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Towards the C 0 flux conjecture

LEV BUHOVSKY

In this note, we generalise a result of Lalonde, McDuff and Polterovich concerning
the C 0 flux conjecture, thus confirming the conjecture in new cases of symplectic
manifolds. We also prove the continuity of the flux homomorphism on the space of
smooth symplectic isotopies endowed with the C 0 topology, which implies the C 0

rigidity of Hamiltonian paths, conjectured by Seyfaddini.
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1 Introduction and main results

Let .M; !/ be a closed and connected symplectic manifold. The celebrated Eliashberg–
Gromov rigidity theorem (see Eliashberg [4; 5] and Gromov [10]) states that the group
Symp.M; !/ of symplectomorphisms of M is C 0 –closed inside the group Diff.M /

of diffeomorphisms of M . A related natural conjecture (called the C 0 flux conjecture)
states the following: The group Ham.M; !/ of Hamiltonian diffeomorphisms of M is
C 0 –closed inside Symp0.M; !/, the connected component of identity in Symp.M; !/.

The reader may wonder why it is asked if Ham.M; !/ is C 0 –closed in Symp0.M; !/

rather than Symp.M; !/. The difficulty in addressing the latter question is that, al-
though the Eliashberg–Gromov rigidity theorem tells us that Symp.M; !/ is C 0 –closed
in the group Diff.M / of diffeomorphisms of M , it is not known if Symp0.M; !/ is
C 0 –closed in Symp.M; !/. To avoid this difficulty the C 0 flux conjecture is usually
stated for Symp0.M; !/.

A weak form of the C 0 flux conjecture is the C 1 flux conjecture, which states that
Ham.M; !/ is C 1 –closed in Symp0.M; !/. This statement is equivalent to the flux
group � � H 1.M;R/ being discrete. Some cases of the C 1 flux conjecture were
proven by Banyaga [1], Lalonde, McDuff and Polterovich [12] and McDuff [14]; it
was finally confirmed in full generality by Ono [17]. However, the C 0 flux conjecture
still remains open in case of a general symplectic manifold. It has been confirmed
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by Lalonde, McDuff and Polterovich in certain cases [12] (these cases are described
below). Also, Humilière and Vichery established more cases of the C 0 flux conjecture
(private communication).

A different weak form of the C 0 flux conjecture (the “C 0 rigidity of Hamiltonian
paths”) was proposed by Seyfaddini [21]: Is it true that on any closed and connected
symplectic manifold, the space of smooth Hamiltonian isotopies is C 0 –closed in the
space of smooth symplectic isotopies? In [21], Seyfaddini showed that a smooth
symplectic isotopy which is a C 0 limit of a sequence of smooth Hamiltonian iso-
topies is itself Hamiltonian, provided that the corresponding sequence of generating
Hamiltonians is a Cauchy sequence in the L.1;1/ topology.

The results of this note are concerned with the C 0 flux conjecture, and with the
mentioned conjecture of Seyfaddini (the C 0 rigidity of Hamiltonian paths).

1.1 The C 0 flux conjecture

We denote H DHam.M; !/�GDSymp0.M; !/, by eG DASymp0.M; !/ we denote
the universal cover of G D Symp0.M; !/, and by eH � eG we denote the lift of H

to eG (ie the set of those elements of eG whose endpoint belongs to H ). Next, by
H0 � G we denote the C 0 closure of H inside G , and by eH 0 �

eG we denote the
lift of H0 to eG . Also, we use the notation Map0.M / for the connected component of
the identity in the space of all smooth maps M !M .

Let us recall that the flux homomorphism FluxW eG !H 1.M;R/ can be described as
follows: given z� 2 eG its flux is the class in H 1.M;R/ which assigns to a smooth
loop  in M the integral of ! over the cylinder C W S

1 � Œ0; 1�!M defined by
C .s; t/D �

t . .s//, where �t ; t 2 Œ0; 1�, is a smooth symplectic isotopy representing
z� . This definition is independent of the choice of the isotopy f�tg.

