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Commutative S–algebras of prime characteristics and
applications to unoriented bordism

MARKUS SZYMIK

The notion of highly structured ring spectra of prime characteristic is made precise and
is studied via the versal examples S==p for prime numbers p . These can be realized
as Thom spectra, and therefore relate to other Thom spectra such as the unoriented
bordism spectrum MO. We compute the Hochschild and André–Quillen invariants
of the S==p . Among other applications, we show that S==p is not a commutative
algebra over the Eilenberg–Mac Lane spectrum HFp , although the converse is clearly
true, and that MO is not a polynomial algebra over S==2 .

55P43; 13A35, 55P20, 55P42

Introduction

In the world of ordinary rings, those of prime characteristic are of special importance,
and their algebras encode much of the elementary arithmetic of the ring Z of integers.
Let us recall: If A is a commutative ring, and p is a prime number, then A has
characteristic p (written char.A/ D p ) if the image of p under the unit Z ! A

is zero. Equivalently, there is a unique ring map Fp!A from the prime field Fp

with p elements. The aim of this writing is to generalize and explore this notion of
prime characteristic from the setting of ordinary commutative rings to the context
of commutative ring spectra in the highly structured sense; E1 ring spectra, or
commutative S–algebras in more recent terminology. This can be understood as
an attempt to unveil some of the arithmetic surrounding the sphere spectrum S .

There might be more than one way to achieve such a generalization. Clearly, the
underlying ring �0.E/ of a commutative S–algebra E of characteristic p should be
of characteristic p (in the ordinary sense) and the Eilenberg–Mac Lane spectrum HA

of an ordinary ring A of characteristic p should be a commutative S–algebra of
characteristic p . This is fulfilled in the present approach.

If E is a commutative ring spectrum (up to homotopy or E1 ) then we will say
that E has characteristic p and write char.E/ D p if p is mapped to zero under
the ring map ZD �0.S/! �0.E/ induced by the unit S ! E from the sphere
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spectrum S . In Section 1 we briefly review the known results about commutative
ring spectra of prime characteristic. In Section 2 we define versal examples; com-
mutative S–algebras S==p (one for each prime number p ) such that the category of
commutative S==p–algebras is an appropriate place to study commutative S–algebras
of characteristic p . Section 3 contains some homology and homotopy computations
which are necessary for the later applications. Section 4 contains a description of all the
versal examples S==p as E1 Thom spectra; see Theorems 4.5 and 4.6. This relates the
spectra S==p to other Thom spectra, and it also enables us to describe the topological
Hochschild and André–Quillen invariants of the spectra S==p .

The final Section 5 contains various applications with an emphasis on the unoriented
bordism spectrum MO. While MO is not an algebra under the Eilenberg–Mac Lane
spectrum HF2 , it is an algebra under S==2. This in turn implies that S==2 is not
an HF2 –algebra. More generally, we are able to show that S==p is not an HFp –
algebra for any prime p (see Theorem 5.3) although the converse is clearly true. It
is shown by the author in [35] that higher bordism spectra, such as Spin and String
bordism, can be treated analogously, once one is willing to work chromatically, and
once one has set up a theory of characteristics in that context.

Conventions

Throughout the text, commutative S–algebras will be used as the chosen model for ring
spectra with an E1 multiplication; see Elmendorf, Kriz, Mandell and May [18], in
particular Chapter VII. The category of S–modules has a Quillen model structure such
that all objects are fibrant. The cofibrations are the retracts of relative cell S–modules.
If R is a commutative S–algebra (such as R D S and later R D S==p ) then the
category of commutative R–algebras has a model structure where the equivalences
and fibrations are created on underlying spectra. The cofibrations are the retracts of
relative cell commutative R–algebras. This has the effect that R is always cofibrant as
a commutative R–algebra, even if it is not cofibrant as a spectrum.

There are by now various other models for structured ring spectra, most of them
discussed and shown to be equivalent by Mandell, May, Schwede and Shipley [26],
and each of them serves our purposes equally well. We will also continue to employ
the more generic E1 terminology to emphasize this fact. The notation E1 , and S1 ,
will be used for the category of E1 ring spectra/commutative S–algebras, and the
category of S–modules/spectra, respectively. We write S for the sphere spectrum as a
commutative S–algebra, and Sn D†nS for the suspension spectra. The notation Sn

will also be used for the usual euclidean spheres. We will sometimes abbreviate HFp
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to H when the prime is clear from the context. Also, unless otherwise specified, all
rings, algebras, ring spectra, and algebra spectra are assumed to be commutative from
now on. While this will be our default, we may nevertheless use the word “commutative”
for emphasis.

1 Examples and counterexamples

In this section, we will recall some known results on commutative ring spectra E

with char.E/D p in the following sense.

Definition 1.1 If E is a commutative ring spectrum (up to homotopy or E1 ) and p

is a prime number, then we will say that E has characteristic p if the ordinary
commutative ring �0.E/ has characteristic p in the usual sense. We will also use the
notation char.E/D p .

Remark 1.2 In the E1 setting, it may be worthwhile noting that any cofibrant
replacement of a commutative S–algebra of characteristic p has characteristic p as
well: An equivalence Ecof ! E of commutative S–algebras is an equivalence of
underlying spectra, so that p 2 �0S goes to 0 2 �0Ecof under the unit S! Ecof if
and only if it does so in �0E .

We can now discuss some examples and counterexamples: graded Eilenberg–Mac
Lane spectra, Morava K–theory spectra and Moore spectra. See also Rudyak [32] for a
treatment of some of the topics discussed here.

1.1 Graded Eilenberg–Mac Lane spectra

We will say that a spectrum E is additively a graded Eilenberg–Mac Lane spectrum if
it is equivalent as a spectrum to HM� for some graded group M� . We will say that a
ring spectrum E (up to homotopy) is multiplicatively a graded Eilenberg–Mac Lane
spectrum if it is equivalent as a commutative ring spectrum (up to homotopy) to HA�
for some graded commutative ring A� .

