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Berge–Gabai knots and L–space satellite operations

JENNIFER HOM

TYE LIDMAN

FARAMARZ VAFAEE

Let P .K/ be a satellite knot where the pattern P is a Berge–Gabai knot (ie a knot in
the solid torus with a nontrivial solid torus Dehn surgery) and the companion K is a
nontrivial knot in S3 . We prove that P .K/ is an L–space knot if and only if K is
an L–space knot and P is sufficiently positively twisted relative to the genus of K .
This generalizes the result for cables due to Hedden [13] and Hom [17].

57M25, 57M27, 57R58

1 Introduction

In [27], Ozsváth and Szabó introduced Heegaard Floer theory, producing a set of
invariants of three- and four-dimensional manifolds. One example of such invariants is
bHF .Y /, which associates a graded abelian group to a closed 3–manifold Y . When Y

is a rational homology three-sphere, rk bHF .Y /� jH1.Y IZ/j; see [26]. If equality is
realized, then Y is called an L–space. Examples include lens spaces and, more generally,
all connected sums of manifolds with elliptic geometry [28]. L–spaces are of interest for
various reasons; for instance, such manifolds do not admit co-orientable taut foliations
[24, Theorem 1.4].

A knot K � S3 is called an L–space knot if it admits a positive L–space surgery. Any
knot with a positive lens space surgery is then an L–space knot. In [3], Berge gave a
conjecturally complete list of knots that admit lens space surgeries, which includes
all torus knots; see Moser [20]. Therefore it is natural to look beyond Berge’s list for
L–space knots. In [37], Vafaee classifies the twisted .p; kp˙1/–torus knots admitting
L–space surgeries, some of which are known to live outside of Berge’s collection.
Another related goal is to classify the satellite operations on knots that produce L–space
knots. By combining work of Hedden [13] and Hom [17], the .m; n/–cable of a knot
K�S3 is an L–space knot if and only if K is an L–space knot and n=m� 2g.K/�1.
(Here, m denotes the longitudinal winding.) We generalize this result by introducing a
new L–space satellite operation using Berge–Gabai knots (Gabai [11]) as the pattern.
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Definition 1.1 A knot P � S1 �D2 is called a Berge–Gabai knot if it admits a
nontrivial solid torus filling.1

To see that this satellite operation is a generalization of cabling, it should be noted
that any torus knot with the obvious solid torus embedding is a Berge–Gabai knot; see
Seifert [34]. Note also that any Berge–Gabai knot P which is isotopic to a positive
braid, when considered as a knot in S3 , admits a positive lens space surgery; for if
performing appropriate surgery on P in one of the solid tori in the genus-one Heegaard
splitting of S3 returns a solid torus, then the corresponding surgery on the knot in S3

will result in a lens space. For positive braids, this surgery is positive by Lemma 2.1
and [20, Proposition 3.2].

Gabai showed in [10] that any Berge–Gabai knot must be either a torus knot or a 1–
bridge braid in S1�D2 . More precisely, every Berge–Gabai knot P � V D S1�D2

is necessarily of the following form. (For a sufficient condition determining when a
knot of this form is a Berge–Gabai knot, see [11, Lemma 3.2].) In the braid group
Bw , where w is an integer with w � 2, let �i denote the generator of Bw that
performs a positive half-twist on strands i and i C 1. Let � D �b�b�1 � � � �1 be a
braid in Bw with 0 � b � w � 2 and let t be a nonzero integer. Place � in a solid
cylinder and glue the ends by a 2� t=w twist, ie form the closure of the braid word
.�b�b�1 � � � �1/.�w�1�w�2 � � � �1/

t . We only consider the case where this construction
produces a knot, rather than a link. This construction forms a torus knot if b D 0 and a
1–bridge representation of P in V if 1� b�w�2. We call w the winding number, b

the bridge width and t the twist number of P . Note that the twist number can be
written as t D t0C qw for some integers t0 and q , where t0 can be chosen so that
1� t0�w�1;2 see Figure 1(a). Also, note that if b¤0 then the possibility of t0Dw�1

is disallowed as otherwise we would obtain a link with at least two components [11].

Remark 1.2 Note that if t <0, then the braid �D .�b�b�1 � � � �1/.�w�1�w�2 � � � �1/
t

is isotopic to a negative braid:

� � .�b�b�1 � � � �1/.�w�1�w�2 � � � �1/
t

� .�w�1�w�2 � � � �bC1/
�1.�w�1�w�2 � � � �1/

tC1:

We are now ready to state the main result. Let P .K/ denote a satellite knot with
pattern P and companion K .

1Berge–Gabai knots, in the literature, are defined to be 1–bridge braids in solid tori with nontrivial
solid tori fillings. We relax that definition to include torus knots as a proper subfamily.

2Our construction of Berge–Gabai knots, which enables us to define them up to isotopy of the knot in
S1�D2 , is slightly different than that of Gabai [11]. In Gabai’s original construction, he always took qD0

and considered knots in the solid torus up to homeomorphism of S1 �D2 taking one knot to the other.
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Figure 1: Berge–Gabai knots are knots in S1 �D2 with nontrivial solid
tori fillings. Such knots are always the closure of the braid .�b�b�1 � � � �1/�

.�w�1�w�2 � � � �1/
t , where 0� b � w� 2 and jt j � 1 . (a) An example of a

braid in a solid cylinder I �D2 that closes to form a Berge–Gabai knot with
b D 2 , t D 3 and w D 5 . (The fact that the picture depicted above represents
a Berge–Gabai knot is verified in [11, Example 3.8].) Recall that we write
t D t0C qw , where here t0 D 3 and q D 0 . (b) An immersed annulus A that
can be arranged to be an embedded surface in V D S1 �D2 joining P to
T D @V by performing oriented cut and paste and adding a 2� t=w twist.
Note that the embedded surface A provides, in the exterior of P , a homology
from w`C tm in T to ƒ in J D @ nb.P / .

Theorem 1.3 Let P be a Berge–Gabai knot with bridge width b , twist number t and
winding number w , and let K be a nontrivial knot in S3 . Then the satellite P .K/ is
an L–space knot if and only if K is an L–space knot and .bC tw/=w2 � 2g.K/� 1.

