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Oriented orbifold vertex groups and cobordism and
an associated differential graded algebra

KIMBERLY DRUSCHEL

We develop a homology of vertex groups as a tool for studying orbifolds and orbifold
cobordism and its torsion. To a pair .G;H / of conjugacy classes of degree-n and
degree-.n�1/ finite subgroups of SO.n/ and SO.n�1/ we associate the parity with
which H occurs up to O.n/ conjugacy as a vertex group in the orbifold Sn�1=G .
This extends to a map dnW ˇn! ˇn�1 between the Z2 vector spaces whose bases
are all such conjugacy classes in SO.n/ and then SO.n� 1/ . Using orbifold graphs,
we prove d W ˇ ! ˇ is a differential and defines a homology, H� . We develop a
map sW ˇ�� ! ˇ�

�C1
for a subcomplex of groups which admit orientation-reversing

automorphisms. We then look at examples and algebraic properties of d and s ,
including that d is a derivation. We prove that the natural map  between the set
of diffeomorphism classes of closed, locally oriented n–orbifolds and ˇn maps into
ker dn and that this map is onto ker dn for n� 4 . We relate d to orbifold cobordism
and surgery and show that  quotients to a map between oriented orbifold cobordism
and H� .

57R18, 57R90; 55N32, 57R65

Introduction

The extension of manifold cobordism to orbifold cobordism began with the study of
rational oriented orbifold cobordism by the author [4], where invariants and generators
were determined. However the actual oriented orbifold cobordism ring and its torsion
remain open problems. For example, it is not known whether the odd-dimensional
oriented orbifold cobordism groups are trivial, even though they are trivial rationally.
In [5] we presented machinery for controlling the local groups and singularities. In
addition, in that paper we used that machinery to show that all oriented orbifolds in
dimensions less than or equal to three bound orientably. Two main steps in the proofs for
those dimensions involve the folding of some vertex groups to create a cobordism to an
orbifold with simpler vertex groups and noting that only certain combinations of vertex
groups can occur in a compact, oriented, 3–dimensional orbifold. When G is a finite
degree-n subgroup of SO.n/, some multiple of the sphere quotient orbifold Sn�1=G
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orientably bounds an orbifold with set of local groups no more than those found
in Sn�1=G (see Proposition 3.8). Hence one can construct a closed oriented n–
dimensional orbifold whose only vertex groups are G . However the minimum number
of points labelled by G is not necessarily known. In this paper we begin to address
the question of which precise combinations of finite degree-n linear groups, including
repetitions, can occur in an oriented or locally oriented n–dimensional orbifold by
providing a first obstruction for this.

Thus to each finite degree-n group we associate the parity of the labelled points for
each vertex group type on its sphere quotient. We extend this to linear combinations
of such linear groups and so build a differential d associated with finite degree-n
subgroups of SO.n/, with n varying, and hence obtain a homology. This homology is
trivial for dimensions up through three but nontrivial in dimension four. If a locally
oriented orbifold has vertex groups G1;G2; : : : ;Gk , d applied to the sum of these
must be zero. Hence we have a map from the set of diffeomorphism classes of locally
oriented orbifolds to ker d . In addition this map quotients to one from the oriented
orbifold cobordism ring to the homology of d (see Theorem 3.12).

In degrees two through four, if dZ D 0 for some linear combination Z of degree n

linear groups, then there is an oriented n–orbifold with those precise vertex groups
(see Theorem 3.13). As another example, when G has no direct summands of real
type other than h�id2ni, then d is zero (see Proposition 2.2), and one can also
construct an oriented orbifold whose only singular vertex has local group G (see
Proposition 3.9).

We calculate examples of d and also provide formulas for d for direct sums and direct
products (see Proposition 2.1 and Corollary 2.3). The direct product formula shows us
that d is in fact a derivation. In the case where G admits an orientation-reversing linear
automorphism u with u2 2G , we construct a semidirect product of G by .u;�1/ in
degree nC 1. We present equations for calculating d of this semidirect product and
relate it to dG (see Theorem 2.12). One important tool we use is the orbifold graph of
this semidirect product. These semidirect products afford us a map sW ˇ�� ! ˇ�

�C1
for

the subcomplex built from vertex groups which admit such an automorphism. With
this and a further decomposition of ˇ�n we make some headway in calculating the
homology H� .

The last section is where we concentrate on the orbifold definitions, including surgery
on an orbifold, and discuss how d and the homology relate to orbifolds and their
cobordism and surgery.

The author would like to thank the referee for helpful comments and suggestions.
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1 The differential d and its homology

For the subgroups A;A0 of B , let A �B A0 indicate that A and A0 are conjugate
in B and .A/B be the conjugacy class of A in B . The normalizer and then centralizer
of A in B are denoted by NB.A/ and CB.A/. If we omit B we are implying, unless
otherwise stated, that it is O.n/, the orthogonal group, for some appropriate n.

