nop

; Set � for a bisimplicial set X by apply-
ing Or.n�1/ to X in each simplicial dimension in the i th direction .i D 1; 2/ (see
Section 2.6(h)), we have

(2-11) Or.n/X D Or
.2/

.n�1/ Or.2/X:

See Figure 2 for a depiction of Or.3/X , where the vertical direction is first, the diagonal
is second and the horizontal is third.
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The bisimplicial set Or.2/X appears in Figure 1: this means that if we choose the
vertical direction to be first and the horizontal to be second, then

(2-12) .Or.2/X /
.1/
i D DeciC1 X and .Or.2/X /

.2/
i D .Dec0/iC1X:

2.13 Lemma For any simplicial set X 2 Œ�op; Set �, there is a natural weak equiva-
lence ".n/W Diag.n/ Or.n/X !X .

Proof By induction on n� 2.

For nD 2, as noted in Section 2.7, the counit "W Dec X !X induces a map of bisim-
plicial sets y"W Or.2/X ! c.2/X which is a weak equivalence of horizontal simplicial
sets .Dec0/iC1X ! cXi (where cXi is the constant simplicial set on the set Xi ), using
(2-12). Thus by Duskin [25, Section 2.6] it induces a weak equivalence

".2/W Diag.2/ Or.2/X ! Diag.2/ c.2/X DX:

In the induction stage we have a weak equivalence

".n�1/W Diag.n�1/ Or.n�1/ Y ! Y;

natural in Y . Using (2-11), and applying ".n�1/ to Or.n/X in each simplicial dimen-
sion (in direction 2), we obtain a map of bisimplicial sets

Diag
.2/

.n�1/ Or.n/X D Diag
.2/

.n�1/Or
.2/

.n�1/ Or.2/X
x"
.2/

.n�1/

����! Or.2/X

which is a weak equivalence in each simplicial dimension in direction 2, by the
induction hypothesis. Therefore, after applying Diag.2/ we obtain a weak equivalence
of simplicial sets

Diag.2/ x"
.2/

.n�1/
W Diag.n/ Or.n/X ! Diag.2/ Or.2/X:

Post-composing with ".2/W Diag.2/ Or.2/X !X yields the required weak equivalence
".n/W Diag.n/ Or.n/X !X .

2.B n–fold groupoids

Recall that a groupoid is a small category G in which all morphisms are isomorphisms.
It can thus be described by a diagram of sets

(2-14) G1 �G0
G1G1

d0 //
m //

d2

// G1
s //

s0

||

s1

bb
G0;

i
ww

t

ii
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where G0 is the set of objects of G and G1 the set of arrows. Here s and t are the
source and target functions, i associates to an object its identity map, d0 and d2 are
the respective projections, with sections s0 and s1 , and m is the composition; all
satisfying appropriate identities. Let Gpd denote the category of small groupoids (a
full subcategory of the category Cat of small categories).

We can think of (2-14) as the 2–skeleton of a simplicial set (with G2 WDG1 �G0
G1 ,

and d1 D mW G2 ! G1 ). The nerve functor N W Gpd! Œ�op; Set � (see Segal [45])
assigns to G the corresponding 2–coskeletal simplicial set NG , so

(2-15) .NG/n WDG1 �G0
G1 �G0

n
� � � �G0

G1 �G0
G1

for all n� 2, with face and degeneracy maps determined by the associativity and unit
laws for the composition m.

2.16 Definition If V is any category with pullbacks, an internal groupoid in V is
a diagram in V of the form (2-14), satisfying the same axioms (see Borceux [12,
Section 8.1]). The category of internal groupoids in V is denoted by Gpd.V/. Thus an
(ordinary) groupoid is an internal groupoid in Set.

When V is locally finitely presentable, the nerve functor N W Gpd.V/! Œ�op;V� has a
left adjoint, the fundamental internal groupoid (see Borceux [13, Sections 5.5–5.6]).

For each n� 1, an n–fold groupoid is defined inductively to be an internal groupoid
in the category VD Gpdn�1 of .n�1/–fold groupoids (where Gpd0

WD Set), so

Gpdn
WD Gpd.Gpdn�1/:

2.17 Definition Let y�1W Œ�
op; Set �! Gpd denote the fundamental groupoid functor.

See Goerss and Jardine [31, Section I.8] and Definition 2.16 when VD Set. When X

is fibrant, y�1X has the simple form described in [31, Section I.8]. If X 2 Œ�nop
; Set � is

an n–fold simplicial set, then for each 1� i � n, y�.i/
1

X is the .n�1/–fold simplicial
object in Gpd obtained by applying the fundamental groupoid functor y�1 in the i th

direction, that is, objectwise to the �n�1op
–indexed diagram X .i/ .

2.18 Notation As in Section 2.6(d), for each 1� i � n, let

N .i/
W Gpdn

! Œ�op; Gpdn�1 �

denote the nerve functor in the i th direction. More generally, for any k of the n indices
1 � i1 < i2 < � � � < ik � n, N .i1;i2;:::;ik/W Gpdn

! Œ�kop
; Gpdn�k � takes an n–fold

groupoid G to a k–fold simplicial object in .n�k/–fold groupoids by applying the
nerve functor in the indicated k directions. Thus N .y{/ means that we take nerves in
all but the i th direction.
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2.19 Definition The multinerve

N.n/W Gpd
n
! Œ�nop

; Set �

is defined by applying N .i/ for 1� i � n to obtain the n–fold simplicial set N.n/G WD

N .1/N .2/ � � �N .n/G . We say that an n–fold groupoid G is discrete if N.n/G is a
constant n–fold simplicial set. It is readily verified that we have an adjoint pair
P.n/ aN.n/

(2-20) Œ�nop
; Set �

N.n/ // Gpdn

P.n/

oo ;

where P.n/ is the left adjoint to N.n/ as in Definition 2.16 with VD Gpdn�1 .

2.21 Definition The composite of N.n/ with Diag.n/ (see Section 2.6(f)) yields the
diagonal nerve functor dN WD Diag.n/N.n/ , and its geometric realization BG WD

kdNGk 2 Top is called the classifying space of G .

A map of n–fold groupoids f W G!G0 is called a geometric weak equivalence if it
induces a weak equivalence of simplicial sets dNf W dNG!dNG0 (that is, a homotopy
equivalence of topological spaces on geometric realizations Bf W BG! BG0 ).

2.22 Remark Since the diagonal of a bisimplicial set is its homotopy colimit, a map
f W X!Y in Œ�2op

; Set � which is a weak equivalence fk W Xk!Yk in each simplicial
dimension k � 0 is a geometric weak equivalence (see [31, IV, Proposition 1.7]). Thus
by induction the same is true for a map f W X ! Y in Œ�nop

; Set � which is a geometric
weak equivalence in each simplicial dimension.

2.23 Definition If G 2 Gpdn�1 is an .n�1/–fold groupoid, then c.n/G denotes the
n–fold groupoid which, as a groupoid object in Gpdn�1 , is discrete on G . In particular,
if A is a set, Ad

.n/
denotes the discrete n–fold groupoid c.1/ � � � c.n/A on A. For an

n–fold groupoid G we let Gd denote the discrete n–fold groupoid .�0BG/d
.n/

.

2.24 Notation If G 2 Gpdn is an n–fold groupoid for n� 2, it is a groupoid object
in .n�1/–fold groupoids (see Definition 2.16): that is, it is described by a diagram
G.1/

1
//// G.1/

0
in Gpdn�1 , as in (2-14). Thus it has an .n�1/–fold groupoid

of objects denoted by G.1/
0

, in the notation of Section 2.6(a) (which in turn has
its .n�2/–fold groupoid of objects G.1;2/

00
and .n�2/–fold groupoid of morphisms

G.1;2/
01

). Similarly, the .n�1/–fold groupoid of morphisms of G (in the first direction)
is denoted G.1/

1
.
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More explicitly, G may be described by a diagram in Gpdn�2 of the form:

(2-25)

G11 �G10
G11

c1�

��

//// G01 �G00
G01

c0�

��
G11 �G01

G11
c�1

//

����

G11

d1�
0

��
d1�

1

��

d�1
0 //

d�1
1

// G01

d0�
1

��
d0�

1

��

xx

G10 �G00
G10

c�0
// G10

d�0
0 //

d�0
1

//

99

G00ff

ee

Here we omit throughout the upper index .1; 2/, which indicates that we are showing
only the first two directions of G .

More generally, for each i � 2 we let

(2-26) Gi1 WDG11�G01

i
� � � �G01

G11 and Gi0 WDG10�G00

i
� � � �G00

G10

as limits of .n�2/–fold groupoids, with d
i;�
0
; d

i;�
1
W Gi1!Gi0 induced by the source

and target maps.

2.27 Remark Using this convention, an n–fold groupoid G may be thought of as a
diagram of sets with objects Gi1;:::;in

for each .i1; : : : ; in/ 2Nn D Obj .�n/, where
all the maps in the diagram are induced by those of (2-14) and the structure maps for
the limits (2-26) (in each of the n directions).

The following technical fact about Or.n/ will be used in Section 4.A below.

2.28 Lemma For any fibrant simplicial set X 2 Œ�op; Set � and n� 2, we have

(2-29) Or
.2/

.n�1/N
.2/
y�.2/1 Or.2/X DN .n/

y�.n/1 Or.n/X:

Proof By induction on n� 2.

When nD 2, Or.n�1/ is the identity, so both sides of (2-29) are the same.

For nD 3, y�.3/
1

Or.3/X is obtained from Figure 2 by replacing the left-hand square by

X5=�

d1

��
d0

��

d3 //

d2

// X4=�

d1

��
d0

��
X4=�

d2 //

d1

// X3=�
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X5

d5 //

d4

//

d1

��

d0

��

d3

$$d2 $$

X4

d3

$$d2 $$
X4

d4 //

d3

//

d1

��

d0

��

d1
��

d0
��

X3

d1

��

d0

��

X4

d2

$$d1 $$

d4 //

d3

// X3

d2

$$d1 $$
X3

d3 //

d2

// X2

Figure 2: Corner of Or.3/ X

and from Figure 1 we see this is the same as first applying N y�1 to Or.2/X horizontally
in each vertical dimension (which is N .2/y�.2/

1
), and then taking Or.2/ vertically in

each horizontal dimension (which is Or
.2/

.2/ ).

For n� 4, we see that

N .n/
y�.n/1 Or.n/X DN .n/

y�.n/1 Or
.2/

.n�1/ Or.2/X DN .n�1/y�
.n�1/
1

Or.n�1/

.2/

Or.2/X

using (2-11) and the convention of Section 2.6(d). Applying the induction hypothesis
(2-29) for n� 1, we see this is equal to

Or
.2/

.n�2/N
.2/y�.2/

1
Or.2/

.2/

Or.2/X D Or
.2/

.n�2/N
.2/y�.2/

1

.2/

Or
.2/

.2/ Or.2/X;

and using (2-11) for nD 3, we see this is

Or
.2/

.n�2/N
.2/y�.2/

1

.3/

Or.3/X D Or
.2/

.n�2/

.3/

N .3/
y�.3/1 Or.3/X;

where for a 3–fold simplicial object Z , we have

Or
.2/

.n�2/N
.2/y�.2/

1

.3/

Z D Or
.2/

.n�2/N
.2/y�.2/

1

.2/

Z

by our indexing convention (Section 2.6(h)).
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Now applying (2-29) for nD 3, we see this equals

Or
.2/

.n�2/

.2/

Or
.2/

.2/N
.2/
y�.2/1 Or.2/X D Or

.2/

.n�1/N
.2/
y�.2/1 Or.2/X;

using (2-11) once more.

2.C The fundamental n–fold groupoid of a space

We now introduce the central construction of our paper. Its internal analogue in the
category of groups is the fundamental catn –group of a space, due to Bullejos, Cegarra
and Duskin [19, Section 2].

2.30 Definition We define Q.n/W Œ�
op; Set �! Gpdn to be the composite

Œ�op; Set �
Or.n/
����! Œ�nop

; Set �
P.n/
����! Gpdn;

for P.n/ the left adjoint to N.n/ of (2-20). We define yQ.n/W Top! Gpdn to be the
composite

Top
S
��! Œ�op; Set �

Q.n/

����! Gpdn;

where SW Top! Œ�op; Set � is the singular set functor (see Goerss and Jardine [31,
Section I.1], and call yQ.n/T the fundamental n–fold groupoid of T 2 Top.

We shall show that if Y 2 Œ�nop
; Set � satisfies certain fibrancy conditions, then P.n/Y

has a particularly simple form. These require that a certain 2–dimensional notion of
fibrancy (introduced in [11, Section 2]) hold in every bisimplicial bidirection. They
hold for Y D Or.n/X when X is fibrant (in particular, for X D ST ), leading to a
simple expression for yQ.n/T in Theorem 2.40 below.

2.31 Definition Let n� 2. An n–fold simplicial set X 2 Œ�nop
; Set � is called .n; 2/–

fibrant if for each 1 � i ¤ j � n and a 2�n�2 , the bisimplicial set Y obtained by
applying the 2–coskeleton functor to each vertical simplicial set X .i;j/.a/k� – that is,
Yk� WD csk2 X .i;j/.a/k� – is a Kan complex for k D 0; 1; 2, and the horizontal face
map d0W Y1�! Y0� is a fibration in Œ�op; Set �.

2.32 Definition Let G 2 Œ�mop
; Gpdn�m � be an m–fold simplicial object in .n�m/–

fold groupoids (see Definition 2.16). We say that G is .n; 2/–fibrant if, after applying
the nerve functor in each of the n�m groupoid directions, the resulting n–fold simplicial
set N .1;2;:::;n�m/G 2 Œ�nop

; Set � is .n; 2/–fibrant in the sense of Definition 2.31.
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We recall the following results from our earlier paper [11] where the left adjoint
P .1/W Œ�op; Gpd �! Gpd2 to the nerve N .1/W Gpd2

! Œ�op; Gpd �, is as described in
Definition 2.16 with VD Gpd.

2.33 Proposition [11, Proposition 2.10] The left adjoint P .1/W Œ�op; Gpd �! Gpd2

to the nerve N .1/W Gpd2
! Œ�op; Gpd �, when applied to a .2; 2/–fibrant simplicial

groupoid G� , is y�.1/
1

G� (that is, the functor y�1 applied in the simplicial direction).

2.34 Proposition [11, Proposition 2.11] If X 2 Œ�2op
; Set � is a .2; 2/–fibrant bisim-

plicial set, then y�.1/
1

X is a .2; 2/–fibrant simplicial groupoid.

2.35 Lemma If G� is a .2; 2/–fibrant simplicial groupoid (with simplicial sets of
objects G�0 and morphisms G�1 ), then N .2/y�.1/

1
G� D y�

.1/
1

N .2/G� .

Proof It suffices to show that, for each k � 2,

(2-36) y�1

�
G�1�G�0

k
� � � �G�0

G�1
�
Š y�1.G�1/�y�1.G�0/

k
� � � �y�1.G�0/

y�1.G�1/:

Since both sides are groupoids, we evidently have equality on objects, and (2-36) holds
on morphisms by [11, Appendix A, following (8.13)].

2.37 Lemma If X 2 Œ�nop
; Set � is .n; 2/–fibrant, then y�.k/

1
X is .n; 2/–fibrant.

Proof By definition of .n; 2/–fibrancy, for each a 2 �n�2 and 1 � i ¤ j � n, the
bisimplicial set X .i;j/. / satisfies the hypotheses of Proposition 2.34. Hence, applying
y�.k/

1
to it yields an .n; 2/–fibrant object of Œ�n�2op

; Œ�op; Gpd � �.