Denote by � � H 1.M;R/ the flux group, ie the image of eH (or, equivalently, of
�1.G/) under the flux homomorphism, and by �0�H 1.M;R/ the image of eH 0 under
the flux homomorphism. It is not hard to see that the C 0 flux conjecture is equivalent
to the equality �0 D � (this follows from the well-known fact that for a smooth path
�t , t 2 Œ0; 1�, of symplectic diffeomorphisms, its endpoint �1 belongs to H if and only
if its flux belongs to � ). The restriction of the flux homomorphism to �1.G/ admits a
natural extension to a homomorphism (which we again call flux homomorphism) from
�1.Map0.M // to H 1.M;R/: for any a 2 �1.Map0.M //, we consider a (piecewise)
smooth loop f t ; t 2 Œ0; 1�, in Map0.M / representing a, and then we define the flux of
a to be the class in H 1.M;R/ which assigns to a smooth loop  in M the integral of !
over the cylinder C W S

1� Œ0; 1�!M defined by C .s; t/Df
t . .s//. This definition
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is independent of the choice of the loop ff tg. Following [12], we denote by �top

the image of �1.Map0.M // under the flux homomorphism. Consider the evaluation
homomorphism evW �1.Map0.M //! �1.M /. For any a 2 �1.M / we denote by
�a

top � � the image of ev�1.a/� �1.Map0.M // under the flux homomorphism.

The following result was proved in [12]:

Theorem 1.1 If M is Lefschetz, then �0 � �top .

As a consequence, Lalonde, McDuff and Polterovich conclude:

Corollary 1.2 Assume that M is Lefschetz and that �top D � . Then the C 0 flux
conjecture holds for M .

As an example, one can take M to be a closed and connected Kähler manifold of
nonpositive curvature such that its fundamental group has a trivial centre. As another
example, one can take the 2n–dimensional torus with a translation-invariant symplectic
structure. See [12] for more details.

Now we turn to our results. Our main result is as follows:

Theorem 1.3 Let .M; !/ be a closed and connected symplectic manifold. Then
�0 � �topC�

e
top , where e 2 �1.M / is the identity, and �e

top �H 1.M;R/ is the
closure of �e

top inside H 1.M;R/.

As a result, we obtain the following corollary:

Corollary 1.4 Let .M; !/ be a closed and connected symplectic manifold such that
�top D � . Then the C 0 flux conjecture holds for M .

Indeed, if �top D � , then since � is closed (� being closed is exactly the statement
of the C 1 flux conjecture proven in [17]), it follows that �topC�

e
top D � and hence

�0 D � by Theorem 1.3.

In particular, the C 0 flux conjecture holds for a closed and connected symplectically
aspherical symplectic manifold .M; !/ whose fundamental group �1.M / has a trivial
centre. Indeed, if the centre of �1.M / is trivial, we get ev.�1.Map0.M ///D feg and
so �top D �

e
top , and moreover, since M is symplectically aspherical, we conclude that

�e
top D f0g. Therefore �top D f0g, hence �top D � D f0g.

As another example, we get that the C 0 flux conjecture holds for any product .M; !/D

.T2k �N; � ˚ �/, where .T2k ; �/ is a symplectic torus with a translation invariant
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� , and .N; �/ is a closed and connected symplectically atoroidal symplectic manifold.
Indeed, since T2k is symplectically aspherical, and N is symplectically atoroidal, it fol-
lows that for any aD .b; c/2�1.M /Š�1.T

2k/��1.N / and any a2�1.Map0.M //

with ev.a/D a, the flux of a is uniquely determined by b . Moreover, since translations
of the torus T2k generate a large enough subgroup of symplectomorphisms of .T2k ; �/,
for any b 2 �1.T

2k/ we can find an element b 2 �1.G/D �1.Symp0.M; !// such
that ev.b/D .b; 0/. Therefore we conclude �top D � .

Remark 1.5 The reader may ask if there exist examples where we have �top ¤ � .
The following construction is due to Seidel [19; 20]. Let .N; !N / be a closed and
connected symplectic manifold with H 1.N;R/D 0, let  W N !N be a symplectic
diffeomorphism which is smoothly isotopic to the identity, but which is not isotopic to
the identity via a smooth path of symplectic diffeomorphisms. Look at the symplectic
mapping torus EDE of  , which is the total space of the fibration over the two-torus
with fibre N and monodromy  in one direction, or explicitly,

E DR2
�N=

�
.p; q;x/� .p� 1; q;x/� .p; q� 1;  .x//

�
;

!E D dp^ dqC!N :

Because  is smoothly isotopic to the identity, the fibration E! T2 is trivial as a
smooth one, and it is easy to see that for E we have �top DH 1.E;Z/. However, it is
possible that for E we have � ¤H 1.E;Z/. The closed 1–form dp on E generates
the symplectic vector field @

@q
, whose time-1 map is �.p; q;x/ D .p; q C 1;x/ D

.p; q;  .x//. If � turns out to be a non-Hamiltonian diffeomorphism, then we get that
Œdp� 62� , so in particular � ¤�top . One way of detecting this is by looking at the Floer
cohomology HF�. /. That is, if we are in a situation when HF�. / has total rank
different from that of H�.N /, then HF�.�/ŠH�.T2/˝HF�. / is not isomorphic
to H�.E/, and hence in particular � is a non-Hamiltonian diffeomorphism.

