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Algebraic structure and integration maps
in cocycle models for differential cohomology

MARKUS UPMEIER

We construct explicit multiplicative and additive structures as well as integration maps
on differential extensions of rationally even cohomology theories in the Hopkins–
Singer cocycle model. To this end, we consider also a pair-theory for which a long
exact sequence is established.

55N20; 55S05

1 Introduction

Let E be a multiplicative cohomology theory satisfying Milnor’s wedge axiom. Then
one has the multiplicative Chern–Dold transformation [8]

(1) chW En.X;A/!H n.X;AIV /D
Y
i2Z

H i.X;AIV n�i/

of cohomology theories for the graded coefficient vector space V � D ���E˝R.

We always assume E to be rationally even, meaning V 2nC1 D 0 for all n 2 Z.

Definition 1.1 A differential extension [4] of E consists of a contravariant functor yE
from the category of manifolds to graded abelian groups along with natural linear
transformations I;R; a as in the following commutative diagram, which is required to
have an exact upper horizontal row.

(2)
En�1.M / �n�1.M IV /= im.d/ yEn.M / En.M / 0

�n
cl.M IV / H n.M IV /

ch a I

R ch
d

Definition 1.2 A multiplicative structure on yE consists of a unit 1 2 yE0.pt/ and
natural bilinear transformations

(3) �W yEn.N /� yEm.M /! yEnCm.N �M /;
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66 Markus Upmeier

which are associative, graded commutative, and unital. The maps I;R are required to
preserve the external product and unit, while for a we demand

(4) a.�/�x D a.� ^R.x// for all � 2�n�1.N IV /; x 2 yEm.M /:

(Here, ! ^ �D pr�
1
! ^ pr�

2
� denotes the external product of differential forms.)

Early examples of differential cohomology appeared as the sheaf-theoretic Deligne
cohomology (see Gajer [10]) and Cheeger–Simons differential characters [6]. These
provide a natural setting to study secondary invariants that take additional geometric
structure into account. Later, a stratifold model for ordinary differential cohomology
was introduced by Bunke, Kreck, and Schick [2]. Differential extensions of K–theory
were studied by Lott [12] and Bunke and Schick [3] with which a refinement of the
families index theorem may be proven; see Freed and Lott [9]. Another broad class of
differential extensions (for Landweber exact cohomology theories) was constructed by
Bunke, Schick, Schröder and Wiethaup [5].

Each of these examples carries a multiplicative structure. On the other hand, a general
homotopy-theoretic construction of differential extensions was given by Hopkins and
Singer [11], but its multiplicative properties remained unclear.

Their study is the main subject of this paper: Theorem 2.5 proves the existence of prod-
ucts for rationally even cohomology theories. As a second main result (Theorem 2.3)
we construct explicit integration maps, which are crucial to extend constructions from
even degrees to odd degrees. To this end, we introduce differential cohomology for
pairs and exhibit a corresponding pair sequence in Theorem 2.2. Finally, in order to
prove bilinearity of our products we exhibit a cocycle-based description of addition
(Theorem 2.1), which is needed since the abelian group structure in [11] is given
by producing a spectrum with homotopy groups yEn.M / and the structure maps (in
particular, the addition) are only abstractly given, involving choices of functorial
sections [11, Equation (4.41)]. In summary, our results provide an accessible approach
to (rationally even) differential cohomology based on concrete cocycle constructions.

1A Conventions and notation

1A1 Spectrum By Brown’s representability theorem, the reduced E–cohomology
zEn.X / is represented by a spectrum .En; "nW En^S1!EnC1/ via pointed homotopy

classes ŒX;En� with homeomorphisms as adjoint structure maps "adj
n W En!�EnC1 .

We fix such a choice of spectrum.
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Algebraic structure in differential cohomology 67

1A2 Coefficients Let C n.X;AIV /D
Q

iCjDn C i.X;AIV j / denote cochains with
coefficients in V and similarly for cohomology and differential forms. Hence an
n–cochain is a chain map C�.X;A/! V��n , where V� D V �� is a chain complex
with zero differential. By C �s .M;N IV / we mean the subcomplex of smooth cochains.
Relative differential forms ! 2�n.M;N IV / (meaning !p D 0 at each p 2N ) yield
smooth cochains via the de Rham homomorphism.

1A3 Integration Let u 2 C nC1..X;A/�S1IV /. Using the Eilenberg–Zilber map
EZW C�.X;A/˝C�.S

1/!C�..X;A/�S1/ (see tom Diek [7, page 240]) the integralR
u is the element of C n.X;AIV / defined on chains � by .

R
u/.�/D u.EZ.�˝S1//,

for the canonical 1–cycle S1 on the circle. EZ is a natural chain map, hence

(5)
Z
ıuD ı

Z
u; f �

Z
uD

Z
.f � idS1/�u:

(i) The integral of ! 2�nC1.M �S1IV / along the fiber S1 is also denoted
R
! .

Relative forms are integrated by viewing them as absolute forms. In particular,R
j �! D

R
! for j W .M �S1;M � 1/!M �S1 .

