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Compactifications of moduli spaces
and cellular decompositions

JAVIER ZÚÑIGA

This paper studies compactifications of moduli spaces involving closed Riemann
surfaces. The first main result identifies the homeomorphism types of these compacti-
fications. The second main result introduces orbicell decompositions on these spaces
using semistable ribbon graphs extending the earlier work of Looijenga.

32G15, 57M15; 30F30, 14H15

1 Introduction

By a Riemann surface or simply a curve we mean a compact connected complex
manifold of complex dimension one. Denote by Mg;n the moduli space of Riemann
surfaces with genus g and n> 0 labeled points. The Deligne–Mumford compactifica-
tion is denoted by Mg;n . This is a space parametrizing stable Riemann surfaces. Here
the word “stable” refers to the finiteness of the group of conformal automorphisms
of the surface. Geometrically it means that we only allow double point (also called
node) singularities and that each irreducible component of the surface has negative
Euler characteristic (taking the labeled points and nodes into account). We can further
perform a real oriented blowup along the locus of degenerate surfaces to obtain the
space Mg;n . Intuitively, this space is similar to the Deligne–Mumford space but it also
remembers the angle at each double point at which the surface degenerated.

The decorated moduli space is denoted by Mdec
g;n DMg;n ��

n�1 , where �n�1 is
the .n � 1/–dimensional standard simplex. The decorations can be thought of as
hyperbolic lengths of certain horocycles or as quadratic residues of Strebel–Jenkins
differentials on a Riemann surface. By choosing an appropriate notion of decoration
on a stable Riemann Surface it is possible to construct compactifications Mdec

g;n and
Mdec

g;n . The first main result of this paper identifies the homeomorphism type of these
compactifications. Let P be a finite set of labels.

Corollary 3.12 There is a homeomorphism

Mdec
g;P ŠMg;P ��P

and therefore Mdec
g;P

is Hausdorff and compact.
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2 Javier Zúñiga

Theorem 3.14 There is a map Mdec
g;P !Mg;P ��P that is a homeomorphism in the

interior and Mdec
g;P has conical singularities along the locus of singular surfaces.

Corollary 3.15 The space Mdec
g;P

is Hausdorff, compact and homotopic to Mg;P .

It is a known result of Harer, Mumford and Thurston [6], Penner [13], and Bowditch
and Epstein [1] that the decorated moduli space is homeomorphic to the moduli space
of metric ribbon graphs denoted by Mcomb

g;n . This latter space comes with a natural
orbi-cellular structure given by ribbon graphs. In [9], Kontsevich introduces a way
to compactify this space in order to prove Witten’s conjecture. Later on, Looijenga
formalized and extended these ideas in [11] in connection with the arc complex. The
second part of this paper describes a cellular compactification of the ribbon graph space,
extending the work of Looijenga. The main results are the following.

Theorem 5.14 The map ‰WMcomb
g;P
!Mdec

g;P
is a homeomorphism.

Theorem 5.18 The map ‰WMcomb
g;P
!Mdec

g;P
is a homeomorphism.

This new compactification covers Looijenga’s and Kontsevich’s compactifications and
is finer, meaning that it encodes more information. It also seems more relevant to
quantum field theory purposes. In particular, it should be possible to describe a BV
structure on the cellular chains of our compactification and construct a solution to the
quantum master equation in a future work. This solution is purely combinatorial and
so it avoids the use of string vertices or geometric chains.

Acknowledgements I would like to thank Sasha Voronov for his generosity and
guidance, Eduard Looijenga for his patience answering my questions, and Kevin
Costello for sharing his own ideas about this work with me. I am also grateful to Jim
Stasheff for reviewing an early draft of this paper. Finally I would like to acknowledge
the enormous contribution made by the referee to the quality and clarity of the present
exposition.

2 Real oriented blowups

We will use a blowup construction in the PL category. Given a manifold M and
a closed submanifold N the real (or directional) oriented blowup BlN .M / can be
defined by gluing M �N to the (codim N � 1)–dimensional spherical bundle of rays
of the normal bundle of N in M . This is homeomorphic to the result of carving
an open tubular neighborhood of N out of M . There is a natural projection map
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Figure 1: On the left: A three-dimensional manifold with a one-dimensional
submanifold of the boundary. On the right: its real oriented blowup.

BlN .M /!M . The construction can be generalized to the PL category of manifolds
with boundary and the submanifold N can be replaced by a union of submanifolds
with some transversality condition.

Lemma 2.1 Blowing up a submanifold of the boundary of a manifold does not change
the homeomorphism type of the original manifold.

Proof The normal bundle of a submanifold in the boundary of M is a closed half space
bundle. Therefore the bundle of rays is a half sphere bundle. This process enlarges the
boundary of M without changing its homeomorphism type, as in Figure 1. A homeo-
morphism can be realized by using a tubular neighborhood of the submanifold.

Given a union of PL–submanifolds intersecting multi-transversely, it will be sometimes
necessary to blow up such union with the aid of a filtration indexed by dimension.
In this case we will blow up from the lowest-dimensional to the highest-dimensional
elements of the filtration. We will denote by BlF .M / the sequential blowup of M

along the filtration F D fPig indexed by dimension. An example can be seen in
Figure 2.

In what follows, the symbol “Š” means homeomorphic and “'” means homotopic.

Figure 2: Blff.0;0;0/g;f.1;0;0/g;f.0;0;z/g;f.0;y;0/g;f.x;0;0/g;f.1;0;z/g;f.1;y;0/gg.R3/

Lemma 2.2 Given two manifolds X ,Y and a submanifold Z �X , we have

BlZ�Y .X �Y /Š BlZ .X /�Y:
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4 Javier Zúñiga

Proof Let T .X / denote the tangent bundle of X and �X .Z/ the normal bundle
of Z in X . Since T .Z � Y / Š T .Z/ � T .Y / the vectors normal to Z � Y in
T .X � Y / Š T .X / � T .Y / do not include any vector in the second factor. Thus
�X�Y .Z �Y /Š �X .Z/�Y and the result follows.

Let S2n�1 D f
!z 2 Cn j

P
jzi j

2 D 1g and Tn D .S1/n . We also denote by Bn the
n–dimensional open unit ball f!x 2Rn j j

!
x j< 1g and by Bn its closure in Rn .

Lemma 2.3 Let Tn act on S2n�1 by .�1; : : : ; �n/ � .z1; : : : ; zn/D .�1z1; : : : ; �nzn/.
Then S2n�1=Tn Š�n�1 .

Proof Notice that Blf!0g.Cn/ŠCn�B2n by extending to the boundary the homeomor-
phism taking !x to !xC!x=j!x j. Thus the boundary generated is isomorphic to S2n�1 .
Consider the map � W S2n�1 ! �n�1 defined by .z1; : : : ; zn/ 7! .jz1j

2; : : : ; jznj
2/.

The preimage of a point in the simplex corresponds with the orbit of the torus action
and hence the map descends to the desired homeomorphism after taking the quotient.

In order to clarify the homeomorphism type of a certain quotient space we introduce
the notion of conical singularity. If X is a topological space let CX be its cone and v
the vertex. When X is a topological manifold the resulting cone is locally Euclidean
in CX � fvg. When CX is not locally Euclidean at v we call this vertex a conical
singularity. If X and Y are topological manifolds and v is a conical singularity of
CX then any point in fvg �Y � CX �Y is also called a conical singularity.

Lemma 2.4 As in Lemma 2.3, the torus Tn acts on the boundary of Blf!0g.Cn/. The
quotient Blf!0g.Cn/=Tn is the disjoint union of Cn � f

!
0g and �n�1 and has conical

singularities along the second subspace. This space is contractible and hence homotopic
to Cn .

Proof We can view the quotient Blf!0g.Cn/=Tn as the union of Cn�f
!
0g with �n�1

due to Lemma 2.3. Therefore this quotient can be understood as an enlargement of the
origin into the simplex. However this enlargement is not homeomorphic to Cn . To
see this take a point p in the interior of the simplex. A neighborhood of this point
in the simplex is homeomorphic to Bn�1 . The preimage under � W S2n�1! �n�1

of each point in this neighborhood under the torus action is Tn . The normal bundle
has rank one (it is the bundle of rays in Cn orthogonal to the sphere S2n�1 ). Thus a
neighborhood of p is homeomorphic to .Bn�1�Œ0; 1/�Tn/=Tn , where the semi-open
interval Œ0; 1/ corresponds with the normal bundle and the torus acts only at level zero
(which corresponds to the simplex). At p this quotient gives the cross product of the
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Compactifications of moduli spaces and cellular decompositions 5

torus with the interval where one end is collapsed to a point. But this is exactly .C Tn/ı ,
ie the interior of the cone over the torus. Thus a neighborhood of p in Blf!0g.Cn/=Tn

is homeomorphic to Bn�1 � .C Tn/ı and p is a conical singularity. We will refer to
these open sets as toric neighborhoods. For a point on the boundary of the simplex a
similar (but more careful) analysis yields the same toric neighborhoods. Away from
the simplex the quotient of the blowup is still homeomorphic to Cn .

Contracting radially gives a Tn –equivariant deformation retraction of Blf!0g.Cn/ onto
its boundary: S2n�1 . Therefore the quotient deformation retracts onto �n�1 , which is
contractible. In particular, this space is homotopic to Cn .

Corollary 2.5 Denote by Dm the intersection of the m complex hyperplanes in Cn

given by ziD0 where 1� i �m. The torus Tm acts on the boundary of BlDm
.Cn/ and

in fact the quotient is homeomorphic to .Blf!0gCm/=Tm �Cn�m . In particular, it has
conical singularities at the points of the simplex in the first factor and it is contractible.