1.2 C 0 rigidity of Hamiltonian paths

Theorem 1.6 Let .M; !/ be a closed and connected symplectic manifold. Fix a
Riemannian metric g on M , which induces a distance function d W M �M!R, which
in turn, induces a distance d between maps M !M : for any f; hW M !M we set
d.f; h/ D supx2M d.f .x/; h.x//. Fix a norm j � j on H 1.M;R/. Then there exist
constants c D c.M; !;g/;C D C.M; !;g; j � j/, such that for any smooth path �t , t 2

Œ0; 1� of symplectomorphisms of M , �0D idM , �1D� , with maxt2Œ0;1� d.idM ; �t /<

c , we have jFlux.f�tg/j6 Cd.idM ; �/.
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Theorem 1.6 has a direct corollary:

Corollary 1.7 (1) On any closed and connected symplectic manifold, the flux
homomorphism is continuous with respect to the C 0 distance between smooth
paths of symplectomorphisms.

(2) C 0 rigidity of Hamiltonian paths: On any closed and connected symplectic
manifold, the space of smooth Hamiltonian isotopies of M is C 0 –closed in the
space of smooth symplectic isotopies of M . This confirms the above mentioned
conjecture of Seyfaddini.

Let us remark that there is another weak version of the C 0 flux conjecture, which
is due to Seyfaddini, and is concerned with topological (continuous) Hamiltonian
dynamics initially introduced by Oh and Müller [15]: Is it true that any Hamiltonian
homeomorphism (in the sense of [15]) that belongs to Symp0.M; !/ is in fact a
Hamiltonian diffeomorphism?

Notations Let A> 0. We denote by B.A/�R2 the open euclidean disc centred at
the origin having area A, ie

B.A/D fz 2R2
j�jzj2 <Ag:

We denote by
S.A/D @B.A/D fz 2R2

j�jzj2 DAg

the euclidean circle centred at the origin enclosing a disc of area A. Also, we use the
notation B0.A/D B.A/ n f0g �R2 for the punctured disc. On T �S1 with canonical
coordinates .q;p/, where q 2 R=Z, p 2 R, and with the standard symplectic form
dp^ dq , we use the notation S1 � T �S1 for the zero section, and we denote

W .A/D f.q;p/ j jpj<Ag � T �S1;

so that W .A/ is a neighbourhood of the zero section in T �S1 having area 2A.
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2 Proofs

Consider the evaluation homomorphism evW �1.Map0.M //! �1.M /. In the next
lemma we show that its restriction to �1.G/ can be naturally extended to a homomor-
phism ev0W eH 0! �1.M /.

Lemma 2.1 The homomorphism evj�1.G/W �1.G/! �1.M / admits a natural exten-
sion to a homomorphism ev0W eH 0! �1.M /.

Proof Before we turn to the proof, let us sketch an easier argument which shows that
the evaluation homomorphism ev naturally extends to a homomorphism

ev0W eH ! �1.M /:

Let z� 2 eH and let �t ; t 2 Œ0; 1�; be a smooth path of symplectomorphisms representing
z� , and denote � D �1 . Since � is a Hamiltonian diffeomorphism, one can choose
a smooth Hamiltonian flow  t ; t 2 Œ0; 1� such that  1 D � . This defines a loop
f t ; t 2 Œ0; 2�, of symplectomorphisms: first we go forward with the flow �t , ie f t D�t

for t 2 Œ0; 1�, and then we go backwards with the flow of  t , that is, f t D  2�t

for t 2 Œ1; 2�. Then ev0.z�/ is by definition the evaluation ev.ff tg/. To show the
independence of the choice of the flow  t ; t 2 Œ0; 1�, it is enough to show that for
any two such flows  t

1
and  t

2
, the evaluation homomorphism ev vanishes on the

Hamiltonian loop obtained by first going forward with the flow of  t
1

and then going
backwards with the flow  t

2
. But it follows from the Arnold’s conjecture [3; 6; 7; 8; 9;