(ii) For cW .X;A/� .S1; 1/! .EnC1; pt/ we let
R

cW .X;A/! .En; pt/ denote the
unique map ."adj

n /�1 ı cadj with

(6) "n ı

�Z
c � idS1

�
D c:

(iii) In cohomology, (ii) induces
R
W EnC1..X;A/� .S1; 1//! En.X;A/ and an

absolute integration map
R
W EnC1.X�S1/!En.X / (see Bunke and Schick [4,

page 5]).

Combining (5) and (6), integration of cochains and of maps, as in (ii), are compatible:

(7)
Z

c�un D

�Z
c
��

un�1 if un�1 D

Z
"�n�1un:

Viewing forms as cochains, cochain integration extends (i); see Hopkins and Singer [11,
Lemma 3.15].

1A4 Left integration Suspensions are on the right, homotopies have their interval
I D Œ0; 1� on the left. Let

R 0
uD u.EZ.I ˝�// denote the left integral of the cochain

u 2 C nC1.I � .X;A/IV / over the canonical 1–chain on I . Then

(8)
Z 0
ıuC ı

Z 0
uD uj1�X �uj0�X ; f �

�Z 0
u
�
D

Z 0
.idI �f /

�u:

Let prij ��� be the projection X1�X2�� � �!Xi�Xj �� � � on the indicated factors.

Algebraic & Geometric Topology, Volume 15 (2015)



68 Markus Upmeier

2 Main results

We briefly recall the Hopkins–Singer construction of differential cohomology: Follow-
ing [11, page 48], fix a spectrum .En; "n/ representing E and a choice of fundamental
cocycles �n 2 zZn.EnIV / satisfying

(9) �n�1 D

Z
"�n�1�n:

These are representatives of the reduced cohomology classes Œ�n� 2 zH n.EnIV / that
represent the reduced Chern character (AD pt) via

chŒf �D f �Œ�n�; Œf � 2 ŒX;En�Š zE
n.X /:

Now, for N �M closed, define yEn.M;N / as the set of all equivalence classes of
differential cocycles

cW .M;N /! .En; pt/

satisfying

(10) ıhD ! � c��n for ! 2�n.M;N IV /; h 2 C n�1
s .M;N IV /:

Here an equivalence .c0; !; h0/� .c1; !; h1/ is a pair

C W I � .M;N /! .En; pt/; H 2 C n�1
s .I � .M;N /IV /;

restricting to .c0; h0/, .c1; h1/ on the boundary, satisfying ıH D pr� ! �C ��n . To a
smooth map of pairs f W .M1;N1/! .M2;N2/ the functor yE associates

(11) yEn.f /D f �W yEn.M2;N2/! yE
n.M1;N1/; Œc; !; h� 7! Œc ıf; f �!; f �h�;

where Œ � denotes equivalence classes. Defining I Œc; !; h� D Œc�, RŒc; !; h� D ! ,
a.�/ D Œconst; d�; �� it is shown in [11, Equation (4.57)] that these groups form a
differential extension of E and that the associated flat theory yEn

flat.M /D ker.R/ �
yEn.M / is a cohomology theory.

In the framework of Hopkins–Singer differential cohomology we obtain the following
results (always under the assumption rationally even).

Theorem 2.1 There is an explicit abelian group structure on yEn.M;N / (described in
Section 3A) for which I;R; a and the induced maps (11) are linear.

The proof is given in Section 3B. In Section 4 and Section 5 we then prove Theorem 2.2
and Theorem 2.5, respectively.
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Algebraic structure in differential cohomology 69

Theorem 2.2 For closed submanifolds N �M we have an exact sequence:

(12)

// yEn�1
flat .M;N / // yEn�1

flat .M / // yEn�1
flat .N /

ı1

// yEn.M;N / // yEn.M / // yEn.N /
ı2

00 EnC1.M;N / // EnC1.M / // EnC1.N / //

Here ı1W yE
n�1
flat .N / ! yEn

flat.M;N / � yEn.M;N / and ı2W yE
n.N /

I
�! En.N / !

EnC1.M;N /, using the connecting homomorphisms for yEflat and E .

Theorem 2.3 The maps from Section 1A3 define linear natural transformations

(13)
Z
W yEnC1..M;N /� .S1; 1//! yEn.M;N /; Œc; !; h� 7!

hZ
c;

Z
!;

Z
h
i
:

These commute with I;R; a (using (i) and (iii) from Section 1A on forms and E–
cohomology).

The main work is carried out in Section 6B where we prove our main result.

Theorem 2.4 There exists a multiplicative structure in even degrees. This product
structure is compatible with integration maps (n;m even).

(14)
ZZ
.x �y/D x �

�ZZ
y
�

for all x 2 yEn.N /; y 2 yEm.M �S1
�S1/

A formal argument in Section 6C then yields the following.