Note that when b D 0, we can take wDm and t D n, and Theorem 1.3 reduces to the
cabling result of [13; 17]. A version of the “if” direction of Theorem 1.3 appears in
Motegi [21, Proposition 7.2].

The outline of the proof of Theorem 1.3 is as follows. By applying techniques developed
by Gabai [11] and Gordon [12] to carefully explore the framing change of the solid torus
surgered along P , we prove the “if” direction of the theorem. More precisely, surgery
on P .K/ corresponds to first doing surgery on P (namely removing a neighborhood
of P from S1 �D2 and Dehn filling along the new toroidal boundary component)
and then attaching this to the exterior of K . Therefore, if one chooses the filling
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on P so that the result is a solid torus (using that P is a Berge–Gabai knot), then the
overarching surgery on P .K/ corresponds to attaching a solid torus to the exterior
of K (performing surgery on K ). Moreover, note that by positively twisting P by
performing a positive Dehn twist on S1 �D2 (ie increasing q ), we can obtain an
infinite family of Berge–Gabai knots. Fixing an L–space knot K , for sufficiently
large q the satellite P .K/ will admit a positive L–space surgery. Finally, the “only if”
direction is proved by methods similar to those used in [17].

In order to prove Theorem 1.3, we establish the following lemma, which may be of
independent interest.

Lemma 1.4 Let P � S1 �D2 be a negative braid and K � S3 be an arbitrary knot.
Then the satellite knot P .K/ is never an L–space knot.

We point out that Lemma 1.4 can be extended more generally to the case where P

is a homogeneous braid which is not isotopic to a positive braid; see Stallings [35,
Theorem 2]. The proof of Lemma 1.4 was inspired by the arguments of Baker and
Moore [2].

We have the following corollary concerning the Ozsváth–Szabó concordance invariant �
and the smooth 4–ball genus.

Corollary 1.5 Let P � S1 �D2 be a Berge–Gabai knot and K � S3 be an L–space
knot. If .bC tw/=w2 � 2g.K/� 1, then

�.P .K//D �.P /Cw�.K/;

g4.P .K//D g4.P /Cwg4.K/;

where �.P / and g4.P / denote, respectively, the concordance invariant � and the
4–ball genus of the knot obtained from the standard embedding of S1 �D2 into S3 .

Proof If J is an L–space knot, then �.J /D g4.J /D g.J / by [22, Corollary 1.3]
and [28, Corollary 1.6]. Furthermore, by Lemma 2.6,

g.P .K//D g.P /Cwg.K/:

By assumption, K is an L–space knot. The result is clear if K is trivial, so assume
that K is nontrivial. Since P is a Berge–Gabai knot with a necessarily positive twist
number, it follows that P is isotopic to a positive braid. Therefore, by the discussion
following Definition 1.1, P has a positive lens space surgery and thus is an L–space
knot. Furthermore, by Theorem 1.3, we also have that P .K/ is an L–space knot, and
the result follows.
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Theorem 1.3 allows one to construct new examples of L–spaces as follows. First,
begin with any L–space knot and then satellite with a Berge–Gabai knot satisfying
the conditions in Theorem 1.3. Sufficiently large positive surgery will then result in
an L–space. Using this technique, we will construct L–spaces with any number of
hyperbolic and Seifert fibered pieces in the JSJ decomposition.

Theorem 1.6 Let r and s be nonnegative integers such that at least one is nonzero.
Then there exist infinitely many irreducible L–spaces whose JSJ decompositions consist
of exactly r hyperbolic pieces and s Seifert fibered pieces.

As discussed, an L–space cannot admit a co-orientable taut foliation. Therefore,
Theorem 1.6 will yield irreducible rational homology spheres without co-orientable
taut foliations whose JSJ decompositions consist of any number of hyperbolic and
Seifert fibered pieces. We remark that all rational homology spheres with Sol geometry
are L–spaces; see Boyer, Gordon and Watson [6].

It is also natural to ask in what sense Theorem 1.3 can be generalized; in particular,
given a satellite knot which is an L–space knot, what must hold for the pattern or
the companion? We propose the following conjecture (see also Baker and Moore [2,
Question 22]).

Conjecture 1.7 If P .K/ is an L–space knot, then so are K and P .

Similarly, we conjecture that the converse holds as well, contingent on the pattern being
embedded “nicely” in the solid torus (eg as a strongly quasipositive braid closure) and
sufficiently “positively twisted” (akin to the condition in Theorem 1.3). We will not
attempt to make these notions precise in this paper.

To obtain supporting evidence for Conjecture 1.7, we will study it from the viewpoint
of left-orderability. Recall that a nontrivial group G is left-orderable if there exists a
left-invariant total order on G (see Section 3 for a more detailed discussion). We recall
the conjecture of Boyer, Gordon and Watson relating Heegaard Floer homology to the
left-orderability of three-manifold groups.

Conjecture 1.8 (Boyer, Gordon and Watson [6]) Let Y be an irreducible rational
homology sphere. Then Y is an L–space if and only if �1.Y / is not left-orderable.

We point out that the computational strengths of Heegaard Floer homology and left-
orderability tend to be fairly different. One might hope that if Conjecture 1.8 is true
then the strengths of each theory could be combined to derive new topological conse-
quences. We utilize this philosophy to establish Conjecture 1.7 under the assumption
of Conjecture 1.8.
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Proposition 1.9 Assuming Conjecture 1.8, if P .K/ is an L–space knot, then so are P

and K .
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2 The main result

In this section, we provide background on 1–bridge braids in solid tori and Dehn
surgery on satellite knots; see Berge [4], Gabai [11] and Gordon [12] for further
details. Throughout the rest of the paper, we assume that P is a Berge–Gabai knot in
V D S1 �D2 (ie P admits a nontrivial solid torus surgery) unless otherwise stated.
We also consider the standard embedding of S1 �D2 into S3 such that S1 � f�g

bounds an embedded disk in S3 . When it is clear from context, we will not distinguish
between the Berge–Gabai knot P � V and P � S3 .