Note that HA� is not only a ring spectrum up to homotopy, but has a preferred E1
structure, Boardman’s multiplication [14]. In fact, Richter has shown more generally
that for a differential graded commutative algebra A� , the graded Eilenberg–MacLane
spectrum HA� is an E1 monoid in the category of HZ–module spectra; see [29,
Proposition 6.1] and [30, Theorem 5.6.1]. Here, we only need the case where the
differential is trivial, so that we have a graded commutative ring. Then the forgetful
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functor from HZ–modules to S–modules gives rise to an E1 ring spectrum HA�
that is a commutative HA0 –algebra. This E1 structure is essentially unique if A� is
concentrated in dimension 0, so that HA� is discrete. We will see, in Theorem 5.6,
that it is not unique in general.

1.2 Results for the mod p case

Let us start with a result which reduces the more difficult multiplicative question to the
easier additive question.

Theorem 1.3 [14, Theorem 1.1] Suppose E is a commutative ring spectrum (up to
homotopy) which additively is a graded Eilenberg–Mac Lane spectrum, and suppose
char.E/Dp for some prime number p . Then E is multiplicatively a graded Eilenberg–
Mac Lane spectrum (up to homotopy).

The following result shows that in the case p D 2 the Eilenberg–Mac Lane hypothesis
is superfluous: there are no other examples.

Theorem 1.4 [36, Theorem 1.1; 27] Suppose E is a commutative ring spectrum (up
to homotopy) with char.E/D 2. Then E is multiplicatively an Eilenberg–Mac Lane
spectrum (up to homotopy).

Versions of this theorem are also attributed to unpublished work of Hopkins and
Mahowald; see [37, Theorem 5], [38, Theorem 5.1] as well as [32, Theorem IX.5.5],
for example.

As mentioned above, we will see later, in Theorem 5.6, that both theorems become
false when the weak up to homotopy notion is replaced by the strong E1 notion of
a ring spectrum. In this latter setting, using Dyer–Lashof operations, Steinberger has
obtained the following result.

Theorem 1.5 [15, III.4.1] If E is a commutative S–algebra of finite type with
�0.E/D Fp for some prime number p , then E is additively a graded Eilenberg–Mac
Lane spectrum.

1.3 Results for the p–local case

Let us add some results on the p–local situation. These will not be used in the following.
For odd primes, the situation is fairly rigid.
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Theorem 1.6 [14, Theorem 1.2] Let p be an odd prime. Suppose the ring spec-
trum E is additively a graded Eilenberg–Mac Lane spectrum with ��.E/ a free module
over Z.p/ . Then E is multiplicatively a graded Eilenberg–Mac Lane spectrum.

For the even prime, there are exotic examples.

Theorem 1.7 [14, Theorem 1.3] There exist ring spectra up to homotopy E with
��.E/ a free Z.2/–module and which are additively graded Eilenberg–Mac Lane
spectra, but not multiplicatively.

Boardman’s result for the prime 2 is complemented by the following result of Astey’s,
which characterizes the 2–local ring spectra which are graded Eilenberg–Mac Lane spec-
tra. It involves a 3–cell complex which is built using the stable Hopf map �W S1! S0

as well as another map t in the homotopy �2.S.2/ [� e2/ Š Z.2/ of its cone: The
collapse map induces an injection �2.S.2/[� e2/!�2.S2/DZ with image consisting
of the subgroup of even numbers, and t is defined as the (unique) pre-image of 2. The
cone I D .S.2/[� e2/[t e3 is often called an inverted question mark complex from
the point of view of the action of the Steenrod algebra on its mod 2 cohomology.

Theorem 1.8 [5, Theorem 1.2] A 2–local ring spectrum up to homotopy E is
additively a graded Eilenberg–Mac Lane spectrum if and only if the unit map extends
over the inverted question mark complex I .

Again, there are also results for commutative S–algebras E that satisfy �0.E/D Z.p/ ;
see [15, III.4.2 and III.4.3].

1.4 Morava K–theory spectra

Recall that the Morava K–theory spectra K.n/ have ��K.n/ Š Fp Œv
˙1
n � with an

element vn of degree 2.pn � 1/. For p odd, these are homotopy commutative ring
spectra of characteristic p . But, it is known that neither the spectra K.n/ nor their
connective covers k.n/ admit an E1 structure. See Lemma 5.6.4 in [31], for example,
where this is proven for the k.n/ with the help of Dyer–Lashof operations. And,
by [9], it suffices to prove the result for these. Of course, the nonexistence of E1
multiplications also follows from Steinberger’s Theorem 1.5.

1.5 Moore spectra

To conclude this section, let me comment upon multiplications on the Moore spec-
tra S0=p . These are the cofibers of the p–multiplication on S0 . Additional information
is contained in [3] and [4].

Algebraic & Geometric Topology, Volume 14 (2014)



3722 Markus Szymik

At the prime 2, the Moore spectrum S0=2 is not a commutative S–algebra. In fact, it
is not even a ring spectrum up to homotopy. One reason is that �2.S0=2/Š Z=4 is
not a module over �0.S0=2/Š Z=2. Another reason is that there is clearly no ring
map from �0.S0=2/ Š Z=2 to �0Map.S0=2;S0=2/Š Z=4. And of course, it also
follows from Theorem 1.4, because S0=2 is not an Eilenberg–Mac Lane spectrum,
since multiplication by the Hopf map � is nontrivial on the homotopy groups. In fact,
the element � itself would have to be zero, because it is the power operation on 2D 0

in �0.S0=2/.

For other primes, one may use the power operation ˇP1W �0.E/!�2p�3.E/ for com-
mutative S–algebras E to show that there is no E1 structure on S0=p : One the one
hand ˇP1.0/D 0, but on the other hand ˇP1.p/ is a nontrivial multiple of ˛1 ; see [15,
V.1.13], for example. This implies that the unit of a commutative S–algebra E of
characteristic p must map ˛1 to zero. But this is not the case for S0=p .