The antipodal element of O.n/ is written as �idn .

For g 2O.n/ and b D˙1, .g; b/ provides inclusions of O.n/�O.1/ and O.n/ in
O.nC 1/. For an integer n, Œn�2 will indicate the parity of n or n mod 2.

Definition 1.1 A subgroup G < O.n/ is of degree n if it has no trivial direct sum-
mand. For G and H finite, degree-n, respectively degree-.n�1/, subgroups of O.n/,
respectively O.n�1/, we say H is a vertex group for G if there is an isolated singular
point in the sphere quotient orbifold Sn�1=G whose local group is conjugate to H

in O.n/, or equivalently, there is a line in Rn whose G –isotropy group is conjugate to
H in O.n/. We would also say H is a vertex group for the orbifold Sn�1=G . We
denote the O.n/ conjugacy classes of vertex groups of an orbifold Q by Gv

Q
and we

abbreviate Gv
Sn�1=G

by Gv.G/.

Definition 1.2 Let L.G/ represent the set of G conjugacy classes of subgroups of G

which are vertex groups of G . For .H /2Gv.G/, L.G;H / will be those .K/G 2L.G/
which are O.n/ conjugate to H .

Remark 1.3 .K/G 2 L.G/ if and only if K is a maximal degree-.n�1/ subgroup
of G .

Suppose .K/G 2L.G;H / and K is the isotropy group of `, a line in Rn . Since NG.K/

sends ` to itself, it is either K or is degree-n and a Z2 –extension of K with the Z2

element folding `. Accordingly the G conjugacy class of K contributes two or one
singular points in Sn�1=G with vertex group H .

Definition 1.4 Let L.G/� and L.G;H /� denote those classes .K/G in L.G/ and
L.G;H / for which NG.K/=K DZ2 . In addition, L.G/C represents L.G/�L.G/�
and similarly for L.G;H /C . For .K/G 2 L.G/ let pK ;G D ŒjNG.K/=Kj �2 and
nK ;G D Œ1C pK ;G �2 . Then nK ;G is the parity of the singular points with vertex
group H in Sn�1=G contributed by K .

Definition 1.5 Let SOn;f be the set of O.n/ conjugacy classes of finite degree-n
subgroups of SO.n/.

Let �H .G/ 2Z2 be the parity of singular points in Sn�1=G with vertex group H .
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Note that �H .G/ is independent of the representatives G for .G/ and H for .H / and
so defines a map from SOn;f �SOn�1;f to Z2 .

Example 1.6 For I the icosahedral group of degree 3, �Cn
.I/ D 1 for n D 2; 3; 5;

and is 0 otherwise. Here Cn represents the cyclic subgroup of SO.2/ of order n.

Proposition 1.7 (i) �H .G/D
�P

.K /G2L.G;H / nK ;G

�
2

.

(ii) �H .G/D ŒjL.G;H /�j �2 .

Proposition 1.8 In the following two cases, L.G;H /DL.G;H /� , and so �H .G/D

ŒjL.G;H /j �2 for all .H /G 2 L.G/:

(i) G contains �idn .

(ii) G is nilpotent.

Proof For (i) every line is then folded. For (ii) a nilpotent group has the property
that every proper subgroup is a proper subgroup of its normalizer (see Isaacs [7, Theo-
rem 1.22]) and so NG.K/=K DZ2 . Also, nilpotent linear groups are monomial (see
Dixon [3, Problem 10.14]).

Definition 1.9 Denote by ˇn the Z2 vector space indexed by SOn;f and by ŒG� the
basis element of ˇn indexed by the conjugacy class .G/ 2 SOn;f , or the subspace
spanned by it.

Definition 1.10 Define dnW ˇn ! ˇn�1 by defining it on the basis element ŒG� as
dnŒG�D

P
SOn�1;f

�H .G/ŒH �, and then extending it linearly. Let ˇ D
L

n2N ˇn and
d W ˇ! ˇ be defined on ˇn as dn .

We have ˇ1Dˇ0D 0 and ˇ2D
L

k�2ŒCk �, where Ck is the cyclic subgroup of order k

of S1 D SO.2/. In addition, d2 D 0.

Proposition 1.11 We have ˇ3 D ŒI�˚ ŒO�˚ ŒT �
L

k�2ŒDk �. Here I , O , T , Dk are
the icosahedral, octahedral, tetrahedral and the dihedral groups of order 2k . We have
the following:

d ŒI�D ŒC5�C ŒC3�C ŒC2�:

d ŒO�D ŒC4�C ŒC3�C ŒC2�:

d ŒT �D ŒC2�:

d ŒDn�D ŒCn�:
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Proof The finite subgroups of SO.3/, up to conjugacy, are those listed above; see
Du Val [6, Section 2.7]. The orbifolds S2=G , G as above, have three singular points
which have local groups Cki

, i D 1; 2; 3. The values of fk1; k2; k3g are f2; 3; 5g for I ,
f2; 3; 4g for O , f2; 3; 3g for T and f2; 2; ng for Dn .