Proof Dm can be described as f.0; : : : ; 0; zmC1; : : : ; zn/g Š f
!
0g�Cn�m and Cn Š

Cm �Cn�m . By Lemma 2.2, Blf!0g�Cn�m.Cm �Cn�m/Š .Blf!0gCm/�Cn�m and
therefore we can apply the previous lemma to the first component since Tn only acts
on the first factor.

Consider the .n� 1/–dimensional standard simplex �n�1 with vertices labeled by the
set Œn� D f1; : : : ; ng. Since every face can be identified with a subset of Œn� given a
subset P � 2Œn� we denote by BlP .�n�1/ the blowup of the simplex along the filtration
indexed by dimension obtained from the faces induced by P . Notice that blowing up
along sets with n�1 or n elements does not change the geometry in a meaningful way
since the result is linearly isomorphic to the simplex. Therefore the only contributions
come from blowing up faces of codimension at least two.

Remark 2.6 If P D 2Œn� then BlP .�n�1/ produces the n� 1–dimensional cyclo-
hedron. This can be made explicit using Devadoss’ [4, Proposition 4.3.1]. The as-
sociahedra can also be obtained as a blowup of standard simplices. For instance the
three-dimensional associahedron K3 corresponds with the blowup of �3 along P D

ff2g; f3g; f1; 2g; f2; 3g; f3; 4gg.

In what follows it will be necessary to consider the real oriented blowup in the category
of orbifolds. Locally, an orbifold looks like Rn=G , where G is a finite group acting
linearly. This allows us to define the real oriented blowup along a subspace of the
quotient by first blowing up the orbit in Rn and then taking the quotient by the induced
action. The compatibility conditions of the orbifold define the blowup globally.
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Figure 3: The blowup of �3 along the sets ¿ , ff3; 4gg , ff4g; f1; 4g; f2; 4g;
f3; 4gg and ff1g; f2g; f3g; f4g; f1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4gg

3 Decorated moduli spaces

3.1 Compactifications

The moduli space Mg;P parametrizes conformal classes of Riemann surfaces of genus
g with a fixed finite subset P of labeled points. We will also denote this moduli space
as Mg;n , where n D jP j. The topological type of a surface is defined as the pair
.g; n/. The symmetric group SP acts by permuting the labels. A decoration of a
labeled point is a nonnegative real number associated to that point. We require that each
labeled point has a decoration and that the total sum of decorations is one. This gives
Mg;P ��P , where �P is the .jP j � 1/–dimensional standard simplex spanned by
P . Denote this space by Mdec

g;P and call these surfaces P –labeled Riemann surfaces
of genus g decorated by real numbers. Its dimension is 6g C 3n � 7. In Mulase
and Penkava [12] there is a description of an orbicell decomposition for Mdec

g;P and
Mdec

g;P=SP in terms of ribbon graphs. The aim of this paper is to construct orbicell
decompositions for compactified versions of these spaces using ribbon graphs and
relate their homeomorphism types to those of Mg;n and Mg;n .

For Mg;P it is possible to take the Deligne–Mumford compactification Mg;P , which
parametrizes isomorphism classes of P –labeled stable Riemann surfaces. We can
further perform a real oriented blowup along the locus of stable curves with singularities
to obtain the moduli space Mg;P as in Kimura, Stasheff and Voronov [8], which is
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Compactifications of moduli spaces and cellular decompositions 7

called the moduli space of P –labeled stable Riemann surfaces decorated by real
tangent directions. To better understand this space consider the normal bundles to the
locus of stable curves with singularities. Locally, when we have only one singularity,
the normal bundle is canonically isomorphic to the tensor product of two tangent spaces
of the surface, one for each side of the singularity. Points in the boundary of the real
oriented blowup then correspond to real rays in the tensor product. This information
encodes an angle at each double point of the surface and all possible angles describe a
circle. The natural projection Mg;P !Mg;P has as preimages finite quotients of real
tori (a product of circles) on the locus of singular curves. The dimension of the torus
is equal to the number of singularities and the group action is induced by conformal
automorphisms.

We now introduce a way to compactify Mdec
g;P

motivated by [11]. A P –labeled nodal
Riemann surface C is semistable when its irreducible components minus labels and
nodes have nonpositive Euler characteristic. Denote by yC D

F
i2I Ci its normalization,

where the Ci are connected and irreducible. The preimages of singularities under the
attaching map are called nodes. Let N be the set of nodes and �W N !N the induced
involution. Two elements of N are associated if they belong to the same orbit of �.
Two components of yC are associated if one of them has a node associated to a node
in the other component. The only smooth P –labeled semistable surface that is not
stable (�D 0) is the Riemann sphere with two labeled points, which will only arise as
nodes. We call this surface a semistable sphere. Its moduli space is just a point. The
only other semistable surface with zero Euler characteristic is the compact torus, but
since this surface has no labeled points we will not consider this case. Now we further
restrict these surfaces as to comply with the following conditions.

(1) A component cannot be associated to itself.

(2) Two semistable spheres cannot be associated.

(3) The two points in a semistable sphere are always nodes.

(4) A stable component with no labeled points must be associated with at least one
other stable component.

Definition 3.1 A perimeter function for C is a function �W P [N ! Œ0; 1� with the
following two properties.

(1) If p and q are the nodes of a semistable sphere then �.p/D �.q/.

(2) Every connected component of yC has at least one point p 2 P [ N with
�.p/ > 0.

Definition 3.2 An order for C is a function ordW �0
yC !N where N D f0; 1; 2; : : : g

with the condition that if ord.ŒCi �/Dk>0 then there exist j such that ord.ŒCj �/Dk�1.
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8 Javier Zúñiga

A component of order k will be called a k–component. We will also denote by yPk

and yNk the subsets of P and N lying on k–components.

Definition 3.3 We say that the pair .�; ord/ is compatible if they satisfy the following
property: Let p 2Ci\N and qD �.p/2Cj\N then �.p/> 0 if and only if �.q/D 0.
Moreover, in this case we require that ord.ŒCj �/ < ord.ŒCi �/.

Definition 3.4 A compatible pair .�; ord/ is unital if for each fixed kX
p2 yPk[

yNk

�.p/D 1:

A unital pair will be called a decoration of C . This definition agrees with the definition
of a decoration on smooth Riemann surfaces where there is only one component of
order zero.
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Figure 4: Semistable surface with unital pair: the numbers inside the surface
correspond to real number decorations and the numbers outside the surface
correspond to the orders of the irreducible components.

Lemma 3.5 Given a decoration .�; ord/ of C we have:

(1) If p 2 Ci \N with ord.ŒCi �/D 0 then �.p/D 0.

(2) There is a constant m 2N such that ord.ŒCi �/�m for all i , and given k such
that 0� k �m there exists an i with ord.ŒCi �/D k .

(3) If p; q 2 Ci \N , where Ci is a semistable sphere then �.p/D �.q/ > 0.

(4) If Ci is a semistable sphere then any component associated to it has a lower
order.

(5) A component cannot be associated to another component of the same order.
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Proof To show (1) suppose p 2 Ci \N with �.p/ > 0. Then from the definition of
order we get a component Cj with ord.ŒCj �/< ord.ŒCi �/D 0. But this is a contradiction
since ord.ŒCi �/ � 0. For (2) first notice that �0. yC / is finite because the surface is
compact. Then there exists a maximal order m and the result follows from the definition
of order. For (3) assume that �.p/D 0. Then from the definition of perimeter function
we get �.q/D 0, which is in contradiction with the second condition for a perimeter
function. Now (4) follows from (3) by applying the definition of compatible pair.
Finally (5) follows solely from the definition of compatible pair.

Example 3.6 Figure 4 illustrates a unital pair.

An isomorphism in this context is a stable surface isomorphism preserving the labels
pointwise and the decorations.

Definition 3.7 The set of isomorphism classes of P –labeled semistable Riemann
surfaces together with a decoration will also be called the moduli space of decorated
semistable surfaces and will be denoted by Mdec

g;P
.

Definition 3.8 In an analogous way we introduce the moduli space Mdec
g;P

by decor-
ating with tangent directions at each node of a surface. Isomorphisms are required to
preserve this extra data.

Remark 3.9 The local effect of allowing semistable components in the moduli space is
minimal. For Mdec

g;P
it is only adding the combinatorics of the decoration. We will see

later that geometrically it accounts for remembering how fast a geodesic vanished. For
Mdec

g;P
, given two associated irreducible components, the tangent direction decorations

enlarge the real dimension of that locus by one in the moduli space. Inserting a strictly
semistable sphere in between these associated components also adds only one dimension
to that locus in the moduli space. This is because the group of automorphisms rotates
the sphere so that the real rays corresponding to the nodes on the semistable sphere are
irrelevant. This is illustrated on Figure 5.

3.2 Topology

We wish to define a bijection 'W Bl xF .Mg;P��P /!Mdec
g;P

, where Bl xF .Mg;P��P /

is certain blowup construction whose topology we understand. The topology of Mdec
g;P

is then induced via this map.

If .ŒC �; �/2Mg;P ��P then there is at least one irreducible component of C that has
a nonzero decoration. Call these kinds of irreducible components nonzero components;

Algebraic & Geometric Topology, Volume 15 (2015)



10 Javier Zúñiga

Figure 5: Tangent direction decorations at a singularity between stable com-
ponents and semistable spheres

the rest will be called zero components. Consider the different loci of singular surfaces
with the following property: every node in a zero component is associated to a node on
a nonzero component (notice that this rules out self-intersections on zero components
since that component would be associated with itself, which is a zero component by
definition). The union of all these loci defines a filtration by dimension we call F . The
induced filtration by dimension of the closure of the previous loci is denoted by xF .
Thus xF can be viewed as the union of strata intersecting multi-transversely.

Remark 3.10 The highest-dimensional strata of xF correspond with the locus of
surfaces with only one singularity and no irreducible component with all of their
decorations equal to zero. Since the dimension of these strata is equal to the dimension
of the boundary it has the same homeomorphism type and thus blowing up along these
strata will not produce any new points on the boundary.