The Moore spectrum S0=p is known to have an Ap�1 –multiplication which is not Ap ;
see [2, Example 3.3].

2 Versal examples

If A is an ordinary ring of characteristic p , then every A–algebra is also of characteris-
tic p , and Fp is the initial object. However, as it turns out, there is no commutative S–
algebra of characteristic p which is initial in the homotopical sense; see Proposition 3.11.
The reason is that the existence of a homotopy p ' 0 does not imply the uniqueness
of such a homotopy. Therefore, we will instead turn our attention to commutative S–
algebras which come with a chosen homotopy p ' 0.

2.1 The commutative S–algebras S==p

Let p be a prime number. As a motivation for the following definition, consider the
description of the corresponding prime field Fp as a pushout

ZŒT �
T 7!p //

T 7!0
��

Z

��
Z //Fp

in the category of rings. This can be built as a tensor product

Fp D Z˝ZŒT �Z
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using the structure maps indicated in the diagram. The tensor product is already the
derived tensor product: the higher Tor–terms vanish since p is not a zero-divisor on Z.

We will imitate this now in the category of commutative S–algebras. Let us agree
to write E1.E;F / for the derived mapping space of E1 maps E ! F , ie we
tacitly assume that E has been replaced by an equivalent commutative S–algebra
that is cofibrant before computing the actual space of maps (similarly for S1 and
spectra). Let P be the left adjoint to the forgetful functor. In other words, PX is
the free commutative S–algebra on X . If X is cofibrant as a spectrum, then PX is
cofibrant as an E1 ring spectrum. There is an adjunction

E1.PX;E/Š S1.X;E/

for commutative S–algebras E , induced by the unit X ! PX of the adjunction.
The E1 map corresponding to xW X !E will be denoted by ev.x/W PX !E ; it is
the E1 map which evaluates to x on the generator X .

Definition 2.1 The commutative S–algebra S==p is the homotopy pushout

PS0 ev.p/ //

ev.0/
��

S

��
S // S==p

in commutative S–algebras.

For the honest construction of the homotopy pushout we will have to replace the
map ev.0/W PS0! SD P� by an equivalent cofibration, for example by P .S0!CS0/.
In other words, the commutative S–algebra S==p is obtained from the sphere spectrum S
by attaching an E1 cell so as to ensure p ' 0. In particular, the commutative S–
algebra S==p is cofibrant. It has the property, in analogy with the above description
of Fp as ZŒT �=.0D T D p/, that an E1 map S==p ! E is the same as a null-
homotopy from p to 0 in E . In particular, there might be more than one such map, in
contrast to the discrete case, where a ring map Fp!A is unique if it exists. We will
discuss spaces of E1 maps out of S==p in more detail later; see Section 2.3.

A p–local commutative S–algebra Q is called nuclear if it is a colimit of com-
mutative S–algebras Qn , where Q0 D S and, inductively, the commutative S–
algebra QnC1 is obtained from the commutative S–algebra Qn by coning off (in
the E1 sense) finitely many elements in �n.Qn/ in such a way that the kernel of
the corresponding map �n._Sn/ ! �n.Qn/ consists of multiples of p . See [19,
Definition 2.7].
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Proposition 2.2 For all primes p , the commutative S–algebra S==p is nuclear.

Proof Set S==p D Q D Q1 . By Definition 2.1, this is obtained from Q0 D S by
coning off (in the E1 sense) the element p 2 �0.Q0/D �0.S/DZ. The assumption
on the kernel is satisfied, because the corresponding map �0.S0/! �0.S/ that sends
the identity to p is even injective.

The following observation will be useful later, in Section 4, when we relate the spec-
tra S==p to Thom spectra.

Proposition 2.3 The commutative S–algebra S==p may be described as the following
iterated homotopy pushout in commutative S–algebras.

PS0 P.p/ //

ev.0/
��

PS0

��

ev.1/ // S

��
S // P .S0=p/ // S==p

This statement is analogous to the description of Fp as ZŒT �=.pD 0;T D 1/. Note that
the left-hand square is a pushout because the left adjoint P commutes with colimits.

Proof This follows immediately from the fact that the map ev.p/W PS0! S factors
as the composition of P .p/ and ev.1/W PS0! S , as can be seen by composition with
the unit S! PS0 .

2.2 The underlying ring of components

At this point, one might wish to compute the homology and homotopy of S==p directly
or with the help of the Hurewicz homomorphism. This will be done later, in Section 3;
see in particular Proposition 3.8. For a start, only the following result will be needed.

Proposition 2.4 We have �0.S==p/D Fp .

Proof Because the spectrum S==p is connective, it suffices to compute the integral
homology of it. Smashing the defining homotopy pushout diagram for S==p with
the integral Eilenberg–Mac Lane spectrum yields another homotopy pushout dia-
gram, and the integral Eilenberg–Moore spectral sequence then implies that �0 must
be ZŒT �=.0D T D p/D Fp , as in the motivation given for the definition of S==p at
the beginning.
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This result implies that we have

char.S==p/D p;

as it should be.

2.3 Spaces of E1 maps out of S==p

The following result identifies the space of E1 maps S==p!E into any commuta-
tive S–algebra E .

Proposition 2.5 Let E be a commutative S–algebra. If char.E/D p , then there is
an equivalence

E1.S==p;E/'�1C1.E/

of spaces. Otherwise, the left-hand side is empty.

Proof The definition of S==p as a homotopy pushout implies that there is a homotopy
pullback

E1.S==p;E/

��

// E1.S;E/

��
E1.S;E/ // E1.PS0;E/:

Now use that the spaces E1.S;E/ are contractible, and that their images in E1.PS0;E/

can be connected by a path if and only if p ' 0. The result then follows using the
adjunction E1.PS0;E/Š S1.S0;E/ and the definition S1.S0;E/D�1.E/.

Example 2.6 If E D HA for some discrete commutative ring A of characteristic p ,
then the space E1.S==p;HA/'�1C1HA is contractible. The following result states
that the converse also holds in the connective case.