2.1 Berge–Gabai knots

The primary goal of this subsection is to highlight the Dehn surgeries on P � V that
will return a solid torus. In what follows, we provide a setup similar to that of [11].

An arbitrary knot P in V is called a 1–bridge braid if P can be isotoped to be a braid
in V that lies in S1 � @D2 except for one arc that is properly embedded in V , and P

is not a torus knot. Gabai [10] showed that any knot in a solid torus with a nontrivial
solid torus surgery must be either a torus knot or a 1–bridge braid in S1 �D2 , and
Berge [4] classified all 1–bridge braids in S1 �D2 with nontrivial solid tori fillings.
We denote the braid index of P by w .

We will consider �V , the exterior of P � V . Let T D @V and J D @ nb.P /. We
equip T with the homological generators .m; `/, where ` is the longitude S1 � f�g

of T and m is f�g� @D2 ; therefore, ` becomes nullhomologous after standardly
embedding V in S3 and removing nb.P /. We equip J with homological generators
.�;ƒ/ as follows. The generator � is the meridian of P . Note that m is homologous
to w� in bV . To define ƒ, consider the immersed annulus A connecting J to T

with b arcs of self-intersection in Figure 1(b). By doing oriented cut and paste to the
arcs of self-intersection we can arrange A to be an embedded surface in �V joining
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J to T . Define ƒ to be A\J . Orient m, `, � and ƒ as in Figure 1(b). Note that
A\T D w`C tm, and so w`C tm is homologous to ƒ in �V .

Let � be the simple closed curve on J that is homologous to ƒ�wt� 2H1.J IZ/.
Thus, we have the following equalities in H1.�V IZ/:

Œ��D Œƒ�wt��D Œw`C tm�wt��D Œw`�;

where the last equality follows from the fact that m is homologous to w�. In particular,
� becomes nullhomologous after standardly embedding V in S3 and removing nb.P /.
Now the equation Œ�� D Œƒ�wt�� can be used to switch from .�;ƒ/– to .�; �/–
coordinates, where .�; �/ are the usual meridian-longitude coordinates on P when V

is standardly embedded in S3 .

We recall that a 1–bridge braid in S1 �D2 with winding number w , bridge width b

and twist number t can be represented via the braid word

� D .�b�b�1 : : : �1/.�w�1�w�2 : : : �1/
t ;

where jt j � 1 and 1 � b � w � 2. The following lemma is a consequence of [11,
Lemma 3.2]:

Lemma 2.1 Let P be a 1–bridge braid in V and s a positive integer. If filling �V
along a curve ˛ D d�C sƒ in J yields S1 �D2 , then s D 1, d 2 fb; bC 1g and
gcd.w; d/D 1.

In .�; �/–coordinates these possible exceptional surgeries are ˛ D .twC d/�C �,
where d 2 fb; bC 1g.3

Note that when P is an .m; n/–torus knot in V , there are infinitely many surgeries
on P that will return a solid torus, including mnC 1D twC bC 1; this follows, for
instance, from the proof of [20, Proposition 3.2].

Let .P I n1=n2/ denote the result of filling �V along the curve n1�C n2�. Lemma 2.1
shows that if P is a Berge–Gabai knot, then .P Ipd / will be homeomorphic to S1�D2

for at least one of the coefficients pd D twC d , d 2 fb; bC 1g.

Note that adding a positive full-twist to all of the w strands of P results in a new
knot P 0 where t changes into t Cw . Correspondingly, there exists a homeomorphism
of the solid torus (doing a positive meridional twist) which takes P to P 0 . Iterating
this process q times, we get the following:

3We have stated Lemma 2.1 so that the orientation of .�; �/ agrees with the standard convention that
� ��D 1 . In Gabai’s paper [11], � is oriented opposite to that of Figure 1(b).
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Proposition 2.2 Let P be a Berge–Gabai knot in S1 �D2 , standardly embedded
in S3 , such that .P Ip/ is homeomorphic to a solid torus. Let P 0 be the knot obtained
from P by adding q positive Dehn twists. Then

.P 0IpC qw2/Š S1
�D2:

Hence if we have a Berge–Gabai knot P with twist number t , adding q full twists to
all w strands of P will produce a Berge–Gabai knot with twist number t C qw .

2.2 Surgery on P.K /

Let P .K/ be a satellite knot with pattern P�V and companion K . Let f W V !nb.K/
be a homeomorphism that determines the zero framing of K , ie Œf .S1 � f�g/�D 0 2

H1.X IZ/, where X D S3� nb.K/. Thus P .K/D f .P /.

Recall that m; ` 2 H1.T IZ/ are the natural meridian and longitude coordinates of
T D @V , oriented so that m � ` D 1. Recall also that �V D V � nb.P /. Note that
H1.�V /D Zh`i˚Zh�i, where � is the class of the meridian of nb.P /. When P is
viewed as a knot in S3 , let � � @ nb.P / be the unique curve on @ nb.P / which is
nullhomologous in S3�nb.P / (ie the zero framing of P ). That is, if f is as above, then
f .�/ is the zero framing of P .K/. So S3

p1=p2
.P .K// Š X [f .P Ip1=p2/, where

the notation means @X and @.P Ip1=p2/ are identified via the restriction of f to
@.P Ip1=p2/D @V . With the above notation, we have the following lemma.

Lemma 2.3 [12, Lemma 3.3] For relatively prime integers p1;p2 , and P � V with
winding number w :

(a) H1..P Ip1=p2/IZ/Š Z˚Zgcd.w;p1/ .

(b) If w¤ 0, the kernel of H1.@.P Ip1=p2/IZ/!H1..P Ip1=p2/IZ/ is the cyclic
group generated by

p1

gcd.w;p1/
mC

p2w
2

gcd.w;p1/
`:

Note that Lemma 2.3 is valid regardless of whether or not P is a Berge–Gabai knot.
However, when P is a Berge–Gabai knot, we can use Lemma 2.3 to relate surgeries
on K and P .K/ in the following sense.