Theorem 3.11 There is a bijection

'W Bl xF .Mg;P ��P /!Mdec
g;P

that induces a topology on Mdec
g;P

.

Proof The map ' is defined as the identity on Mg;P ��P . If x belongs to the locus
of singular surfaces of Bl xF .Mg;P ��P /, we need to define '.x/ D Œ.C; �; ord/�.
Since x is in the boundary it means that it was a point resulting from blowing up along
.Mg;P �Mg;P /��P and thus it determines a class ŒC � 2Mg;P . Consider a metric
on Mg;P induced by Fenchel–Nielsen coordinates. The normal bundle can be used
to induce a small tubular neighborhood of the boundary of Bl xF .Mg;P ��P / so that
each normal ray corresponds with a geodesic ray isometric to Œ0; �/. Taking 0< � < �

this defines a family fŒ.C�; ��/�g� of decorated (nonsingular) surfaces in Mg;P ��P

with lim�!0ŒC� �D ŒC �.

Now define a unital pair .�; ord/ by induction on the order. Recall that fCigi2I

is the set of connected components of the normalization yC . This comes with an
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involution �W N !N ; set Pi DCi\P , Ni DCi\N . Let fCigi2I0�I be the set of all
irreducible components with Pi¤¿ and lim�!0 ��.p/>0 for at least one p2Pi . Set
�.p/D lim�!0 ��.p/ for p 2Pi and �.p/D 0 for p 2Ni . Also let ord j�0

.
`

Ci/� 0

for i 2 I0 . This defines .�; ord/ at order zero. Notice that
P
�.p/ D 1, where the

sum runs over all labeled points on components of order zero.

Let us assume now that .�; ord/ has been defined up to order k and it is unital up to that
order. We require a condition on degenerating geodesics. Either a few geodesics have
been turned into semistable spheres (by being collapsed and becoming components of
higher order) or they have given rise to decorations on nodes of components of order
greater than zero (this will be made explicit on the inductive step). In the first case it
is assumed that such semistable spheres are associated to components of order less
than or equal to k . If g�

ˇ
is a geodesic being collapsed to a node n we can express

this as the limit lim�!0 g�
ˇ
D n. Let l.g�

ˇ
/ be the length of such geodesic. Obviously

lim�!0 l.g�
ˇ
/D 0. Consider the limits

d.p˛/D lim
�!0

��.p˛/P
��.p�/C

P
l.g��/

; d.n/D lim
�!0

l.g�
ˇ
/P

��.p�/C
P

l.g��/

where the first sum of the denominator runs over all labeled points p� 2 Ci with
i 2 I�.I0qI1q� � �qIk/ and the second sum runs over all geodesics being collapsed
to a node singularity that have not been turned into semistable spheres or have given
rise to decorations on nodes.

Suppose d.n/ > 0 for some node n. Assume first that n separates two components
whose orders have already been assigned and thus are less than or equal to k . In this
case we cut the surface along the node and glue a semistable sphere in between. We
call this sphere Ci . Here i D jI jC 1 and we have to include this number in the set I .
If q1 , q2 are the two elements of Ni define

�.q1/D �.q2/D d.n/=2; �.p1/D �.p2/D 0; ord.Ci/D kC 1;

where p1 D �.q1/, p2 D �.q2/ are given in the obvious way. Now suppose that n

separates two components, one of which has already been assigned an order. Let the
other one be Ci . If q 2Ni and p D �.q/ then define

�.q/D d.n/; �.p/D 0; ord Ci D kC 1:

For every component Ci with at least one p 2 Pi such that d.p/ > 0 define

�.p/D d.p/ for all p 2 Pi ; ord Ci D kC 1:

This produces a unital pair .�; ord/ up to order kC 1. Since the type of the surface is
finite this process exhausts all components of the normalization of the surface, giving

Algebraic & Geometric Topology, Volume 15 (2015)



12 Javier Zúñiga

them orders and possibly creating along the way semistable spheres. This completes
the definition of ' .

The map ' is surjective on Mg;P ��P because it is defined as the identity there.
Given a point Œ.C; �; ord/�, where C is a singular surface, it is possible to construct a
one-parameter family fŒCt �g0<t<1 satisfying the following conditions:

� ŒCt � 2Mg;P for 0< t < 1.

� Let ki be the order of the component of the node ni such that �.ni/ > 0. Let
gi.t/ be the geodesic giving rise to ni in Ct . If l denotes the length of a
geodesic then

l.gi.t//D tki 2�.ni/ or l.gi.t//D tki�.ni/

depending on whether ni belongs to a semistable sphere or not.

� lim
t!0

ŒCt �D ŒC � 2 @Mg;P .

Suppose that pi 2 P lies on a component of order ki and define by pi.t/ its corre-
sponding labeled point in ŒCt � for 0< t < 1. Then letting

�.pi.t//D tki�.pi/

defines a path ˛.t/ in Mdec
g;P

. It can be checked then that

lim
t!0

˛.t/D Œ.C; �; ord/�:

Moreover, the preimage of ˛ under ' also defines a path in Bl xF .Mg;P ��P / (it is
the same path since this map is the identity on the interior of the moduli space). This
limit also exists and defines a point x D limt!0 ˛.t/ in Bl xF .Mg;P ��P /, which is a
preimage of Œ.C; �; ord/� under ' .

The map ' is injective on Mg;P ��P because it is defined as the identity there.
Let x1 , x2 belong to Bl xF .Mg;P � �P / �Mg;P � �P so that x1 ¤ x2 and let
'.x1/D Œ.C1; �1; ord1/�, '.x2/D Œ.C2; �2; ord2/�. Now consider the following cases.
If x1 and x2 were generated by blowing up along the locus of singular surfaces with
ŒC1� ¤ ŒC2� then '.x1/ ¤ '.x2/. In case ŒC1� D ŒC2� it could also happen that x1

and x2 were generated by blowing up along different strata of xF . This will give
rise to different order functions and hence again '.x1/¤ '.x2/. In the last case, if
ŒC1�D ŒC2� and ord1 D ord2 it can be shown that all the parameters left to consider in
the decoration (the perimeter function) completely parametrize this part of the blowup
and therefore x1 ¤ x2 implies '.x1/¤ '.x2/.
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Finally, the topology of Mdec
g;P

is induced from the topology of the blowup through
this bijection. In Mg;P ��P �Mdec

g;P
it is the same topology as usual since the map

is defined as the identity there.

Notice that by definition Bl xF .Mg;P ��P / and Mdec
g;P

are homeomorphic.

Corollary 3.12 There is a homeomorphism

Mdec
g;P ŠMg;P ��P

and therefore Mdec
g;P

is Hausdorff and compact.

Proof Since Bl xF .Mg;P ��P / ŠMg;P ��P , Lemma 2.1 provides such homeo-
morphism.

Now we turn our attention to another moduli space.

Definition 3.13 The space Mdec
g;P

is obtained from Mdec
g;P

by forgetting the tangent
direction decorations. The canonical projection

Mdec
g;P �!Mdec

g;P

induces then a quotient topology on Mdec
g;P

.

As a result of the previous theorem the space Mdec
g;P

can be defined in two analogous
ways. One can define decorated semi-stable surfaces together with a topology as before
or one can blow up Mg;P ��P . The second definition requires an extra step: to forget
the tangent direction decorations produced by the blowup. The topology is then the
quotient topology induced by a similar projection as in the previous definition.

Theorem 3.14 There is a map Mdec
g;P !Mg;P ��P that is a homeomorphism in the

interior and Mdec
g;P has conical singularities along the locus of singular surfaces.

Proof From the previous definition Mdec
g;P Š

yB where the space yB is obtained from
Bl xF .Mg;P ��P / by forgetting the tangent direction decorations and thus inherits
the quotient topology. This real oriented blowup provides such a map, which is a
homeomorphism on the interior by construction. For the second part consider two
cases. If a stratum of xF corresponds with singular surfaces where all components with
labeled points are of order zero then the new boundary created and the subsequent
quotient corresponds locally with the picture in Corollary 2.5 modulo some finite group
action. Otherwise there are components of order greater than zero with labeled points
having all decorations equal to zero. The former case then generalizes to take care of
the latter and a neighborhood of a point in the blowup after taking the quotient will
have a toric neighborhood.
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Corollary 3.15 The space Mdec
g;P

is Hausdorff, compact and homotopic to Mg;P .

The following lemma will help us understand the examples.

Lemma 3.16 The preimages of points in the strata of xF in Bl xF .Mg;P ��P / under
the natural projection are products of simplices modulo finite groups.

Proof By definition of xF a point in the filtration lies in the locus of multi-intersecting
strata. This gives the topological type, decoration by tangent directions, and conformal
structure on the irreducible components of the normalization. The extra information
introduced by the blowup is the half sphere as in the proof of Lemma 2.1. If a metric
is given this induces a metric on the normal bundle. This metric then can be used to
give the half sphere the desired parametrization by a product of blown-up simplices,
one for every order of the surface, modulo a finite group action.

0 2 1

0 1 0 1 0

Figure 6: The topological type of a surface arising as the intersection of strata
(notice how the orders are added)

Example 3.17 On Figure 6 we can see how the topological type and combinatorics
of the order can be determined by the intersection of the strata being blown up in the
definition of the decorated moduli space. The actual decorations of the surface in the
middle is determined by a point in �1 ��2 ��1 corresponding with the components
of order 0, 2 and 1 respectively. Figure 7 shows surfaces whose associated closure of
blown-up simplex parametrizing the decorations is given on Figure 3. The extra faces
induced by the blowup (and captured by the closure) correspond with decorations on
components of higher order.