2.38 Proposition For each 1� i � n, P .i/W Œ�op; Gpdn�1 �! Gpdn , the left adjoint
to N .i/W Gpdn

! Œ�op; Gpdn�1 � of (2-20), when applied to an .n; 2/–fibrant simplicial
.n�1/–fold groupoid X , is given by P .i/XDy�.i/

1
X .

Proof We think of the simplicial direction of X as being the i th , and let 1� j � n be
one of the groupoidal directions (so i ¤ j ). Applying the .n�2/–fold iterated nerve
functor

N .y{ y|/
W Œ�op; Gpdn�1 �! Œ�op; Œ�n�2op

; Gpd � �Š Œ�n�2op
; Œ�op; Gpd � �

of Notation 2.18 (in all but the i and j directions) to X yields an .n�2/–fold simplicial
object in simplicial groupoids zX . Since X is .n; 2/–fibrant, for each a2�n�2 , the sim-
plicial groupoid zX .a/ (see Section 2.6(b)) satisfies the hypotheses of Proposition 2.33,
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where the simplicial direction is the original i and the groupoid direction is the original
j . Using [11, (8.12)], we can therefore define a composition map�

N .i/
y�.i/1
zX .a/

�
1
�
.N .i/ y�.i/

1
zX.a//0

�
N .i/
y�.i/1
zX .a/

�
1
�!

�
N .i/
y�.i/1
zX .a/

�
1
:

As the construction is functorial in a 2 �n�2op
, it defines a map in Gpdn�1 , since

it consists of maps in sets commuting with compositions in each of the different
directions (see [11, Appendix A]). Thus y�.i/

1
X is a groupoid object in Gpdn�1 , that is,

y�.i/
1

X 2 Gpdn .

It remains to show that y�.i/
1

X D P .i/X . Since the (iterated) nerve functor is fully
faithful, again using Proposition 2.33, we see that for any n–fold groupoid Y we have
natural isomorphisms

HomGpdn

�
y�.i/1 X;Y

�
Š HomŒ�n�2op

; Œ�op;Gpd��

�
y�.i/1
zX ; zY

�
D HomŒ�n�2op

; Œ�op;Gpd��

�
zX ;N .i/ zY

�
D HomŒ�op;Gpdn�1 �

�
X;N .i/Y

�
:

Hence y�.i/
1

is left adjoint to N .i/ , as required.

2.39 Proposition If X 2 Œ�op; Set � is a Kan complex, then Or.n/X (see Section 2.9)
is .n; 2/–fibrant.

See Appendix A for the proof.

2.40 Theorem The functor Q.n/ of Definition 2.30, applied to a Kan complex X 2

Œ�op; Set �, is
Q.n/X D y�

.1/
1 y�

.2/
1 � � � y�

.n/
1 Or.n/X:

Proof We prove the theorem by induction on n�2. For nD2, see [11, Corollary 2.12].
Suppose the claim holds for n� 1. The left adjoint P.n/W Œ�

nop
; Set �! Gpdn to N.n/

is the composite

Œ�nop
; Set �Š Œ�op; Œ�n�1op

; Set � �
xP
.1/

.n�1/

�����! Œ�op; Gpdn�1 �
P .1/

����! Gpdn;

where xP .1/

.n�1/
is induced by applying P.n�1/ in each dimension in the first simplicial

direction, and P .1/ is left adjoint to the nerve N .1/W Gpdn
! Œ�op; Gpdn�1 �. By the

induction hypothesis and (2-11),

xP
.1/

.n�1/
Or.n/X D xP

.1/

.n�1/
Or
.2/

.n�1/ Or.2/X D xQ.n�1/ Or.2/X

D y�.2/1 � � � y�
.n/
1 Or

.2/

.n�1/ Or.2/X

D y�.2/1 � � � y�
.n/
1 Or.n/X:
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Since X is a Kan complex, Or.n/X is .n; 2/–fibrant by Proposition 2.39. Therefore,
by Lemma 2.37, y�.2/

1
� � � y�.n/

1
Or.n/X is .n; 2/–fibrant. It follows by Proposition 2.38

that
P .1/
y�.2/1 � � � y�

.n/
1 Or.n/X D y�.1/1 y�

.2/
1 � � � y�

.n/
1 Or.n/X:

Therefore

Q.n/X D P.n/ Or.n/X D P .1/ xP.n�1/ Or.n/X D P .1/
y�.2/1 � � � y�

.n/
1 Or.n/X

D y�.1/1 y�
.2/
1 � � � y�

.n/
1 Or.n/X;

which concludes the induction step.

2.41 Remark The functor Or.n/W Œ�op; Set � ! Œ�nop
; Set � has a right adjoint, a

generalized Artin–Mazur codiagonal (see Artin and Mazur [1, Section III], Bullejos,
Cegarra and Duskin [19] and Cabello and Garzón [20]), so both Or.n/ and P.n/ – and
thus Q.n/ – preserve colimits, and in particular coproducts.

On the other hand, clearly Or.n/ and y�1 preserve products when applied to Kan
complexes, so Q.n/ does, too. Therefore, Q.n/ preserves fiber products over discrete
simplicial sets.

3 Weakly globular n–fold groupoids

We now introduce the central notion of this paper: that of a weakly globular n–fold
groupoid. We will show in the next section that the fundamental n–fold groupoid
yQ.n/T of a space T (see Definition 2.30) is such an object.

3.A Homotopically discrete n–fold groupoids

A homotopically discrete groupoid G is one in which there is at most one arrow
between every two objects (that is, all automorphism groups are trivial). Hence its
classifying space is homotopically trivial (that is, a disjoint union of contractible spaces;
that is, a 0–type). For such a G , the set of arrows G1 is simply G0 ��0G G0 .

In order to provide a higher-dimensional analogue of this notion, we observe that this
construction can be made in any category with suitable (co)limits, so we can iterate it.
For this purpose we make the following definition.

3.1 Definition Let f W A!B be a morphism in a category C with finite limits. The
diagonal map defines a unique section sW A! A�BA (so that p1s D IdA D p2s ,
where A�BA is the pullback of

A
f
��! B

f
 ��A

Algebraic & Geometric Topology, Volume 14 (2014)



Segal-type algebraic models of n–types 3441

and p1;p2W A�BA!A are the two projections). The commutative diagram

A�BA
p1 //

p2

��

A

f
��

A�BA
p2oo

p1

��
A

f

// B A
f

oo

defines a unique morphism mW .A�BA/�A.A�BA/!A�BA such that p2mDp2�2

and p1mD p1�1 , where �1 and �2 are the two projections. We denote by Af the
following object of Cat.C/:

(3-2) .A�BA/�A.A�BA/
m // A�BA

p1 //

p2

&&
A

s

hh

It is easy to see that Af is an internal groupoid.

3.3 Definition We define a full subcategory Gpdn
hd � Gpdn of homotopically discrete

n–fold groupoids by induction on n� 1:

A groupoid is called homotopically discrete if G Š Af for some surjective map of
sets f W A! B . In general, an n–fold groupoid G 2 Gpdn is homotopically discrete
if G Š Af for some map f W A! B in Gpdn�1

hd with a section f 0W B! A (that is,
f ıf 0 D IdB ).

As noted above, for an (ordinary) groupoid G this just means that �1.BG;x/D 0 for
any x 2G0 .

3.4 Remark Note that the category Gpdn
hd is closed under pullbacks. We show this

by induction on n. When n D 1, let f W A! B , f 0W A0 ! B0 and gW C ! D be
surjections in Set. Then

(3-5) Af�C g A0f
0

D .A�C A0/.f;f
0/;

where .f; f 0/W A�C A!A0�C 0A
0 is a surjection in Set. Thus Af�C g A0f

0

2 Gpdhd .

Suppose the statement holds for n� 1, and let f 0W A0! B0 and gW C !D be maps
with sections in Gpdn�1

hd . Then .f; f 0/W A�C A!A0�C 0A
0 is a map in Gpdn�1

hd with
a section, by the inductive hypothesis, and (3-5) holds, showing that

Af�C g A0f
0

2 Gpdn
hd :
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3.6 Example Given a commuting (inner) square of sets

(3-7)

A
f

//

g

��

B

h
��

f 0

ww

C
` //

g0

AA

D

h0

]]

`0

gg

with ff 0 D IdB , gg0 D IdC , hh0 D ``0 D IdD and fg0 D h0`, we obtain a mor-
phism of homotopically discrete groupoids vW Af ! C ` . The homotopically discrete
double groupoid G associated to v is described in Figure 3, where we abbreviate
.A�BA/�.C�D C /.A�BA/ by .A�BA/�.g;g/.A�BA/ and so on.

.A�BA�BA/�.g;g;g/.A�BA�BA/
// //

��

A�BA�BAoo

��
.A�BA/�.g;g/.A�BA/�.g;g/.A�BA/ //

�� ��

.A�BA/�.g;g/.A�BA/
// //

�� ��

A�BAoo

�� ��
A�C A�C A //

OO

A�C A
////

OO

Aoo

OO

Figure 3: A homotopically discrete double groupoid

Note that
.A�BA/�.g;g/.A�BA/Š .A�C A/�.f;f /.A�C A/

via the map .a; b; c; d/ 7! .a; c; b; d/, and more generally

.A�BA/�.g;g/
k
� � � �.g;g/.A�BA/Š .A�C A/�.f;f /

k
� � � �.f;f /.A�C A/

for each k � 2. It follows that

.N .1/G/k�1 D

�
Af if k D 1;

.A�C

k
� � � �C A/.f;:::;f / if k � 2;

(3-8)

.N .2/G/k�1 D

�
Ag if k D 1;

.A�B

k
� � � �BA/.g;:::;g/ if k � 2:

(3-9)

Therefore .N .1/G/k and .N .2/G/k are homotopically discrete groupoids for all k � 0.
Moreover, applying �0 vertically to each column in Figure 3 yields the groupoid Bh ,
that is,

(3.10) B�DB�DB // B�DB
//// B:oo
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Similarly, applying �0 horizontally in each row yields C ` .

3.11 Remark The construction of Example 3.6 makes sense in any category with
enough limits. Conversely, any map vW Af ! C ` with a section v0 has a map of
objects gW A! C and induces a map hW B!D on �0 , which fits into a commuting
square as in (3-7).

3.12 Definition Recall from Section 2.6(g) that if X 2 Œ�n�1op
; Gpd � is an .n�1/–

fold simplicial object in groupoids, x�.n/
0

X is the .n�1/–fold simplicial set obtained
by applying �0 (the coequalizer of the source and target maps of the groupoid) in
each .n�1/–fold simplicial dimension of X . If cX denotes the discrete groupoid
on a set X (see Definition 2.23), cW Set! Gpd is right adjoint to �0 , and the unit
of the adjunction  W Id! c�0 induces a natural transformation of .n�1/–simplicial
groupoids

x W X ! xc .n/ x�
.n/
0

X:

3.13 Remark Let G 2 Gpdn be an n–fold groupoid and

X DN .n�1/
� � �N .1/G 2 Œ�n�1op

; Gpd � :

Let us suppose that x�.n/
0

X is the multinerve of an .n�1/–fold groupoid, denoted by
…
.n/
0

G , so that

x�
.n/
0

X DN.n�1/…
.n/
0

G :

Then xc .n/ x�.n/
0

X is the multinerve of an n–fold groupoid c.n/….n/
0

G (discrete in the
new nth direction) and

x DN .n�1/
� � �N .1/ .n/

for a map of n–fold groupoids  .n/W G! c.n/….n/
0

G .

3.14 Remark Since �0W Gpd! Set preserves products and coproducts, it preserves
fiber products over discrete groupoids. Therefore, the same is true of x�.n/

0
.

3.15 Lemma Let G 2 Gpdn
hd be a homotopically discrete n–fold groupoid. Then:

(a) If N .i/W Gpdn
! Œ�op; Gpdn�1 � for some 1� i � n is as in Notation 2.18, then

.N .i/G/k is homotopically discrete for all k � 0.
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(b) The .n�1/–simplicial set x�.n/
0

N .n�1/ � � �N .1/G is the multinerve of a homo-
topically discrete .n�1/–fold groupoid …

.n/
0

G , and there is a commutative
diagram:

Gpdn
hd

N .n�1/���N .1/
//

…
.n/

0
��

Œ�n�1op
; Gpd �

x�
.n/

0
��

Gpdn�1
hd

N.n�1/ // Œ�n�1op
; Set �

(c) The map of n–fold groupoids  .n/W G! c.n/….n/
0

G of Remark 3.13 is a geo-
metric weak equivalence (Definition 2.21).

(d) The set ….1/
0
� � �…

.n/
0

G is isomorphic to �0BG (see Definition 2.21).

(e) If we let .n/ denote the composite

G
 .n/

���! c.n/….n/
0

G
c.n/ .n�1/

�������! c.n�1/ c.n/….n�1/
0

…
.n/
0

G

�! � � � �! c.1/ � � � c.n/….1/
0
� � �…

.n/
0

G;

it induces a geometric weak equivalence

(3-16) y�k W G1�G0

k
� � � �G0

G1!G1�Gd
0

k
� � � �

Gd
0
G1 for all k � 2

(where Gd
0

is as in Definition 2.23).

Proof By Definition 3.3, G (as an object of Gpd2.Gpdn�2/) has the form of Figure 3
for some commuting square

(3-17)

A
f

//

g

��

B

h
��

f 0

ww

C
` //

g0

AA

D

h0

]]

`0

gg

of .n�2/–fold groupoids, as in (3-7), by Remark 3.11.

(a) By (3-8) and (3-9), the statement holds for n D 2. Suppose by induction
that it holds for n � 1: then .N .1/G/0 D Af is in Gpdn�1

hd . Also .N .1/G/k�1 D

.A�C

k
� � � �C A/.f;:::;f / for k � 2. By definition and the induction hypothesis,

.f; : : : ; f /W A�C

k
� � � �C A �! B�D

k
� � � �DB
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is a morphism with a section in Gpdn�1
hd , Hence, by definition, .N .1/G/k�1 2 Gpd

n�1
hd .

Similarly for any N .i/G .

(b) By (3-17) and part (a), N .1/x�
.n/
0

G is the nerve of the .n�1/– fold homotopically
discrete groupoid ….n/

0
G WD Bh , and the map x .n/ lifts to a map of n–fold groupoids.

(c)–(e) By induction on n� 2. For nD 2, we saw that ….2/
0

G D Bh , and since each
column in Figure 3 is homotopically discrete, we see from (3.10) that the rightmost
column is equivalent to B , the next to B�D B , and so on. Thus N .1/ .2/W N .1/G!

N .1/c…
.2/
0

G induces dimensionwise weak equivalences of simplicial spaces, so a
weak equivalence of classifying spaces. Since Bh is a homotopically discrete groupoid,
it is weakly equivalent to cD (in the notation of (3-17)), which is .�0BG/d .

By (3-8), for each k � 2,

G1�G0

k
� � � �G0

G1 D .N
.1/G/k�1 D .A�C

k
� � � �C A/.f;:::;f / Š B�D

k
� � � �DB;

while since G1 is homotopically discrete and Gd
0

is discrete,

G1�Gd
0

k
� � � �

Gd
0
G1

is homotopically discrete (see Remark 3.4), and thus it is also weakly equivalent to
B�D

k
� � � �DB . Hence (3-16) holds for nD 2.

In the induction step, N .1/G is a simplicial .n�1/–fold homotopically discrete
groupoid (by (3-8) again), and thus by the induction hypothesis for n� 1 we have a
weak equivalence�

N .1/.n�1/

�
r
W
�
N .1/G

�
r
!
�

c.2/ � � � c.n/N .1/…
.2/
0
� � �…

.n/
0

G
�
r
DW Pr

in each simplicial dimension r � 0. Applying the .n�1/–fold nerve N.n�1/ to both
sides, we obtain a map of n–fold simplicial sets N.n/G ! P� which is a weak
equivalence in each simplicial dimension, so induces a weak equivalence

Diag.n/N.n/G! Diag.n/ P�:

However, P� is discrete in all but the first simplicial direction, where it is (the nerve
of) a homotopically discrete groupoid

H WD…
.2/
0
� � �…

.n/
0

G:

In fact, H D .Bd /h
d

, in the notation of Definition 3.1, where hd W Bd !Dd is the
discretization of the map hW B!D in (3-17).
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Therefore, Diag.n/ P� D BH has �0BH D �0H d D �0BG while �iBH D 0 for
i � 1, and the map .n/ D  .1/ ı .n�1/ induces the requisite weak equivalence. Since
also .n/ D c.n/.n�1/ ı 

.n/ , we deduce by induction that  .n/ is a geometric weak
equivalence, too.