Corollary 2.4 Let P be a Berge–Gabai knot in V with winding number w and such
that .P Ip/Š S1 �D2 . Then

S3
p .P .K//Š S3

p=w2.K/:
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Proof The result essentially follows from the fact that

S3
p .P .K//ŠX [f .P Ip/:

By assumption, .P Ip/ is homeomorphic to a solid torus. Therefore, in order to find
the corresponding surgery coefficient on K , one needs to determine the slope of the
meridian of @.P Ip/ under the canonical identification with @V , and where it is sent
under f .

Note that the slope of the meridian of .P Ip/ is precisely the generator of

ker
�
H1.@.P Ip/IZ/!H1..P Ip/IZ/

�
:

Using the identification of @V and @.P Ip/, we have that the slope of the meridian, in
.m; `/–coordinates, is given by .p; w2/ by Lemma 2.3. Since f sends m and ` to
the meridian and longitude of K , respectively, the result follows.

Combining Lemma 2.1 with Corollary 2.4, we deduce the following:

Proposition 2.5 Let P be a Berge–Gabai knot with bridge width b ¤ 0, winding
number w and twist number t , and let K be an arbitrary knot in S3 . Then for at least
one d 2 fb; bC 1g,

S3
dCtw.P .K//Š S3

.dCtw/=w2.K/:

Note that gcd.dC tw;w2/D 1 (see Lemma 2.1). We end this subsection by stating the
following lemma, which will be useful in the proof of Theorem 1.3. Let �K .T / denote
the symmetrized Alexander polynomial of K . Recall the behavior of the Alexander
polynomial for satellites (see for instance [19]):

(2.2.1) �P.K /.T /D�P .T /�K .T
w/:

Lemma 2.6 Let P .K/ be a fibered satellite knot where P has winding number w .
Then

g.P .K//D g.P /Cwg.K/:

Furthermore, if P is a Berge–Gabai knot as above with t > 0, then

(2.2.2) g.P /D
.t � 1/.w� 1/C b

2
:

Proof Since P .K/ is a fibered knot, we deduce that deg�P.K /.T /D g.P .K//. It
also follows that K and P are both fibered [16]. Combining these two facts with
(2.2.1), we see that g.P .K//D g.P /Cwg.K/.
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In order to calculate g.P /, notice that P is a positive braid if t > 0. Hence, the
Seifert surface R obtained from Seifert’s algorithm is a minimal genus Seifert surface
for P [35]. Then

�.R/D 1� 2g.P /) w� b� t.w� 1/D 1� 2g.P /:

2.3 Input from Heegaard Floer theory

In this subsection we mainly use the notation of [17]. Recall that an L–space Y is
a rational homology sphere with the simplest possible Heegaard Floer homology, ie
rk bHF .Y /D jH1.Y IZ/j. We say that a knot K in S3 is an L–space knot if it admits
a positive L–space surgery.

We let �.K/ denote the integer-valued concordance invariant from [23]. Let P denote
the set of all knots K for which g.K/ D �.K/. (Recall from [14] that for fibered
knots, g.K/D �.K/ is equivalent to being strongly quasipositive.) If K is an L–space
knot, then K 2 P . This follows from [28, Corollary 1.6] and the fact that L–space
knots are fibered [22, Corollary 1.3].

Let
sK D

X
i2Z

�
rk H�. yA

K
i /� 1

�
;

where yAK
i is the subquotient complex of CFK1.K/ defined in [29]. It is proved in

[17] that rk H�. yA
K
i / is always odd, and so sK is always a nonnegative even integer.

For a pair of relatively prime nonzero integers m and n, n> 0, let

(2.3.1) t
m=n
K
D 2 max

�
0; n.2�.K/� 1/�m

�
:

Observe that

(2.3.2) t
m=n
K
D 0 if and only if m=n� 2�.K/� 1:

The term �.K/ is another integer-valued invariant of K , defined in [30, Definition 9.1],
which is bounded below by �.K/ and above by g.K/. In particular, if K 2 P , then
�.K/D g.K/.

Let m and n be as above, and suppose that �.K/� �.K/, where K denotes the mirror
of K . (This condition is automatically satisfied for K 2P .) If �.K/>0 or m>0, then

(2.3.3) rk bHF .S3
m=n.K//DmC nsK C t

m=n
K

by [30, Proposition 9.6].
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By (2.3.3), when m> 0 we have that

(2.3.4) S3
m=n.K/ is an L–space if and only if t

m=n
K
D 0 and sK D 0:

By [25, Theorem 4.4], the group H�. yA
K
i / is isomorphic to bHF .S3

N
.K/; Œi �/ for N�0

and ji j �N=2. Thus, we have that

(2.3.5) K is an L–space knot if and only if sK D 0:

Actually, if K is a nontrivial L–space knot, S3
m=n

.K/ is an L–space if and only
if m=n � 2g.K/ � 1. This follows from (2.3.2), (2.3.3) and the fact that for K a
nontrivial L–space knot, �.K/D g.K/ > 0. (The original argument for the forward
direction is given in [18].)

2.4 Proof of Theorem 1.3

This subsection is devoted to the proof of Theorem 1.3. We begin with the proof of
Lemma 1.4. We do not review the concept of a quasipositive Seifert surface but instead
refer the reader to Hedden [14] and Rudolph [33].

Proof of Lemma 1.4 Suppose for contradiction that P .K/ is an L–space knot. Recall
that L–space knots are fibered [22; 28]. It is also a well-known fact that a minimal-genus
Seifert surface for a negative braid can be expressed as a plumbing of negative Hopf
bands [35, Theorem 2]. (See also [1, Theorem 1] for an explicit construction in the
case of torus knots.) Since P .K/ is fibered, this implies that K is fibered and P is
fibered in the solid torus [16], so the fiber for P .K/ is constructed by patching the
fiber for P in the solid torus to w copies of the fiber for K . As a result, when P is a
negative braid, the fiber surface for P .K/ contains (at least) as many negative Hopf
bands as the one for P .