Remark 3.18 By generalizing Figure 3 and Figure 7 one can obtain the cyclohedron
from degeneration of surfaces. This is not the case with the associahedron. In the case
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Figure 7: Surfaces associated with the blown-up simplices on Figure 3

of K3 this is because all possible three-dimensional simplices arising from degeneration
of surfaces are illustrated in those figures and K3 is not among them. This also implies
that it will not show up as a face in a higher-dimensional blown-up simplex. To get
the associahedron one needs to consider compactified versions of moduli of Riemann
surfaces with boundary as in [10] or [3]. More recently in [5] we can find a nice
treatment of this connection between bordered Riemann surfaces and associahedral
polytopes.

Example 3.19 The space M0;P , where jP j D 4, can be identified with the Riemann
sphere with three removed open disks corresponding with the three possible ways in
which the Riemann sphere with four labeled points can degenerate. The space Mdec

0;P

is the union of M0;P ��P with three copies of the space S1 � T , where T is a
three-dimensional simplicial complex obtained from gluing three solids: two copies
of �2 ��1 and the real oriented blowup of �3 at two opposite edges corresponding
to the decorations of the labeled points in each irreducible component of the stable
surface. The interior of the blown-up copy of �3 corresponds with the first surface
on Figure 9. The interior of the two copies of �2 ��1 corresponds with the second
surface on Figure 9. Finally, the intersection of these complexes consists of rectangles
corresponding with the third surface on Figure 9.

A simple way to go from M0;P ��P to the boundary is to consider the geodesic g.t/

that is being collapsed and its length l . If l.g.t//! 0 and each resulting irreducible
component contains a marked point with nonvanishing limit, then we land in the blown-
up copy of �3 in T . If the decorations of both labeled points in a resulting irreducible
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Figure 8: The complex T

component tend to zero then we land in one of the copies of �2 ��1 . To decide in
which point we land, let d1.t/, d2.t/ be such decorations and n the decoration at the
node. Then the decorations in the limit will be

d1 D lim
d1.t/

d1.t/C d2.t/C l.g.t//
; d2 D lim

d2.t/

d1.t/C d2.t/C l.g.t//
;

nD lim
l.g.t//

d1.t/C d2.t/C l.g.t//
:

This works for Mdec
0;4

as well as Mdec
0;4

. The only difference is that in the first case we
keep track of the angles that give the tangent direction decorations. Since the singular
surfaces in Mdec

0;4
can only have one singularity the toric neighborhoods reduce to the

cone over a circle, which is homeomorphic to a disc.

0
1

0 0 1 0

2
1

Figure 9: Surfaces associated to the complex T

4 Semistable ribbon graphs

4.1 Ribbon graphs

By a graph we mean a combinatorial object consisting of vertices, edges that split into
half-edges and incidence relations. We avoid isolated vertices. This is the same as a
one-dimensional CW–complex up to cellular homeomorphism.
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We will need to consider a special graph with only one edge and no vertices homeo-
morphic to S1 . We call this a semistable circle. The following definition of ribbon
graph allows then for the possibility of having multiple connected components, some
of them possibly being semistable circles.

Definition 4.1 A ribbon graph � is a finite graph together with a cyclic ordering on
each set of adjacent half-edges to every vertex.

If H is the set of half-edges and v is a vertex of � let Hv be the set of adjacent
half-edges to this vertex. The valence of a vertex is then jHvj. A trivalent graph is
one for which all vertices have valence three. A cyclic ordering at a vertex v is an
ordering of Hv up to cyclic permutation. Once a cyclic ordering of Hv is chosen, a
cyclic permutation of Hv is defined (an element of SHv

): it moves a half-edge to the
next in the cyclic order. Define by �0 the element of SH , which is the product of
all the cyclic permutations at every vertex, and let �1 be the involution in SH that
interchanges the two half-edges on each edge of � . Notice that if �0 does not act on
certain half-edges it is because those half-edges belong to semistable circles (semistable
circles have no vertices). This combinatorial data completely defines the ribbon graph.

To be more precise, given a finite set H and permutations �0; �1 2SH such that �0 is
a product of cyclic permutations with disjoint support and �1 is an involution without
fixed points, then we can construct a ribbon graph � . A vertex of � is then given as an
orbit of �0 on H , while an edge is then an orbit of �1 on H . The set of vertices may
be identified with V .�/DH=�0 and the set of edges with E.�/DH=�1 . Semistable
circles correspond with pairs of half-edges in the orbit of �1 that are missed by the
action of �0 .

Let �1 D ��1
0
�1 . The orbits of �1 will be called cusps and they form the set

C.�/ D H=�1 . The half-edges in the orbit of a cusp form a cyclically ordered set
of half-edges called a boundary cycle. The obvious graph associated to the boundary
cycle is called a boundary subgraph. The reason for such terms will become evident
later. For a semistable circle we let �1 be the identity. This implies that semistable
circles have exactly two boundary cycles (each one consisting of only one half-edge).
The cusps and the vertices of valence one or two will be called distinguished points.
Notice also that knowing �1 and �1 completely determines the ribbon graph structure
since �0 D �1�

�1
1 .

A loop is an edge incident to only one vertex and a tree is a connected graph T

satisfying xH�.T /D 0.

An isomorphism of ribbon graphs is a graph isomorphism preserving the cyclic orders
on each vertex. Therefore, two graphs � , � 0 are isomorphic when there is a bijec-
tion �W H !H 0 between the set of half-edges of these two graphs that commutes with
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�0 , � 0
0

and �1 , � 0
1

. In particular this implies that the boundary cycles are preserved, ie
� also commutes with �1 , � 01 . If we restrict to automorphisms of a graph it is clear
that this will generate a group with this definition. The group of automorphisms of the
semistable circle is Z=2Z.

Example 4.2 Consider the ribbon graph in Figure 10. Denote by hi the half-edges of
the graph as in the figure and let the cyclic ordering be induced by the counter-clockwise
orientation. Then

�0 D .h1h5h3/.h2h6h4/; �1 D .h1h2/.h3h4/.h5h6/; �1 D .h1h4h5h2h3h6/:

Its group of automorphisms is Z=2Z � Z=3Z, where the Z=2Z factor is induced
by �1 .

h1
h2

h3

h4

h5 h6

Figure 10: A ribbon graph with both vertices having the counter-clockwise orientation

An interesting construction associated to a ribbon graph is its dual graph; it is obtained
by passing from .H� I �0; �1/ to .H� I �1; �1/. This new ribbon graph will be denoted
by �� . Notice that there is a natural identification between the sets E.�/ and E.��/.
The dual graph of the semistable circle is itself.

From now on all figures of ribbon graphs will have the cyclic ordering induced by the
counter-clockwise orientation.

Remark 4.3 The set of half-edges can be identified with the set of oriented edges in
two ways. To each oriented edge we can assign the source or target half-edge. We use
the one assigning the source. The involution �1 switches the orientation of every edge.

To every ribbon graph � we can associate an oriented surface Surf.�/ constructed
as follows. To each oriented edge e we can associate a semi-infinite rectangle Ke D

jej �R�0 at the base, where jej is homeomorphic to the closed unit interval. Let
Ke be its one-point compactification. Now identify the base of Ke with the base
of K�1.e/ and the right-hand edge of Ke with the left-hand edge of K�1.e/ . There
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are some special points coming from the compactification (after adding them into the
surface), they can be identified with the orbits of �1 , and that’s why we call them
cusps. Each connected component of the graph has genus gi D .2��i �ni/=2, where
�i D jV .�i/j� jE.�i/j, �i is the i th connected component of � and ni is the number
of cusps in that component. The surface comes with a natural orientation given by the
tiles since they are naturally oriented and their orientations match each other because
of the way we glued them.

This construction can also be applied to semistable circles. Even though semi-stable
circles have no vertices they still have half-edges and thus they also have two orientations
corresponding to their boundary cycles. We glue the semi-infinite rectangles in order
to obtain an infinite cylinder with two cusps. One may worry that since there is no
vertex there is no way to know where to start gluing the rectangle. However, the choice
of a base point becomes irrelevant because the moduli of semistable spheres is trivial.

There is also a natural identification between Surf.�/ and Surf.��/, where �� is the
dual graph.

Definition 4.4 A P –labeled ribbon graph is a ribbon graph together with an injection
xW P ,! V .�/tC.�/ whose image contains all distinguished points. The elements of
the image will be called labeled points.

An isomorphism of P –labeled ribbon graphs is a ribbon graph isomorphism that
preserves the labels. In particular, the automorphism group of the semistable circle is
trivial.

Definition 4.5 The Euler characteristic of a P –labeled ribbon graph is defined as the
Euler characteristic of the graph minus jP j. The semistable circle is defined to have
Euler characteristic equal to zero.

Remark 4.6 Clearly, if � is a P –labeled ribbon graph then Surf.�/ inherits a P –
labeling in the form of a function xW P ,! Surf.�/. The topological type .g; jP j/ of a
P –labeled ribbon graph refers to the genus g of the generated surface and the number
P of labels. It is also easy to check that the Euler characteristic of the ribbon graph is
the same as the Euler characteristic of the surface associated to it.

4.2 Gluing construction

Fix a vertex v in a ribbon graph. We can construct a new ribbon graph by replacing
v with jHvj edges and jHvj vertices as in Figure 12. The new ribbon graph is the
blowup of v . This operation adds one extra boundary cycle to the ribbon graph.
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a
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)

a

b

Ribbon graph Square with no interior

a

b

Ka KbK�1b

K�1a

)

a

b

Ka

Kb

K�1a

K�1b

Box without top and bottom Square without a point

Figure 11: Once-punctured torus: adding the puncture gives Surf.�/

A boundary cycle is called injective if any two half-edges in this orbit are not in the
same orbit of �0 or �1 . This implies that the boundary subgraph is homeomorphic
to a circle. For example, the extra boundary cycle generated in the blowup is always
injective.