11; 13; 16; 18], that on any Hamiltonian loop, the evaluation homomorphism vanishes.
Our main message here is that this argument can be generalised to further extend ev0

to a homomorphism
ev0W eH 0! �1.M /:

Let us explain our construction of ev0W eH 0! �1.M /. Fix a Riemannian metric g

on M . Let z� 2 eH 0 and let �t ; t 2 Œ0; 1�; be a smooth path of symplectomorphisms
representing z� , and denote � D �1 . Consider a Hamiltonian diffeomorphism  2H

such that  is sufficiently C 0 –close to � (it is possible to find such a Hamiltonian
diffeomorphism, since by our assumption � lies in the C 0 closure of H inside G ).
Let  t ; t 2 Œ0; 1�, be a smooth Hamiltonian isotopy of M , such that  1 D  . Define
a continuous loop f t , t 2 Œ0; 3�; in Map0.M /, such that f t D �t for t 2 Œ0; 1�, such
that for any x 2M , the path f t .x/, t 2 Œ1; 2� is the shortest g–geodesic connecting
�.x/ and  .x/, and such that f t D  3�t for t 2 Œ2; 3�. We now define ev0.�/ to be
the value of the evaluation map ev at the loop f t , t 2 Œ0; 3�.

Let us show that the definition does not depend on the choice of  and of the path  t ,
t 2 Œ0; 1�. Let  t

1
,  t

2
, t 2 Œ0; 1�; be two smooth Hamiltonian isotopies of M , such
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that  1 D  
1
1

and  2 D  
1
2

are sufficiently C 0 –close to � . Define the corresponding
loops f t

1
, f t

2
, t 2 Œ0; 3�; as above. Define the loop ht

1
, t 2 Œ0; 6�; in Map0.M / by

ht
1 D

�
f 3�t

1
t 2 Œ0; 3�;

f t�3
2

t 2 Œ3; 6�:

It is enough to show that the value of ev at the loop ht
1

, t 2 Œ0; 6�; equals e 2 �1.M /.
Clearly, the loop ht

1
, t 2 Œ0; 6�; is homotopic to the loop ht

2
, t 2 Œ0; 4�, where ht

2
D  t

1

for t 2 Œ0; 1�, where for any x2M the path ht
2
.x/, t 2 Œ1; 2�; is the shortest g–geodesic

between  1.x/ and �.x/, and the path ht
2
.x/, t 2 Œ2; 3�; is the shortest g–geodesic

between �.x/ and  2.x/, and finally ht
2
D  4�t

2
for t 2 Œ3; 4�. Also, since  1 and

 2 are C 0 –close to � , it follows that the loop ht
2

, t 2 Œ0; 4� is homotopic to the loop
ht

3
, t 2 Œ0; 3�, where ht

3
D  t

1
for t 2 Œ0; 1�, where for any x 2 M the path ht

3
.x/,

t 2 Œ1; 2� is the shortest g–geodesic between  1.x/ and  2.x/, and where ht
3
D  3�t

2

for t 2 Œ2; 3�. It is enough to show that the value of the evaluation map ev at ht
3

,
t 2 Œ0; 3�; equals e 2 �1.M /. Now pick some increasing bijective smooth function
�W Œ0; 1�! Œ0; 1�, such that the derivatives of � of all orders vanish at 1 2 Œ0; 1�, and
look at the smooth Hamiltonian flow ht , t 2 Œ0; 2�; defined by ht D  

�.t/
1

for t 2 Œ0; 1�

and ht D  
�.2�t/
2

ı . 2/
�1 ı 1 for t 2 Œ1; 2�. Then by the solution of the Arnold’s

conjecture [3; 6; 7; 8; 9; 11; 13; 16; 18],1 the time-2 map h2 of the Hamiltonian
flow ht , t 2 Œ0; 2�; has a fixed point p 2M , such that its trajectory under the flow is a
contractible loop. Hence we get  1.p/D  2.p/, and as a result, the loop t 7! ht

3
.p/,

t 2 Œ0; 3�; is contractible. Therefore the value of the evaluation map ev at the loop ht
3

,
t 2 Œ0; 3�; equals e 2 �1.M /.

Finally, it is easy to see the independence of ev0 of the choice of metric g , and that
ev0 is a homomorphism.

The main step in the proof of Theorem 1.3 is the following proposition:

Proposition 2.2 Let .M; !/ be a closed and connected symplectic manifold, and let
z� 2 eH 0 . Then Flux.z�/ 2 �a

top , where aD ev0.z�/ 2 �1.M /.