Theorem 2.5 A rationally even multiplicative cohomology theory E admits a multi-
plicative differential extension with integration satisfyingZ

.x �y/D x �
�Z

y
�

for all x 2 yEn.N /; y 2 yEm.M �S1/:

3 Addition

Combining the universal coefficient and Künneth theorem with [4, Lemma 3.8] gives
zH k.En �Em � � � � IV /D 0 for k odd and n;m; : : : even. Hence

(15) ıx D 0 for x 2 zC k.En �Em � � � � IV / H) x 2 im.ı/:

Algebraic & Geometric Topology, Volume 15 (2015)



70 Markus Upmeier

We denote by "E�E����
n the product spectra E �E � � � � structure maps

.En �En � � � � /^S1
!EnC1 �EnC1 � � � � ;

.x1;x2; : : :/^ t 7! ."n.x1 ^ t/; "n.x2 ^ t/; : : :/:

3A Construction

In E–cohomology, addition is represented (using adjoint structure maps to write
Ei ��

2EiC2 ) by loop composition ˛i W Ei�Ei!Ei and negation by loop inversion
�i W Ei ! Ei (using either loop coordinate). We agree to use the first or second
coordinate for ˛i , �i , according to whether i is even or odd. Hence for even n,

(16) ˛n�1 D

Z
˛n ı "n�1; �n�1 D

Z
�n ı "n�1:

Linearity of (1) implies chŒpr1�C chŒpr2�D chŒ˛n� and � chŒid�D chŒ�n�. In terms of
the fundamental cocycles, this means that we may pick (we do this only for even n)
cochains An 2

zC n�1.En �EnIV /, Nn 2
zC n�1.EnIV / with

(17) ıAn D pr�1 �nC pr�2 �n�˛
�
n �n; ıNn D��n� �

�
n �n:

To ensure (17) also in odd degrees, in view of (5), (7), (9), and (16) we set

(18) An�1 D

Z
"�n�1An; Nn�1 D

Z
"�n�1Nn:

Definition 3.1 The sum of differential cocycles is defined by

(19) .c1; !1; h1/C .c2; !2; h2/D
�
˛i.c1; c2/; !1C!2; h1C h2C .c1; c2/

�Ai

�
:

Define also 0D .const; 0; 0/ and �.c; !; h/D .�ic;�!;�hC c�Ni/. These are all
differential cocycles by (17) and since the fundamental cocycles are reduced.

3B Verification of axioms

With Definition 3.1, induced maps (11) and I;R; a are clearly linear. To check that (19)
descends to differential cohomology, suppose .C1;H1/W x1 � x0

1
, .C2;H2/W x2 � x0

2

are equivalences. Then�
˛i.C1;C2/;H0CH1C .C0;C1/

�Ai

�
W x1Cx2 � x01Cx02:
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Algebraic structure in differential cohomology 71

The following two rules for manipulating differential cocycles are proven in the appendix
(as Lemmas A.1 and A.2):

h� h0 2 im.ı/H) Œc; !; h�D Œc; !; h0�;(20)

C W c0 ' c1 .rel N /H) Œc0; !; h�D
h
c1; !; h�

Z 0
C ��n

i
2 yEn.M;N /:(21)

Remark 3.2 For n even, any two choices of An or Nn differ by a cocycle, which is
a coboundary by (15). Combining (5) with (18), this is true also in odd degrees. Hence
(20) implies that the addition in differential cohomology depends only on the spectrum
.En; "n/ and the choice of fundamental cocycles.

Lemma 3.3 Suppose H W I �En �Em � � � � !Ei is a pointed homotopy and c is a
map .M;N /! .En �Em � � � � ; pt/. Then x D ŒH0 ı c; !; h�, y D ŒH1 ı c; !; h0� in
yEi.M;N / agree if there exists vi 2

zZi�1.En �Em � � � � IV / with

(22) h� h0� c�
Z 0

H��i � c�vi mod im.ı/;

and one of the following conditions is satisfied:

(i) i and n;m; : : : are even integers.

(ii) i D n D m D � � � are odd and there exists viC1 2
zZi.EiC1 �EiC1 � � � � IV /

with vi D
R
."E�E����

i /�viC1 .

Proof Given (i), ıvi D 0 and (15) shows that vi is a coboundary. If (ii) is satisfied,
then viC1 is a coboundary by (i) and (5) implies that viD

R
"�i viC1 is also a coboundary.

In each case, the cochain (22) is a coboundary. Hence

ŒH0 ı c; !; h�D
h
H1 ı c; !; h� c�

Z 0
H��i

i
by (8); (21)

D ŒH1 ı c; !; h0� by (20):

Theorem 2.1 There is an explicit abelian group structure on yEn.M;N / (described in
Section 3A) for which I;R; a and induced maps (11) are linear.