By disjoint boundary cycles we mean boundary cycles that do not share any half edges
in the same orbit of �0 or �1 . This means that the associated boundary subgraphs

Algebraic & Geometric Topology, Volume 15 (2015)



Compactifications of moduli spaces and cellular decompositions 21

Figure 12: How to blow up a vertex

do not intersect. Given two disjoint boundary cycles with at least one of them being
injective, we can produce a finite family of ribbon graphs as follows.

Since both boundary cycles correspond with subgraphs that can be identified with
CW–complexes themselves, choose parametrizations of each subgraph by S1 . The
parametrization of the subgraph associated to the injective boundary cycle must be
compatible with the natural counter-clockwise orientation of S1 � C , ie it follows
the cyclic order of the boundary cycle. The other subgraph is parametrized with the
opposite orientation.

Figure 13: Two boundary cycles: the one on the left is injective, and the one
on the right is not.

Now we glue both subgraphs via the map identifying two points if their preimages
under the parametrization coincides. This gives an obvious new set of half-edges and
vertices and it can be shown that the resulting graph is a ribbon graph (this is the reason
why we introduced disjointness and injectivity of boundary cycles). Now discard the
parametrization left in the gluing. This results then in a ribbon graph called a gluing.
There is also a way to define this gluing construction in a purely combinatorial way
but it lacks the geometrical intuition.

To produce a family of ribbon graphs, change the parametrizations and keep only one
representative from each isomorphism class of ribbon graph thus created. Since there
is a bound on the size of the resulting graphs and these graphs are also finite there will
be only a finite number of isomorphism classes.
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Definition 4.7 Given a vertex and a boundary cycle whose associated graph does not
include the given vertex we define a gluing by applying the gluing construction to the
blowup of the vertex and the given boundary cycle.

This construction is well defined because the blowup is injective and the given condition
implies that the boundary cycles are disjoint.

The previous definition is a sort of “desingularization” of graphs.

Figure 14: Different gluings of two boundary cycles from Figure 13

4.3 Semistable ribbon graphs

Let us describe two ribbon graphs we can obtain from a proper subset of edges Z �

E.�/. One will be associated to Z and the other to its complement in E.�/. Denote
by �Z the subgraph with set of edges Z and HZ its set of half-edges. The ribbon
graph structure is induced by �0 and �1 in the following way. The new ��Z

1
is just

the restriction, while ��Z
0

is defined by declaring ��Z
0
.h/, with h 2 HZ , to be the

first term in the sequence .�k
0
.h//k>0 that is in HZ .

The proper subset Z � E.�/ of edges of a ribbon graph induces a ribbon graph
structure on the graph determined by the complement of Z in E.�/. We will denote
this graph by �=�Z . The new graph has set of edges E.�/�Z with induced set of
half-edges H�=�Z

. Since �1 and �1 completely determine the ribbon graph structure
it is enough to define them in H�=�Z

. The new involution is just the restriction

��=�Z
1 D �1jH�= �Z

:

Given h2H�=�Z
we define ��=�Z

1 .h/ to be the first term of the sequence .�k
1.h//k>0

that is in H�=�Z
.

Remark 4.8 If �Z is simply connected then �=�Z is topologically the result of
collapsing each component of �Z to a point. In general this is not a topological
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quotient. Figure 15 shows an example of this last case. It turns out that this definition
allows us to track the creation of nodes at the graph level.

e

� �=�feg

Figure 15: The original graph has one vertex while the second one has two
and it is disconnected.

We now describe how to collapse edges in a P –labeled ribbon graph without changing
the homeomorphism type of Surf.�/ relative to P .

Definition 4.9 A subset Z�E.�/ of a P –labeled ribbon graph � is called negligible
if each connected component of �Z is either a tree with at most one labeled point or a
homotopy circle without labeled points that contains a boundary subgraph.

Definition 4.10 If � is a P –labeled ribbon graph and Z � E.�/ is a negligible
subset define the edge collapse of � respect to Z as �=Z D �=�Z with the induced
P –labeling.

Remark 4.11 Collapsing a tree with at most one labeled point does not change the
injectivity of the labels. Collapsing a homotopy circle without labeled points that
contains a boundary subgraph is called a total collapse and in this case the label of
the corresponding cusp turns into a label of the induced vertex. The injectivity of this
labeling is still preserved.

Lemma 4.12 If Z is negligible then Surf.�/Š Surf.�=Z/ relative to P .

Proof It is possible to exhibit a sequence of homeomorphisms starting at Surf.�/
and ending at Surf.�=Z/. If a connected component of �Z is a tree with at most
one labeled point let e be an edge in that tree. As e is contracted the result on the
associated surface is to contract Ke to an interval (one vertex goes to one vertex of
the interval and the opposite edge to this vertex is contracted to the other vertex of the
interval). This can be done to all edges of the tree without changing the injectivity of
the labels. The same can be done on a homotopy circle without labeled points that
contains a boundary subgraph. The difference is that in the last step we have a loop
being contracted to a point labeling the resulting vertex. This collapse also respects the
injectivity of the labels because the homotopy circle did not have a labeled point on it.
This process does not change the homeomorphism type of the surface.
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We can also collapse more general graphs allowing only mild degenerations. If we
collapse more arbitrary subsets of edges the homeomorphism type is not preserved but
we can show that the singularities thus obtained are simple. We start with the following
definition.

Definition 4.13 A proper set of edges Z is semistable if no component of �Z is the
set of edges of a negligible subset and every univalent vertex of �Z is labeled.

Remark 4.14 If Z is semistable then every contractible component of �Z contains
at least two labeled points (otherwise it would be negligible). A component that is a
homotopy circle without labeled vertices is necessarily a topological circle because
univalent vertices must be labeled. It is also not a boundary subgraph of � or else it
would be negligible.

Lemma 4.15 Given a ribbon graph � every proper subset Z � E.�/ contains a
unique maximal semistable subset Zsst �Z .

Proof We give an algorithm to find Zsst . Starting from Z , remove all edges containing
an unlabeled vertex of valence one. Repeat this process until we can not delete
further edges. All remaining univalent vertices are labeled. Now throw away all
boundary subgraphs with no labeled vertices. At the end what remains is Zsst and we
have Zsst D ¿ if and only if Z is negligible. The uniqueness of Zsst follows from
construction.

Definition 4.16 Let Z be a semistable subset of � . The reduction of �Z is the result
of deleting unlabeled vertices of valence two. We denote the reduction by y�Z .

The reduction of a homotopy circle with no labeled vertices corresponding with a
semistable subset is in fact a semistable circle.

A semistable subset Z is stable if every component of �Z that is a topological circle
contains a labeled vertex. An arbitrary proper subset Z contains a unique maximal
stable subset Zst , which is obtained from Zsst by getting rid of the components that
are topological circles without labeled vertices.

Definition 4.17 If � is a P –labeled ribbon graph and Z � E.�/ is an arbitrary
subset, define the edge collapse of � with respect to Z as the disjoint union

�=Z D �=�Z t
y�Z sst

with the induced P –labeling.

Algebraic & Geometric Topology, Volume 15 (2015)



Compactifications of moduli spaces and cellular decompositions 25

Remark 4.18 This generalizes Definition 4.10 because when Z is negligible, Zsst D

¿ by Lemma 4.15. Also notice that if Z1[Z2D¿ then �=.Z1tZ2/D .�=Z1/=Z2 .

The next step is to introduce a generalization of ribbon graphs that will give a cellular
decomposition of the decorated moduli space of semistable Riemann surfaces. This is
similar to Looijenga’s definition in [11, 9.1] but some changes were required.

Let Z be semistable. Take a vertex in �=�Z . This is represented by an orbit of
��=�Z

0
. If any of the elements in that orbit is the image under �0 of an element of

HZ we call that vertex exceptional. In that case there is a corresponding orbit of ��Z
1

that is not an orbit of �1 , and such that the orbit of the exceptional vertex under �0

has nontrivial intersection with that particular orbit of ��Z
1 . In this case we call the

elements of the corresponding orbit of ��Z
1 an exceptional boundary cycle and the

associated subgraph an exceptional boundary subgraph.

Consider an involution without fixed points � on a subset N � V .�/ t C.�/. The
elements of N will be called nodes, two elements of the same orbit are associated
and in this case we may also say that the corresponding connected components of the
graph are associated. Cusp-nodes and vertex-nodes are defined in an obvious way. This
involution allows us to identify points in Surf.�/. Denote by Surf.�; �/ the resulting
surface. Let � D

S
i2I �i , where the �i are the connected components of � . Thus

�0.�/ D fŒ�i �g Š I . Set Vi D V .�i/, Ci D C.�i/, and N 0i D N.�i/ the nodes in
the i th component of � . We will only consider graphs with involutions for which the
following properties apply:

(1) A connected component of the graph cannot be associated to itself.
(2) Two semistable circles cannot be associated.
(3) The two cusps of a semistable circle are nodes.
(4) A cusp-node can only be associated to a vertex-node and vice versa.
(5) The surface Surf.�; �/ must be connected.

An order for � is a function ordW �0.�/!N satisfying the following properties.
(i) If ord.Œ�i �/D k > 0 then there exist j such that ord.Œ�j �/D k � 1.

(ii) Let p 2N 0i and q D �.p/ 2N 0j . Then, p 2 Ci if and only if q 2 Vj by property
(4) on the previous list. In this case we require that ord.Œ�j �/ < ord.Œ�i �/.

The following gives some insight into this definition and is not hard to prove.

Lemma 4.19 Given an order ordW �0�!N we have:
(1) If p 2N 0i and ord.Œ�i �/D 0 then p 2 V .
(2) There is a constant m 2N such that ord.Œ�i �/�m for all i , and given k such

that 0� k �m, there exists an i with ord.Œ�i �/D k .
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Definition 4.20 A semistable ribbon graph is a ribbon graph � together with an
involution � as above and an order function ord.