Proof Choose a Riemannian metric g on M . Denote by � 2 G the endpoint of
z� , and let �t , t 2 Œ0; 1�; be a smooth symplectic isotopy of M representing z� , such
that �0 D idM , �1 D � . Choose a smooth embedded loop  W Œ0; 1� ! M , and
define the loop ˛ D � ı  . There exists a neighbourhood U of ˛.Œ0; 1�/ which is

1Strictly speaking, except for the case of a semi-positive symplectic manifold, the existing proofs of
the Arnold’s conjecture depend on virtual cycle techniques, which are not yet accepted by all the experts.

Algebraic & Geometric Topology, Volume 14 (2014)



3500 Lev Buhovsky

symplectomorphic to the product of a neighbourhood of the zero section in T �S1 and
n� 1 small 2–dimensional discs, ie there exists � > 0, such that for

W .�/D f.q;p/ 2 T �S1
j jpj< �g � T �S1

(here S1 Š R=Z, so that the symplectic area of W .�/ in T �S1 is 2� ) and for the
standard 2–dimensional disc B.�/ � R2 of area � centred at the origin, we have a
symplectic embedding

�W W .�/�B.�/�n�1
!M;

such that S1�f0g� � � � � f0g is mapped onto ˛.Œ0; 1�/, where S1 � T �S1 is the zero
section. We set U D �.W .�/�B.�/�n�1/.

Now let  2 H be sufficiently C 0 –close to � , and let  t , t 2 Œ0; 1�; be a smooth
Hamiltonian isotopy on M such that  1 D  . Define, as in the proof of Lemma 2.1,
a continuous loop f t , t 2 Œ0; 3�; in Map0.M /, such that f t D �t for t 2 Œ0; 1�, such
that for any x 2M , the path f t .x/, t 2 Œ1; 2�; is the shortest g–geodesic connecting
�.x/ and  .x/, and such that f t D  3�t for t 2 Œ2; 3�. Then since  is sufficiently
C 0 –close to � , Lemma 2.1 tells us that the value of ev at the loop f t , t 2 Œ0; 3�;

equals ev0.z�/. Define smooth cylinders w;u; vW Œ0; 1�� Œ0; 1�!M by

w.s; t/D f t . .s//D �t . .s//;

u.s; t/D f tC1. .s//;

v.s; t/D f tC2. .s//D  1�t . .s//;

for .s; t/2 Œ0; 1�� Œ0; 1�. The loop ˇ WD ı is C 0 –close to the loop ˛D � ı , hence
the image ˇ.Œ0; 1�/ lies inside U , and moreover the image u.Œ0; 1��Œ0; 1�/ lies inside U .
The union of the images of w;u; v is a torus, which is the isotopy of the loop  via the
path f t , t 2 Œ0; 3�. We therefore have the equality !.w/C!.u/C!.v/DFlux.f t /. /.
We have !.w/ D Flux.�t /. /, and !.v/ D 0 since the isotopy  t , t 2 Œ0; 1�; is
Hamiltonian. Thus we get Flux.f t /. /�Flux.�t /. /D !.u/. Hence it is enough to
show that for any initially chosen loop  W Œ0; 1�!M as above, the symplectic area
!.u/ is arbitrarily small, provided that  is sufficiently C 0 –close to � .

We show this by a contradiction. Assume the contrary, ie that there exists some �0 > 0,
such that one can find  arbitrarily C 0 –close to � for which we have j!.u/j > �0 .
Now pick  2H which is sufficiently C 0 –close to � and such that j!.u/j> �0 .

Let us first describe the idea of the rest of the proof. The restriction of the symplectic
form ! to the neighbourhood U of ˛ is exact. Consider a slightly smaller tubular
neighbourhood U 0 of ˛ , which is compactly contained in U . Since  is arbitrarily
C 0 –close to � , the map  ı ��1 sends U 0 inside U . Picking a 1–form which is a
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primitive of ! on U , we obtain that the actions of ˛ and ˇ D  ı��1 ı˛ differ by at
least �0 . Hence on U 0 , the difference between our primitive 1–form and its pullback
by the map  ı ��1 is represented by a closed 1–form whose cohomology class in
H 1.U 0;R/ is not small. Then we consider a certain Lagrangian torus inside U 0 , and
as a result of the previous observation, we conclude that the cohomology classes of
the restrictions of our primitive 1–form to this torus and to the image of the torus
by  ı ��1 , are not close one to the other, while on the other hand, these tori are
C 0 –close since  is arbitrarily C 0 –close to � . Finally, we show that such situation is
impossible, using one of the ways which are described below.