Proposition 2.7 If E is a connective commutative S–algebra, with the property that
the space E1.S==p;E/ is contractible, then E ' H�0.E/ is discrete.

Proof If �1C1.E/ is contractible, then the higher homotopy groups of E vanish,
so that E is an Eilenberg–Mac Lane spectrum.

Example 2.8 Let us consider the unoriented bordism spectrum MO. Since the under-
lying ring is �0.MO/D F2 , this spectrum satisfies

char.MO/D 2:
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Because �1.MO/ is trivial, it admits an E1 map from S==2 which is unique up to
homotopy (of E1 maps). However, since �2.MO/ 6D 0, the space of all such maps is
not contractible.

Corollary 2.9 There is an equivalence E1.S==p;S==p/'�1C1.S==p/.

We will see later, in Proposition 3.8, that �1.S==p/ D 0, but that S==p has nontriv-
ial higher homotopy groups, so that the space E1.S==p;S==p/ is connected but not
contractible.

2.4 Commutative S==p–algebras

Let us begin by recalling the following definition.

Definition 2.10 A commutative S==p–algebra is a commutative S–algebra E together
with an E1 map sE W S==p! E , the structure map. The space E1.S==p;E/ is the
space of S==p–algebra structures on E .

Proposition 2.5 and the examples which follow it show that being a commutative S==p–
algebra is not a property of commutative S–algebras, but an extra structure, which if it
exists, need not be unique. And if it is unique, it need not be canonically so. In more
conceptual terms, the property char.E/D p defines a full subcategory of the category
of commutative S–algebras. Rather than work in this full subcategory defined by a
property, it seems better to keep track of the choice of a structure map sE W S==p!E ,
and work in the category ES==p

1 of commutative S==p–algebras.

If E and F are commutative S==p–algebras, then there is a homotopy fibration square

ES==p
1 .E;F /

� //

��

E1.E;F /

s�
E

��
fsF g

�

// E1.S==p;F /

for the derived mapping spaces. Therefore, Proposition 2.5 also describes the difference
between the space of all E1 maps and that of S==p–algebra maps.

For example, in contrast to Corollary 2.9, it is clear that there is an essentially unique
map S==p! S==p of algebras over S==p . Compare with Proposition 3.11.

Algebraic & Geometric Topology, Volume 14 (2014)



Commutative S–algebras of prime characteristics 3727

3 Homology and homotopy of the versal examples

In this section, we will give some basic information on the homotopy type of S==p and
the associated algebraic invariants: its homology and homotopy groups.

Proposition 3.1 For each prime p , the spectrum S==p is a graded Eilenberg–Mac
Lane spectrum.

Proof Since �0.S==p/D Fp by Proposition 2.4, this is a consequence of Steinberger’s
result; see Theorem 1.5.

As a consequence, the homotopy type of S==p can be read off from its homotopy groups,
and the homotopy groups of S==p will be computable once the (mod p ) homology is
known.

3.1 The homology of S==p

The backbone of the homology computation is the following result.

Proposition 3.2 If A is a commutative S–algebra of characteristic p , then there exists
an equivalence

A^S==p 'A^PS1

of commutative A–algebras.

Proof Both A–algebras are homotopy pushouts of diagrams

A^PS0 A^ev.0/ //

��

A^S

A^S;

where the left arrow is A^ ev.p/ and A^ ev.0/, respectively. The space of maps
of A–algebras from A^PS0 to A^S'A is, by the adjunctions

EA
1.A^PS0;A/Š E1.PS0;A/Š S1.S0;A/D�1A;

equivalent to the underlying infinite loop spaces of A. (Note that A^PS0 is cofibrant
as a commutative A–algebra.) Since p and 0 are in the same component by hypothesis
on A, these maps of commutative A–algebras are homotopic. As a result, the homotopy
pushouts are equivalent.
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Corollary 3.3 If A is a commutative S–algebra with char.A/D p , then there is an
isomorphism

A�.S==p/ŠA�.PS1/

of A�–algebras.

We hasten to point out that neither the equivalence in Proposition 3.2, nor the isomor-
phism in Corollary 3.3 can be induced by a map between S==p and PS1 . If it were,
then the isomorphism would be compatible with the natural A–homology operations
for all A. Example 3.4 below shows that this need not be the case.

The preceding results can be applied in the case ADS==p itself, and in the case ADMO
when p D 2. We will mostly be interested in the case AD HFp , when the preceding
corollary shows the existence of an isomorphism

(3-1) H�.S==p/Š H�.PS1/:

The right-hand side is the free algebra over the Araki–Kudo–Dyer–Lashof algebra on
one generator in degree 1; see [17, II.4] and [6]. In particular,

(3-2) H1.S==p/Š H1.PS1/Š Z=p:

The consequences for the uniqueness of the isomorphism (3-1) will be discussed below.

Example 3.4 The natural A–homology operations on A�.S==p/ and A�.PS1/ differ
in the case A D HFp of the Eilenberg–Mac Lane spectrum. To see this, note that
on the one hand we have an isomorphism HZ0.PS1/D Z, while on the other hand
we have an isomorphism HZ0.S==p/D Fp . Consequently, the homology Bockstein
from dimension 1 to 0 is zero on the homology of PS1 , but an isomorphism on the
homology of S==p .

In the case p D 2, the homology of the cell commutative S–algebra S==2 can also be
obtained as a special case of Baker’s calculations in [7].

Let us now address the question of the uniqueness of the equivalence in Proposition 3.2
in the specific case AD HFp .

Proposition 3.5 There exist precisely p� 1 homotopy classes of equivalences

HFp ^PS1
�! HFp ^S==p

of commutative HFp –algebras.
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Proof There are adjunctions

EA
1.A^PS1;A^S==p/Š E1.PS1;A^S==p/Š S1.S1;A^S==p/;

so that the homotopy classes of maps A^PS1!A^S==p of commutative A–algebras
are parametrized by

�1.A^S==p/DA1.S==p/:

In the present case AD HFp this means that there are precisely p homotopy classes
of maps HFp ^PS1! HFp ^S==p of commutative HFp –algebras, and one of them
(the zero) is not an equivalence.