Proof Expressing that E–cohomology is abelian group-valued in terms of representing
maps leads to homotopies (chosen only for even degrees n)

H ass
n W ˛n.˛n � id/' ˛n.id�˛n/; H

neg
n W ˛n.id; �n/' const;

H zer
n W ˛n.id; const/' id; H com

n W ˛n ıflip' ˛n:
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72 Markus Upmeier

In view of (16), corresponding homotopies in degree n� 1 may be defined by

(23)
H ass

n�1 D

Z
H ass

n ı
�
idI �"

E�E�E
n�1

�
; H

neg
n�1
D

Z
H

neg
n ı

�
idI �"n�1

�
;

H zer
n�1 D

Z
H zer

n ı
�
idI �"n�1

�
; H com

n�1 D

Z
H com

n ı
�
idI �"

E�E
n�1

�
:

For xj D Œcj ; !j ; hj � in yEi.M;N /, j D 1; 2; 3, we must show

.x1Cx2/Cx3Dx1C.x2Cx3/; x1C.�x1/D0; x1C0Dx1; x2Cx1Dx1Cx2:

Unwinding Definition 3.1 leads in each case to differential cocycles x , y we wish to
prove are equivalent; eg unwinding the commutativity axiom leads to

x D
�
˛i.c2; c1/; !2C!1; h2C h1C .c2; c1/

�Ak

�
;

y D
�
˛i.c1; c2/; !1C!2; h1C h2C .c1; c2/

�Ak

�
:

Each of these axioms holds for differential forms and is exhibited in differential
cohomology by a respective application of Lemma 3.3 to the cochains

vass
k D pr�12 Ak C .˛k � id/�Ak � pr�23 Ak �

Z 0
.H ass

k /��k ;

vcom
k D flip�Ak �Ak �

Z 0
.H com

k /��k ;

v
neg
k
DNk C .id; �k/

�Ak �

Z 0
.H

neg
k
/��k ;

vzer
k D .id; const/�Ak �

Z 0
.H zer

k /��k ;

the maps cass D .c1; c2; c3/; c
com D cneg D .c1; c2/; c

zer D c1 , and homotopies H D

H ass
i ;H com

i ;H neg
i ;H zer

i . Our choice (17) and (8) ensure ıvk D 0 in each case. If i is
odd, condition (ii) of Lemma 3.3 holds by (9), (18), and (23).

Assuming the coefficients E�.pt/ are countably generated, [4, Theorem 3.10] implies
that yE�, with the above abelian group structure and the integration maps from Section 5,
is isomorphic to the construction in [11].

4 Long exact sequence of pairs

Proof of Theorem 2.2 At every place except yEn.M / the exactness follows by
combining the exactness of (2) with the exact pair sequences for E , yEflat . Suppose
therefore that .c; !; h/ is a cocycle on M with an equivalence .C;H / from .c; !; h/jN
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to .const; 0; 0/. Let �W I!I be smooth strictly increasing with �jŒ0;1=4�D0, �.1/D1.
Pulling C;H back along � , we may suppose

C jŒ0;1=4��N D cjN ı pr2; H jŒ0;1=4��N D pr�2 hjN :

Applying Lemma A.3 to AD 0�M [ Œ0; 1=4Œ�N , B D�0; 1��N and pr�
2

hjA , H ,
we find G 2 C n�1

s .0�M [ I �N IV / with GjA D pr�
2

hjA , GjB DH .

The maps c and C can be glued to a map D on 0�M[I�N . In view of (35), cocycles
are invariant under sd. Hence, to prove ıG D pr� ! �D��n , it suffices to consider
chains contained entirely in A or in B , which reduces to the corresponding facts for h

and H . Since N �M is a cofibration, we find a retraction r W I�M ! 0�M [I�N .
Deforming r relative to the closed subset M � 0[ I �N , we may suppose that r

is smooth. The pullback of .G;D/ along r satisfies ır�G D pr� ! � .Dr/��n and
therefore represents an equivalence .c; !; h/� .Dır jM�1; !; r

�GjM�1/ to an element
of yEn.M;N /.

5 Integration maps

Combining (5), (7), and (9) shows that .
R

c;
R
!;
R

h/ from (13) is indeed a differential
cocycle. If .C;H / is an equivalence x0 � x1 , then we have ı

R
H D pr� !� .

R
C /��n

and so
R

x0 �
R

x1 . Hence (13) is well defined.

Theorem 2.3 The maps from Section 1A3 define linear natural transformations

(13)
Z
W yEnC1..M;N /� .S1; 1//! yEn.M;N /; Œc; !; h� 7!

hZ
c;

Z
!;

Z
h
i
:

These commute with I;R; a (using (i) and (iii) from Section 1A on forms and E–
cohomology).

Proof Naturality for smooth f W M1!M2 means

yEn.f /
�Z

Œc; !; h�
�
D

Z
yEnC1.f � idS1/Œc; !; h�;

and follows from (5). Linearity of (13) asserts an equality

(24)
Z �
˛i.c1; c2/; !1C!2; h1C h2C .c1; c2/

�Ai

�
D

h
˛i�1

�Z
c1;

Z
c2

�
;

Z
!1C

Z
!2;

Z
h1C

Z
h2C

�Z
c1;

Z
c2

��
Ai�1

i
:
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If i D n is even, (7), (18) imply
R
.c1; c2/

�An D .
R

c1;
R

c2/
�An�1 and by (16) we

have
R
˛i.c1; c2/D ˛i�1.