To show (3-16), note that by (3.10) we have

.…
.n/
0

G/2 D…
.n�1/
0

.G1�G0
G1/D B�DB�DB D .B�DB/�B.B�DB/;

which by the induction hypothesis (3-16) and Remark 3.14 equals

…
.n�1/
0

G1�….n�1/
0

G0
…
.n�1/
0

G1 '…
.n�1/
0

G1�.….n�1/
0

G0/
d…

.n�1/
0

G1

D…
.n�1/
0

.G1�Gd
0
G1/:

That is, we have a commuting square

G1�G0
G1

 .n�1/

//

y�2

��

…
.n�1/
0

.G1�G0
G1/

'

��

G1�Gd
0
G1

 .n�1/

// …
.n�1/
0

.G1�Gd
0
G1/

in which three of the maps are geometric weak equivalences, so y�2 is, too.

Similarly for all k > 2.

From part (d) of the lemma we see the following.

3.18 Corollary If G is a homotopically discrete n–fold groupoid, the map .n/W G!
c.1/ � � � c.n/….1/

0
� � �…

.n/
0

G is a geometric weak equivalence, so BG is homotopically
trivial (that is, �iBG D 0 for all i � 1).

3.B Weakly globular n–fold groupoids

We are now in a position to define the main notion of this section. At first glance, it
does not appear to be fully algebraic, since it uses the concept of a geometric weak
equivalence. However, as we shall show in Corollary 4.8 below, this concept has an
equivalent purely algebraic description.

3.19 Definition For each n� 1, the full subcategory Gpdn
wg of Gpdn , whose objects

are called weakly globular n–fold groupoids, is defined by induction on n, as follows:
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For nD 1, any groupoid is weakly globular; suppose we have defined Gpdn�1
wg . We

say that an n–fold groupoid

G D
�
G
.1/
1

//// G
.1/
0

�
is weakly globular if:

(i) G0 WDG
.1/
0

is in Gpdn�1
hd .

(ii) G1 WDG
.1/
1

is in Gpdn�1
wg , and for each k � 2, G1�G0

k
� � � �G0

G1 is in Gpdn�1
wg .

(iii) The .n�1/–simplicial set x�.n/
0

N .n�1/ � � �N .1/G is the nerve of a weakly glob-
ular .n�1/–fold groupoid ….n/

0
G such that

N.n�1/…
.n/
0

G D x�
.n/
0

N .n�1/
� � �N .1/G :

(iv) The map of .n�1/–fold groupoids

G1�G0

k
� � � �G0

G1

y�k
���!G1�Gd

0

k
� � � �

Gd
0
G1

induced by .n/W G0!Gd
0

is a geometric weak equivalence for all k � 2.

Note the special role played by the first of the n–directions in this definition. Also,
note that we have a functor ….n/

0
making the diagram

Gpdn
wg

N .n�1/���N .1/
//

…
.n/

0
��

Œ�n�1op
; Gpd �

x�
.n/

0
��

Gpdn�1
wg

N.n�1/ // Œ�n�1op
; Set �:

commute.

3.20 Remark For n D 2, the above definition is slightly more general than [11,
Definition 2.21]. In fact, in [11], G is required to be symmetric, and both maps
in G1

//// G0 are required to be fibrations of groupoids; the latter implies conditions
(iii) and (iv).

Note that if G 2 Gpdn
wg , not only is G1�G0

k
� � � �G0

G1 2 Gpd
n�1
wg (by Definition 3.19),

but also G1�Gd
0

k
� � � �

Gd
0
G1 2 Gpd

n�1
wg . We show this for k D 2, the general case being

similar. In fact we observe more generally that the pullback P of G!H  G0 with
G; G0 in Gpdn

wg and H discrete is an object of Gpdn
wg .

We proceed by induction on n: For nD 1 the statement is clear, since Gpd1
wg D Gpd.

Suppose it is true for n�1. We have P0DG0�H0
G0

0
2Gpdn�1

hd since G0;G
0
0
2Gpdn�1

hd ,
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and H0 is discrete (by Remark 3.4). Furthermore, P1 DG1�H1
G0

1
2 Gpdn�1

hd by the
induction hypothesis.

Likewise, since H is discrete,

(3-21) P1�P0
P1 Š .G1�G0

G1/�.H1�H0
H1/
.G01�G0

0
G01/

D .G1�G0
G1/�H0

.G01�G0
0
G01/:

Therefore P1�P0
P1 2 Gpdn�1

wg by the induction hypothesis. For the same reason,
P1�P0

k
� � � �P0

P1 2 Gpdn�1
wg . Since �0 commutes with fiber products over discrete

objects, we have
x�
.n/
0

P D…
.n/
0

G�H…
.n/
0

G;

and this is in Gpdn�1
wg by the induction hypothesis.

Finally,

(3-22) P1�Pd
0

P1 D .G1�Gd
0
G1/�H0

.G01�G0d
0

G01/ :

Since there are geometric weak equivalences

G1�G0
G1!G1�Gd

0
G1 and G01�G0

0
G01!G01�G0d

0
G01;

by (3-21) and (3-22) this induces a geometric weak equivalence

P1�P0
P1! P1�Pd

0
P1 :

Similarly, one shows that for each k � 2, there is a geometric weak equivalence

P1�P0

k
� � � �P0

P1! P1�Pd
0

k
� � � �

Pd
0

P1 :

This completes the proof that P 2 Gpdn
wg .

3.23 Definition For any n–fold groupoid G and 1 � k � n, we define its k–fold
object of arrows to be the .n�k/–fold groupoid

W.n;k/G WDG
.1���k/
1���

k
1
;

using the indexing conventions of Section 2.6(b).

3.24 Remark By Definition 3.19(ii), if G is weakly globular, so is W.n;1/G , so by
induction we have a functor W.n;k/W Gpd

n
wg! Gpdn�k

wg , since

(3-25) W.n;k/ DW.n�kC1;1/W.n�kC2;1/ � � �W.n�1;1/W.n;1/:
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3.26 Algebraic homotopy groups and algebraic weak equivalences For a weakly
globular n–fold groupoid G , we define the k th algebraic homotopy group of G at
x0 2G

0
n
���0

to be

(3-27) !k.GIx0/Š

�
W.n;n/G.x0;x0/ if k D n;

W.n�k;n�k/

�
…
.kC1/
0

� � �…
.n/
0

G
�
.x0;x0/ if 0< k < n;

with the 0th algebraic homotopy set of G defined as

!0.G/ WD…
.1/
0
� � �…

.n/
0

G:

Here W.n;n/G.a; b/ (see Definition 3.23) is the set of morphisms from a to b in the
groupoid W.n;n�1/G (in the nth direction), so in particular W.n;n/G.a; a/ is the group
of automorphisms of a (which is abelian for n� 2).

A map f W G!G0 of weakly globular n–fold groupoids is called an algebraic weak
equivalence if it induces bijections on the k th algebraic homotopy groups (set) for all
x0 2G

0
n
���0

and 0� k � n.

3.28 Definition For each n � 0, let PnTop denote the full subcategory of Top

consisting of spaces X for which the natural map X ! PnX is a weak equivalence
(that is, �i.X;x/D 0 for all x 2X and i > n). An n–type is an object in PnTop (or
in the corresponding full subcategory ho.PnTop/ of hoTop).

We use similar notation for n–Postnikov simplicial sets (where for a Kan complex X

(see Goerss and Jardine [31, Section I.3]), we can use csknC1 X as a model for the nth

Postnikov section PnX ).

For any n� 0, a map f W X!Y in Œ�op; Set � (or in Top)is called an n–equivalence if
it induces isomorphisms f�W �0X ! �0Y (of sets), and f#W �i.X;x/! �i.Y; f .x//

for every 1� i � n and x 2X0 .

We recall the following notion and fact from our earlier paper [11]:

3.29 Definition A map f W W ! V of bisimplicial sets is called a diagonal n–
equivalence if f h

k
W W h

k
! V h

k
is an .n�k/–equivalence for each k � n.

3.30 Proposition [11, Proposition 3.9] If f W W ! V is a diagonal n–equivalence,
then the induced map Diagf W Diag W ! Diag V is an n–equivalence.

3.31 Lemma For any G 2Gpdn
wg , the map x of Definition 3.12 corresponds to a map

of n–fold groupoids  .n/W G ! c.n/….n/
0

G with x D N .n�1/ : : :N .1/ .n/ , which
induces an .n�1/–equivalence B .n/W BG! B c.n/….n/

0
G on classifying spaces.
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Proof By Definition 3.19 and Remark 3.13 the map x corresponds to a map of n–fold
groupoids as stated. We show that this is an .n�1/–equivalence by induction on n. It
is clear for nD 1. Suppose, inductively, it holds for n� 1.

By construction we have�
…
.n/
0

G
�
r
WD
�
N .n/…

.n/
0

G
�.n/
r
D…

.n�1/
0

�
N .n/G

�.n/
r
;

and therefore, for each r � 0 there is a map�
N .n/ .n�1/

�
r
W
�
…
.n/
0

G
�
r
!
�

c.n/….n�1/
0

G
�
r
:

By taking realizations, we obtain a map of simplicial spaces B .n�1/ . We claim
that the corresponding map of bisimplicial sets is a diagonal .n�1/–equivalence
(see Definition 3.29). In fact, since G0 D .N .n/G/.n/

0
is homotopically discrete,

by Lemma 3.15, .B .n�1//0 is a weak equivalence, hence in particular an .n�1/–
equivalence. By the induction hypothesis .B .n�1//r is a .n�2/–equivalence for all
r � 1. Hence B .n�1/ is an .n�1/–equivalence by Proposition 3.30.

3.32 Remark From Lemmas 3.15 and 3.31 we see that a homotopically discrete
n–fold groupoid is weakly globular.

4 n–types

In this section we prove one of the main result of this paper, Theorem 4.32, which
asserts that all n–types are modeled by weakly globular n–fold groupoids.

4.A The homotopy type of a weakly globular n–fold groupoid

We start by showing that if G 2 Gpdn
wg , its classifying space BG (see Definition 2.21)

is an n–type; that is, �i.BG;x/D 0 for all x 2 BG and i > n. We prove this using
a spectral sequence computation of �i.BG;x/. In Section 5, we give an alternative
proof using a comparison with Tamsamani’s weak n–groupoids.

In [44], Quillen constructed a spectral sequence for a bisimplicial group, which was
generalized by Bousfield and Friedlander in [14, Appendix B] to define the Bousfield–
Friedlander spectral sequence of a bisimplicial set X�� 2 Œ�

2op
; Set �, with

(4-1) E2
s;t D �

h
s �

v
t X��) �sCt Diag X��:

See Dwyer, Kan and Stover [26, Section 8.4] for an alternative construction when X��
is connected in each simplicial dimension. The spectral sequence need not converge
otherwise; however, we have the following sufficient condition for convergence (see [14,
Section B.3]):
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4.2 Definition Think of a bisimplicial set X��2 Œ�
2op
; Set � as a (horizontal) simplicial

object in Œ�op; Set � (with the simplicial direction inside Œ�op; Set � thought of as being
vertical). In this notation, a k –�t -matching collection at a 2Xn;0 (for 0� k � n) is a
set of elements xi 2 �t .Xn�1�; d

h
i a/ .0� i � n; i ¤ k/, such that

(4-3) .dh
i /�xj D .d

h
j�1/�xi

for every 0� i < j � n .i; j ¤ k/.

We say that X�� satisfies the ��–Kan condition if for every n; t�1, 0�k�n, a2Xn;0 ,
and k –�t –matching collection .xi/

n
i¤k at a, there is a fill-in w 2 �vt .Xn�; a/ such

that .dh
i /�w D xi for all 0� i � n .i ¤ k/.

By [14, Theorem B.5], if X�� satisfies the ��–Kan condition – for example, if each
Xn� is connected – then the spectral sequence (4-1) converges.

4.4 Notation For any simplicial set Y and t � 1, the t th homotopy group �t .Y;y/,
as y 2 Y varies, constitutes a semi-discrete groupoid, in the sense of [11, Section 1],
that is, a disjoint union of groups (abelian, if t � 2). We denote it by y�tY .

4.5 Lemma Let G� 2 Gpd.Œ�
op; Set �/ be a groupoid in Œ�op; Set �, such that

G1�G0

k
� � � �G0

G1!G1�c�0G0

k
� � � �c�0G0

G1

is a weak equivalence of simplicial sets for all k � 2, with G0 a homotopically trivial
simplicial set. Then the bisimplicial set X�� WDNG� satisfies the ��–Kan condition,
and for each t � 1, y�tX�� is a groupoid object in semi-discrete groupoids, so is
2–coskeletal.

Proof We think of the simplicial direction as vertical. Let Xk D .NG�/k . Since
X0 DG0 is homotopically trivial (that is, a disjoint union of contractible spaces), the
groupoid y�tX0 is discrete on �0G0 , so any k –�t –matching collection for nD 1 is
trivial.

For nD 2, note that X2 D X1 �X0
X1 , so any a 2 X2;0 is of the form aD .a0; a00/,

where d1a0 D d0a00 DW b Moreover, d0aD a0 , d1aD a0 ? a00 (where ? denotes the
groupoid composition), and d2aD a00 .

So if t �1 there are three cases for a k –�t –matching collection .xi 2�
v
t .X1; dia//i¤k

at a:

(i) When k D 1, the fill-in w 2 �vt .X2; a/ for x0 and x2 is the pull-back pair
.x0;x2/ in

�vt .X2; a/D �
v
t .X1; a

0/��vt .X0;b/ �
v
t .X1; a

00/:
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(ii) When k D 0, the fill-in wD .y;x2/ for x1 and x2 should satisfy x1 D d1wD

y ?x2 , so y D x1 ? .x2/
�1 , using the groupoid structure on y�vt X1 .

(iii) The case k D 2 is similar.

For n> 2 the proof of the ��–Kan condition is analogous; however, because y�vt X��
is 2–coskeletal, we do not even need to verify it, since the spectral sequence (4-1)
from the E2 –term on then depends only on the 2–truncation of X�� in the horizontal
direction.

In order to study the homotopy groups of the n–fold diagonal dNG of an n–fold
groupoid, we think of it as an iterative construction in which we take diagonals in
successive bisimplicial bidirections. The weak globularity allows us to iteratively apply
Lemma 4.5, and thus the Bousfield–Friedlander spectral sequence.

4.6 Theorem For any weakly globular n–fold groupoid G2Gpdn
wg , BG is an n–type,

and for each base point x0 2G
0

n
���0

we have natural isomorphisms

(4-7) �k.BGIx0/Š !k.GIx0/ for 0< k � n; and �0BG Š !0.G/

(see (3-27)).

Proof Since BG is the geometric realization of dNG , we prove the theorem simpli-
cially, for dNG , by induction on n.

Using the convention of Remark 2.27, for each a 2�n�2 we have a double groupoid
G.1;2/.a/ 2 Gpd2 (in the notation of Section 2.6(b)). Assuming that the first of the n

directions of G is not among those of �n�2 , N .1/G.1;2/.a/ 2 Œ�op; Gpd � satisfies the
hypotheses of Lemma 4.5, by Definition 3.19. Therefore, the Bousfield–Friedlander
spectral sequence for the bisimplicial set

X.a/ WDN .1;2/G.1;2/.a/

converges to ��Diag X.a/. Moreover, �vt X.a/ is 2–coskeletal for each t � 1, by the
lemma, as is �v

0
X.a/ (by Definition 3.19 again). Thus in the E2 –term of the spectral

sequence only the two right columns of two bottom rows can be non-zero, so that
Diag X.a/ is a 2–type. In fact, the rightmost column is zero (except at the bottom), so
we can read off the homotopy groups of Diag X.a/ from those of X.a/.