Clearly, for p D 2, we have p� 1D 1, so that there is in fact a unique equivalence

HF2 ^PS1
' HF2 ^S==2

of HF2 –algebras! The nonuniqueness at the odd primes p comes from the F�p –action
on the 1–dimensional Fp –vector space H1.S1/. It seems fair to say that this is well
under control.

3.2 Applications to lifts of HZ=p

It may be worthwhile to point out that the same process that produces S==p from S does
not lead to HZ=p when applied to HZ. More precisely, if we kill p in ZD �0HZ to
form the E1 ring spectrum

HZ==p ' HZ^S==p

then there is an E1 map
HZ==p �! HZ=p;

but this is not an equivalence:

Proposition 3.6 The spectra HZ==p and HZ=p are not equivalent.

Proof Let us apply the functor HZ=p ^
HZ

? to both sides. By Proposition 3.2, we get

HZ=p ^
HZ
.HZ^S==p/' HZ=p^S==p ' HZ=p^PS1

on the left-hand side, and the spectrum HZ=p ^
HZ

HZ=p with

��.HZ=p ^
HZ

HZ=p/D TorZ
� .Z=p;Z=p/

on the right, and these are clearly different.
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It follows that the unit S! S==p is not a lift of the ‘extension’ Z!Z=p in the sense
of [33, Definition 1]. In fact, such a lift cannot exist: If R were a connective E1 ring
spectrum such that HZ^R' HZ=p , then R would have to be a Moore spectrum, in
contradiction to the results in Section 1.5.

3.3 Some homotopy groups of S==p

The following is our device for passing from homology to homotopy.

Proposition 3.7 The Hurewicz map ��.S==p/! H�.S==p/ is injective, and there is
an isomorphism H�.S==p/Š ��.S==p/˝H�.HFp/.

Proof This follows immediately from the fact that S==p is a graded Eilenberg–Mac
Lane spectrum.

As a consequence of Proposition 3.7, the Poincaré series of the homotopy of S==p is
the quotient of the Poincaré series of the homology of S==p by the Poincaré series of
the dual Steenrod algebra. The Poincaré series of the (dual) Steenrod algebra is well-
known, and the Poincaré series of H�.S==p/Š H�.PS1/ is a matter of combinatorics,
because this algebra is free on admissible generators of prescribed excess. However, a
closed formula does not seem to be in the literature, and we will not pursue this here,
either. For our purposes, it will be sufficient to determine the homotopy groups in low
dimensions.

Proposition 3.8 In low dimensions, the homotopy groups of S==p are

�n.S==p/Š

8<:
Z=p if nD 0;

0 if 0< n< 4.p� 1/;

Z=p if nD 4.p� 1/:

Proof Let me explain this for odd primes p . The case p D 2 is similar but easier;
see the proof of Proposition 5.8 for hints.

In degrees at most 4.p� 1/, the additive generators of the (dual) Steenrod algebra are

1; �0; �1; �0�1; �1; �0�1; �2
1 :

In the free algebra over the Dyer–Lashof algebra on one generator a in dimension 1,
the corresponding generators are

1; a; ˇQ1a; aˇQ1a; Q1a; aQ1a; .ˇQ1a/2:

But, these are not the only classes in degrees at most 4.p�1/: in degree 4.p�1/ itself,
there is not only .ˇQ1a/2 but also ˇQ2a, and these two are linearly independent.
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3.4 An application to E1 self-maps of S==p

The equivalence E1.S==p;S==p/'�1C1.S==p/ from Corollary 2.9 implies that there
are isomorphisms �nE1.S==p;S==p/ Š �nC1.S==p/ for all n > 0. In particular, we
have �0E1.S==p;S==p/D �1.S==p/D 0 by the preceding Proposition 3.8, which also
yields the nontriviality of some higher homotopy groups.

Corollary 3.9 Every E1 self-map of S==p is E1 homotopic to the identity. But the
space of E1 self-map of S==p is not contractible: its first nontrivial homotopy group
is in dimension 4p� 5.

In particular, there is an essential 3–sphere in the space of E1 self-map of S==2.

In [19, Definition 2.8], a connective commutative S–algebra E whose unit S!E

induces an isomorphism on underlying rings is called atomic if every self-map of S–
algebras E!E is a weak equivalence. This property is already useful in the case
when the unit is only surjective, and the following statement uses that terminology in
this broader sense.

Corollary 3.10 For each prime p , the commutative S–algebra S==p is atomic.

3.5 Initial commutative S–algebras of prime characteristic

These do not exist! While the ordinary commutative ring Fp is initial among commu-
tative rings of characteristic p , there is no commutative S–algebra of characteristic p

which is initial in the homotopical sense. This is the content of the following result.

Proposition 3.11 If p is a prime number, then there is no commutative S–algebra T

with char.T /Dp such that the derived space of commutative S–algebra maps T !E

is contractible for all commutative S–algebras A with char.E/D p .

Proof Assume that there were such a commutative S–algebra T . Because we have
assumed char.T /D p , there is a structure map sW S==p! T . We will first prove that
this is an equivalence. By hypothesis, the mapping spaces

E1.T;S==p/' �;(3-3)

E1.T;T /' �(3-4)

are contractible. We will use (3-3) to pick a map t W T ! S==p of commutative S–
algebras. This is an inverse (up to homotopy) of s : By (3-4) and Corollary 3.9, both
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compositions st and ts are homotopic to the identities via maps of commutative S–
algebras. This implies that (T cof and then) T is equivalent to S==p .

Thus, if T exists, then T ' S==p . But, we have already seen that S==p does not satisfy
the strong uniqueness as in the statement of the proposition. For example, the derived
space of commutative S–algebra maps of S==p!E is not contractible for E D S==p
itself, by Corollary 3.9 above.