By the above description of the fiber surface, we can deplumb a negative Hopf band.
This means we can decompose the fiber surface for P .K/ as a Murasugi sum where
one of the summands is not a quasipositive surface. By [33], if a Seifert surface is a
Murasugi sum, it is quasipositive if and only if all of the summands are quasipositive.
Thus, the fiber surface for P .K/ is not a quasipositive surface. However, since P .K/

is an L–space knot, it is strongly quasipositive [14], which gives a contradiction.

We prove Theorem 1.3 only for the cases where b ¤ 0 (consequently 1� t0 � w� 2)
and refer the reader to Hedden [13] and Hom [17] for the case b D 0.
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Proof of Theorem 1.3 .(/ The proof of this direction follows from Proposition 2.5,
which tells us that

S3
dCtw.P .K//Š S3

.dCtw/=w2.K/:

Since K is a nontrivial L–space knot and .bC tw/=w2 � 2g.K/� 1> 0, it follows
that S3

.dCtw/=w2.K/ is an L–space. Here we are using that d � b . Therefore, P .K/

is an L–space knot.

.)/ For the case that t < 0 (see Remark 1.2), we apply Lemma 1.4 to see that
P .K/ cannot be an L–space knot. Therefore, we can assume that t > 0 and P .K/

is an L–space knot. For simplicity of notation, we set m D d C t0wC qw2 , where
d 2 fb; bC 1g is such that .P Im/Š S1 �D2 . Again from Proposition 2.5 we have

(2.4.1) rk bHF
�
S3

m.P .K//
�
D rk bHF .S3

m=w2.K//:

Since P .K/ is an L–space knot, it follows that g.P .K//D �.P .K//, and we see that

(2.4.2) tm
P.K / D 2 max

�
0; 2g.P .K//� 1�m

�
:

We first suppose that �.K/ � �.K/. Since m > 0, we may combine (2.3.3), (2.3.5)
and (2.4.1) to obtain

mC tm
P.K / DmCw2sK C t

m=w2

K
;

or equivalently

(2.4.3) tm
P.K / D w

2sK C t
m=w2

K
:

Note that by Lemma 2.6, (2.2.2) and (2.4.2), we have that

(2.4.4) tm
P.K / Dmax.0; 4wg.K/� 2w� 2t0� 2qwC 2b� 2d/:

Claim The equality in (2.4.3) does not hold unless both sides are identically zero.

Proof of the claim If tm
P.K /

¤ 0 then we have two cases:

Case 1 Suppose t
m=w2

K
D 0. Using (2.4.4), we see (2.4.3) is equivalent to

4wg.K/� 2w� 2t0� 2qwC 2b� 2d D w2sK :

It follows that w divides 2t0C 2d � 2b . Since d � b 2 f0; 1g and 1� t0 �w� 2, we
conclude that w D 2t0C 2d � 2b . Since

4wg.K/� 2w�w� 2qw D w2sK ;

then
4g.K/� 3� 2q D wsK :
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The number on the right side is even and the one on the left side is odd, which is a
contradiction.

Case 2 Suppose t
m=w2

K
¤ 0. By expanding both sides of (2.4.3) and again using

(2.4.4), we see that

4wg.K/�2w�2t0�2qwC2b�2d Dw2sKC4w2�.K/�2w2
�2d�2t0w�2qw2:

By rearranging terms, we get

4wg.K/� 2wC 2.b� t0/� 2qwC 2t0w D w
2.4�.K/� 2� 2qC sK /:

Therefore w divides 2.b� t0/. Since b and t0 are both bounded above by w� 2, we
have either 2.b� t0/D˙w or b D t0 .

Recall that we described P as a braid closure in Section 1. Viewing this braid as a
mapping class of the disk with w punctures, it is straightforward to verify that if bD t0 ,
the .t0C 1/th puncture is fixed. Therefore, in this case P has at least two components,
which contradicts P being a knot. Thus, we must have 2.b� t0/D˙w .

Substituting and dividing by w gives

4g.K/� 2˙ 1� 2qC 2t0 D w.4�.K/� 2� 2qC sK /:

As in Case 1, comparing the parities of each side gives a contradiction.

Having proved the claim, all the terms in (2.4.3) are identically zero. Since sK D 0,
(2.3.5) gives that K is an L–space knot. Also, tm

P.K /
D 0 together with (2.4.4) implies

(2.4.5)
t0C qwC d � b

w
� 2g.K/� 1:

Since 1 � t0 � w � 2 and .d � b/ 2 f0; 1g, we have that 0 � t0C d � b < w . Note
that 2g.K/� 1 is an integer, so we deduce that (2.4.5) holds if and only if

q � 2g.K/� 1;

which implies that
bC t0wC qw2

w2
� 2g.K/� 1;

as desired.

Now suppose that �.K/ < �.K/. We claim that in this case, P .K/ is not an L–space
knot, which is a contradiction. Recall from [30, Equation (34)] that �.K/ is equal
to either �.K/ or �.K/C 1, and from [23, Lemma 3.3] that �.K/D ��.K/. Thus,
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when �.K/ < �.K/, it follows that �.K/ > 0. By [26, Proposition 2.5], the total rank
of bHF .Y / for a closed three-manifold Y is independent of the orientation of Y , ie

(2.4.6) rk bHF .Y /D rk bHF .�Y /:

By combining (2.4.6), Proposition 2.5 and the fact that

(2.4.7) S3
m=n.K/Š�S3

�m=n.K/;

we deduce that

(2.4.8) rk bHF
�
S3

m.P .K//
�
D rk bHF .S3

�m=w2.K//:

By combining (2.3.3), (2.3.5) and (2.4.8), since P .K/ is an L–space knot, we have

(2.4.9) mC tm
P.K / D�mCw2sK C t

�m=w2

K
:

Using (2.3.1) and the fact that �.K/ > 0, we observe that t
�m=w2

K
¤ 0.

Claim The equality in (2.4.9) never holds.

Proof of the claim We prove the claim by considering the following two cases:

Case 1 Suppose tm
P.K /

¤ 0. Using (2.4.4), by expanding both sides of (2.4.9) we get

d C t0wC qw2
C 4wg.K/� 2w� 2t0� 2qwC 2b� 2d

D�d � t0w� qw2
Cw2sK C 4w2�.K/� 2w2

C 2d C 2t0wC 2qw2:

A similar reasoning as in Case 1 of the previous claim shows that this equality gives a
contradiction.