Since Diag is functorial in a 2 �n�2op
, the resulting object Y WD Diag.1;2/N .1;2/G

is in Œ�op; Gpdn�2 �, with each Y .a/ 2 Œ�op; Set � a simplicial 2–type. Since G0 was
a homotopically discrete .n�1/–fold groupoid, the object Y v

0
(in dimension 0 in the

first (simplicial) direction) is a homotopically discrete .n�2/–fold groupoid. Moreover,
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for any choice of a third (groupoid) direction i , and each b 2�n�3 , by Definition 3.19,
we have a bisimplicial groupoid

Z��� WDN .1;2/G.1;2;i/.b/

(where the third index is the groupoid direction). This has a weak equivalence of
bisimplicial sets

Z��k DZ��1�Z��0

k
� � � �Z��0

Z��1
'
��!Z��1�Gd

0

k
� � � �

Gd
0
Z��1

for each k � 2, natural in b (note that Gd is independent of b ). This map therefore
induces a weak equivalence in the bisimplicial direction (see Remark 2.22). Thus each
simplicial groupoid Y .b/D Diag Z��� satisfies the hypotheses of Lemma 4.5.

Now assume by descending induction on 2� k < n that we have Y 2 Œ�op; Gpdn�k �,
with Y .a/2 Œ�op; Set � a k–type for each a2�n�k , with Y v

0
a homotopically discrete

.n�k/–fold groupoid. Here the first (vertical) direction is simplicial.

For any choice of a second (groupoid) direction, and each b 2�n�k�1 , the simplicial
groupoid Y .1;2/.b/ 2 Œ�op; Gpd � satisfies the hypotheses of Lemma 4.5. Therefore,
(4-1) converges, with only the two right columns of the bottom k rows non-zero, and
Diag Y .a/ is thus a .kC1/–type. When k D n� 1, Y is a simplicial groupoid which
is an .n�1/–type in the simplicial direction, with BG appearing as the realization of
Diag Y .

For any weakly globular double groupoid G , the E2 –term of the Bousfield–Friedlander
spectral sequence for the bisimplicial set X�� DN hN vG survives to E1 . Moreover,
because G0 is homotopically trivial, E2

1;0
D �1�0X�� D 0, so in fact by Lemma 4.5,

�i.Diag X��;x0/D

8̂<̂
:

E2
0;0
D �0�0.X��;x0/ if i D 0;

E2
0;1
D �0�1.X��;x0/ if i D 1;

E2
1;1
D �1�1.X��;x0/ if i D 2;

for each choice of a base-point x0 in G00 . Actually, �1�1.X��;x0/ is just the auto-
morphism group of G1 , that is, W.2;2/G.x0;x0/

Therefore, given a weakly globular n–fold groupoid G , by what we have shown above
we see that

�n.BGIx0/Š !n.GIx0/

for each x0 2G0;:::;0 . Moreover, by Lemma 3.31 we have

�i.BG;x0/Š �i

�
B…

.n�kC1/
0

� � �…
.n/
0

G;x0

�
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for all 0� i � n�k , and ….n�kC1/
0

� � �…
.n/
0

G is an .n�k/–weakly globular .n�k/–
fold groupoid, so in particular (4-7) holds for each 0� k � n.

Observe that Theorem 4.6 provides an intrinsic algebraic definition of the notion of
geometric weak equivalences among weakly globular n–fold groupoids, since we have
the following corollary:

4.8 Corollary (a) A map of weakly globular n–fold groupoids is a geometric weak
equivalence (Definition 2.21) if and only if it is an algebraic weak equivalence
(Section 3.26).

(b) The notion of a weakly globular n–fold groupoid G is purely algebraic.

4.9 Remark It follows from above that the functor ….n/
0
W Gpdn

wg!Gpdn�1
wg preserves

geometric weak equivalences and serves as an algebraic .n�1/–Postnikov section
functor.

4.B An iterative description of Q.n/

We now use the notions of the previous section to provide a more transparent iterative
description of the fundamental n–fold groupoid functor Q.n/X (Definition 2.30) for a
Kan complex X .

4.10 Definition For any simplicial set X , let

(4-11) LkX WD

�
Dec X if k D 0

Dec X�X

kC1
� � � �X Dec X if k � 1:

4.12 Remark If X is a Kan complex, we have a natural fibration of simplicial
sets uW Dec X ! X (see Section 2.5), yielding the internal groupoid .Dec X /u 2

GpdŒ�op; Set � of Definition 3.1. We see that

(4-13) .N.Dec X /u/k DLkX DL1X�Dec X

k
� � � �Dec X L1X

for all k � 1, so we may denote the bisimplicial set N.Dec X /u by L�X . This is
depicted in Figure 4, where the vertical maps are induced by those indicated in the
rightmost column, and the horizontal maps are structure maps for the pullbacks, as in
(3-2).

If X is reduced, Dec X is contractible, so L1X models the loop space �X . In general,
L1X is homotopy equivalent to the “path object” PX of Duskin [25, Section 2.2].
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� � � // X3 �X2
X3 �X2

X3
//////

�� ����

X3 �X2
X3

p2 //
p1

//

�� ����

X3

d1

��

d2

��

d0

��
� � � // X2 �X1

X2 �X1
X2

//////

����

X2 �X1
X2

p1 //
p1

//

����

X2

d1

��

d0

��
� � � // X1 �X0

X1 �X0
X1

////// X1 �X0
X1

p2 //
p1

// X1

Figure 4: Corner of L�X

4.14 Lemma Let X be a Kan complex, and cX the corresponding bisimplicial set,
constant in the horizontal direction.

(a) There is a natural map of bisimplicial sets �W cX !L�X , which is a dimension-
wise weak equivalence (as horizontal simplicial sets, in each vertical dimension;
see Figure 4), so induces a weak equivalence Diag�W X ! Diag L�X .

(b) We have N .n/Q.n/X D xQ
.n/

.n�1/
L�X , that is, for each k � 0,

(4-15)
�
N .n/Q.n/X

�
k
DQ.n�1/LkX:

Thus, for each k � 1,

(4-16) Q.n�1/LkX ŠQ.n�1/L1X�Q.n�1/ Dec X

k
� � � �Q.n�1/ Dec X Q.n�1/L1X:

(c) If X is homotopically trivial then, for k � 1,

(4-17) Q.n/LkX ŠQ.n/ Dec X�Q.n/X

kC1
� � � �Q.n/X

Q.n/ Dec X:

Proof (a) The section � W X ! Dec X to the augmentation " D xd�W Dec X ! X ,
given in dimension i by the degeneracy si W Xi!XiC1 (see Section 2.7), fits into a
diagram

(4-18)

X
� // Dec X

" //

"
��

X

X X X
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of vertical arrows in Œ�op; Set �, where the horizontal composite is the identity. Applying
the construction of Definition 3.1 to each vertical arrow we obtain

cX
�
��!L�X

x"
�! cX:

Here the map of simplicial sets �i W c.Xi/! .L�X /i in each internal simplicial dimen-
sion i is given by the vertical maps in

(4-19)

� � � // Xi

.si ;si ;si /

��

D //
D //

D
// Xi

.si ;si /

��

D //
D

// Xi

si

��
� � � // XiC1 �Xi

XiC1 �Xi
XiC1

////// XiC1 �Xi
XiC1

//// XiC1:

Since the lower row in (4-19) is the nerve of a homotopically discrete groupoid, the
vertical map is a weak equivalence (with inverse induced by the right square in (4-18)).

(b) We will show that, for n� 2,

(4-20) N .n/Q.n/X D xQ
.2/

.n�1/
N .2/

y�.2/1 Or.2/X;

where xQ.2/

.n�1/
is obtained by applying Q.n�1/ in each simplicial dimension in the

second direction to the bisimplicial object N .2/y�.2/
1

Or.2/ .

By Lemma 2.28, we have

(4-21) Or
.2/

.n�1/N
.2/
y�.2/1 Or.2/X DN .n/

y�.n/1 Or.n/X;

and since, by the definition of Q.n�1/ ,

xQ
.2/

.n�1/
N .2/

y�.2/1 Or.2/X D y�.1/1 � � � y�
.n�1/
1

Or
.2/

.n�1/N
.2/
y�.2/1 Or.2/X

we deduce that

(4-22) xQ
.2/

.n�1/
N .2/

y�.2/1 Or.2/X D y�.1/1 � � � y�
.n�1/
1

N .n/
y�.n/1 Or.n/X:

Since Q.n/X WD y�
.1/
1
� � � y�.n/

1
Or.n/X and Or.n/X is .n; 2/–fibrant, in order to show

(4-20) it suffices to show by induction on n� 2 that

(4-23) N .n/
y�.1/1 � � � y�

.n/
1 Y D y�.1/1 � � � y�

.n�1/
1

N .n/
y�.n/1 Y

for any .n; 2/–fibrant n–fold simplicial set Y . For nD 2,

N .2/
y�.1/1 y�

.2/
1 Y D y�.1/1 N .2/

y�.2/1 Y

by Lemma 2.35 and Proposition 2.34.
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In the induction step, let G� be the simplicial .n�1/–fold groupoid y�.2/
1
� � � y�.n/

1
Y . By

Lemma 2.37, G� is .n�1; 2/–fibrant, so for each a 2�n�2 , the simplicial groupoid
G�.a/ (in the first groupoid direction of G� ) is .2; 2/–fibrant. Thus by Lemma 2.35
we have N .n/y�.1/

1
G�.a/D y�

.1/
1

N .n/G�.a/, so

N .n/
y�.1/1 � � � y�

.n/
1 Y DN .n/

y�.1/1 G� D y�
.1/
1 N .n/G� D y�

.1/
1 N .n/

y�.2/1 � � � y�
.n/
1 Y:

If we think of Y as a simplicial .n�1; 2/–fibrant .n�1/–fold simplicial set Y
.1/
� (in

the first direction), by the induction hypotheses

N .n/
y�.2/1 � � � y�

.n/
1 Y .1/m D y�.2/1 � � � y�

.n�1/
1

N .n/
y�.n/1 Y .1/m

for each m� 0, so (4-23) holds for Y , too. This concludes the proof of (4-20).

Observe that

(4-24) N .2/
y�.2/1 Or.2/X DNAf

with Au 2 Gpd.Œ�op; Set �/ as in (3-2), for the map uW Dec X !X of simplicial sets.
In fact, y�.2/

1
Or.2/X , thought of as a simplicial object in Gpd, has .y�.2/

1
Or.2/X /k D

y�1 DeckX in simplicial dimension k . This is isomorphic to the homotopically discrete
groupoid .Xk/

uk (where uk W Xk !Xk�1 is a map of sets). Hence from (4-20) and
(4-24) we conclude that

N .n/Q.n/X D xQ.n�1/NAu:

Since .NAu/k DLkX for each k � 0, (4-15) follows.

In particular, since Q.n/X 2 Gpd
n
wg , we have, for k � 2,

Q.n�1/LkX D .N .n/Q.n/X /
.n/

k

Š .N .n/Q.n/X /
.n/
1
�
.N .n/Q.n/X/

.n/
0

k
� � � �

.N .n/Q.n/X/
.n/
0

.N .n/Q.n/X /
.n/
1

so by (4-15) we have

Q.n�1/LkX Š .Q.n�1/L1X /�.Q.n�1/ Dec X/

k
� � � �.Q.n�1/ Dec X/.Q.n�1/L1X /:

(c) By induction on n. For nD1, Q.1/D y�1 . Since by hypothesis X is homotopically
trivial and uW Dec X!X is a fibration, L1X DDec X�X Dec X is also homotopically
trivial; hence y�1L1X is a homotopically discrete groupoid, and is therefore isomorphic
to Af where f W A! B is the obvious map

X1�X0
X1 �!X0��0X X0:
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On the other hand, y�1 Dec X Š .X1/
d0 and y�1X D .X0/

 (for  W X0! �0X ), so

y�1L1X Š y�1 Dec X�y�1X y�1 Dec X:

In the induction step, applying N .n/ to both sides of (4-17), we must show that for
each k � 1 and i � 1 we have�
N .n/Q.n/LkX

�.n/
i�1

Š
�
N .n/Q.n/Dec X

�.n/
i�1
�
.N .n/Q.n/X/

.n/
i�1

k�1
� � � �

.N .n/Q.n/X/
.n/
i�1

�
N .n/Q.n/Dec X

�.n/
i�1

or equivalently (after applying (b)), that

(4-25) Q.n�1/Li.LkX /

ŠQ.n�1/Li Dec X�Q.n�1/Li X

kC1
� � � �Q.n�1/Li X Q.n�1/Li Dec X :

Since X is homotopically trivial, so are Dec X and LkX (since uW Dec X !X is a
fibration), so we can apply induction hypothesis (c) for .n�1/ to replace the left-hand
side of (4-25) by

Q.n�1/ Dec.LkX /�Q.n�1/Lk X

iC1
� � � �Q.n�1/Lk X Q.n�1/ Dec.LkX /;

and since Dec commutes with fiber products, and thus with Lk , this equals�
Q.n�1/

�
Dec2 X�Dec X

kC1
� � � �Dec X Dec2 X

��
�
.Q.n�1/.Dec X�X

kC1
��� �X Dec X//

iC1
� � � �

.Q.n�1/.Dec X�X
kC1
��� �X Dec X//�

Q.n�1/

�
Dec2 X�Dec X

kC1
� � � �Dec X Dec2 X

��
If we write A WDQ.n�1/ Dec2 X , B WDQ.n�1/ Dec X , and C WDQ.n�1/X , apply-
ing (b) for .n�1/ to this last expression yields

(4-26)
�
A�B

kC1
� � � �BA

�
�
.B�C

k�1
��� �C B//

iC1
� � � �

.B�C
k�1
��� �C B//

�
A�B

kC1
� � � �BA

�
:

Similarly, (c) applied to the right-hand side of (4-25) yields

(4-27)
�
A�B

iC1
� � � �BA

�
/�

.B�C
i�1
��� �C B//

kC1
� � � �

.B�C
i�1
��� �C B//

�
A�B

iC1
� � � �BA

�
/;

and the two limits (4-26) and (4-27) are evidently equal, proving (4-25).

4.C Modeling n–types

In the last part of this section we finally show that weakly globular n–fold groupoids
indeed model n–types.
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4.28 Proposition Let X be a Kan complex. Then:

(a) There is a natural n–equivalence  X
.n/
W X ! dNQ.n/X .

(b) Q.n/ preserves weak equivalences of Kan complexes.

(c) If X is homotopically trivial (that is, all higher homotopy groups vanish), then
Q.n/X is a homotopically trivial n–fold groupoid.

(d) Q.n/X is a weakly globular n–fold groupoid, and ….n/
0

Q.n/X is isomorphic to
Q.n�1/X .

Proof By induction on n. The claim is immediate for nD 1 (with Q.0/X WD �0X

and  X
.1/
W X !N y�1X ' P1X the Postnikov structure map).

(a) We assume that we have a map

 X
.n�1/W X ! Diag.n�1/N.n�1/Q.n�1/X;

natural in X . Applying this to the simplicial object L�X 2 Œ�
op; Œ�op; Set � � (which is

fibrant in each simplicial dimension, by Remark 2.8), we obtain a map of bisimplicial
sets

 
L�X
.n�1/

W L�X ! Diag
.n/

.n�1/
xN.n�1/

xQ
.n/

.n�1/
L�X;

which is an .n�1/–equivalence in each simplicial dimension.

However, in simplicial dimension 0 we have L0X D Dec X , which is homotopically
trivial, while Q.n�1/ Dec X is a homotopically discrete .n�1/–fold groupoid by in-
duction assumption (c) for n � 1, so dNQ.n�1/ Dec X is homotopically trivial by
Corollary 3.18. Thus  L0X

.n�1/
is actually a geometric weak equivalence, so  L�X

.n�1/
is a

diagonal n–equivalence (see Definition 3.29), which implies that

(4-29) Diag L�X
.n�1/

W Diag L�X ! Diag.n/ xN.n�1/
xQ
.n/

.n�1/
L�X

is an n–equivalence by Proposition 3.30.