R
c1;
R

c2/, so (24) holds. Addition in E–cohomology may
be performed using either loop coordinate, so we may select a homotopy

H W ˛i�1 ı ."
adj
i�1 � "

adj
i�1/

�1
' ."adj

i�1/
�1
ı�˛i :

If i D n� 1 is odd, applying (21) with H ı .c
adj
1
; c

adj
2
/ reduces us by (20) to showing

that the following is a coboundary (which follows from (15)):

Ai � ."
adj
i�1 � "

adj
i�1/

�

Z 0
H��i C

Z
"�i AiC1:

Corollary 5.1 From (13) we obtain unique linear natural transformations

(25)
Z
W yEnC1.M �S1/! yEn.M /

satisfying the following two conditions:

(i) The map (13) is the composition of (25) with yEnC1.j /.

(ii)
Z

pr�1 D 0 for the projection pr1W M �S1!M .

Here, j W M �S1!M � .S1; 1/. Moreover, (25) commutes with I;R; a.

Proof Write i W M �1!M �S1 and let x 2 yEnC1.M �S1/. By exactness of (12),
we have x� pr�

1
i�x D j �y for some class y 2 yEnC1.M �S1;M � 1/. Then

(26)
Z

x
(ii)
D

Z
.x� pr�1 i�x/

(i)
D

Z
y

shows uniqueness and gives a formula for existence. To check that (26) is well defined,
assume j �y D 0. Since i is a section of pr1 , the exact sequence of pairs in E–
cohomology implies that EnC1.j / is injective, so I.y/D 0. By (2), write y D a.�/.
Since 0 D j �y D a.j ��/, write j �� D ch.t/ for some t 2 En.M � S1/. Using
that (1) is compatible with suspension, we haveZ

y D

Z
a.�/D a

�Z
�
�
D a

�Z
j ��

�
D a

�Z
ch.t/

�
D a

�
ch
�Z

t
��
D 0;

where the second equality follows from Theorem 2.3, and the last from (2). This proves
well definedness. Linearity and compatibility of (25) with I;R; a is inherited from the
corresponding properties in Theorem 2.3.
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5A Integration from the left

Define left integration
R 0
D
R
�� using the flip � of the two circles in M �S1 �S1 .

Lemma 5.2
ZZ

�� D�

ZZ
W yEnC2.M � .S1; 1/� .S1; 1//! yEn.M / .n even/:

Proof The respective assertion is true for differential forms (graded commutativity),
cochains (by the symmetry properties of EZ), and maps (if t W En � �2EnC2 !

�2EnC2 � En flips the two loop coordinates, we have t ı
RR

c D
RR

c ı � ). Hence,
selecting a homotopy H W �n ' t , we may apply Lemma 3.3(i) with vk D

R 0
H��k �

.�k/
�Nk , H ,

RR
c , to prove equality of

x D
h
t

ZZ
c;

ZZ
��!;

ZZ
��h

i
; y D

h
�n

ZZ
c;�

ZZ
!;�

ZZ
hC

�ZZ
c
��

Nn

i
;

provided we have ıvk D 0, which follows from (8), (17), and the observation

t��k D t�
ZZ
."k � idS1/�"�kC1�kC2 D

ZZ
��."k � idS1/�"�kC1�kC2

D�

ZZ
."k � idS1/�"�kC1�kC2 D��k ;

where we have used (9) and the assertion
RR
D�

RR
�� for cochains.

Corollary 5.3
ZZ

�� D�

ZZ
W yEnC2.M �S1

�S1/! yEn.M / .n even/:

6 Products

6A Construction in even degrees

The unit and the multiplication in E–cohomology may be represented by pointed maps

�nmW En ^Em!EnCm; uW pt!E0:(27)

Since (1) is multiplicative, chŒidEn
�� chŒidEm

�D chŒidEnCm
�, chŒu�D 1. Hence we

find cochains Mn;m 2
zC nCm�1.En ^EmIV / and U 2 zC�1.ptIV / with

(28) ıMn;m D �n � �m� �nCm; ıU D !pt �u��0;

where !pt D 1 2 �0.pt/. The definition of corepresentable functor on M is rather
technical, so we will not recall it here (see [1] or [13, Section 7]); an example is
the smooth cochain functor .M;N; : : :/ 7! C k

s .M �N � � � � IW / on manifolds with
corners C DMan�Man� � � � with models .�n; �m; � � � /.
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Theorem (Acyclic models) Let F;G be contravariant functors from a category C
equipped with a full subcategory of models M to non-negative real cochain complexes.
Suppose G is corepresentable with respect to the models and that H�C1.F.M //D 0

for all M 2M. Then any two natural chain maps f �;g�W F�!G� with H 0.f /D

H 0.g/ are naturally chain homotopic. Moreover, any two natural chain homotopies
between natural chain maps are naturally chain homotopic.