4 The versal examples as Thom spectra

The aim of this section is to identify the spectra S==p for the various primes with
certain E1 Thom spectra. This is clearly useful, as it will allow us to relate the
spectra S==p to other Thom spectra, such as the unoriented bordism spectrum MO
if pD 2, and it will also allow for the description of the Hochschild and André–Quillen
invariants of the versal examples.

4.1 Thom spectra

There is a Thom spectrum Mf associated with every stable spherical fibration, classified
by a map f W X ! BGL1.S/, on a connected space X . In order to deal with the S==p
for odd primes p , we also require the generalized Thom spectra of [13], and [1],
where S can be replaced by the p–local or p–adic sphere.

Example 4.1 The original and most prominent example of a Thom spectrum is cer-
tainly given by the embedding BO! BGL1.S/ of the linear isomorphisms into the
homotopy equivalences: This gives rise to the spectrum MO for unoriented bordism.

Example 4.2 If X is a point, then the Thom spectrum Mf is equivalent to the sphere
spectrum S . More generally, if f is null-homotopic, so that it classifies the trivial
bundle, then the Thom spectrum is equivalent to the suspension spectrum S^XC .

Example 4.3 The generator of �1BGL1.S/ D Z=2 classifies the (stable) Möbius
bundle. The associated Thom spectrum is the Moore spectrum S0=2 at the prime pD 2.

If X is an infinite loop space and f is an infinite loop map, then the Thom spectrum Mf
is an E1 ring spectrum. See [23, IX.7]. This applies in Example 4.1 as well as in
Example 4.2. But, if X is only a two-fold loop space and f is a two-fold loop map,
then we can only infer that Mf is a commutative ring spectrum up to homotopy.
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Example 4.4 We may apply this to the two-fold delooping �2S3! BO of the pre-
vious Example 4.3. The resulting Thom spectrum is known to be the Eilenberg–Mac
Lane spectrum HF2 ; see [24]. Note that this turns out to admit an E1 multiplication,
but this is not clear from its construction as a Thom spectrum.

4.2 The examples S==2 and S==p

We are now able to show that the examples S==2 and S==p can be realized as Thom
spectra.

Theorem 4.5 The spectrum S==2 is the E1 Thom spectrum of the infinite delooping

Q.S1/! BGL1.S/

of the classifying map of the Möbius bundle.

Proof The free E1 spectrum on the Thom spectrum of f is the Thom spectrum
of Q.f /; see [23, Theorem 7.1, page 444]. Beware that the base cell acts as a unit.
Therefore, the identification of the Thom spectrum of the essential map S1 ! BO
with the Moore spectrum, and the description of S==2 as an iterated pushout from
Proposition 2.3 immediately imply the result.

An argument due to Hopkins (see [25] or [13]) allows us to extend the preceding
result to odd primes. We need to know that, also for these primes p , the Moore
spectrum S0=p is the Thom spectrum of a map

(4-1) f W S1
�! BGL1.Sp/;

where the target now classifies stable p–adic spherical fibrations, and such an f is
a class in �1.BGL1.Sp//Š Z�p , the group of p–adic units. To obtain the Moore
spectrum we may chose f to be a representative of the unit 1� p . Now a similar
argument as above implies that S==p can be obtained as the Thom spectrum of the
infinite delooping of the map (4-1).

Theorem 4.6 The spectrum S==p is the E1 Thom spectrum of the infinite delooping

Q.S1/! BGL1.Sp/

of the map f such that Mf is the Moore spectrum.
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4.3 The topological Hochschild homology of S==p

Recall that the topological Hochschild homology spectrum THHS.E/ of a commu-
tative S–algebra E is an important invariant of E , not the least because it is an
approximation to the algebraic K–theory of E . We will now determine it for S==2
and S==p , based on the identification of these spectra as E1 Thom spectra, and general
results due to Blumberg [13] which apply for this class.

Theorem 4.7 For each prime number p there is an equivalence

THHS.S==p/' S==p^Q.S2/C

of spectra.

Proof The topological Hochschild homology of commutative S–algebras which are
Thom spectra has been determined by Blumberg; see [13, Theorem 1.5]. He shows
that if f W X ! BGL1.S/ is a map of E1 spaces which is good (a fibration, for
example) and such that X is a cofibrant and group-like E1 space, then there is a weak
equivalence of commutative S–algebras as follows.

THHS.Mf /'Mf ^BXC

If X is only a group like E2 space, and f is only a good map of E2 spaces, then
Blumberg can still show that there is an equivalence of spectra as above, provided that
a least the homotopy commutative multiplication on Mf admits an E1 refinement;
see [13, Theorem 1.6].

The spectra S==2 and S==p in question have been identified as Thom spectra in The-
orems 4.5 and 4.6. Once we have replaced the relevant map f by a fibration, we
may apply this theory, which works the same if S is replaced by Sp . We obtain an
equivalence

THHS.S==p/' S==p^BQ.S1/C

of spectra, and it remains to note that BQ.S1/' Q.S2/.

An extra argument is needed to obtain an equivalence of commutative S–algebras
in Theorem 4.7: One has to ensure that the fibrant replacement is still sufficiently
well-behaved with respect to the smash product. However, this will not be used in the
following.

To round off the discussion of topological Hochschild homology, let us also remind
ourselves that the Thom spectrum of the canonical map BO! BGL1.S/ is MO, so
that Blumberg obtains equivalences

(4-2) THHS.MO/'MO^BBOC 'MO^ eU=OC
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of commutative S–algebras, where eU=O is the universal cover of U=O. He also
obtains equivalences

(4-3) THHS.HFp/' HFp ^�S3
C

of spectra, which shed new light on Bökstedt’s calculation of THHS
�.HFp/.

4.4 The cotangent complex of S==p

We will now determine the topological André–Quillen invariants of S==2 and S==p .
As with our calculation of the topological Hochschild invariants, this can be based
on the identification of these spectra as E1 Thom spectra, and general results which
apply for this class, this time due to Basterra and Mandell [12]. However, we will also
present a more direct approach which leads to the same result.