Now by (4-15), N .n/Q.n/X D xQ
.n/

.n�1/
L�X , so together with the map �W cX !L�X

of Lemma 4.14(a) we have maps of bisimplicial sets

cX
�
�!L�X

 
L�X

.n�1/

����! Diag
.n/

.n�1/
xN.n�1/

xQ
.n/

.n�1/
L�X D Diag

.n/

.n�1/N
.n/Q.n/X:

Applying Diag to both maps we see that the first is a weak equivalence, while the
second is an n–equivalence, because (4-29) is such. We define the composite to be
 X
.n/
W X ! dNQ.n/X , which is therefore an n–equivalence.

(b) Let f W X ! Y be a weak equivalence of Kan complexes. Since by part (a),
X ! Diag.n/Q.n/X and Y ! Diag.n/Q.n/Y are n–equivalences, it follows that
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Diag.n/Q.n/f is an n–equivalence. Furthermore, by Theorem 4.6, Diag.n/Q.n/X

and Diag.n/Q.n/Y are n–types. Hence Diag.n/Q.n/f is a weak equivalence.

(c) Since X is homotopically trivial, by Lemma 4.14 for each k � 1 we have

.N .n/Q.n/X /k DQ.n�1/LkX

DQ.n�1/ Dec X�Q.n�1/X

kC1
� � � �Q.n�1/X

Q.n�1/ Dec X:

Therefore Q.n/X DAf , where ADQ.n�1/ Dec X and by induction

f WDQ.n�1/"W Q.n�1/ Dec X !Q.n�1/X

is a map of homotopically discrete .n�1/–fold groupoids with a section Q.n�1/� (see
Section 2.7). Hence, Q.n/X is homotopically discrete, by definition.

(d) To show that Q.n/X is weakly globular (Definition 3.19), we think of it as a
groupoid in Gpdn�1 , with .n�1/–fold groupoid of objects .Q.n/X /0 and .n�1/–fold
groupoid of arrows .Q.n/X /1 . Note that

.Q.n/X /0 DQ.n�1/ Dec X

by (4-15) with k D 0, and since Dec X is homotopically discrete, .Q.n/X /
.n/
0

is
homotopically discrete, by (c).

Similarly,
.N .n/Q.n/X /

.n/
1
DQ.n�1/L1X 2 Gpdn�1

wg ;

and by (4-16)

.N .n/Q.n/X /k D .Q.n/X /1�.Q.n/X/0
k
� � � �.Q.n/X/0.Q.n/X /1

DQ.n�1/.L1X�Dec X

k
� � � �Dec X L1X /;

so .N .n/Q.n/X /k is weakly globular for each k � 0.

If we apply ….n�1/
0

in each simplicial dimension in the nth direction, by Lemma 4.14(b)
and the induction hypothesis, then�
x…
.n�1/
0

N .n/Q.n/X
�.n/
k
D…

.n�1/
0

Q.n�1/LkX DQ.n�2/LkX D .Q.n�1/X /k ;

where .N .n�1/Q.n�1/X /
.n�1/

k
is abbreviated to .Q.n�1/X /k .

This shows that ….n/
0

G lands in weakly globular .n�1/–fold groupoids, and that

…
.n/
0

Q.n/X ŠQ.n�1/X:
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To prove that Q.n/X 2 Gpdn
wg , it remains to show that in each simplicial dimension

k � 2 (in the nth direction), the map

(4-30) .Q.n/X /1�.Q.n/X/0
k
� � � �.Q.n/X/0.Q.n/X /1

�! .Q.n/X /1�.Q.n/X/d0
k
� � � �

.Q.n/X/
d
0
.Q.n/X /1

is a geometric weak equivalence. By Lemma 4.14(b) we have

.Q.n/X /1�.Q.n/X/0
k
� � � �.Q.n/X/0.Q.n/X /1 D .N

.n/Q.n/X /k

DQ.n�1/LkX

ŠQ.n�1/.L1X�Dec X

k
� � � �Dec X L1X /;

where the second equality is (4-15) and the third is (4-16).

Since Dec X is homotopically trivial, Q.n�1/ Dec X is homotopically discrete by (c),
and so

.Q.n/X /
d
0 D .Q.n�1/ Dec X /d DQ.n�1/c.�0 Dec X /DQ.n�1/c.X0/

by (a) and Lemma 3.15(d), where c.X0/ is the constant simplicial set on X0 .

Since X is a Kan complex and Q.n�1/ commutes with fiber products over discrete
objects, by Remark 2.41, we have

.Q.n/X /1�.Q.n/X/d0
k
� � � �

.Q.n/X/
d
0
.Q.n/X /1

DQ.n�1/L1X�Q.n�1/c.X0/

k
� � � �Q.n�1/c.X0/

Q.n�1/L1X

ŠQ.n�1/.L1X�c.X0/

k
� � � �c.X0/

L1X /:

Since Dec X !X is a fibration, so is L1X !Dec X , and Dec X ! c.X0/ is a weak
equivalence; thus the map

L1X�Dec X

k
� � � �Dec X L1X !L1X�c.X0/

k
� � � �c.X0/

L1X

is a weak equivalence of Kan complexes. Therefore, by (b), (4-30) is a weak equivalence,
as required.

Recall from Definition 3.28 that PnTop denotes the full subcategory of Top consisting
of spaces T for which the natural map T !PnT is a weak equivalence, and hoPnTop

is the corresponding full subcategory of the homotopy category hoTop of topological
spaces.
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4.31 Definition Let hoGpdn
wg denote the localization of the category Gpdn

wg with
respect to the (algebraic) weak equivalences (see Corollary 4.8 and compare with
Gabriel and Zisman [29]).

4.32 Theorem The functors yQ.n/W Top ! Gpdn
wg and BW Gpdn

wg ! Top induce
functors

(4-33) hoPnTop
B // hoGpdn

wg
yQ.n/

oo ;

with B ı yQ.n/ Š IdhoPnTop , so yQ.n/W hoPnTop! hoGpdn
wg is a faithful embedding.

Proof By Theorem 4.6 and Proposition 4.28 both functors yQn DQ.n/S and B pre-
serve weak equivalences, and therefore induce corresponding functors on the homotopy
categories. Also, for any T 2 PnTop, by Theorem 4.6 and Proposition 4.28, there is a
span

(4-34) B yQ.n/T  � jST j �! T;

where the map on the left is a homotopy equivalence and the map on the right is a
weak homotopy equivalence. It follows that T and B yQ.n/T are weakly equivalent in
PnTop; that is, B ı yQ.n/ Š IdhoPnTop .

4.35 Weakly globular double groupoids We can strengthen Theorem 4.32 for nD2

to obtain an equivalence
hoP2Top� hoGpd2

wg;

where on the right-hand side we use the (internally defined) algebraic weak equivalences
of Gpd2

wg itself.

As in Bullejos, Cegarra and Duskin [19, Theorem 2.5], for any double groupoid
G one can construct a map "�W Or.2/ dNG ! N.2/G . By Cegarra, Heredia and
Remedios [22, Theorem 8], if G is weakly globular (and therefore .2; 2/–fibrant),
dNG is a Kan complex. Therefore, P.2/ Or.2/ dNG and P.2/N.2/G DG are weakly
globular double groupoids. Since we have a homotopy equivalence of Kan complexes
�W dNG! SkdNGk D SBG , we also have a geometric weak equivalence of weakly
globular double groupoids

(4-36) Q.2/dNG
Q.2/�
����!Q.2/SBG D yQ.2/BG:

Therefore, the algebraic homotopy groups !�Q.2/dNG are isomorphic by (3-27) to

��BQ.2/dNG Š ��B yQ.2/BG Š ��BG
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(using (4-34) for T WD BG ). By Theorem 4.6, !�G Š ��BG , and since !�G Š
��dNG , also by (3-27), we conclude that !�Q.2/dNG Š !�G . One can verify that
this isomorphism is induced by the map

P.2/"�W P.2/ Or.2/ dNG DQ.2/dNG! P.2/N.2/G DG;

which is therefore a geometric weak equivalence of double groupoids.

Together with a map of double groupoids induced by (4-36), we obtain a zig-zag of
geometric weak equivalences

yQ.2/BG
Q.2/�
 ����Q.2/dNG

P.2/"�
����!G:

This implies that (4-33) is an equivalence of localized categories when nD 2.

5 Tamsamani’s model and weakly globular n–fold groupoids

In this section we construct a comparison functor from weakly globular n–fold
groupoids to Tamsamani’s weak n–groupoids, which preserves homotopy types.

5.A Tamsamani’s weak n–groupoids

We begin with a brief recapitulation of the notion of a Tamsamani weak n–groupoid,
starting with a modified definition. This differs somewhat from the original definition
in Tamsamani [48, Section 5] (compare Simpson [47, Section 15.2] and Paoli [42,
Section 8]), which was motivated by the goal of modeling higher categories, rather
than groupoids.

5.1 Definition The category Tamn of Tamsamani weak n–groupoids is a full subcat-
egory of Œ�n�1op

; Gpd �, defined inductively as follows:

(a) Tam1
WD Gpd is the category of groupoids.

(b) Each X 2Tamn is a simplicial object in Tamn�1 (in the first simplicial direction).
We therefore have an inclusion functor JnW Tam

n
! Œ�n�1op

; Gpd �.

(c) The 0th Tamsamani weak .n�1/–groupoid X0 is discrete (that is, a constant
.n�1/–fold simplicial set).

(d) The Segal maps �k W Xk ! X1�X0

k
� � � �X0

X1 (Definition 2.3) are geometric
weak equivalences of Tamsamani weak .n�1/–groupoids for each k � 2: that
is, B�k W BXk ! B.X1�X0

k
� � � �X0

X1/ is a weak equivalence of topological
spaces, where BW Tamn

! Top is the realization functor of (1-3).
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(e) The .n�1/–simplicial set x�.n/
0

JnX is the nerve of a Tamsamani weak .n� 1/

groupoid ….n/
0

X , and we have a commutative diagram:

Tamn Jn //

…
.n/

0 ��

Œ�n�1op
; Gpd �

x�
.n/

0��

Tamn�1

Jn�1

// Œ�n�2op
; Gpd �

xN

// Œ�n�1op
; Set �

Furthermore, ….n/
0

preserves geometric weak equivalences.

5.2 Tamsamani’s original definition Tamsamani’s original approach (as described
in [42, Section 8]) gave an inductive definition of the category Tamn � Œ�n�1op

; Gpd �

equipped with a class of maps called n–equivalences for each n� 1, The following
assumptions must be satisfied:

(a) Tam1 WD Gpd (with 1–equivalences being equivalences of groupoids).

(b) Each X 2 Tamn is a simplicial object in Tamn�1 .

(c) X0 is discrete.

(d) The Segal maps �k W Xk ! X1�X0

k
� � � �X0

X1 are .n�1/–equivalences in the
category Tamn�1 for each k � 2.

(e) The functor x�.1/
0
x�
.2/
0
� � � x�

.n/
0
W Tamn ! Set, (see Definition 3.12) takes n–

equivalences to bijections and preserves fiber products over discrete objects.

Note that (d) and (e) together imply that the Tamsamani fundamental groupoid functor

T Tm
.n/ WD x�

.2/
0
� � � x�

.n�1/
0

x�
.n/
0
;

when applied to X 2 Tamn , lands in groupoids.

(f) For every a and b in the set X0 , the fiber of X.a;b/ of .d0; d1/W X1!X0�X0

is a Tamsamani weak .n�1/–groupoid.

(g) A map f W X ! Y in Tamn is an n–equivalence if and only if:

(i) The map T Tm
.n/
f W T Tm

.n/
X ! T Tm

.n/
Y is an equivalence of groupoids.

(ii) f.a;b/W X.a;b/!Y.a;b/ is an .n�1/–equivalence for every .a; b/2X0�X0 .
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5.3 Remark Note that if gW X ! Y is a morphism in Tamn with Y discrete, then
X is isomorphic to

`
y2Y g�1fyg, where the coproduct is taken in Tamn (compare

Lemma 6.7 below).

This implies that if X 2Tamn , then X1 is isomorphic to the coproduct over all a; b2X0

of X1.a; b/ 2 Tam
n�1 (where X1.a; b/ is the fiber of .d0; d1/W X1!X0 �X0 ).

From this and from (e) we deduce that if X 2Tamn , the .n�1/–simplicial set x�.n/
0

JnX

is the nerve of an object ….n/
0

X of Tamn�1 and we have the commutative diagram:

Tamn Jn //

…
.n/

0
��

Œ�n�1op
; Gpd �

x�
.n/

0��

Tamn�1

Jn�1

// Œ�n�2op
; Gpd �

xN

// Œ�n�1op
; Set �

Furthermore, ….n/
0

takes n–equivalences to .n�1/–equivalences, and one can therefore
replace (g) in the definition above by the following:

(i) The map ….n/
0
f W …

.n/
0

X !…
.n/
0

Y is an .n�1/– equivalence in Tamn�1 .

(ii) f.a;b/W X.a;b/! Y.a;b/ is an .n�1/–equivalence for every .a; b/ 2X0 �X0 .

We recall the following fact from [42, Lemma 10.1]:

5.4 Lemma A map f W X ! Y in Tamn is an n–equivalence if and only if it is a
geometric weak equivalence.

5.5 Proposition The categories Tamn and Tamn are identical.

Proof By induction on n� 1, starting with Tam1
DGpdDTam1 . The fact that Tamn

is contained in Tamn is immediate (by the induction hypothesis and Lemma 5.4), while
the other direction follows from Remark 5.3 and Lemma 5.4 again.

5.6 Definition Let hoTamn denote the localization of the category Tamn with respect
to the n–equivalences.

5.7 Theorem (Tamsamani [48, Theorem 8.0]) There is a Poincaré n–groupoid
functor Fn

TmW Top!Tamn which, together with BW Tamn
!Top, induces equivalences

of categories

(5-8) hoPnTop
B // hoTamn

F n
Tm

oo :

For every T 2 Top, there is a zig-zag of weak equivalences in PnTop between BFn
TmT

and PnT , and for every X 2Tamn , there is a natural weak equivalence X !Fn
TmBX .
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5.B Comparison with weakly globular n–fold groupoids

We construct iteratively a discretization functor DnW Gpd
n
wg! Tamn , which preserves

the homotopy type.

5.9 Two simplicial constructions Let C be a (co)complete category, X 2 Œ�op; C �

a simplicial object, and  W X0 ! W a map in C. In this context we mimic the
construction of a new simplicial object Y 2 Œ�op; C � described in our paper [11,
Section 3], as follows:

Consider the pushout in C

(5-10)

X0

s.n/ //



��

Xn

fn

��
W

�.n/
// Yn

where s.n/ is induced by the unique morphism Œ0�! Œn� in �op . For any morphism
�W Œn�! Œm� in �op , �s.n/ D s.m/ by the uniqueness, so that

fm�s.n/ D fms.m/ D �.m/f0W X0! Ym:

By the universal property of pushouts there exists a unique y�W Yn! Ym with y�fn D

fm
y� and y��.n/ D �.m/ . In particular, we have maps ydi W Yn! Yn�1 for 0 � i � n,

and y�i W Yn�1! Yn for 0� i < n. The maps ydi and y�i satisfy the simplicial identities,
so that Y is a simplicial object in C. In fact, if

Œn�
�
�! Œm�

 
�! Œk�

are morphisms in �op and � D  ı� , then

y��.n/ D �.k/ D y �.m/ D y y��.n/;

y�fn D fk
y� D fk

y y� D y fm
y� D y y�fn:

It follows by universal property of pushouts that y� D y y� . In particular, since the
simplicial identities are satisfied by di and �i , they are satisfied by ydi and y�i . So we
have a map of simplicial objects f W X ! Y .

Note that if  0W W !X0 is a section for  (with  0 D Id), we may construct a new
simplicial object X  2 Œ�op; C � by setting

X 
n D

�
W if nD 0;

Xn if n> 0:
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Let d0; d1W X1!X0 and �0D s.1/W X0!X1 be the face and degeneracy maps of X ,
and let d 0

0
, d 0

1
W X1!W , and � 0

0
W W !X1 , respectively, denote d 0i D di .i D 0; 1/,

and � 0
0
D �0

0 . All other face and degeneracy operators of X  are the same as those
of X .