Now let us explain the details. First, without loss of generality we may assume that
�0 < � . Recall that we have a symplectic embedding

�W W .�/�B.�/�n�1
!M;

such that S1 � f0g � � � � � f0g is mapped onto ˛.Œ0; 1�/, and we have

U D �
�
W .�/�B.�/�n�1

�
:

Put ı D �0=2, and consider the Lagrangian torus

LD S1
�S.ı/� � � � �S.ı/�W .�0/�B.�0/�n�1

�W .�/�B.�/�n�1;

where S.ı/D fz 2R2 j �jzj2 D ıg is the circle on R2 centred at the origin enclosing
a disc of area ı . Since  is sufficiently C 0 –close to � , it follows that  ı ��1 is
sufficiently C 0 –close to idM , and in particular

 ı��1
�
�
�
W .�0/�B.�0/�n�1

��
� U D �

�
W .�/�B.�/�n�1

�
;

 ı��1.�.L//� �
�
W .�0=4/�B0.�/�n�1

�
(recall that B0.�/D B.�/ n f0g �R2 is the open punctured euclidean disc centred at
the origin having area � ). Now, if we denote

zL WD ��1
�
 ı��1

�
�.L/

��
�W .�0=4/�B0.�/�n�1;

then zL is a Lagrangian torus which is C 0 –close to L, and �1. zL/ is generated by the
loops ž1; : : : ; žn , which are the push-forwards of the loops ˇ1; : : : ; ˇn on LD S1 �

S.ı/� � � � �S.ı/, such that the homotopy classes of ˇ1; : : : ; ˇn in �1.L/ correspond
to the factors S1;S.ı/; : : : ;S.ı/. Consider the 1–form

�D p0dq0C
1
2
.x1dy1�y1dx1/C � � �C

1
2
.xn�1dyn�1�yn�1dxn�1/

D p0dq0C
1
2
r2
1 d�1C � � �C

1
2
r2
n�1d�n�1
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on W .�/�B.�/�n�1 , where

xi D ri cos �i ; yi D ri sin �i

for i D 1; 2; : : : ; n� 1. Then

d�D dp0 ^ dq0C dx1 ^ dy1C � � �C dxn�1 ^ dyn�1

is the standard symplectic form on W .�/�B.�/�n�1 . The map ��1 ı ı ��1 ı � is
well-defined on W .�0/�B.�0/�n�1 , since we have

 ı��1
�
�
�
W .�0/�B.�0/�n�1

��
� U D �

�
W .�/�B.�/�n�1

�
:

Moreover, the map ��1 ı ı��1 ı � is symplectic, hence the 1–form

.��1
ı ı��1

ı �/����

on W .�0/�B.�0/�n�1 is closed, and its evaluation at the loop

S1
� f0g � � � � � f0g �W .�0/�B.�0/�n�1

equals the symplectic area !.u/. Hence at the level of cohomology we have

Œ.��1
ı ı��1

ı �/�����D !.u/Œdq�

on W .�0/�B.�0/�n�1 . In particular, we have

�. ž1/D .�
�1
ı ı��1

ı �/��.ˇ1/D !.u/C�.ˇ1/D !.u/;

and for 2 6 j 6 n we have

�. žj /D .�
�1
ı ı��1

ı �/��. ǰ /D �. ǰ /D ı:

Now let us present two possible ways of finishing the proof via arriving to a contradiction.
The second way is easier and was suggested by Seyfaddini.

First way Consider the 1–form

�0 D 1
2
.x0dy0�y0dx0/C

1
2
.x1dy1�y1dx1/C � � �C

1
2
.xn�1dyn�1�yn�1dxn�1/

D
1
2
r2
0 d�0C

1
2
r2
1 d�1C � � �C

1
2
r2
n�1d�n�1

on B.�0=2/�B0.�/�n�1 endowed with the coordinates .x0;y0; : : : ;xn�1;yn�1/, where

xi D ri cos �i ; yi D ri sin �i

for i D 0; 1; : : : ; n� 1. We have that

d�0 D dx0 ^ dy0C dx1 ^ dy1C � � �C dxn�1 ^ dyn�1
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is the standard symplectic form on B.�0=2/�B0.�/�n�1 . Consider the embedding