Taking F.M;N /D�.M IV i/˝�.N IV j /, G.M;N /DC �s .M �N IV i˝V j / and
the chain maps ^ and [ gives natural chain homotopies Bij satisfying

ıBij .!1˝!2/CBij d.!1˝!2/D!1^!2�!1�!2; !12�.M IV
i/; !22�.N IV

j /:

Combining these as B.
P

i !
i˝

P
j !

j /D
P

i;j Bij .!
i˝!j /, we get a natural chain

homotopy B for the case of graded coefficients satisfying

(29) ıB.!1; !2/CBd.!1˝!2/D !1 ^!2�!1 �!2:

Similarly, using F.M;N /DC �s .N�M IV /, G above, and the chain maps � and ���,
the acyclic models theorem proves that the product of cochains is graded commutative
up to natural chain homotopy D

(30) ıD.u˝ v/CDı.u˝ v/D u� v� .�1/jujjvj��.v�u/:

Since the external product ^ is graded commutative, both .�1/j!0jj!1j��B.!0; !1/�

D.!1; !0/ and B.!1; !0/ define natural chain homotopies between

�.M IV /˝�.N IV /! C �s .N �M IV /; .!0; !1/ 7! !1 ^!0; !1 �!0;

and are so themselves chain homotopic. In particular, for closed forms !0; !1

(31) B.!1; !0/� .�1/j!0jj!1j��B.!0; !1/�D.!1; !0/ mod im.ı/:

Since B.!pt;�/ and 0 are both natural chain homotopies id' id, the acyclic models
theorem implies that they are themselves chain homotopic. Hence

(32) B.!pt; !/ 2 im.ı/ for all forms ! with d! D 0:

Definition 6.1 The unit 1 2 yE0.pt/ is defined by Œu; !pt;U �. The product x1�x2 of
the differential cocycles x1 D .c1; !1; h1/, x2 D .c2; !2; h2/ is�
�nm.c1�c2/; !1^!2;B.!1; !2/Ch1�!2C!1�h2�h1�ıh2C.c1�c2/

�Mn;m

�
:

Naturality of the products follows from the naturality of B;^; ı , and �. Clearly R

and I preserve the external product. (28), (29) ensure that the unit and x1 � x2 are
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indeed differential cocycles. Suppose we have equivalences .C1;H1/W x1 � x0
1

and
.C2;H2/W x2 � x0

2
. Then C D �n;m.C1 �C2/ and the cochain

H DB.pr� !1˝pr� !2/CH1�pr� !2Cpr� !1�H2�H1�ıH2C.C1�C2/
�Mn;m

show x1 � x2 � x0
1
� x0

2
. Hence the product descends to a map (3) on differential

cohomology.

6B Verification of axioms

Let �.x;y; z/D .x;y;x; z/.

Theorem 2.4 We have a multiplicative structure in even degrees. This product struc-
ture is compatible with integration maps (14).

Proof Let xj D Œcj ; !j ; hj � for classes x1 2
yEn.N /, x2 2

yEm.M /, x3 2
yEl.L/ and

even integers n;m; l .

(i) Bilinearity Let x D x1 � .x2C x3/;y D x1 � x2C x1 � x3 . Unwinding Defini-
tions 3.1 and 6.1, we see that we must compare the maps

�nm.id�˛m/ ı c; ˛nCm ı .�nm ��nm/ ı� ı c; where c D c1 � c2 � c3;

differential forms ! D !1 ^ .!2C!3/D !
0 D !1 ^!2C!1 ^!3 , and cochains

hD B.!1; !2C!3/C h1 � .!2C!3/C!1 �
�
h2C h3C .c2; c3/

�Am

�
� h1 � ı

�
h2C h3C .c2; c3/

�Am

�
C
�
c1 �˛.c2; c3/

��
Mnm;

h0 D B.!1; !2C!3/C h1 �!2C h1 �!3C!1 � .h2C h3/� h1 � ı.h2C h3/

C .c1 � c2/
�MnmC .c1 � c3/

�MnmC
�
�.c1 � c2/; �.c1 � c3/

��
AnCm:

Expressing that the product in E–cohomology is bilinear leads to a homotopy

H W �nm.id�˛m/' ˛nCm.�nm ��nm/�:

Using bilinearity of B and of � for cochains shows that h�h0� c�
R 0

H��nCm is the
pullback along c of the cochain v on En �Em �Em given by

�n �AmC
�
.id�˛m/

�
� pr�12� pr�13

�
Mnm��

�.�nm ��nm/
�AnCm�

Z 0
H��nCm:

The cochain v is closed by (8), (17), and (28). We conclude x D y by an application
of Lemma 3.3(i) to H , c , and v .
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(ii) Commutativity We have !1 ^ !2 D �
�.!2 ^ !1/. Combining (30), (31) with

(20) shows that y D ��.x2 �x1/D Œ�mn.c2; c1/ ı �; !1 ^!2; h
0�, where

h0DB.!1; !2/Ch1�!2C!1�h2�h1�ıh2C.c2�c1/
���MmnC.c2�c1/

�D.�m; �n/:

Then y D x1 � x2 by Lemma 3.3(i), applied to a homotopy H W �mn ı � ' �nm ,
c D c1 � c2 , and the following closed (by (8), (28), and (30)) cochain:

v D ��D.�m; �n/C �
�Mmn�Mnm�

Z 0
H��nCm:

(iii) Unitality Equation (32) and Lemma 3.3(i) applied to H W �0n.u� id/' id, the
cochain vn D U � �nC .u� id/�M0n�

R 0
H��n , and c D c1 show 1�x1 D x1 .