Finally, we define a map hW X  ! Y in Œ�op; C � by setting h0 WD Id and hn WD fn for
n > 0. In fact, d 0i D

ydif1 ; also, f1�0 D y�0 , which implies f1�0
0 D y�0

0 D y�0 .
All other identities are the same as for f .

5.11 The functor D Let Œ�op; Set �2
h

be the full subcategory of bisimplicial sets X

such that the simplicial set X0 is homotopically trivial, through a weak equivalence
 W X0!X d

0
with a section  0W X d

0
!X0 with  0 D Id, where X d

0
is the constant

simplicial set on �0X0 . Let Œ�op; Set �2
d

denote the full subcategory of bisimplicial
sets X such that the simplicial set X0 is constant. We construct a functor

DW Œ�op; Set �2h! Œ�op; Set �2d

by setting DX WDX  (in the notation of Section 5.9).

5.12 Lemma Let DW Œ�op; Set �2
h
! Œ�op; Set �2

d
be as above. Then for each X 2

Œ�op; Set �2
h

, DX and X have the same homotopy type.

Proof We construct a bisimplicial set Y and weak equivalences

X
f
�! Y

h
 �DX

using the construction of Section 5.9, for CD Œ�op; Set �, W WDX d
0

and  W X0!X d
0

as above. Since  is a weak equivalence and s.n/ is a cofibration of simplicial sets, the
right vertical map fn in (5-10) is a weak equivalence for each n� 0, that is, we have
a map of bisimplicial sets f W X ! Y which is a levelwise weak equivalence. Thus
Bf is also a weak equivalence.

Since the map hW DX ! Y of Section 5.9 is a levelwise weak equivalence, Bh is a
weak equivalence. In conclusion, f and h are weak equivalences, so that

Diag X ' Diag DX:

5.13 Definition We define the 0–discretization functor

Disc0W Gpd
n
wg! Œ�op; Gpdn�1

wg �

on any weakly globular n–fold groupoid G as follows: set (see Notation 2.18)

.Disc0 G/k WD

�
Gd

0
if k D 0;

.N .1/G/k if k > 0:
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If d0; d1W G1 ! G0 are the source and target maps, and �0W G0 ! G1 is the de-
generacy operator (all in Gpdn�1 ), we define d 0

0
; d 0

1
W .Disc0 G/1! .Disc0 G/0 and

� 0
0
W .Disc0 G/0! .Disc0 G/1 by d 0i D di .i D 0; 1/ and � 0

0
D �0

0 . All other face
and degeneracy operators of Disc0 G are those of G . Since  0 D Id, all simplicial
identities hold for Disc0 G .

5.14 Lemma For any weakly globular n–fold groupoid G 2 Gpdn
wg , Diag.n/G and

Diag.n/ Disc0 G are weakly equivalent.

Proof Diag.n/G is the diagonal of the bisimplicial set X with

Xk WD Diag.n�1/.N
.n/G/

.n/

k

for all k�0, while Diag.n/ Disc0 G is the diagonal of the bisimplicial set Y with Y0 WD

Gd
0

and Yk WDDiag.n�1/ .N
.n/G/.n/

k
for k � 1. By construction, X 2 Œ�op; Set �2

h
and

Y DDX . Hence, by Lemma 5.12, Diag.n/GDDiag X 'Diag Y DDiag.n/ Disc0 G .

5.15 Notation Let T
wg
.n/
W Gpdn

wg ! Gpd denote the weakly globular fundamental
groupoid functor, that is, the composite

(5-16) T
wg
.n/
WD…

.2/
0
� � �…

.n�1/
0

…
.n/
0

(see Definitions 3.12 and 3.19).

By construction, for all i � 0,

(5-17) .T
wg
.n/

G/i D �0T
wg
.n�1/

Gi :

5.18 Definition For each n� 1, we define discretization functors

DnW Gpd
n
wg! Œ�n�1op

; Gpd �

by induction on n, starting with D1 WD IdW Gpd! Gpd. For n� 2, we let Dn be the
composite

Gpdn
wg

N .n/

����! Œ�op; Gpdn�1
wg �

Disc0
����! Œ�op; Gpdn�1

wg �
xDn�1
�����! Œ�n�1op

; Gpd �;

where xDn�1 is obtained by applying Dn�1 in each simplicial dimension.
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5.19 Theorem The functor Dn lands in Tamn . Furthermore, T Tm
.n/

Dn D T
wg
.n/

, and
for each G 2 Gpdn

wg , we have a natural weak equivalence

Diag.n/G ' Diag.n/DnG:

Proof By induction on n� 2. For nD 2, note that D2G DDisc0 N .2/G is in Tam2

for any weakly globular double groupoid G , since for each k � 2 by Definition 3.19(iv)
we have

.D2G/k DG1�G0

k
� � � �G0

G1

'G1�Gd
0

k
� � � �

Gd
0
G1

' .D2G/1�.D2G/0

k
� � � �.D2G/0

.D2G/1:

Furthermore, T Tm
.2/

D2GDT
wg
.2/

GD…
.2/
0

G is a groupoid. Hence by definition, D2G 2

Tam2 . By Lemma 5.14, BD2G ' dNG since G 2 Gpd2
wg .

In the induction step, note that .DnG/0 DGd
0

is discrete. So to prove that DnG is in
Tamn , it remains to show the following:

(a) The Segal maps

�k W .DnG/k ! .DnG/1�.DnG/0

k
� � � �.DnG/0

.DnG/1

are geometric weak equivalences.

(b) T Tm
.n/

DnG is a groupoid.

Note that by Definition 5.18 and by the inductive hypothesis, for k � 2 we have

Diag.n�1/.DnG/k D Diag.n�1/Dn�1

�
G1�G0

k
� � � �G0

G1

�
' dN

�
G1�G0

k
� � � �G0

G1

�
;

and by Definition 3.19(iv) and the inductive hypothesis this is weakly equivalent to

dN
�
G1�Gd

0

k
� � � �

Gd
0
G1

�
' Diag.n�1/Dn�1G1�dNGd

0

k
� � � �

dNGd
0

Diag.n�1/Dn�1G1

which is Diag.n/..DnG/1�.DnG/0

k
� � � �.DnG/0

.DnG/1/ by Definition 5.18. Thus each
Segal map �k is a geometric weak equivalence. This proves (a).

To prove (b), note that by definition of T Tm
.n/

, (5-16) and (5-17), we have�
T Tm
.n/ .DnG/

�
0
D �0T Tm

.n�1/.DnG/0 D �0T Tm
.n�1/G

d
0

DGd
0 D �0N T

wg
.n�1/

G0 D
�
T

wg
.n/

G
�
0
;

where �0T Tm
.n/

X D…
.1/
0
…
.2/
0
� � �…

.n/
0

X .
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Furthermore,�
T Tm
.n/DnG

�
k
D �0T Tm

.n�1/.DnG/k D �0T Tm
.n�1/Dn�1.N

.n/G/k

for k � 1. By induction we therefore have

�0T Tm
.n�1/Dn�1.N

.n/G/k D �0T
wg
.n�1/

.N .n/G/k D
�
T

wg
.n/

G
�
k
;

It follows that T Tm
.n/

DnG D T
wg
.n/

G , as claimed. Since T
wg
.n/

G is a groupoid, so is
T Tm
.n/

DnG . This concludes the proof that DnG 2 Tamn .

Finally, we show that Diag.n/DnG ' dNG . Let Y D Disc0 N .n/G 2 Œ�op; Gpdn�1
wg �.

By Lemma 5.14, dN Y ' dNG . Furthermore, Diag.n/DnG is the realization of the
bisimplicial set Z with Zk WDDiag.n�1/Dn�1Yk . By induction, Zk 'Diag.n�1/ Yk ,
so that Diag Z ' dN Y ' dNG , as required.

5.20 Remark Since by Tamsamani [48, Section 8], BDnG is an n–type, it follows
from Theorem 5.19 that the realization of a weakly globular n–fold groupoid is an
n–type. This provides an alternative proof of the first statement in Theorem 4.6.
Moreover, [48, Section 5] provides a formula for the homotopy groups

�n.BDnG;x/D AutCn.DnG/.Idx/;

where Cn.DnG/ is the groupoid W.n;n�1/G . This matches (4-7).

6 Weakly globular pseudo n–fold groupoids

We now introduce the category PsGpdn
wg of weakly globular pseudo n–fold groupoids,

and prove Theorem 6.23, stating that there is a zig-zag of weak equivalences between
any X 2 PsGpdn

wg and yQ.n/BX . This implies our second main result (Theorem 6.28),
stating that yQ.n/ induces an equivalence hoPnTop' hoPsGpdn

wg .

6.A Types of pseudo n–fold groupoids

The notion of a weakly globular pseudo n–fold groupoid is a further relaxation of
Gpdn

wg , similarly defined using a subcategory of homotopically discrete objects.

6.1 Definition For each n, we introduce a full subcategory PsGpdn
hd of Œ�n�1op

; Gpd �,
whose objects are called homotopically discrete pseudo n–fold groupoids. These
categories are defined by induction on n� 1, as follows:

(a) The category PsGpd1
hdDGpd1

hd consists of the homotopically discrete groupoids.
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(b) If X 2 PsGpdn
hd , then Xk 2 PsGpd

n�1
hd for all k � 0, where k is the simplicial

dimension in the first direction (see Definition 3.19).

(c) If X 2 PsGpdn
hd , the .n�1/–simplicial set x�.n/

0
JnX is the nerve of an object

….n/
0

X of PsGpdn�1
hd and the following diagram commutes (where Jn denotes

the inclusion):

PsGpdn
hd

Jn //

…
.n/

0
��

Œ�n�1op
; Gpd �

x�
.n/

0
��

PsGpdn�1
hd Jn�1

// Œ�n�2op
; Gpd �

xN

// Œ�n�1op
; Set �

Furthermore, the map x of Definition 3.12 induces a map  .n/W X! c.n/….n/
0

X

in PsGpdn
hd which is a weak equivalence of groupoids in each multi-simplicial

dimension (and thus a geometric weak equivalence by Remark 2.22).

(d) For each k � 2, the induced Segal map

(6-2) Xk

y�k
��!X1�Xd

0

k
� � � �

Xd
0

X1

of (1-4) is a geometric weak equivalence.

Note that condition (c) implies that the composite .n/ of

(6-3) X
 .n/

���! c.n/….n/
0

X
c.n/ .n�1/

�������! � � � �! c.1/ � � � c.n/….1/
0
� � �…

.n/
0

X;

is a geometric weak equivalence, so that BX is a homotopically trivial simplicial set
(that is, a 0–type).

6.4 Definition We now use Definition 6.1 to specify, for each n � 1, another full
subcategory PsGpdn

wg of Œ�n�1op
; Gpd �, whose objects are called weakly globular

pseudo n–fold groupoids, defined by induction on n� 1.

(a) PsGpd1
wg WD Gpd.

(b) If X 2 PsGpdn
wg , then X0 2 PsGpd

n�1
hd and Xk 2 PsGpd

n�1
wg for all k � 1.

(c) If X 2 PsGpdn
hd , the .n�1/–simplicial set x�.n/

0
JnX is the nerve of an object

…
.n/
0

X of PsGpdn�1
hd and the following diagram commutes (where Jn denotes
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the inclusion):

PsGpdn
wg

Jn //

…
.n/

0

��

Œ�n�1op
; Gpd �

x�
.n/

0

��

PsGpdn�1
wg Jn�1

// Œ�n�2op
; Gpd �

xN

// Œ�n�1op
; Set �

Furthermore, ….n/
0

preserves geometric weak equivalences.

(d) For each k � 2, the induced Segal map

Xk

y�k
���!X1�Xd

0

k
� � � �

Xd
0

X1

is a geometric weak equivalence.

6.5 Remark Both Tamn and Gpdn
wg are full subcategories of PsGpdn

wg , and Gpdn
hd

is a full subcategory of PsGpdn
hd .

6.6 Example When n D 2, a weakly globular pseudo double groupoid is just a
simplicial object in groupoids X 2 Œ�op; Gpd � such that X0 is a homotopically discrete
groupoid, the simplicial set x�.2/

0
X is the nerve of a groupoid, and for each k � 2, the

induced Segal map

Xk

y�k
���!X1�Xd

0

k
� � � �

Xd
0

X1

is an equivalence of groupoids.

6.7 Lemma If f W X ! Y is a map in PsGpdn
wg , and Y is discrete (that is, the

constant .n�1/–fold simplicial object on a discrete groupoid), then X is the coproduct
in PsGpdn

wg of the fibers X�1.a/, taken over all a 2 Y .

Proof By induction on n� 1, where for nD 1, X is a groupoid, which is a coproduct
of its connected components. The nth step follows from the .n�1/st , since coproducts
in PsGpdn

wg are those of Œ�n�1op
; Gpd �, namely, disjoint unions, which are therefore

taken dimensionwise.

6.8 Corollary If X 2 PsGpdn
wg , then X1 is isomorphic to the coproduct in PsGpdn�1

wg
of X1.a; b/ (the fiber of ..n/d0; .n/d1/W X1 ! X d

0
�X d

0
, taken over all .a; b/ 2

X d
0
�X d

0
).
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6.9 Definition We now define the notion of n–equivalence for maps of weakly
globular pseudo n–fold groupoids by induction on n� 1, where a 1–equivalence is
simply an equivalence of groupoids.

A map f W X ! Y in PsGpdn
wg is an n–equivalence if:

(a) …
.n/
0
f W …

.n/
0

X !…
.n/
0

Y is an .n�1/– equivalence in PsGpdn�1
wg .

(b) For every a; b 2 X d
0

, the map f .a; b/W X1.a; b/! Y1.f .a/; f .b// is also an
.n�1/– equivalence in PsGpdn�1

wg .

6.B Comparison with Tamsamani’s weak n–groupoids

We describe a procedure for transforming a weakly globular pseudo n–fold groupoid
X into a Tamsamani weak n–groupoid, without altering the homotopy type. The
construction is done in two stages:

In the first, we use the general construction of Section 5.9 to produce Disc0 X 2

PsGpdn
wg , in which only X0 is discretized (as in Section 5.B). This time we must

proceed by induction on the n simplicial directions in order to obtain a zig-zag of
intermediate objects (in Lemma 6.21), all weakly equivalent in PsGpdn

wg (which was
not possible in Gpdn

wg ).

In the second stage, we define the full discretization functors DnW PsGpd
n
wg! Tamn

by induction on n� 2, with D2 WD Disc0 , so as to make each Xk a Tamsamani weak
.n�1/–groupoid.

First, we need some technical facts about weakly globular pseudo n–fold groupoids:

6.10 Lemma If f W X!Y is a map in Œ�op; PsGpdn�1
wg � which is a weak equivalence

in each simplicial dimension, with Y0 2 PsGpdn�1
hd and X 2 PsGpdn

wg , then for each
k � 2 the induced Segal maps of (6-2) for Y are geometric weak equivalences.

Proof First note that f induces an isomorphism X d
0
Š Y d

0
, so by Corollary 6.8 it

follows that
f1W X1! Y1

is the coproduct over .a; b/2X d
0
�X d

0
of its restrictions f1.a; b/W X1.a; b/!Y1.a; b/.

Since the classifying space functor BW PsGpdn�1
wg !Top commutes with disjoint unions,

the fact that f1 is a weak equivalence implies that each f1.a; b/ is a geometric weak
equivalence in PsGpdn�1

wg .

Algebraic & Geometric Topology, Volume 14 (2014)



3474 David Blanc and Simona Paoli

Moreover, since X d
0

is discrete,

(6-11) X1�Xd
0

k
� � � �

Xd
0

X1 Š

a
a0;:::;ak2X d

0

X1.a0; a1/�X1.a1; a2/� � � � �X1.ak�1; ak/

and similarly for Y .