Recall that the André–Quillen invariants of an extension F=E are defined using the F –
module contangent complex �E.F / which classifies derivations. The result for S==2
and S==p (over S) is as follows.

Theorem 4.8 For each prime number p there is an equivalence

�S.S==p/'†S==p

of S==p–modules.

Proof of Theorem 4.8 for p D 2 using Thom technology In general, if T is a
connective spectrum, and if f W �1.T /! BGL1.S/ is an E1 map, then a corollary
of [12, Theorem 5] identifies the cotangent complex of the E1 Thom spectrum Mf
of f : There is an equivalence

�S.Mf /'Mf ^T

of S–modules. We may apply this theory to the spectrum S==2, because is has been
identified as a Thom spectrum of this type in Theorem 4.5. In this case, we may
take T D S1 so that we obtain �1.T /D Q.S1/, and the result follows.

The preceding proof would immediately generalize to the case of odd primes p as
soon as the work of Basterra and Mandell would be extended to cover Thom spectra
for p–adic spherical fibrations as in Blumberg’s work. For the time being, we will
here provide for another proof which uses more traditional techniques associated with
cotangent complexes.
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Proof of Theorem 4.8 for all primes p using base change and transitivity Since
S==p is defined as a homotopy pushout (Definition 2.1) the flat base change formula [11,
Proposition 4.6] applies to give an equivalence

�S.S==p/'�PS0.S/^PS0 S

of S==p–modules. Since it will be important to keep track of the maps PS0 ! S
of E1 algebras involved, let us agree that we use ev.0/ in �PS0.S/ and ev.p/ in the
base change ?^PS0 S .

In order to determine �PS0.S/, we may invoke the transitivity exact sequence [11,
Proposition 4.2]. For the extensions S! PS0! S , it yields a fibration sequence

�S.PS0/^PS0 S �!�S.S/ �!�PS0.S/

in spectra. Now the middle term �S.S/ is contractible. In general, the cotangent
complex �S.PT /'PT ^T of the free commutative S–algebra on T is the free PT –
module on T ; see [21, Example 3.8], [8, Proposition 1.6], and the Appendix to [6]. In
particular, there is an equivalence �S.PS0/' PS0 ^S0 ' PS0 . This shows

�PS0.S/'†.PS0
^PS0 S/'†S

as PS0 –modules, so that

�PS0.S/^PS0 S'†.S^PS0 S/'†S==p

as S==p–modules. As often before, we have used that the forgetful functor from
commutative S–algebras to spectra is a right adjoint, so that it commutes with limits.
Here, this determines the homotopy type of the pushouts involved.

In [8, Definition 3.1], a p–local commutative S–algebra with a CW structure is called
minimal if for each n the inclusion of the n–skeleton induces an isomorphism in
topological André–Quillen homology TAQS

n .?IFp/.

Corollary 4.9 For each prime p the commutative S–algebra S==p is minimal.

Proof By Theorem 4.8, we have

TAQS.S==pIFp/D�S.S==p/^S==p HFp '†S==p^S==p HFp '†HFp;

so that

TAQS
n .S==pIFp/D �nTAQS.S==pIFp/Š

�
Z=p nD 1

0 n 6D 1:

Since S==p , by definition, has a CW structure with only two E1 cells, minimality is
now easily checked.
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To round off the discussion of the cotangent complex, let us also note that Basterra and
Mandell obtain an equivalence

(4-4) �S.MO/'MO^ bo;

of MO–modules, where bo is the connective cover of the real topological K–theory
spectrum that has �1boD BO. This is a corollary of [12, Theorem 5], where it was
stated for the complex bordism spectrum, but the real case is similar.

5 Applications

In this section, we collect some applications, with an emphasis on the relationship to
the unoriented bordism spectrum MO.

5.1 Non-existence of E1 maps

The starting point for our applications is the following result.

Proposition 5.1 There does not exist an E1 map HF2!MO.

According to [10], this is shown in Gilmour’s thesis, generalizing an argument with
power operations by Hu, Kriz, and May [19]. See [6] for a proof. Since there does exit
an E1 map S==2!MO by Example 2.8, we have the following corollary.

Corollary 5.2 There does not exist an E1 map HF2! S==2.

Continuing the discussion in Example 4.4, the factorization of S1!Q.S1/ over �2S3

gives a map

(5-1) HF2 �! S==2

of commutative ring spectra up to homotopy. Existence of such a map is also clear from
Theorem 1.4. The map (5-1) is a section of the truncation map S==2! HF2 . However,
while the truncation map is E1 , this section can not have an E1 representative.

The first aim of this section is to generalize the preceding corollary to all primes.

Theorem 5.3 There does not exist an E1 map HFp! S==p .

While we have already seen this to be true in the case pD 2, the following proof works
for all primes.
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Proof Suppose there were such a map. Then the composition

HFp �! S==p �! HFp

with the truncation to H�0.S==p/D HFp would be E1 and an equivalence, hence an
equivalence of commutative S–algebras. Therefore it would induce an equivalence
in topological André–Quillen homology TAQS.?IF2/D�S.?/^? HF2 . However, by
Theorem 4.8, we have

TAQS.S==2IF2/D�S.S==2/^S==2 HF2 '†S==2^S==2 HF2 '†HF2;

while TAQS.HF2IF2/ is known to be nontrivial in other dimensions as well. In fact,
it has been completely computed in unpublished work of Kriz and Basterra–Mandell.
See [22] and [6] for the precise statements.

Remark 5.4 In light of the recent interest in En genera [16], the reader may wonder if
there are maps HFp!S==p that are somewhat compatible with the E1 multiplications,
but not entirely so. This would be En maps for some integer n such that 1< n<1.
And indeed there are such maps: The E2 maps �2S3! Q.S1/ over BGL1.Sp/ that
extend the inclusion S1! Q.S1/ induce E2 maps on the level of Thom spectra, and
these are HFp and S==p , respectively, again by Hopkins’ extension of Mahowald’s
theorem and Theorems 4.5 and 4.6. In particular, there are maps HFp ! S==p of
homotopy commutative ring spectra in the traditional sense of the words.