Remark 4.21 A ribbon graph can be viewed as a semistable ribbon graph with N D¿.
Notice also that Surf.�/ is the normalization of Surf.�; �/. When N ¤¿ we call the
graph singular.

Figure 16: Semistable ribbon graph whose associated surface is isomorphic
to the one in Figure 4

Definition 4.22 A P –labeled semistable ribbon graph is a semistable ribbon graph
together with an inclusion xW P ,! V .�/tC.�/ satisfying:

(1) The image x.P / is disjoint from the set of nodes.

(2) The union x.P /[N contains all distinguished points.

This inclusion is called a P –labeling. An isomorphism in this case is an isomorphism of
the underlying ribbon graph respecting the involution and order as well as the labeling.

A topological surface satisfying all the properties of a P –labeled semistable Riemann
surface except for its complex structure and the exact value of the positive real number
decorations is called a P –labeled semistable topological surface. This means we
remember the order function and whether a decoration is zero or nonzero.

Lemma 4.23 If � is a P –labeled semistable ribbon graph then Surf.�/ is a P –
labeled semistable topological surface.

Proof We need to show that every component of the normalization of Surf.�/
has nonpositive Euler characteristic, ie the Euler characteristic of the components
of Surf.�/� .N tx.P //. We know that Surf.�/�C.�/ admits � as a deformation
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retract. If a component is contractible then it must have at least two labeled points or
nodes because such a graph has at least two univalent vertices and the union x.P /[N

contains all distinguished points. This makes the Euler characteristic negative on those
components. If the component is a topological circle the Euler characteristic is at most
zero. In any other case the connected component of the graph will have negative Euler
characteristic.

We are almost ready to define the edge collapse for semistable ribbon graphs. The
order function keeps track of how the graph degenerates, and to satisfy its definition
we are not allowed to collapse all the edges associated to all components of a given
order. Otherwise there would be a “gap” in the order function (we would be missing a
number in the list of orders in contradiction with Lemma 4.19). This is why we have
the following definition. A subset of edges of a given P –labeled semistable ribbon
graph is called collapsible if it does not contain the set of edges of the union of all
components of a fixed order for any order k . For metric ribbon graphs this type of
collapse will be avoided naturally because the metrics considered are unital.

The definition of negligible subset needs to be modified for P –labeled semistable
ribbon graphs. A boundary subgraph is negligible even if it corresponds to a cusp-node.
In this case a total collapse induces an involution without fixed points that would
associate a vertex-node with the newly generated vertex-node. This contradicts the
definition of semistable ribbon graph. To fix this we simply exclude from the definition
of negligible subset all those components that are homotopy circles without labeled
points that contain a boundary subgraph giving rise to a cusp-node. Notice this only
makes sense when we have the P –labeling and the semistable ribbon graph structure
(that includes the involution). The main consequence is that now when doing a total
collapse of a boundary subgraph corresponding to a cusp-node, this subgraph will not
simply disappear. Instead, it will generate a semistable circle. The induced involution
without fixed points will associate the old vertex-node and the newly generated vertex-
node to both cusps of this semistable circle. In this way the induced involution satisfies
the condition of only associating cusp-nodes with vertex-nodes and vice versa. Another
consequence is that a semistable subset of a P –labeled semistable ribbon graph could
possibly contain boundary subgraphs giving rise to cusp-nodes.

Definition 4.24 If � is a P –labeled semistable ribbon graph and Z � E.�/ is a
collapsible subset of edges, the edge collapse is a new P –labeled semistable ribbon
graph defined as follows.

� As a P –labeled ribbon graph the edge collapse is �=Z . Notice that the change to
the definition of negligible subset creates semistable circles for each total collapse
of a homotopy circle without labeled points that corresponds to a cusp-node.
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� There is a new order function defined inductively. For this we express Z as a
disjoint union Z D

F
Zi , where each component of �Zi

has order i . Let r be
the first index such that Zr ¤¿. The new components generated by �=�Zr

keep order r . The order of the new components in y�Z sst
r

is r C 1. Now we
increase by one the order of all unaffected components except for those of order
less than or equal to r . This defines an order function on �=Zr . By Remark 4.18
we can continue this process inductively until we generate an order function
for �=Z .

� There are possibly new induced nodes together with an involution without fixed
points. In the case of the total collapse of a homotopy circle without labeled points
that corresponds to a cusp-node the old vertex-node and the newly generated
vertex-node are associated to both cusp-nodes of the generated semistable circle.
It can be showed following the inductive construction in the previous item that
the resulting involution without fixed point satisfies the definition required by a
semistable ribbon graph.

The previous definition is really a lemma, which we state below.

Lemma 4.25 The edge collapse of a collapsible subset of a P –labeled semistable
ribbon graph produces a new P –labeled semistable ribbon graph of the same topological
type but with possibly more components of higher order and more nodes.

Remark 4.26 To obtain semistable ribbon graphs with higher orders we need to
collapse several subsets of a ribbon graph consecutively. Therefore, the right notion of
edge collapse in a category of P –labeled semistable ribbon graphs is that of consecutive
collapse of collapsible subsets.

4.4 Permissible sequences

Fix a pair of associated nodes on a P –labeled semi-stable ribbon graph. A tangent
direction is a choice of gluing between the vertex-node and the boundary cycle corre-
sponding to the cusp-node as in Definition 4.7. This choice has to be compatible with
the cyclic orders on the set of half-edges of the vertex-node and the edges of the graph
associated to the exceptional boundary cycle corresponding to the cusp-node. We are
just choosing then an element of the finite set of isomorphism classes of graphs created
by the gluing construction.

Definition 4.27 A decoration by tangent directions on a semistable ribbon graph is
the choice of tangent directions for each pair of associated nodes.
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An isomorphism of semistable ribbon graphs decorated by tangent directions must pre-
serve the tangent directions in the sense that the there is an induced graph isomorphism
on the corresponding gluings.

The previous definition of semistable ribbon graphs decorated by tangent directions will
connect graphs with complex surfaces after introducing metrics on ribbon graphs. The
following approach is better suited to induce a topology in the combinatorial moduli
space that we will later define.

Definition 4.28 Given a P –labeled ribbon graph � , a permissible sequence is a
sequence

Z� D .E.�/DZ0;Z1; : : : ;Zk/

such that Zi �Zsst
i�1

, where the inclusion is strict. We call k the length of the sequence.
The pair .�;Z�/ denotes a labeled ribbon graph and a permissible sequence in it. If in
addition all Zi are semistable we call this a semistable sequence. An isomorphism of
ribbon graphs with permissible sequences is a ribbon graph isomorphism that preserves
the permissible sequences.

Remark 4.29 The length of the sequence will correspond with the maximal order
of an associated semistable ribbon graph. Notice also that there is a natural bijection
between pairs of length zero and P –labeled ribbon graphs.

Definition 4.30 A negligible subset of .�;Z�/ is a sequence D�D .D0;D1; : : : ;Dk/

such that all Di are negligible, Di �Di�1 and Di �Zi . Call N .�;Z�/ the set of
negligible subsets of .�;Z�/.

Remark 4.31 It is easy to check that we have a bijection between negligible subsets
of � and negligible subsets of .�;Z�/ by using the natural restriction. Moreover, we
can collapse along negligible subsets in a way similar to how we did before. Given
a permissible sequence Z� and negligible subset D� we define the edge collapse of
.�;Z�/ along D� as .�=�D0

; .Z=D/�/, where .Z=D/� is the sequence induced by
edge collapse. It can be shown that the result is also permissible and has the same length.

Now that we know how to collapse along negligible subsets, we also want to be able to
collapse permissible sequences along semistable subsets, but we need to be careful how
we define the new sequence. Let .�;Z�/ be a P –labeled ribbon graph together with
a permissible sequence. A subset S �E.�/ is collapsible with respect to .�;Z�/ if
Zi 6� S for all i . This last definition is similar to the concept of collapsible subset for
semistable ribbon graphs and serves the same function.

Lemma 4.32 Given a collapsible subset S with respect to .�;Z�/, semistable in � ,
we can induce a new permissible sequence .Z=S/� inductively.
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Proof Let i be the integer satisfying S �Zi and S 6�ZiC1 . Then .Z=S/j DZj

for j � i . Set .Z=S/iC1D S [ZiC1 and .Z=S/iC2DZiC1 . Now, if S \ .ZiC1�

ZiC2/¤¿ then .Z=S/iC3D .S�Zc
iC1

/[ZiC2 and .Z=S/iC4DZiC2 ; otherwise
.Z=S/iC3 D ZiC2 . We can continue this process until the we reach the last step:
either we exhaust all of S , meaning that the last element of the sequence will be
.Z=S/l DZk or .Z=S/l D S �Zc

k
, where k is the length of Z� and l the length

of the new sequence. The resulting sequence can be shown to be permissible and will
have l > k . The resulting pair is then .�; .Z=S/�/.

Proposition 4.33 A P –labeled ribbon graph together with a permissible sequence Z�
can be used to construct a P –labeled semistable ribbon graph.

Proof For i >0 we can always collapse Zi�Zsst
i since these sets are negligible due to

maximality. Therefore we can assume that all Zi are semistable for i > 0. The disjoint
union �=�Z1

t y�Z1
naturally inherits a semistable ribbon graph structure through

the involution identifying exceptional vertices with their corresponding exceptional
boundary cycles. The connected components of y�Z1�Z st

1
are semistable circles. The

components in �=�Z1
only contain vertex-nodes and thus all those components have

order zero. All the components of y�Z1
have at least one cusp-node associated to

a vertex-node in a component of order zero and hence all those components have
order one. The P –labeling naturally induces a P –labeling on the semistable ribbon
graph. We can inductively apply this process to y�Zi

and ZiC1 , thus obtaining a
P –labeled semistable ribbon graph .�=�Z1

t y�Z1
=�Z2

t � � � t y�Zk
; �;x/.