�0W W .�0=4/�B0.�/�n�1 ,! B.�0=2/�B0.�/�n�1;

given by

�0.q0;p0;x1;y1; : : : ;xn�1;yn�1/D .r0; �0;x1;y1; : : : ;xn�1;yn�1/;

�r2
0 D p0C �

0=4;

�0 D 2�q0:

Then we have
.�0/��0 D �C 1

4
�0dq0:

Hence for the Lagrangian torus

yLD �0. zL/� B.�0=2/�B0.�/�n�1
�R2

�B0.�/�n�1

and the loops
y̌
j WD �

0
ı žj ; j D 1; : : : ; n;

generating �1. yL/, we have

�0. y̌1/D !.u/C �
0=4:

Therefore, if we consider yL as a Lagrangian inside R2 �B0.�/�n�1 endowed with
the standard symplectic form, then it follows that the symplectic area of any disc in
R2�B0.�/�n�1 with boundary on yL is an integer multiple of !.u/C �0=4, and hence
its absolute value is greater than or equal to j!.u/j � �0=4 and

j!.u/j � �0=4 > �0� �0=4D 3�0=4> �0=2:

By the Chekanov theorem [2], the displacement energy e. yL/ of yL inside R2 �

B0.�/�n�1 is greater than or equal to the minimal area of a non-constant holomorphic
disc with boundary on yL. Hence we conclude that e. yL/ > �0=2. But on the other
hand, since yL � B.�0=2/ � B0.�/�n�1 , one can clearly displace yL with a smooth
Hamiltonian isotopy of energy �0=2. Contradiction.

Second way Consider the Liouville form

�0 D p0dq0Cp1dq1C � � �Cpn�1dqn�1

on T �Tn . Let
�0W W .�0=4/�B0.�/�n�1

! T �Tn
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be the symplectic embedding given by

�0.q0;p0; r1; �1; : : : ; rn�1; �n�1/D .q0;p0; q1;p1; : : : ; qn�1;pn�1/;

�r2
i � ı D pi ;

�i D 2�qi ;

for i D 1; 2; : : : ; n� 1. The image of �0 lies inside

W .�0=4/� .T �S1/�n�1
DW .�0=4/�T �Tn�1:

We have
.�0/��0 D ��

ı

2�
d�1� � � � �

ı

2�
d�n�1:

Hence for the Lagrangian torus

yLD �0. zL/�W .�0=4/�T �Tn�1
� T �Tn

and the loops
y̌
j WD �

0
ı žj ; j D 1; : : : ; n;

generating �1. yL/, we have �0. y̌1/D!.u/, and �0. y̌j /D 0, 2 6 j 6 n. Now consider
the symplectic shift

ˆW T �Tn
! T �Tn

given by

ˆ.q0;p0; q1;p1; : : : ; qn�1;pn�1/D .q0;p0�!.u/; q1;p1; : : : ; qn�1;pn�1/:

Then we see that the shifted Lagrangian ˆ. yL/� T �Tn is exact, and moreover it does
not intersect the zero section, since

yL�W .�0=4/�T �Tn�1;

j!.u/j> �0 > �0=4:

However, by the theorem of Gromov [10, Section 2.3.B00
4

], a closed exact Lagrangian
submanifold of a cotangent bundle must intersect the zero section. Contradiction.

Now, Theorem 1.3 is a straightforward consequence of Proposition 2.2:

Proof of Theorem 1.3 By Proposition 2.2, for any z� 2 eH 0 we have

Flux.z�/ 2 �a
top D �

a
topC�

e
top � �topC�

e
top;

where aD ev0.z�/ 2 �1.M /. Hence �0 � �topC�
e
top .

Algebraic & Geometric Topology, Volume 14 (2014)



Towards the C 0 flux conjecture 3505

Now we turn to the proof of Theorem 1.6.