Now consider the commutative diagram

(6-12)

Xk

y�X
k

'
//

fk '

��

X1�Xd
0

k
� � � �

Xd
0

X1

.f1�����f1/

��

Yk
y�Y

k

// Y1�Y d
0

k
� � � �

Y d
0

Y1

of induced Segal maps, where the left vertical map is a geometric weak equivalence by
assumption, as is the top horizontal induced Segal map (since X 2 PsGpdn

wg ), while
the right horizontal map is a geometric weak equivalence because of (6-11). Therefore,
�Y

k
is a geometric weak equivalence, too.

6.13 Lemma Consider a pushout diagram

(6-14)

A
� � j //

 .n/ '
��

B

g

��
c.n/….n/

0
A

h

// C

in Œ�n�1op
; Gpd �, with A 2 PsGpdn

hd and j monic. Then:

(a) If B 2 PsGpdn
wg , so is C .

(b) If B 2 PsGpdn
hd , so is C .

Proof By induction on n� 1:

First note that for any n � 1, g is a geometric weak equivalence, since f is, be-
cause Diag.n/ preserves pushouts, A is in PsGpdn

hd , and Diag.n/ j is a cofibration of
simplicial sets.

When nD 1, (6-14) is a diagram of groupoids, so (a) is clear, and (b) follows from
Joyal and Street [35, Corollary 3].
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In general, since the pushout is taken in a diagram category, C0 is the pushout of the
objects in simplicial dimension 0, which is therefore in PsGpdn�1

hd by (b) for n�1,
while for k � 1, Ck is in PsGpdn�1

wg by (a) for n�1.

Since the functor ….n/
0

is defined by applying �0 to each groupoid, �0 commutes with
pushouts of groupoids, and �0 is an isomorphism, we see that ….n/

0
C D…

.n/
0

B is in
PsGpdn�1

wg by (a) for n�1.

Finally, the Segal condition follows from Lemma 6.10 for g , since gk is a weak
equivalence for each k � 0, B 2 PsGpdn

wg , and C0 2 PsGpd
n�1
hd .

This shows (a). Part (b) is immediate.

6.15 Proposition Assume given a weakly globular pseudo n–fold groupoid X , and
let Y 2 Œ�n�1op

; Gpd � be the result of applying the construction of Section 5.9 to the
map  W X0!W for W WD .c.n/….n/

0
X /0 and CD Œ�n�1op

; Gpd �; then Y is actually
in PsGpdn

wg . Moreover, the maps

(6-16) X
f
��! Y

h
 ��X 

are geometric weak equivalences in PsGpdn
wg , where X  is as in Section 5.9.

Proof First, note that Y0 WDW is in PsGpdn�1
hd , by Definition 6.4. Furthermore, for

any k � 1, Yk is defined by the pushout square of (5-10)

(6-17)

X0

s.k/ //


��

Xk

fk

��
.c.n/….n/

0
X /0 �.k/

// Yk

where  is a geometric weak equivalence since X0 is in PsGpdn�1
hd , and the iterated

degeneracy map s.k/ is one-to-one since it has a left inverse d.k/ . Thus by Lemma 6.13,
Yk 2 PsGpd

n�1
wg .

The maps fk in (6-17) are geometric weak equivalences, since after applying Diag.n/
we obtain a pushout of a weak equivalence along a cofibration in Œ�op; Set �. Therefore,
by Lemma 6.10 applied to f , the induced Segal maps for Y are weak equivalences.

Finally, ….n/
0

Y is obtained by applying �0 to each groupoid of Y 2 Œ�n�1op
; Gpd �,

and since this commutes with pushouts and �0 is an isomorphism, we see that
….n/

0
Y Š….n/

0
X , so in particular it is in PsGpdn�1

wg . This shows that Y 2 PsGpdn
wg .

Since each fk is a geometric weak equivalence, as is h0 D  and hk D Id for k � 1,
the two maps f and h are geometric weak equivalences in PsGpdn

wg .
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6.18 Notation Let T
ps
.n/
W PsGpdn

wg! Gpd denote the fundamental groupoid functor
for PsGpdn

wg , that is, the composite

(6-19) T
ps
.n/
WD…

.2/
0
� � �…

.n�1/
0

…
.n/
0
:

6.20 Definition For each n�2 we define a sequence of functors Disc.k/
0
W PsGpdn

wg!

PsGpdn
wg (where 1� k � n) by setting

Disc.k/
0

X WDX 
.k/

.n/

(in the notation of Section 5.9), where


.k/

.n/
W X0!

�
c.k/ � � � c.n/….k/

0
� � �…

.n/
0

X
�
0

is the composite of the first k maps of (6-3) in dimension 0. We write Disc0 for
Disc.1/

0
.

6.21 Lemma For each X 2 PsGpdn
wg we have a sequence of natural geometric weak

equivalences

X
f .n/

  

Disc.n/
0

X
h.n/

yy
f .n�1/

&&

Disc0 X
h.1/

zz
Y .n/ Y .n�1/ � � � Y .1/

Proof Each Y .k/ is obtained by applying Proposition 6.15 to Disc.kC1/
0

X , where
Disc.nC1/

0
X WDX , and using (6-16).

6.22 Definition We now define discretization functors

DnW PsGpd
n
wg! Œ�n�1op

; Gpd �

for each n� 1 by induction on n, starting with D1 WD IdW Gpd! Gpd. For n� 2, we
define Dn inductively to be the composite

PsGpdn
wg ,! Œ�op; PsGpdn�1

wg �
Disc0
����! Œ�op; PsGpdn�1

wg �
xDn�1
�����! Œ�n�1op

; Gpd �;

where xDn�1 is obtained by applying Dn�1 in each simplicial dimension.

Note that D2 is simply Disc0W PsGpd
2
wg! Tam2 .
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6.23 Theorem The functor Dn lands in Tamn and preserves geometric weak equiva-
lences and fiber products over discrete objects. Furthermore, for every weakly globular
pseudo n–fold groupoid X 2 PsGpdn

wg , the groupoid T Tm
.n/

DnX is isomorphic to
T

ps
.n/

X , and there is a zig-zag of weak equivalences between DnX and X in the
category PsGpdn

wg .

Proof By induction on n � 2. For nD 2, D2X D Disc0 X is clearly in Tam2 for
any X 2 PsGpd2

wg .

In the induction step, note that .DnX /0 DX d
0

is discrete and .DnX /k DDn�1Xk is
in Tamn�1 , by induction. So to prove that DnX is in Tamn , it remains to show the
following:

(a) The Segal maps

(6-24) �k W .DnX /k ! .DnX /1�.DnX/0

k
� � � �.DnX/0

.DnX /1

are .n�1/–equivalences.

(b) …
.n/
0

DnX is in Tamn�1 .

To show (a), note that since X 2 PsGpdn
wg , the induced Segal maps

Xk

y�k
���!X1�Xd

0

k
� � � �

Xd
0

X1

are geometric weak equivalences for all k � 2. Since by induction Dn�1 preserves
geometric weak equivalences, we have weak equivalences

Dn�1Xk

'
�!Dn�1

�
X1�Xd

0

k
� � � �

Xd
0

X1

�
:

Moreover, .DnX /1 DDn�1X1 and .DnX /0 DX d
0

is discrete, so the right-hand side
is an iterated fiber product over discrete objects, and thus (again by induction)

Dn�1

�
X1�X0

k
� � � �X0

X1

�
D .DnX /1�.DnX/0

k
� � � �.DnX/0

.DnX /1;

which proves (a) for n.

To show (b), by Tamsamani’s original definition 5.2 and Proposition 5.5 it suffices to
show that T Tm

.n/
DnX is a groupoid, which we do by showing that it is isomorphic to

T
ps
.n/

X . We have�
T Tm
.n/DnX

�
0
D �0T Tm

.n�1/.DnX /0 D �0T Tm
.n�1/X

d
0 DX d

0 :

and�
T Tm
.n/DnX

�
k
D �0T Tm

.n�1/.DnX /k D �0T Tm
.n�1/Dn�1Xk D �0T

ps
.n�1/

Xk D
�
T

ps
.n/

X
�
k
:
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for k � 1, where we use the induction hypothesis for the equality before last.

It follows that
T Tm
.n/DnX D T

ps
.n/

X;

and since the latter is a groupoid, so is T Tm
.n/

DnX . This concludes the proof that DnX

is in Tamn .

Finally, we obtain the required natural zig-zag of geometric weak equivalences

DnX ! � � �  Disc0 X ! � � �  X;

by induction on n� 1, where the right-hand zig-zag is provided by Lemma 6.21.

For n D 1, we have D1X D X , while for n � 2 we use Definition 6.22 to identify
.DnX /k with . xDn�1X /k for k � 1:

DnX

��

� � � // Dn�1X2
//////

��

Dn�1X1
////

��

X d
0

:::
:::

::: X d
0

Disc0 X

OO

� � � // Dn�1X2
//////

OO

X1
////

OO

X d
0

using induction to obtain the right-hand vertical zig-zag in each simplicial dimension.

6.25 Remark The functor DnW PsGpd
n
wg!Tamn extends the functor DnW Gpd

n
wg!

Tamn of Definition 5.18.

6.26 Remark If X 2 PsGpdn
wg , it follows from Theorem 6.23 that BX is an n–type.

6.27 Definition Let hoPsGpdn
wg denote the localization of the category PsGpdn

wg
with respect to the geometric weak equivalences.

6.28 Theorem The functors yQ.n/W Top! Gpdn
wg and BW PsGpdn

wg! Top, together
with the inclusion J W Gpdn

wg ,! PsGpdn
wg , induce equivalences of categories

(6-29) hoPnTop
B // hoPsGpdn

wg:
J ı yQ.n/

oo

Moreover, for every T 2 Top, there is a zig-zag of weak equivalences in PnTop

between PnT and B yQ.n/T , and for X 2 PsGpdn
wg there is a zig-zag of geometric

weak equivalences between X and yQ.n/BX in PsGpdn
wg .
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Proof All three functors preserve weak equivalences, so we have induced functors
as in (6-29). For any n–type T , we have an isomorphism in hoPnTop between T

and B yQ.n/T by Theorem 4.32, which also implies (see Remark 6.26) that for any
X 2 PsGpdn

wg we have a homotopy equivalence (of CW complexes) in Top

(6-30) BX
'
��! B yQ.n/BX:

By Theorem 6.23 we also have zig-zags of geometric weak equivalences in PsGpdn
wg

(6-31) DnX ! � � �  X and Dn
yQ.n/BX ! � � �  yQ.n/BX:

Therefore, after applying B to (6-31) we have homotopy equivalences of CW complexes

BDnX
'
��! BX and B yQ.n/BX

'
��! BDn

yQ.n/BX:

Combining these with (6-30) yields a weak equivalence

BDnX ! BDn
yQ.n/BX

in Top, which by Theorem 5.7 implies that DnX and Dn
yQ.n/BX are isomorphic

in hoTamn , and thus in hoPsGpdn
wg . By (6-31) we see that X and J yQ.n/BX are

weakly equivalent through a zig-zag in PsGpdn
wg .

6.32 Remark Note that Theorem 6.23 implies that the functor Dn induces an equiv-
alence of categories

hoPsGpdn
wg ' hoTamn:

Together with Theorem 4.32 and Theorem 5.7 this implies the equivalence of categories
(6-29). In the course of the proof of Theorem 6.28 we have further shown that any
weakly globular pseudo n–fold groupoid X 2 PsGpdn

wg has two different functorial
partial strictifications: the Tamsamani weak n–groupoid DnX , and the weakly globular
n–fold groupoid yQ.n/BX 2 Gpdn

wg , each equipped with zig-zags of weak equivalences
in PsGpdn

wg from X

(6-33) DnX ! � � �  X ! � � �  yQ.n/BX:

6.34 Definition As in Definition 3.23, for any weakly globular pseudo n–fold
groupoid X and 1 � k � n, we define its k–fold object of arrows to be the pseudo
.n�k/–fold groupoid W.n;k/X WDX

.1���k/
1���

k
1

.
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6.35 Algebraic homotopy groups and algebraic weak equivalences In analogy to
Section 3.26, for any weakly globular pseudo n–fold groupoid X 2 PsGpdn

wg , we
define the k th algebraic homotopy group of X at x0 2X0���

n
0 to be

(6-36) !k.X Ix0/Š

�
W.n;n/X.x0;x0/ if k D n;

W.n�k;n�k/.…
.kC1/
0

� � �…
.n/
0

X /.x0;x0/ if 0< k < n;

with the 0th algebraic homotopy set of X defined as

!0.X / WD…
.1/
0
� � �…

.n/
0

X:

A map f W X ! Y of weakly globular pseudo n–fold groupoids is called an algebraic
weak equivalence if it induces bijections on the k th algebraic homotopy groups (set)
for all x0 2X0���

n
0 and 0� k � n.

6.37 Remark As for weakly globular n–fold groupoids (see Remark 5.20), our
definition of algebraic homotopy groups for PsGpdn

wg generalizes that of Tamsamani [48,
Section 5], and since DnX and X by Remark 6.32 have the same algebraic homotopy
groups, by construction, both provide an algebraic way of calculating the homotopy
groups of BX , as in Theorem 4.6.

Using this fact, one can show that a map f W X ! Y in PsGpdn
wg is an n–equivalence

(Definition 6.9) if and only if it is a geometric weak equivalence.

7 Applications and further directions

In this section we provide an application for our model of n–types, and indicate some
directions for future work.

7.A Modeling .k � 1/–connected n–types

We now provide an algebraic model of .k�1/–connected n–types, and relate it to the
homotopy types of iterated loop spaces. This was mentioned by Baez and Dolan in [2]
as a desirable feature for models of n–types (see also Berger [10]).

Recall that a space X is .k�1/–connected if �0X D 0 and �i.X;x/D 0 for 1� i �

k � 1, and all x 2X . We denote the category of .k�1/–connected pointed n–types
by Pn

k
Top� .

7.1 Lemma If X is a k–connected pointed Kan complex, X is naturally weakly
equivalent to a .k�1/–reduced Kan complex yX , that is, yXi D f�g for 1� i � k � 1.
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Proof See Goerss and Jardine [31, Section III.3].

7.2 Definition For any k–connected pointed topological space T 2 Top� , let S redT

denote the canonical k–reduced version bST of the singular set ST .

7.3 Definition A homotopically discrete pseudo n–fold groupoid X 2 PsGpdn
hd is

contractible if �0BX is trivial (so that BX is contractible).

More generally, a weakly globular pseudo n–fold groupoid X 2 PsGpdn
wg is called

.n; k/–weakly globular if for each 0 � r < k , the homotopically discrete pseudo

.n�r�1/–fold groupoid

X
.1���rC1/
1���

r
10

D .W.n;r/X /
.rC1/
0

is contractible. This is the pseudo .n�r�1/–fold groupoid of objects of the pseudo
.n�r/–fold groupoid W.n;r/X 2 PsGpd

n�r
wg (see Definition 6.34).

In particular, when r D 0, this just means that the pseudo .n�1/–fold groupoid of
objects X

.n/
0

of X in the nth direction (which is a homotopically discrete pseudo
.n�1/–fold groupoid) is in fact contractible.

We let PsGpd.n;k/wg denote the full subcategory of .n; k/–weakly globular pseudo n–fold
groupoids in PsGpdn

wg . Similarly, Gpd.n;k/wg is the full subcategory of .n; k/–weakly
globular pseudo n–fold groupoids in Gpdn

wg .

We now want to show that PsGpd
.n;k/
wg is an algebraic model of .k�1/–connected

n–types. For this, we need the following:

7.4 Lemma If X is a .k�1/–reduced Kan complex, then Q.n/X is .n; k/–weakly
globular.

Proof By Lemma 4.14(b), .Q.n/X /
.n/
0
DQ.n�1/ Dec X . Since Dec X ' c.X0/D

c.�/ and Q.n�1/ preserves weak equivalences of Kan complexes by Proposition 4.28(b),
we have Q.n�1/ Dec X 'Q.n�1/.�/D �. Therefore, dN.Q.n/X /

.n/
0

is contractible.