Now we describe the connection between ribbon graphs with semistable sequences and
semistable ribbon graphs decorated by tangent directions.

Theorem 4.34 There is a natural bijection between isomorphism classes of P –labeled
ribbon graphs with semistable sequences and isomorphism classes of P –labeled
semistable ribbon graphs decorated by tangent directions. This identification preserves
isomorphism classes of negligible and collapsible semistable subsets (with respect to
the given structures) and commutes with the edge collapse of the corresponding sets.

Proof Let � be a P –labeled ribbon graph and Z� a semistable sequence. This
generates a P –labeled semistable ribbon graph by Proposition 4.33. To obtain the
tangent direction decorations, it is enough to keep track of where the half-edges of
a vertex-node were attached on the original graph. This correspondence naturally
descends to a correspondence on isomorphism classes.

Now suppose we have a P –labeled semistable ribbon graph decorated by tangent
directions. The tangent direction decorations allow us to reconstruct a P –labeled
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ribbon graph by using the gluing construction on vertex-nodes and boundary cycles.
Since this is defined only up to isomorphism, this correspondence is well defined on
isomorphism classes. On a representative, every component of a semistable graph
induces a subgraph of the ribbon graph. Together with the order this defines a sequence
of subgraphs Z� in the ribbon graph up to isomorphism. It is not hard to check that
this sequence will indeed be semistable.

These correspondences are inverses of each other on isomorphism classes by construc-
tion. Remark 4.31 implies that negligible subsets are preserved and it also implies
the commutativity with the edge collapse. For collapsible semistable subsets we also
use the natural restriction and the gluing construction to track the image of these sets
under the bijection. By the definitions, and Lemmas 4.25 and 4.32, we can show that
collapsible semistable subsets are also preserved by the bijection.

Remark 4.35 In fact it is possible to define a category of semistable ribbon graphs and
another one of ribbon graphs with permissible sequences. After defining the right notion
of morphism the previous theorem can be extended to an equivalence of appropriate
categories.

5 Cellular decompositions

5.1 Metrics on ribbon graphs

Definition 5.1 A metric on a ribbon graph � is a map l W E.�/!RC . If the sum of
the lengths of all edges is one we call this a unital metric or conformal structure. A
unital metric on a semistable ribbon graph is a sequence fl�g of unital metrics on every
union of connected components of a fixed order. We call such structure a conformal
semistable metric.

Notice that the surface Surf.�/�C.�/ inherits a piece-wise Euclidean metric induced
by the lengths of the edges.

An isomorphism of metric ribbon graphs is a ribbon graph isomorphism that respects
the metric. The space of conformal structures on � up to isomorphism will be denoted
by cf .�/. We use the same notation when � and the metric are semistable. If the
ribbon graphs are P –labeled we require such an isomorphism to fix the labels pointwise.
A point in cf .�/ can be denoted by �met . The main consequence of having a metric
on a ribbon graph is the following.

Proposition 5.2 A metric on a ribbon graph induces a complex structure on the surface
it determines.
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Proof This is the reason why Surf.�/ was constructed out of patches of the complex
plane.

Now that every edge has a well-defined length, the tiles Ke are subsets of the complex
plane. It is then possible to give Surf.�/�f�[Pg a canonical atlas of complex charts.
This complex structure extends to Surf.�/ making this a compact Riemann surface
with P –labeled points denoted by C.�; l/ (see [12, Theorem 5.1; 11, 6.2]).

The previous construction can be carried out on the irreducible components of a
semistable surface. Therefore, given a conformal semistable ribbon graph we can
induce a conformal structure on the singular surface it determines.

Remark 5.3 There is a natural identification

cf .�/D
�Y

k�0

ı
�E.�k/

�
=G;

where �k is the subgraph containing all components of order k ,
ı
�E.�k/ is the open

simplex generated by the set of edges of �k and G is a finite group acting by automor-
phisms of metric ribbon graphs. This is thus a rational cell, following the language of
[12], which we call an orbicell.

Now we follow the notation in Sections 2 and 3 of [12]. We use their definition of
orbifold, differentiable orbifold and orbifold-cell decomposition, which we are calling
an orbicell decomposition of an orbifold. For an alternate definition one can check the
Appendix in [3].

Definition 5.4 A near conformal structure on a ribbon graph � is a conformal structure
l W E.�/!R�0 whose zero set is negligible. The space of near conformal structures
is denoted by ncf .�/.

Definition 5.5 Given a P –labeled ribbon graph and a permissible sequence Z� a
semistable conformal structure with respect to such a sequence is a conformal structure
on every difference �Zk�ZkC1

.

Remark 5.6 From the previous definition we can see that a semistable conformal
metric may be given as a sequence of functions lk W Zk !R�0 such that lk has zero
set ZkC1 (so l� determines Z� ) and the total length of each Zk adds up to one. We
can thus define the spaces cf .�;Z�/ and ncf .�;Z�/.

Now we construct an orbicell decomposition made out of semistable ribbon graphs.
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Definition 5.7 The moduli space of P –labeled semistable ribbon graphs of genus g

decorated by tangent directions is defined as

Mcomb
g;P D

a
Œ.�;Z�/�

cf .�;Z�/;

where the union is taken over isomorphism classes of P –labeled semistable ribbon
graphs decorated by tangent directions of topological type .g; jP j/ and permissible
sequences.

Theorem 5.8 The set Mcomb
g;P

has a natural structure of a topological space.

Proof The topology of the orbicell decomposition is determined by how the orbicells
are glued together. Two orbicells are glued when one can be obtained from the other
by collapsing edges. Given any nonempty proper subset of edges Z1 we can glue
a new orbicell along the boundary (notice that the properness is necessary since the
sum of edges always adds up to one). If Z1 is negligible this is just a part of ncf .�/,
which gives a partial compactification. Otherwise take Z1 � Zsst

1
first, and then

glue along cf .�; .E.�/;Z1�Zsst
1
//. However there might be missing pieces of the

boundary. Those pieces correspond to possible degenerations of �Z sst
1

. This process
can be understood as using ncf .�/ to glue orbicells. If we continue this way we can
inductively glue orbicells corresponding with semistable ribbon graphs of higher order.

Now we describe a system of neighborhoods that generate the topology of Mcomb
g;P .

Recall from [12, Section 3] that we write �1 � �2 when �1 can be obtained from �2

by edge collapse. We also say then that �2 is obtained by edge expansion of �1 . This
definition can be extended to P –labeled semistable ribbon graphs in a natural way due
to Definition 4.24. This implies that the edge expansion also includes desingularization
of graphs. Given a �met 2Mcomb

g;P let � > 0 be a positive number smaller than half
of the length of the shortest edge of �met . The �–neighborhood of �met in Mcomb

g;P ,
denoted by U�.�met/, is the set of all P –labeled semistable metric ribbon graphs � 0met
satisfying the following conditions.

� � � � 0 .

� The edges of � 0met that are contracted into �met have length less than � .

� Let e0 be an edge of � 0met that is not contracted and corresponds to an edge e of
�met of length L. Then, the length L0 of e0 is in the range

L� � <L0 <LC �:

� The lengths of the edges in � 0met are chosen so that the metric is still a conformal
semistable metric.
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For nonsingular graphs and possibly nonunital metrics this is the same as [12, Definition
3.1]. The topology of Mcomb

g;P is defined as the smallest topology that has these �–
neighborhoods as open sets.

Remark 5.9 In fact it is possible to extend the proof of [12, Theorem 3.5] to our case
in order to show that Mcomb

g;P is a differentiable orbifold.

By forgetting the tangent direction decorations we obtain the following definition.

Definition 5.10 The moduli space of P –labeled semistable ribbon graphs of genus g

is defined as
Mcomb

g;P D

a
Œ��

cf .�/;

where Œ�� is an isomorphism class of P –labeled semistable ribbon graph of topological
type .g; jP j/.

In light of Remark 5.6 and Theorem 4.34, these orbicell decompositions can be defined
in terms of P –labeled ribbon graphs together with conformal semistable metrics. This
comes with a map Mcomb

g;P
!Mcomb

g;P
induced by the map forgetting the tangent direction

decorations on a semistable ribbon graph. The preimage of a point is the space of
tangent direction decorations on a particular class of conformal semistable ribbon
graph. This map allow us to induce the quotient topology on Mcomb

g;P
using the previous

theorem.

Example 5.11 To visualize some orbicells and how they fit together consider the space
Mcomb

0;P
where jP j D 4. Figure 17 shows a trivalent graph and how it can degenerate

to two different semistable ribbon graphs. The number over a component of a graph
denotes its order. The trivalent graph determines an orbicell of the form

ı
�5 whose

dimension agrees with the dimension of the corresponding moduli space. If we collapse
the subgraph determined by the big circle and what it is inside it we obtain the graph
on the bottom left. If we collapse only the big circle we obtain the graph on the bottom
right. The singular graph on the bottom left corresponds with an orbicell of the form
ı
�1�

ı
�2 and the one on the bottom right with an orbicell of the form

ı
�3�

ı
�0 , where

ı
�0 comes from the semistable circle. This last graph has five edges, but only four of
them can be collapsed since the semistable circle can not any more. Those four edges
are labeled a, b , c and d . Since this last orbicell is three-dimensional we show in
Figure 18 this orbicell together with its degenerations. The straight arrows correspond
with faces on the front and the curved arrows with faces on the back.

Algebraic & Geometric Topology, Volume 15 (2015)



Compactifications of moduli spaces and cellular decompositions 35

0

0 1
0 1 0

a b c
d

Figure 17: Two degenerations of a trivalent graph in Mcomb
0;4

5.2 Strebel–Jenkins differentials

A meromorphic quadratic differential on a Riemann surface C is a meromorphic section
of .T �C /ˇ2 , the second symmetric power of the cotangent bundle. The notions of zero
and order of a zero of these differentials do not depend on the local representation. In
the same way the notion of pole and order of a pole are stable by change of coordinates.
Zeros and poles will be call critical points. If the quadratic differential has a pole of
order two this is called a double pole and a pole of order one a simple pole. Given a
representation in local coordinates f .z/ dz2 around a double pole q we can express
f as

f .z/D
a�2

z2
C

a�1

z
C a0C � � �

and call the term a�2 its quadratic residue. It can be shown that this number does not
depend on the choice of local coordinates.