(iv) Associativity This property follows from Lemma 3.3(i) applied to cD c1�c2�c3 ,
a homotopy H W �n;mCl.id��ml/' �nCm;l.�nm � id/, and v given by

Mn;mCl ��
�
n;mCl.�n �Mml/�MnCm;l ��

�
nCm;l.Mnm � �l/�

Z 0
H��nCmCl :

(v) Compatibility with a Let � 2 �n�1.N IV /. Applying (20) to B.d�; !2/ �

� ^!2� � �!2 and d� � h� � � ıh (Leibniz’ rule) modulo coboundaries gives

a.�/�x2 D Œ�nm.const� c2/; d� ^!2; � ^!2C .const� c2/
�Mnm�:

Then a.�/�x2 D a.� ^!2/ by Lemma 3.3(i) applied to c D const� c2 , a homotopy
H W �nm.const; id/' const, and the cocycle

v D .const� id/�Mnm�

Z 0
H��nCm:

(vi) Compatibility with integration (14) Let Œc1; !1; h1�2 yE
n.N / and Œc2; !2; h2�2

yEm.M �S1 �S1/ for n;m even. Unwinding the definitions, we see that we need to
compare

x D
hZZ

�.c1 � c2/;

ZZ
.!1 ^!2/; h

i
; y D

h
�
�
c1 �

ZZ
c2

�
; !1 ^

�ZZ
!2

�
; h0
i

for the cochains h and h0 given byZZ �
B.!1; !2/C!1 � h2C h1 �!2� h1 � ıh2C .c1 � c2/

�Mn;m

�
;

B
�
!1;

ZZ
!2

�
Ch1�

�ZZ
!2

�
C!1�

�ZZ
h2

�
�h1�ı

�ZZ
h2

�
C

�
c1�

ZZ
c2

��
Mn;m�2:

Both
RR

B.�;�/ and B.�;
RR
�/ define natural chain homotopies between the same

chain maps. By acyclic models, they are themselves chain-homotopic and hence
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differ on closed forms only by coboundary. Integration of forms is compatible with
^ and integration of cochains is compatible with � (since the Eilenberg–Zilber map
is a section of the Alexander–Whitney map, which is used to define the product of
cochains), so

h� h0 �

ZZ
.c1 � c2/

�Mn;m�

�
c1 �

ZZ
c2

��
Mn;m�2 mod im.ı/:

Since products in E–cohomology are compatible with suspension we may select
a homotopy H W �nm.id�"m�1†"m�2/ ' "nCm�1†"nCm�2†

2�n;m�2 . Applying
Lemma 3.3(i) with c D c1 �

RR
c2 ,

RR
H , and the cochain

v D

ZZ
.id�"m�1 ı†"m�2/

�Mnm�Mn;m�2�

Z 0�ZZ
H
��
�nCm�2

proves x D y . Here, ıv D 0 follows from (5), (8), and (28).

6C Extension to odd degrees

Theorem 2.5 is obtained from Theorem 2.4 by the following general principle.

Theorem 6.2 Suppose yE is a differential extension of E such that we have:

(i) Long exact sequences (12) for every closed submanifold N �M .

(ii) Integration maps as in Theorem 2.3. By (i), these induce an absolute integration
(25) for which we assume Corollary 5.3.

(iii) A multiplicative structure on yE in even degrees satisfying (14).

Then there is a unique extension of the multiplicative structure to all degrees, compatible
with integration:

(33)
Z
.x �y/D x �

�Z
y
�

for all x 2 yEn.N /; y 2 yEm.M �S1/:

Lemma 6.3 Integration
R
W yEnC1.M � S1;M � 1/ ! yEn.M / is surjective. The

kernel consists of all a.�/, � 2�n
cl.M �S1;M � 1IV /, with Œ

R
�� 2 im.ch/.

Proof Let x 2 yEn.M /. The isomorphism
R
W EnC1.M �S1;M �1/ŠEn.M / and

the surjectivity of I show that there is X 2 yEnC1.M �S1;M � 1/ withZ
I.X /D I.x/:
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Exactness of (2) implies x �
R

X D a.�/ for � 2�n�1.M IV /. Let ˛W S1 ! R
be smooth with

R
˛.t/ dt D 1, ˛.1/ D 0. Then the form � D pr�

1
� ^˛.t/ dt 2

�n.M �S1;M � 1IV / satisfies
R
� D � . Hence X C a.�/ is a preimage of x .

To compute the kernel, suppose
R

X D 0. Then
R

I.X /D 0 and the isomorphism above
show I.X /D 0. By exactness of (2), X D a.�/ for some � . Now a.

R
�/D

R
X D 0

implies Œ
R
�� 2 im.ch/.

According to the lemma, every y 2 yEm.M / equals
R

Y for some Y 2 yEm.M �S1/.
By (33), the product is uniquely determined in all degrees.

Definition 6.4 For x 2 yEn.N /;y 2 yEm.M / pick X 2 yEnC1.N � S1/ and Y 2
yEmC1.M �S1/ with

R
X D x ,

R
Y D y . Let

(34) x �y D

8<:
R
.X �y/ n odd, m even,R
.x �Y / n even, m odd,R
.x �Y /D�

R
.X �y/ n odd, m odd.