Remark 5.5 According to the preceding Remark 5.4, there is an E2 map HFp!S==p .
The composition with the E1 map HZ! HFp gives rise to an E2 map HZ! S==p .
In particular, the versal examples S==p are A1 algebras under the integral Eilenberg–
Mac Lane spectrum HZ. By work of Shipley [34], there is then a differential graded
algebra A (even one over Fp ) such that S==p and HA are equivalent as A1 ring spectra.
The homology of A is the homotopy of S==p . And, there is also a Quillen equivalence
between the category of S==p–module spectra and the category of differential graded
modules over that same differential graded algebra A. Unfortunately, the differential
graded algebra A that can be derived from the general results of [34], while explicit, is
everything but small.

5.2 Exotic E1 structures on graded Eilenberg–Mac Lane spectra

By Theorems 1.4, 1.3 and 1.5, the commutative S–algebras MO, S==2, and S==p are
equivalent, as homotopy commutative ring spectra, to graded Eilenberg–Mac Lane
spectra with the Boardman multiplication.
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Theorem 5.6 The multiplications on the commutative S–algebras MO, S==2 and
S==p are not E1 equivalent to the Boardman multiplications.

Proof Otherwise, these spectra would be commutative HFp –algebras for suitable
prime numbers p and they would receive an E1 structure map from HFp , contradict-
ing Proposition 5.1, Corollary 5.2, or Theorem 5.3, respectively.

We see again that, while E1 structures on discrete Eilenberg–Mac Lane spectra are
unique, this is not the case for graded Eilenberg–Mac Lane spectra, no matter what the
prime in question is.

Proposition 5.7 For all primes p , the space GL1.S==p/ of units in S==p is not a
product of Eilenberg–Mac Lane spaces.

Proof Recall from Proposition 3.8 that the first nontrivial homotopy group of S==p
appears in dimension 4.p � 1/ and is isomorphic to Z=p . Therefore, if GL1.S==p/
were a product of Eilenberg–Mac Lane spaces, then there would be a splitting

GL1.S==p/' K.Z=p; 4.p� 1//�L

with one of the factors the corresponding Eilenberg–Mac Lane space, such that a
generator of the homotopy group �4.p�1/.S==p/ corresponds to a fundamental class
of K.Z=p; 4.p�1//. The H–spaces structure on the space of units that comes from the
multiplication on S==p induces an H–spaces structure on the retract K.Z=p; 4.p�1//.
But, there is only one H–space structure on this Eilenberg–Mac Lane space, the standard
one. It is known from Cartan’s computation of the homology rings of Eilenberg–Mac
Lane spectra that H�.K.Z=p; 4.p� 1//IZ=p/ has a divided power structure. Since
the characteristic is prime, every element of positive degree has to be nilpotent. But,
the composition

†1C .K.Z=p; 4.p� 1/// �!†1C .GL1.S==p// �! S==p

induces an isomorphism in homology in degree 4.p� 1/, and it respects the multipli-
cations. Therefore, the image of a fundamental class would be a nontrivial nilpotent
element in even positive degrees, in contradiction to the fact that H�.S==p/ is free.

The analog of the preceding proposition also holds for MO, with essentially the same
proof, as explained to me by Tyler Lawson.
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5.3 The structure map of unoriented bordism

Recall, from Example 2.8, that there is an E1 map sW S==2!MO which is unique
up to homotopy of E1 maps.

Proposition 5.8 The structure map sW S==2!MO is not injective in homology and
homotopy.

Proof In [23, IX.7.4], Lewis has shown that the Thom isomorphism commutes with the
Araki–Kudo–Dyer–Lashof operations. This reduces the statement about the homology
to the same question about the map Q.S1/! BO. The homology of Q.S1/ is the
free algebra over the Araki–Kudo–Dyer–Lashof algebra on one generator, say a, in
degree 1; see [17, II.4]. The homology of BO is polynomial on generators e1; e2; : : :

with dim.ej /D j , and the operations have been computed in [20, p. 133] and [28]. In
particular, we know that Q3e1 D e4

1
. By definition of s , we also have s�aD e1 , so

that the different elements Q3a and a4 are both mapped to the same element e4
1

. The
proves the noninjectivity of the map in homology.

The statement for homotopy follows from immediately from the statement for homology
and the fact that the homotopy embeds into the homology as the primitive elements.

The preceding proof gives slightly more information: In positive dimensions, the first
nontrivial element in the higher homotopy of S==2, which lives in dimension 4 by
Proposition 3.8, is mapped to zero in �4.MO/.

Corollary 5.9 The structure map S==2!MO does not admit a retraction.

This is clearly true in the homotopy category spectra, and a fortiori in that of commuta-
tive S–algebras. In the latter, even more is true:

Proposition 5.10 There does not exist an E1 map MO! S==2.

Proof Otherwise, the composition with the structure map S==2 ! MO would be
an E1 self-map of S==2. By Corollary 3.9, this composition would be homotopic
(even as E1 maps) to the identity. Therefore, the hypothetical map would be a
retraction for the structure map, contradicting the preceding corollary.

In particular, the truncation MO! HF2 does not factor through S==2 as an E1 map.
Here is another consequence of the preceding proposition.
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Corollary 5.11 The commutative S==2–algebra MO is not free (or “polynomial”) ie it
is not equivalent to one of the form S==2^PX for some spectrum X .

Proof Otherwise X ! ? would induce an E1 map

MO' S==2^PX �! S==2^P?' S==2^S' S==2;

in contradiction to Proposition 5.10.

All these results demonstrate that the picture suggested by Thom’s computation

��.MO/Š F2Œx2;x4;x5;x6;x8; : : : �

of the homotopy ring is misleading when it comes to understanding MO itself as
an E1 ring spectrum.
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