These differentials define certain curves on the Riemann surface. If q D f .z/ dz2 is a
meromorphic quadratic differential then the parametric curve Er W .a; b/! C is called a
horizontal trajectory, or leaf of q , and vertical trajectory if, respectively:

f .Er.t//
�

d Er.t/

dt

�2
> 0 and f .Er.t//

�
d Er.t/

dt

�2
< 0:

The quadratic differentials we are particularly interested on are the following.
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a

b

c

d

0 2 1

1 2 0

0 1 0

0 1 0

0 1 0

0 1 0

Figure 18: Degenerations of the second singular graph in Figure 17 and how
the corresponding orbicells fit together

Definition 5.12 A Strebel–Jenkins differential is a meromorphic quadratic differential
with only simple poles or double poles with negative quadratic residues.

In the case of Strebel–Jenkins differentials we have two kinds of leaves: closed ones
(surrounding a double pole) and critical ones (connecting zeroes and simple poles).
The union of critical leaves, zeroes and simple poles forms the critical graph. The
vertical trajectories connect the double poles to the critical graph and are orthogonal
to the closed leaves under the metric induced by

p
q . The following existence and

uniqueness theorem follows from the work of Jenkins and Strebel (see [14] and [11,
Theorem 7.6]).

Theorem 5.13 Given a Riemann Surface of genus g with labeled points P and
decorations � 2 �P there exists a unique quadratic differential with the following
properties. It is holomorphic on the complement of P . The union of closed leaves
form semi-infinite cylinders around the points with nonzero decoration. The quadratic
residues coincide with �. The labeled points decorated by zero lie on the critical graph.

Algebraic & Geometric Topology, Volume 15 (2015)



Compactifications of moduli spaces and cellular decompositions 37

q D dz2 q D zm dz2 q D�dz2

z2

Figure 19: Different behaviors of Strebel–Jenkins differentials. The solid
lines represent horizontal trajectories and the dotted one vertical trajectories.

If we restrict to connected (not necessarily unital) metric ribbon graphs with vertices
of valence at least three and then put together orbicells as in Remark 5.3, this gives the
space Mcomb

g;P
of P –labeled ribbon graphs as in [12]. The map ‰WMcomb

g;P
!Mdec

g;P

uses the construction of Proposition 5.2. The decorations come from taking half the
perimeter of the subgraph associated to a boundary cycle, or it is zero if the labeled
point lies on the graph. The reason why we take the half is because each edge is counted
twice, one for each orientation. Theorem 5.13 provides its inverse. As these maps are
continuous ‰ is a homeomorphism.

Now we describe an extension of ‰ . The map ‰WMcomb
g;P
!Mdec

g;P
is well defined for

nonsingular graphs and surfaces. Let Œ�� be a point in cf .�;Z�/. The metric clearly
defines a semistable Riemann surface with the aid of the involution � and the order
function. There is also an induced P –labeling. The decoration at each labeled point
is induced by taking half the length of the corresponding subgraph associated to a
boundary cycle or it is zero when the labeled point lies on the graph.

To induce tangent direction decorations we follow the idea illustrated in Figure 20. On
the blowup of a vertex-node choose a parametrization making one of the half-edges
coincide with the positive real line and so that there is an equal distance between
each half-edge. The reason for choosing this particular parametrization is to make this
construction compatible with the complex chart induced at a vertex of a metric ribbon
graph (see [12, Theorem 5.1]). The half-edge on the positive real line induces a tangent
vector z1 on the induced surface. On the cusp-node there is a natural parametrization
of the boundary subgraph by S1 with opposite orientation up to rotation. This is
because the graph has a metric and thus the subgraph associated to the boundary cycle
has a well defined length that can be rescaled. Since the graph has a decoration by
tangent directions the half-edge on the vertex-node corresponding to the positive real
line induces a point on the subgraph associated to the boundary cycle. To fix the
parametrization of the boundary subgraph let the positive real line coincide with the
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previously induced point. This point in turn induces a tangent vector z2 on the node
of the surface by going along a vertical trajectory starting at the induced point and
taking minus the tangent of such trajectory at the node. Now let the decoration by
tangent directions on the surface be z1˝ z2 . It is not hard to show that this definition
is independent of the choices up to surface isomorphism.

vertex-node
z1 z2

chosen
half-edge

induced point on
boundary cycle

cusp-node

Figure 20: Tangent directions on a semistable ribbon graph inducing tangent
directions on the corresponding Riemann surface

The second main theorem of this paper is the following.

Theorem 5.14 The map ‰WMcomb
g;P
!Mdec

g;P
is a homeomorphism.

The proof is a generalization of [11, Theorem 11.5] quoted below. This generalization
requires a careful analysis of the decorations on labeled points and tangent direction
decorations, which we now present.

Using again Strebel–Jenkins differentials, we can produce the inverse ‰�1 making this
map a bijection. This inverse assigns to a class of a P –labeled decorated semistable
Riemann surfaces the isomorphism class of a metric semistable ribbon graph via
Theorem 5.13.

By forgetting the tangent direction decorations we get another surjection

‰WMcomb
g;P !Mdec

g;P :

Finally by forgetting the decorations and order on the semistable Riemann surfaces we
get surjections ˆWMcomb

g;P
!Mg;P and ˆWMcomb

g;P
!Mg;P .

Using the notation of [11] we have a projection Mcomb
g;P
! �n yA, where yA is a cellular

decomposition of the Teichmüller analogue for the compactified decorated moduli
space related to the arc complex and � is the mapping class group acting on yA. The
definition of yA is connected to the definition of the combinatorial moduli space by
taking the dual graph. The preimage of a point under this map corresponds with
decorations including semistable spheres. In fact we have the following:
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Theorem 5.15 (Looijenga) The map �n yA!Mg;P is a continuous surjection with
the preimage of a point being the space of nonnegative real number decorations after
collapsing semistable spheres.

By keeping track of the extra decorations on semistable spheres and using the projection
Mcomb

g;P
! �n yA we can extend Looijenga’s main theorem to the following result.

Theorem 5.16 The map ˆWMcomb
g;P
! Mg;P is a continuous surjection with the

preimage of a point being the space of all semistable ribbon graphs generating the same
conformal class in the Deligne–Mumford moduli space.

The following result easily follows from the previous one by keeping track of the
decoration by tangent directions. It never appeared in the literature because the space
Mcomb

g;P
is new.

Proposition 5.17 The map ˆWMcomb
g;P
!Mg;P is a continuous surjection with preim-

ages the space of all semistable ribbon graphs decorated by tangent directions generating
the same conformal class in the real oriented blowup of the Deligne–Mumford moduli
space.

In order to extend ‰ to the boundary we need to extract decorations from a metric
on a ribbon graph. Given a metric ribbon graph .�; l/ we can construct a function
�W C.�/!RC defined as half the total length of the associated boundary subgraph
(counting twice those edges with both half-edges in the boundary cycle). This is
called a perimeter function. For a metric P –labeled semistable ribbon graph the
perimeter function is defined by �W x.P /tN !R�0 vanishing only at the points that
correspond with vertices of the graph and assigning to each cusp half the perimeter of
the corresponding boundary subgraph (counting twice those edges with both half-edges
in the boundary cycle).

It is now possible to redefine the maps ‰ D .ˆ; �/ and ‰ D .ˆ; �/.

Theorem 5.18 The map ‰WMcomb
g;P
!Mdec

g;P
is a homeomorphism.

Proof The function ‰ has an inverse constructed from Strebel’s theorem. Such inverse
assigns to a decorated P –labeled semistable Riemann surface a P –labeled semistable
ribbon graph with the metric induced from the conformal structure on the surface and
transferring the order function to the graph component by component. This makes ‰ a
bijection. Since both spaces are Hausdorff and compact it is enough to show continuity
of ‰ to show that it is a homeomorphism. The continuity of ˆ can be extended to the
continuity of ‰ by keeping track of the nonnegative real number decorations.
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Proof of Theorem 5.14 This is a generalization of the previous theorem obtained by
keeping track of the tangent direction decorations.

Remark 5.19 The continuity of .‰/�1 can be proved provided one can extend the
proof in [15] by a careful analysis of the convergence of Strebel–Jenkins differentials
via the normalization described in Section 3.2.

One of the difficulties in showing the existence of the homeomorphisms ‰ and ‰
arises from defining the spaces Mdec

g;P
and Mdec

g;P
precisely. This allows us to interpret

the space of decorations as combinatorial data that is possible to embed in the definition
of a stable Riemann surface thus giving the desired homeomorphisms.

Corollary 5.20 We also get orbicell decompositions of Mcomb
g;P

=SP , Mcomb
g;P

=SP

homeomorphic to Mdec
g;P
=SP , Mdec

g;P
=SP respectively.

Remark 5.21 By Corollaries 3.12 and 3.15 the surjective maps � WMcomb
g;P
!Mg;P ,

� WMcomb
g;P
!Mg;P are homotopy equivalences and thus a chain complex computing

the homology of the domains will compute the homology of the target spaces.

The spaces Mdec
g;P
=SP are the decorated analogues of the spaces used in [2] to construct

a solution to the quantum master equation. Using the last corollary and extending the
previous remark it might be possible to describe a solution to the master equation in
terms of ribbon graphs.

Another interesting question is how to extend the present result for the moduli of
bordered Riemann surfaces and whether that also yields a combinatorial solution to the
quantum master equation as in [7].
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