(The last equality is by Corollary 5.3).

Lemma 6.5 Equation (34) is well defined.

Proof Suppose, for example, that
R

X D x D
R

X 0 in the case n odd, m even. In the
notation of Corollary 5.1, by (12) we find Z 2 yEnC1.N �S1;N � 1/ with

j �Z D .X �X 0/� pr�1 i�.X �X 0/:

Thus
R

Z D
R
.X �X 0/D 0 and Lemma 6.3 shows that Z D a.�/ for some � with

Œ
R
�� 2 im.ch/. By commutativity of (2), the transformation R maps to forms which

represent classes in the image of the Chern character (which is multiplicative). Hence
.
R
�/^Ry D

R
.j �� ^Ry/ 2 im.ch/. We concludeZ

.X �X 0/�y D

Z
.j �Z/�y D

Z
a.j ��/�y D

Z
a.j �� ^Ry/D 0;

using Corollary 5.1(ii), a ı chD 0 from (2), and the compatibility of � with a in even
degrees. The argument in the other cases is similar.

Proof of Theorem 6.2 Considering the definition (34) case by case, we see that
(14) implies (33). Combined with Lemma 6.3, the verification of bilinearity, unitality,
associativity, and graded commutativity (note our choice of sign in (34)) may therefore
be reduced to the even-degree case. It remains to check

a.�/�x D a.� ^Rx/ for � 2�n�1.N IV /; x 2 yEm.M /;
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in case n or m are odd. For � 2 �n�1.N IV / we find � 2 �n.N � S1IV / withR
� D � . The verification reduces to even degrees; eg for n odd and m even

a.�/�x D

Z
.a.�/�x/D

Z
a.� ^Rx/D a

�Z
� ^Rx

�
D a.� ^Rx/:

Appendix: Technical lemmas

Lemma A.1 For every smooth cochain v 2 C n�1
s .M;N / there exists E 2 Zn

s .I �

.M;N // with restrictions Ej0 D 0 and Ej1 D ıv . Hence, if .c; !; h/ is a differential
cocycle and h� h0 is a coboundary, we have .c; !; h/� .c; !; h0/.

Proof For the zeroth vertex e1 2 �
n and � D .�1; �2/W �

n! I �M we define
E.�/D �1.e1/v.@�2/. Since �1d i.e1/ is independent of i , E is a cocycle:

E.@�/D
X

.�1/i.�1d i/.e1/v.@.�2 ı d i//D �1.e1/v.@@�2/D 0:

Applying this to each factor, we deduce a version with graded coefficients. In (20) it
suffices for h� h0 to bound a singular cochain (since H i.M;N IV /ŠH i

s .M;N IV /

it follows that h� h0 also bounds a smooth cochain then).

Lemma A.2 For a homotopy C W c0' c1 (rel N ) and Œc0; !; h�2 yE
n.M;N / we have

Œc0; !; h�� Œc1; !; h
0� for h0 D h�

R 0
C ��n .

Proof Define a homotopy KW C ' c1 ı pr2 by K.s; t;m/ D C.t;m/ for s � t

and K.s; t;m/ D C.s;m/ for s � t and let H D pr�
2

h0 C
R 0

K��n . Using (8) and
ıh0D!�c�

1
�n , we have ıH D pr�

2
!�C ��n and H j0D h0C

R 0
C ��nD h, so the pair

.C;H / shows Œc0; !; h�D Œc1; !;H j1�. Since
R 0 pr�

2
! D 0 for forms, we get

H j1 D h0C

Z 0
pr�2 c�1 �n D h0C

Z 0
pr�2.! � ıh

0/
(8)
D h0� ı

Z 0
pr�2 h0:

Hence (20) implies Œc1; !;H j1�D Œc1; !; h
0�.

Lemma A.3 Let M DA[B for open A;B�M . Any u2C n
s .AIV /, v2C n

s .BIV /

with common restriction to A\B may be extended to C n
s .A[BIV /.

Proof We begin with the ungraded case, so V is just a vector space and u; v are
V –valued cochains. Define a subdivision operator on smooth n–chains by

(35) sd.�nC1/D .�1/n@� C �nC1; �nC1W �
n
!M;
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where � D �nC1 ı� for �.t0; : : : ; tnC1/ 7! .t0C
tnC1

nC1
; : : : ; tnC

tnC1

nC1
/. Since the diam-

eters tend to zero, after a finite minimal number m.�/ of subdivisions any simplex �
becomes a chain

P
nk�k with every �k entirely in A or in B . Define a V –valued

cochain w by

w.�/D
X

nk

�
u.�k/ if �k.�

n/�A;

v.�k/ if �k.�
n/� B:

By the minimality assumption, w restricts to u and v . This concludes the proof in
the ungraded case. For the graded case, suppose uD .ui/i2Z and v D .vi/i2Z where
ui 2 C i

s .AIV
n�i/ and vi 2 C i

s .BIV
n�i/. By assumption, ui and vi agree on A\B ,

hence by the already proven case we find wi 2C i
s .A[BIV n�i/, extending ui and vi .

The family w D .wi/i2Z is then the sought-for cochain.
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