Case 2 Suppose tm
P.K /

D 0. Using (2.4.4), we see that (2.4.9) is equivalent to

dC t0wCqw2
D�d � t0w�qw2

Cw2sK C4w2�.K/�2w2
C2dC2t0wC2qw2:

This equation reduces to 2w2 D w2sK C 4w2�.K/. However, this equation has no
solutions, since �.K/ > 0 and sK � 0.

Having proved the claim, it follows that if �.K/ < �.K/, then P .K/ could not have
been an L–space knot. This completes the proof.
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3 Proofs of Theorem 1.6 and Proposition 1.9

Before proving Theorem 1.6 and Proposition 1.9 we remind the reader of a standard
fact about geometric structures and Dehn surgery which we will make use of repeatedly
without reference; see [15, Proposition 5] and [36, Section 5]. Suppose that M is a
compact, orientable, irreducible manifold with incompressible torus boundary (eg the
exterior of a nontrivial knot in S3 ). Then all but finitely many Dehn fillings of M are
irreducible and have the same number of hyperbolic and Seifert fibered pieces in their
JSJ decompositions as M .

3.1 JSJ decompositions and L–spaces

Proof of Theorem 1.6 In order to construct the family of manifolds described in the
statement of the theorem, we will first construct an L–space satellite knot Ks;r with s

Seifert fibered pieces and r hyperbolic pieces in the JSJ decomposition. The knot Ks;r

will be constructed by a sequence of satellite operations using cables and Berge–Gabai
knots. As discussed, all but finitely many surgeries on Ks;r will then be irreducible
rational homology spheres with the desired JSJ decomposition. Since all surgeries with
slope at least 2g.Ks;r /� 1 will result in L–spaces (see Section 2.3), sufficiently large
surgeries on Ks;r will produce the desired infinite family.

Recall that if P is a torus knot standardly embedded in the solid torus, then the exterior
of P is Seifert fibered over the annulus with a single cone point. We first construct a
knot Ks as an s–fold iterated torus knot with appropriately chosen cabling parameters.
More specifically, we construct Ks as follows. If s is 0, we simply take Ks to be
the unknot. Otherwise, we begin with K1 , the positive .m1; n1/–torus knot, for some
m1; n1 � 2. Perform the .m2; n2/–cable, choosing n2=m2 � 2g.K1/� 1, to obtain
the knot K2 . Inductively, we construct Ki to be the .mi ; ni/–cable of Ki�1 , where
we choose ni=mi � 2g.Ki�1/� 1. The JSJ decomposition of the exterior of Ks now
consists of s Seifert pieces. Further, by [13], Ks is an L–space knot.

Let P1 be a positively twisted hyperbolic Berge–Gabai knot satisfying the condition
.b C t0wC qw2/=w2 � 2g.Ks/� 1. We can construct P1 as follows. Begin with
any hyperbolic Berge–Gabai knot (ie hyperbolic in S1 �D2 ; see [4, Theorem 3.2 and
page 17] to obtain explicit examples). Now add sufficiently many positive twists until
the desired inequality is satisfied (fix b , t0 and w , and increase q ) to obtain P1 . As
discussed in Section 2.1, adding positive twists preserves the property of being a Berge–
Gabai knot; furthermore, this does not change the type of geometry on the knot exterior,
and thus P1 will still be hyperbolic. If s ¤ 0, we define Ks;1 as the satellite knot with
companion Ks and pattern P1 . By Theorem 1.3, Ks;1 is an L–space knot. If s D 0,
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take Ks;1 to be any hyperbolic L–space knot, such as the .�2; 3; 7/–pretzel knot [9].
We now repeat this process r times, ie to obtain Ks;i , satellite Ks;i�1 with pattern a
hyperbolic Berge–Gabai knot satisfying .bC t0wC qw2/=w2 � 2g.Ks;i�1/� 1. The
process terminates at the knot Ks;r whose exterior is irreducible and has s Seifert and
r hyperbolic pieces in its JSJ decomposition. We have that Ks;r is an L–space knot by
repeated application of Theorem 1.3. As discussed above, this completes the proof.

3.2 Left-orderability

Recall that a nontrivial group G is left-orderable if there exists a left-invariant total
order on G . Examples of left-orderable groups include Z and HomeoC.R/, while any
group with torsion (eg a finite group) is not left-orderable. It is natural to ask which
three-manifold groups can be left-ordered. Such groups are well-suited for this study
due to the following theorem.

Theorem 3.1 (Boyer, Rolfsen and Wiest [7]) Let Y be a compact, connected, irre-
ducible, P2 –irreducible three-manifold. If there exists a nontrivial homomorphism
f W �1.Y /!G where G is left-orderable, then �1.Y / is left-orderable. In particular,
if there exists a nonzero degree map from Y to Y 0 where �1.Y

0/ is left-orderable, then
�1.Y / is left-orderable.

Rather than define P2 –irreducible, we simply point out that if Y is orientable, then
irreducibility implies P2 –irreducibility. For compact, orientable, irreducible three-
manifolds with b1 > 0, it then follows that their fundamental groups are always
left-orderable. However, there are more interesting phenomena for rational homology
spheres; for example .C3

2
/–surgery on the left-handed trefoil has left-orderable funda-

mental group, whereas .�3
2
/–surgery has torsion-free, non-left-orderable fundamental

group. (This can be deduced for instance from [7, Theorem 1.3].) Surprisingly, the left-
orderability of the fundamental groups of three-manifolds is conjecturally characterized
by Heegaard Floer homology. The following conjecture was made in [6]:

Conjecture 1.8 (Boyer, Gordon and Watson) Let Y be an irreducible rational ho-
mology sphere. Then Y is an L–space if and only if �1.Y / is not left-orderable.