We now show by induction on 1� r < k that

(7-5) W.n;r/Q.n�1/X WD .N
.n�rC1;:::;n/Q.n/X /

.n�rC1;:::;n/
1���

r
1

DQ.n�r/L
r
1X

(in the notation of (4-11), where Lr
1
X WDLr�1

1
.L1X / for r � 2, and L1

1
X DL1X /).

The case rD1 is Lemma 4.14(b) for kD1, which implies that we have an isomorphism

(7-6) W.n;1/Q.n�1/X WD .N
.n/Q.n/X /

.n/
1
ŠQ.n�1/L1X
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of .n�1/–fold groupoids. In the induction step, since L1X is still a Kan complex, by
(3-25) we can apply the induction hypothesis to the right-hand side of (7-6) (using the
fact that W.n;r/ DW.n�1;r�1/W.n;1/ , by Equation (3-25)), to deduce that

W.n;r/Q.n�1/L1X ŠQ.n�r/L
r�1
1 .L1X /;

which yields (7-5). From this and Lemma 4.14(a) (for k D 0) we have

.W.n;r/Q.n/X /0 DQ.n�r�1/ Dec Lr
1X;

and since Dec Lr
1
X ' c.Lr

1
X /0 , we have dN.W.n;r/Q.n/X /0 ' c.Lr

1
X /0 .

Note that since X is .k�1/–reduced, Dec X , and thus L1X , are .k�2/–reduced, so
by induction Lr

1
X is .k�r�1/–reduced. Thus as long as r < k , Lr

1
X is 0–reduced,

so dN.W.n;r/Q.n/X /0 is contractible.

7.7 Proposition The functors Q.n/ and B induce equivalences of categories

hoPn
k
Top�

B // hoPsGpd
.n;k/
wg :

J ıQ.n/ıSred
oo

Proof If T 2 Pn
k
Top� , then S redT is .k�1/–reduced, so by Lemma 7.4, Q.n/X 2

PsGpd
.n;k/
wg . The result follows immediately from Theorem 6.28.

7.8 Remark By Theorem 4.32, the composition of W.n;k/ of Definition 6.34 with
the classifying space functor B lands in PnTop so its restriction to PsGpd

.n;k/
wg lands

in the category Pn�kTop of .n�k/–types.

Moreover, if T D �kY is an .n�k/–type k–fold loop space, applying the k–fold
delooping functor

E.k/W P
n�k
�k ! Pn

kTop�

of May [40, Theorem 13.1] yields the .k�1/–connected n–type Y DE.k/T 2P
n
k
Top� .

In fact:

7.9 Proposition For any .k�1/–connected n–type Y 2 Pn
k
Top� , we have a zig-zag

of weak equivalences in Pn�kTop between BW.n;k/
yQ.n/Y and �kY , so the weakly

globular .n�k/–fold groupoid W.n;k/
yQ.n/Y is an algebraic model for �kY .

Proof By induction on k . Let G WD yQ.n/Y 2 Gpd
.n;k/
wg , so BG Š Y in hoPn

k
Top� .

For k D 1, consider the simplicial .n�1/–fold groupoid N .n/G . Applying the classi-
fying space functor BW Gpdn�1

!Top in each simplicial dimension yields a simplicial
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space Y� D . xB
.n/N .n/G/� . Thus Y0 D B.N .n/G/

.n/
0

is contractible, and the Segal
maps for Y� are isomorphisms (since N .n/G

.n/
� is the nerve of an internal groupoid),

hence in particular geometric weak equivalences.

As G is weakly globular, applying the functor T
wg
.n/

of Definition 5.18 yields a groupoid,
and �0Y� D N T

wg
.n/

G . Since Y0 is contractible, �0Y� is the nerve of a group. Thus
Y1 has a homotopy inverse (see Dold [24, Theorems 6.3 and 6.4]), so it follows from
Segal [45, Proposition 1.5] that Y1 '�kY�k. That is,

BG
.n/
1
D BW.n;1/G '�BG:

Since �BGŠ�Y in hoPn�1
k�1

Top� , it follows that BW.n;1/GŠ�Y in hoPn�1
k�1

Top� .
In the induction step, let

H WDW.n;1/G D .N
.n/G/

.n/
1

in Gpd
.n�1;k�1/
wg , where by the inductive hypothesis BW.n�1;k�1/H Š�

k�1BH in
hoPn�kTop� . By what we have shown above for k D 1 we have

BH D B.N .n/G/
.n/
1
'�BG:

It follows that there are isomorphisms

BW.n;k/G D BW.n�1;k�1/H Š�
k�1BH Š�k�1.�BG/D�kBG:

in hoPn�kTop� .

7.B Further directions

One motivation in constructing our model for n–types was to obtain useful algebraic
approximations of homotopy theories, that is, of simplicially enriched categories.

Recall that if hV;˝; Ii is any monoidal category, we denote by V–Cat the collection
of all (not necessarily small) V–categories, that is, categories enriched in V (see
Borceux [13, Section 6.2]). We obtain further variants by applying any (strictly)
monoidal functor P W hV;˝i ! hV0;˝0i to a V–category C. For example, given a
simplicially enriched category X� , for each n� 1 we have a PnŒ�op; Set �–category
Y� WD PnX� , in which each mapping space Y�.a; b/ is the nth Postnikov section
PnX�.a; b/.

7.10 n–track categories For n� 2, an n–track category is a category enriched in
weakly globular n–fold groupoids .Gpdn

wg;�/, with respect to the cartesian monoidal
structure. The category of n–track categories is denoted by Trackn .
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Since Q.n/W Œ�
op; Set �! Gpdn

wg preserves products (see Remark 2.41), it induces a
functor

S.n/W Œ�
op; Set �–Cat �! Trackn

from simplicial categories to n–track categories. Furthermore, the functors

…
.n/
0
W Gpdn

wg! Gpdn�1
wg

giving the Postnikov decomposition of Gpdn
wg induce functors

Pn�1
W Trackn! Trackn�1

providing the Postnikov decomposition of simplicially enriched categories.

For nD 1, the corresponding k–invariant was described by Baues and Wirsching in [9]
in terms of the Baues–Wirsching cohomology of categories, and a similar result was
obtained in our paper [11] for nD 2, using an algebraically defined cohomology of
track categories. The extension of this to general n via an appropriate cohomology of
.n�1/–track categories will be investigated in the future.

7.11 Spectral sequences In [7], Baues and Blanc introduced the notion of the Post-
nikov n–stem P Œn�X of a topological space X , that is, the system of .k�1/–connected
.nCk/–Postnikov sections PnCkX hk � 1i .k D 0; 1; : : :/, with the natural maps
between them.

They then show that the EnC2 –term of the homotopy spectral sequence of a (co)sim-
plicial space W� (respectively, W � ) depends only on the simplicial n–stems P Œn�W�
or P Œn�W � . Thus we can in principle use the .nCk/–fold groupoid models of each
Wm or W m , as in Definition 7.3 to extract information about the dnC1 –differentials.

However, in many cases of interest – including the (stable or unstable) Adams spectral
sequence, the Eilenberg–Moore spectral sequence and others – a more “algebraic”
approach can be used, using the notion of nth order derived functors introduced by
Baues and Blanc in [6].

For example, the (unstable) Fp –Adams spectral sequence for a (simply connected)
space X constructed by Bousfield and Kan in [15] is the homotopy spectral sequence
of a cosimplicial space W � obtained as a Fp –resolution of X . It can be shown that the
EnC2 –term of this spectral sequence depends only on the n–Postnikov sections of the
mapping spaces map.X;E/ and map.E;E0/ for various products of Fp –Eilenberg–
Mac Lane space E and E0 . Thus we do not need a full algebraic model for the
PnŒ�op; Set �–category Top, but only for the small subcategory with objects X and E

as above. Since all mapping spaces in this category are themselves simplicial Fp –vector
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spaces, the associated n–track category is correspondingly simplified. The case nD 1

was treated in great detail by Baues in [5], and some progress on the case nD 2 has
been made by Baues and Frankland in work that is still under way. However, it is clear
from Baues and Blanc [8] that a better conceptual framework, such as an algebraic
model for such “linear” n–track categories, will be needed before any further progress
can be made for n� 2.

Appendix A: Fibrancy conditions on n–fold simplicial sets

In this appendix we prove some technical facts about Or.n/ :

A.1 Remark Given a map of simplicial sets f W A!B and m� 2, let P WDOr.m/A,
Q WD Or.m/B , and F D Or.m/ f W P ! Q. From the description in Section 2.9
we see by induction on m (using (2-11)) that for every multi-index .p1 � � �pm/ the
map of sets F.p1���pm/W P.p1���pm/ ! Q.p1���pm/ is simply f`W A` ! B` , for ` WD
m� 1Cp1C � � �Cpm (see (2-10)).

A.2 Lemma If Y D Or.n/X 2 Œ�nop
; Set � for some X 2 Œ�op; Set � and n� 2, then

for any two of its n directions 1� p¤ q � n, the lower right corner of the bisimplicial
set Z D Y .p;q/ 2 Œ�2op

; Set � (see Section 2.6(b)) has the form

(A-3)

XsC2

dkC3 //

dkC2

//

diC2

��

diC1

��

di

��

XsC1

diC2

��

diC1

��

di

��
XsC2

dkC3 //
dkC2

//

dkC1

//

diC1

��

di

��

XsC1

dkC2 //

dkC1

//

diC1

��

di

��

Xs

diC1

��

di

��
XsC1

dkC2 //
dkC1

//

dk

// Xs

dkC1 //

dk

// Xs�1

for some s � n and 0� i < k < s .

Proof By induction on n�2, where the case nD2 is depicted in Figure 1 of Section 2.
Using (2-11), we see that

Y D Or
.2/

.n�1/ Or.2/X;
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so if we number the n directions of Y so as to the start with the horizontal direction
of Or.2/X , then for any 1< p ¤ q � n the bisimplicial set Z D Y .p;q/ 2 Œ�nop

; Set �

is contained in the .n�1/–fold simplicial set Or.n�1/Qt� , for one of the vertical
simplicial sets of Q WDOr.2/X . Thus the claim for such a Z follows by the induction
hypothesis.

Thus it suffices to treat the case 1 D p < q . Since the corresponding vertical maps
in each of the vertical simplicial sets Qt� , for various t , have the same labels (in
terms of the original face maps of X ), the same will be true after applying the functor
Or.n�1/ to each of them. This implies that the vertical maps in (A-3) are indeed both
labeled di ; diC1 , for some i < kC 1. However, since each of the simplicial sets Qt�

is obtained by repeated applications of Dec to X (see (2-12)), we must have omitted
at least the maximally labeled face map dkC1W XkC1 ! Xk , by definition of Dec.
Therefore, among the various face maps of X appearing in Or.n�1/Qt� , the map
dkC1W XkC1!Xk cannot appear. Thus, we actually have i < k .

From Figure 1 (or from the fact that the bisimplicial set Q, as a (vertical) simplicial
object over Œ�op; Set �, is the resolution of X produced by the comonad Dec0 ), we
see that the horizontal maps in Q are always the face maps of maximal consecutive
indices for any given Qi;j DXiCjC1 : for example, the bottom left horizontal maps in
Figure 1 are d1; d2W X2!X1 .

On the other hand, by Remark A.1 (for mD n�1), the two pairs of horizontal maps in
(A-3) are just those that appear in the rightmost sequence of horizontal maps in Figure 1:
namely, dk ; dkC1W XkC1!Xk and dkC1; dkC2W XkC2!XkC1 . Thus when pD 1,
in fact k D s� 1 in (A-3) (as for the front and back squares in Figure 2).

Proposition (Proposition 2.39) If X 2 Œ�op; Set � is a Kan complex, then Y WD

Or.n/X is .n; 2/–fibrant.

Proof For every 1� p � n, the simplicial set Y .p/ is obtained from X by repeated
applications of Dec and Dec0 , so it is still a Kan complex, and the same is true of
csk2 Y .p/ .

For each bisimplicial set of the form (A-3), denote by W and Z the middle and
right vertical simplicial sets, respectively, with �W W ! Z the horizontal map in
Œ�op; Set � given by dk W W0 D Xs ! Z0 D Xs�1 , dkC1W W1 D XsC1! Z1 D Xs ,
and so on. Similarly, denote by U and V the middle and bottom horizontal simplicial
sets, respectively, with  W U ! V the vertical map in Œ�op; Set � given by di W Uj D

XsCj ! Vj DXsCj�1 for all j � 0.

By Definition 2.31 and Lemma A.2, in order to verify that Y is .n; 2/–fibrant, we must
check that csk2 � and csk2  are fibrations for any choice of (A-3) with i < k . This

Algebraic & Geometric Topology, Volume 14 (2014)



Segal-type algebraic models of n–types 3487

means that we must show that a lifting yg exists for every solid commuting square of
one of the two following forms

(A-4)

ƒj Œm�

ij
��

f // U

 

��
�Œm�

g //

yg

66

V

(a)

ƒj Œm�

ij
��

f // W

�

��
�Œm�

g //

yg

66

Z

(b)

for mD 1; 2 and 0 � j �m (where ƒj Œm�� @�Œm� consists of all but the j th face
of �Œm�, and ij W ƒ

j Œm� ,!�Œm� is the inclusion).

Case 1 When mD 1 in (A-4) (a), the map f W ƒj Œ1�! U .j D 0; 1/ corresponds to
a 0–simplex z� 2U0 , that is, an s–simplex � 2Xs (since U0DXs and ƒj Œ1�Š�Œ0�),
and the map gW �Œ1�! V corresponds to a 1–simplex z� 2 V1 , that is, an s–simplex
� 2Xs .

Commutativity of the solid square in (A-4)(a) – that is,  ı f D g ı ij – means that
d

V1

j .z�/D  .z�/, that is,

(A-5) d
Xs

kCj
� D d

Xs

i �:

A lift ygW �Œ1�! U corresponds to a 1–simplex z! 2 U1 , that is, an .sC1/–simplex
! 2XsC1 , and commutativity of the two triangles in (A-4) (a) translates into the two
conditions d

U1

j .z!/D z� and  .z!/D z� , that is,

(A-6) d
XsC1

kC1Cj
! D � and d

Xs

i ! D �:

Combining (A-5) and (A-6) yields the simplicial identity

(A-7) didkC1Cj! D dkCj di!;

since i < k .

The two s–simplices � and � satisfying (A-5) define a map from the following pushout
P in Œ�op; Set �:

�Œs�1�

PO
�kCj

��

�i // �Œs�

�� �

��

�Œs� //

�
33

P
.�;�/

!!
X
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Since P is a union of two s–simplices along a common face, it is a contractible
subspace of �ŒsC1�, so P ,!�ŒsC1� is an acyclic cofibration in Œ�op; Set �. Because
X is fibrant, a lift !W �ŒsC1�! X for .�; �/ – and thus ygW �Œm�! U – always
exists.

Case 2 When mD 2 in (A-4)(a), the map f W ƒj Œ2�! U .j D 0; 1; 2/ corresponds
to a pair of 1–simplices z̨; ž 2 U1 with dp z̨ D dq

ž, where

(A-8) .p; q/D

8<:
.1; 1/ if j D 0;

.0; 1/ if j D 1;

.0; 0/ if j D 2:

This means that we have ˛; ˇ 2XsC1 D U1 with

(A-9) d
XsC1

kC1Cp
˛ D d

Xs

kC1Cq
ˇ:

The map gW �Œ2�! V corresponds to � 2 XsC1 D V2 , and the map ygW �Œ2�! U

corresponds to ! 2XsC2 .

Commutativity of the solid square in (A-4)(a) means that

(A-10) d
XsC1

kCp
� D d

Xs

i ˛ and d
XsC1

kCq
� D d

Xs

i ˇ:

Commutativity of the upper triangle in (A-4)(a) means

(A-11) d
XsC2

kC1Cp
! D ˛ and d

XsC2

kC1Cq
! D ˇ;

and commutativity of the lower triangle in (A-4)(a) means

(A-12) d
XsC1

i ! D �:

Combining (A-10), (A-11) and (A-12) yields the two simplicial identities

(A-13) didkC1Cp! D dkCpdi! and didkC1Cq! D dkCqdi!:

since i < k . The existence of ! follows as above.

The analogous cases for (A-4)(b) are obtained from these by applying the inversion I�

of Remark 2.2.
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