Proof of Theorem 1.6 It is clearly enough to prove that for any smooth embedded
loop  W Œ0; 1�!M , there exist constants

c D c.M; !;g;  /; C D C.M; !;g;  /;

such that for any smooth path �t , t 2 Œ0; 1� of symplectomorphisms of M , �0 D idM ,
�1 D � , with maxt2Œ0;1� d.idM ; �t / < c , we have

jFlux.f�t
g/. /j6 Cd.idM ; �/:

Now fix a smooth embedded loop  W Œ0; 1�!M . Then a neighbourhood of  .Œ0; 1�/
in M is standard, and hence for some � > 0 one can find a symplectic embedding

�W W .�/�B.�/�n�1
!M

such that
�.S1

� f0g � � � � � f0g/D  .Œ0; 1�/:

We set

c1 D d
�
�
�
W .�=2/�S.�=3/�n�1

�
;M n �

�
W .�/�B0.�/�n�1

��
(recall that the notation B0.�/D B.�/ n f0g �R2 stands for the punctured disc). Now
let �t , t 2 Œ0; 1� be a smooth path of symplectomorphisms of M , �0 D idM , �1 D � ,
with maxt2Œ0;1� d.idM ; �t / < c1 . Define the “flux function”

�W Œ0; 1�!R; �.t/D Flux
�
f�s
gs2Œ0;t �

�
. /:

We assume that �.1/D Flux.f�tg/. /¤ 0. If maxt2Œ0;1� j�.t/j> �=3, then we define
T 2 Œ0; 1� to be minimal such that j�.T /j D �=3, otherwise we set T D 1. We
have j�.t/j 6 �=3 for all t 2 Œ0;T �. Now, on �.W .�/ � B.�/�n�1/, consider the
time-dependent vector field

X t
� D �

0.t/
@

@p0
;

where .q0;p0;x1;y1; : : : ;xn�1;yn�1/ are the standard coordinates on W .�/�B.�/�n�1.
Denote by X t the time-dependent symplectic vector field of the flow �t . The difference

Y t
DX t

�X t
� ; t 2 Œ0;T �;

is a time-dependent Hamiltonian vector field on �.W .�/�B.�/�n�1/: With help of a
cut-off, we can find a time-dependent Hamiltonian vector field Zt , t 2 Œ0;T � on M ,
such that

Y t .x/DZt .x/
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for any x 2 �.W .�=2/�B.�=2/�n�1/ and t 2 Œ0;T �. Now look at the time-dependent
symplectic vector field

zX t
DX t

�Zt ; t 2 Œ0;T �;

on M , and denote by z�t , t 2 Œ0;T �, its symplectic flow on M . Then

 t
WD .�t /�1

ı z�t ; t 2 Œ0;T �;

is a Hamiltonian flow on M since it has zero flux at all times. Consider the Lagrangian
torus

LD �.S1
�S.�=3/� � � � �S.�=3//� �.W .�/�B.�/�n�1/�M:

We have that zX t .x/ D X t
�.x/ for any x 2 �.W .�=2/�B.�=2/�n�1/ and t 2 Œ0;T �,

and hence

z�t
�
�.q0;p0;x1;y1; : : : ;xn�1;yn�1/

�
D �.q0;p0C �.t/;x1;y1; : : : ;xn�1;yn�1/

whenever
�.q0;p0;x1;y1; : : : ;xn�1;yn�1/ 2L and t 2 Œ0;T �;

and so for any t 2 Œ0;T �, z�t .L/ is obtained from L by shifting it by �.t/ in the “p0

direction”. Clearly there exists a constant c2D c2.M; !;g; ; �/, such that the distance
d.z�T .L/;L/ is greater than or equal to c2j�.T /j. Also note that since

max
t2Œ0;1�

d.idM ; �t / < c1;

we get that
 t .L/D .�t /�1

ı z�t .L/� �
�
W .�/�B0.�/�n�1

�
for each t 2 Œ0;T �. Now, L cannot be Hamiltonianly displaced inside �.W .�/ �

B0.�/�n�1/, and so we must have

 T .L/\LD .�T /�1
ı z�T .L/\L¤∅:

Since in addition we have d.z�T .L/;L/> c2j�.T /j, we conclude that d.idM ; �T />
c2j�.T /j.

We have shown that for any smooth path �t , t 2 Œ0; 1� of symplectomorphisms of M ,
�0 D idM , �1 D � , with maxt2Œ0;1� d.idM ; �t / < c1 , we must have

d.idM ; �T /> c2j�.T /j:

Thus, if we set cDmin.c1; c2�=3/ and C D1=c2 , then for any smooth path �t , t 2 Œ0; 1�,
of symplectomorphisms of M , �0 D idM , �1 D � , with maxt2Œ0;1� d.idM ; �t / < c ,
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we have
c2�=3 > c > d.idM ; �T /> c2j�.T /j;

hence j�.T /j ¤ �=3, which means that T D 1, and we therefore get

jFlux.f�t
g/. /j D j�.1/j D j�.T /j6 Cd.idM ; �T /D Cd.idM ; �/:
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