There exists a large amount of support for this conjecture, as it is known to be true for
manifolds with Seifert or Sol geometry, branched double covers of nonsplit alternating
links, graph manifold integer homology spheres and many other families of examples;
see for instance Boileau and Boyer [5], Boyer, Gordon and Watson [6] or Peters [31].
We also remark that irreducibility is necessary, as †.2; 3; 7/ #†.2; 3; 5/ has non-left-
orderable fundamental group, but is not an L–space.
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In the proof of Proposition 1.9 below, we remind the reader that we will be assuming
Conjecture 1.8.

Proof of Proposition 1.9 Suppose that P .K/ is an L–space knot. Then for all ˛ 2Q
with ˛ � 2g.P .K//� 1, we have S3

˛.P .K// is an L–space. For all but finitely many
such ˛ , we have that S3

˛.P .K// is irreducible as well. Thus, by Conjecture 1.8, we
have that �1

�
S3
˛.P .K//

�
is not left-orderable for ˛� 2g.P .K//� 1.

We first study the pattern P . By [8, Proposition 4.1], for these ˛ , �1.S
3
˛.P // is not left-

orderable. Furthermore, for all but finitely many ˛ , we have that S3
˛.P / is irreducible.

Therefore, we appeal to Conjecture 1.8 to conclude that P is an L–space knot.

We modify the argument of [8, Proposition 4.1] to study the companion K . Recall
that w represents the winding number of P in the solid torus V . We also consider
the basis .m; `/ for H1.@V IZ/ as given in Section 2. We choose n 2 Z such that
gcd.w; n/D1 and n�2g.P .K//�1. As discussed, we have S3

n .P .K// is irreducible
and �1.S

3
n .P .K/// is not left-orderable. We consider the manifold .P I n/. We have

that the kernel of i�W H1.@.P I n/IZ/!H1..P I n/IZ/ is generated by nmCw2` by
Lemma 2.3. Since gcd.w; n/D 1 by assumption, we have that the element nmCw2`

is represented by a simple closed curve on @.P I n/ which bounds in .P I n/. It then
follows that there exists a degree-one map �W .P I n/! S1 �D2 which restricts to a
homeomorphism on the boundary; see for instance [32, Lemma 2.2]. Since nmCw2`

bounds in .P I n/, we must have that �.nmCw2`/ is isotopic to f�g�D2 .

By extending � to be the identity on the exterior of K , one obtains a degree-one map
from S3

n .P .K// to S3
n=w2.K/. Since S3

n .P .K// is irreducible and �1.S
3
n .P .K///

is not left-orderable, we have �1.S
3
n=w2.K// is not left-orderable by Theorem 3.1.

Since w is fixed, by choosing a sufficiently large n with gcd.w; n/D 1, we can arrange
that S3

n=w2.K/ is irreducible as well. Again, by Conjecture 1.8, K is an L–space
knot.

References
[1] S Akbulut, B Ozbagci, Lefschetz fibrations on compact Stein surfaces, Geom. Topol.

5 (2001) 319–334 MR1825664

[2] K L Baker, A H Moore, Montesinos knots, Hopf plumbings and L–space surgeries
arXiv:1404.7585

[3] J Berge, Some knots with surgeries yielding lens spaces, unpublished manuscript

[4] J Berge, The knots in D2�S1 which have nontrivial Dehn surgeries that yield D2�S1 ,
Topology Appl. 38 (1991) 1–19 MR1093862

Algebraic & Geometric Topology, Volume 14 (2014)

http://dx.doi.org/10.2140/gt.2001.5.319
http://www.ams.org/mathscinet-getitem?mr=1825664
http://arxiv.org/abs/1404.7585
http://dx.doi.org/10.1016/0166-8641(91)90037-M
http://www.ams.org/mathscinet-getitem?mr=1093862


3762 Jennifer Hom, Tye Lidman and Faramarz Vafaee

[5] M Boileau, S Boyer, Graph manifolds Z–homology 3–spheres and taut foliations
arXiv:1303.5264

[6] S Boyer, C M Gordon, L Watson, On L–spaces and left-orderable fundamental
groups, Math. Ann. 356 (2013) 1213–1245 MR3072799

[7] S Boyer, D Rolfsen, B Wiest, Orderable 3–manifold groups, Ann. Inst. Fourier
.Grenoble/ 55 (2005) 243–288 MR2141698

[8] A Clay, L Watson, On cabled knots, Dehn surgery, and left-orderable fundamental
groups, Math. Res. Lett. 18 (2011) 1085–1095 MR2915469

[9] R Fintushel, R J Stern, Constructing lens spaces by surgery on knots, Math. Z. 175
(1980) 33–51 MR595630

[10] D Gabai, Surgery on knots in solid tori, Topology 28 (1989) 1–6 MR991095

[11] D Gabai, 1–bridge braids in solid tori, Topology Appl. 37 (1990) 221–235
MR1082933

[12] C M Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983)
687–708 MR682725

[13] M Hedden, On knot Floer homology and cabling, II, Int. Math. Res. Not. 2009 (2009)
2248–2274 MR2511910

[14] M Hedden, Notions of positivity and the Ozsváth–Szabó concordance invariant, J. Knot
Theory Ramifications 19 (2010) 617–629 MR2646650

[15] W Heil, Elementary surgery on Seifert fiber spaces, Yokohama Math. J. 22 (1974)
135–139 MR0375320

[16] M Hirasawa, K Murasugi, D S Silver, When does a satellite knot fiber?, Hiroshima
Math. J. 38 (2008) 411–423 MR2477750

[17] J Hom, A note on cabling and L–space surgeries, Algebr. Geom. Topol. 11 (2011)
219–223 MR2764041

[18] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries,
Ann. of Math. 165 (2007) 457–546 MR2299739

[19] W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175,
Springer, New York (1997) MR1472978

[20] L Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737–745
MR0383406

[21] K Motegi, L–space surgery and twisting operation arXiv:1405.6487

[22] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577–608
MR2357503

[23] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7
(2003) 615–639 MR2026543

Algebraic & Geometric Topology, Volume 14 (2014)

http://arxiv.org/abs/1303.5264
http://dx.doi.org/10.1007/s00208-012-0852-7
http://dx.doi.org/10.1007/s00208-012-0852-7
http://www.ams.org/mathscinet-getitem?mr=3072799
http://aif.cedram.org/item?id=AIF_2005__55_1_243_0
http://www.ams.org/mathscinet-getitem?mr=2141698
http://dx.doi.org/10.4310/MRL.2011.v18.n6.a4
http://dx.doi.org/10.4310/MRL.2011.v18.n6.a4
http://www.ams.org/mathscinet-getitem?mr=2915469
http://dx.doi.org/10.1007/BF01161380
http://www.ams.org/mathscinet-getitem?mr=595630
http://dx.doi.org/10.1016/0040-9383(89)90028-1
http://www.ams.org/mathscinet-getitem?mr=991095
http://dx.doi.org/10.1016/0166-8641(90)90021-S
http://www.ams.org/mathscinet-getitem?mr=1082933
http://dx.doi.org/10.2307/1999046
http://www.ams.org/mathscinet-getitem?mr=682725
http://www.ams.org/mathscinet-getitem?mr=2511910
http://dx.doi.org/10.1142/S0218216510008017
http://www.ams.org/mathscinet-getitem?mr=2646650
http://www.ams.org/mathscinet-getitem?mr=0375320
http://projecteuclid.org/euclid.hmj/1233152778
http://www.ams.org/mathscinet-getitem?mr=2477750
http://dx.doi.org/10.2140/agt.2011.11.219
http://www.ams.org/mathscinet-getitem?mr=2764041
http://dx.doi.org/10.4007/annals.2007.165.457
http://www.ams.org/mathscinet-getitem?mr=2299739
http://dx.doi.org/10.1007/978-1-4612-0691-0
http://www.ams.org/mathscinet-getitem?mr=1472978
http://projecteuclid.org/euclid.pjm/1102969920
http://www.ams.org/mathscinet-getitem?mr=0383406
http://arxiv.org/abs/1405.6487
http://dx.doi.org/10.1007/s00222-007-0075-9
http://www.ams.org/mathscinet-getitem?mr=2357503
http://dx.doi.org/10.2140/gt.2003.7.615
http://www.ams.org/mathscinet-getitem?mr=2026543


Berge–Gabai knots and L–space satellite operations 3763

[24] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004)
311–334 MR2023281

[25] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR2065507

[26] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and
applications, Ann. of Math. 159 (2004) 1159–1245 MR2113020

[27] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-
manifolds, Ann. of Math. 159 (2004) 1027–1158 MR2113019

[28] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44
(2005) 1281–1300 MR2168576

[29] P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom.
Topol. 8 (2008) 101–153 MR2377279

[30] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom.
Topol. 11 (2011) 1–68 MR2764036

[31] T Peters, On L–spaces and non left-orderable 3–manifold groups arXiv:0903.4495

[32] Y W Rong, Degree one maps of Seifert manifolds and a note on Seifert volume, Topol-
ogy Appl. 64 (1995) 191–200 MR1340870

[33] L Rudolph, Quasipositive plumbing (Constructions of quasipositive knots and links,
V), Proc. Amer. Math. Soc. 126 (1998) 257–267 MR1452826

[34] H Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933) 147–
238 MR1555366

[35] J R Stallings, Constructions of fibred knots and links, from: “Algebraic and geometric
topology, part 2”, (R J Milgram, editor), Proc. Sympos. Pure Math. 32, Amer. Math.
Soc. (1978) 55–60 MR520522

[36] W P Thurston, The geometry and topology of 3–manifolds, Lecture notes, Princeton
University (1980) Available at http://library.msri.org/nonmsri/gt3m

[37] F Vafaee, On the knot Floer homology of twisted torus knots, Int. Math. Res. Not. 2014
(2014) arXiv:1311.3711

Department of Mathematics, Columbia University
New York, NY 10027, USA

Department of Mathematics, University of Texas at Austin
Austin, TX 78712, USA

Mathematics Department, California Institute of Technology
Pasadena, CA 91125, USA

hom@math.columbia.edu, tlid@math.utexas.edu, vafaee@caltech.edu

Received: 26 June 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/gt.2004.8.311
http://www.ams.org/mathscinet-getitem?mr=2023281
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://www.ams.org/mathscinet-getitem?mr=2065507
http://dx.doi.org/10.4007/annals.2004.159.1159
http://dx.doi.org/10.4007/annals.2004.159.1159
http://www.ams.org/mathscinet-getitem?mr=2113020
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://www.ams.org/mathscinet-getitem?mr=2113019
http://dx.doi.org/10.1016/j.top.2005.05.001
http://www.ams.org/mathscinet-getitem?mr=2168576
http://dx.doi.org/10.2140/agt.2008.8.101
http://www.ams.org/mathscinet-getitem?mr=2377279
http://dx.doi.org/10.2140/agt.2011.11.1
http://www.ams.org/mathscinet-getitem?mr=2764036
http://arxiv.org/abs/0903.4495
http://dx.doi.org/10.1016/0166-8641(94)00108-F
http://www.ams.org/mathscinet-getitem?mr=1340870
http://dx.doi.org/10.1090/S0002-9939-98-04407-4
http://dx.doi.org/10.1090/S0002-9939-98-04407-4
http://www.ams.org/mathscinet-getitem?mr=1452826
http://dx.doi.org/10.1007/BF02398271
http://www.ams.org/mathscinet-getitem?mr=1555366
http://www.ams.org/mathscinet-getitem?mr=520522
http://library.msri.org/nonmsri/gt3m
http://dx.doi.org/10.1093/imrn/rnu130
http://arxiv.org/abs/1311.3711
mailto:hom@math.columbia.edu
mailto:tlid@math.utexas.edu
mailto:vafaee@caltech.edu
http://msp.org
http://msp.org



	1. Introduction
	2. The main result
	2.1. Berge–Gabai knots
	2.2. Surgery on P(K)
	2.3. Input from Heegaard Floer theory
	2.4. Proof of Theorem 1.3

	3. Proofs of Theorem 1.6 and Proposition 1.9
	3.1. JSJ decompositions and L–spaces
	3.2. Left-orderability

	References