Example 1.12 Consider the family of linear groups skC2 < SO.kC2/; k � 0, defined
by s0C2D C2 and skC1C2D hs

kC2;gi, where g is the diagonal element of SO.kC3/

with diagonal .1; : : : ; 1;�1;�1/. We have that s1C2 D D2 and the singular set in
S2=s1C2 is three points labelled by C2 . For k > 1 the singular set of dimensions 0

and 1 in SkC1=skC2 is the complete graph KkC2 with vertices labelled sk�1C2 and
edges labelled sk�2C2 . We illustrate this for s2C2 and s3C2 in Figure 1 below. The
picture of the graph on the sphere quotient surrounding a labelled vertex in Figure 1(b)
would be Figure 1(a).

D2

D2

D2

D2

C2

(a) s2C2

s2C2

s2C2
s2C2

s2C2

s2C2

D2

(b) s3C2

Figure 1

Proposition 1.13 We have d ŒskC2�D Œk�2Œs
k�1C2�.

Proof Let TkC2 be the subgroup of O.kC2/ generated by reflections of the standard
basis vectors. Then skC2 is the index two subgroup of orientation-preserving elements
in TkC2 . The standard basis vectors provide the only points with vertex groups in
the sphere quotient by TkC2 or skC2 . They are all folded with either group and
have O.kC 2/ conjugate local groups. For skC2 these local groups are sk�1C2 .

Lemma 1.14 Let G be a finite degree-n subgroup of SO.n/. Then for every finite
degree-.n� 2/ subgroup K of SO.n� 2/,X

.Hi /2SOn�1;f

�Hi
.G/�K .Hi/D 0:
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Proof Consider the graph of those singular points in Sn�1=G whose local group is
either of degree n� 1 or n� 2. We will call this the orbifold graph of Sn�1=G or
of G . It is labelled by the local groups; see Example 1.12. We look at the subgraph of
this consisting of those edges labelled .K/ and all vertices. The sum of the valencies
of the vertices (the number of edges emanating from the vertex) in this subgraph must
be even as it is twice the number of edges. For a point labelled .H /, �K .H / is the
number of edges, mod two, labelled .K/ emanating from that point. The parity of
such points is �H .G/. Thus the contribution from vertices labelled H to this sum of
valencies, mod two, is �H .G/�K .H /.

Theorem 1.15 We have d2 D 0. Thus im dnC1 � ker dn and .ˇ; d/ forms a chain
complex. Hence we can form the homology groups associated with it. This homology
will be denoted by Hn .

Proof Since

dn�1dnŒG�D
X

.H /2SOn�1;f

�H .G/dn�1ŒH �

D

X
.H /2SOn�1;f

�
�H .G/

X
.K /2SOn�2;f

�K .H /ŒK�

�

D

X
.K /2SOn�2;f

�� X
.H /2SOn�1;f

�H .G/�K .H /

�
ŒK�

�
;

this follows from the previous lemma.

We will denote the homology equivalence relation by �d and the homology equivalence
class of M 2 ˇn by ŒM �d .

We have that H0 and H1 are zero since ˇ0 D ˇ1 D 0.

Proposition 1.16 We have H2 D 0.

Proof We have ˇ2D
L

k�2ŒCk � and d ŒCk �D 0, so ker d2D ˇ2 . Since d ŒDk �D ŒCk �,
ker d2 D im d3 .

Proposition 1.17 We have H3 D 0.

Proof We apply Proposition 1.11. Let � 2 ker d3 . If ŒDk � is a nontrivial summand
of � , then since d ŒDk �D ŒCk �, � must additionally contain a nondihedral summand.
Hence k � 5. Because d ŒT � D ŒC2�, we see that the minimal (fewest summands)
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element of ker d3 having ŒT � as a summand is ŒT �C ŒD2�. With d ŒO�D ŒC2�C ŒC3�C

ŒC4� and d ŒI� D ŒC2�C ŒC3�C ŒC5�, minimal elements of ker d3 containing these are
ŒM�C ŒD3�C ŒD4�C ŒO� and ŒM�C ŒD3�C ŒD5�C ŒI�, where M is either D2 or T ,
or ŒD4�C ŒO�C ŒD5�C ŒI�. The latter element of ker d3 is the sum of the former
two. It follows that ker d3 is generated by (i), (ii) and (iii) below. Additionally
ŒT �C ŒD3�C ŒD4�C ŒK�, KDO or I are obtained by adding (i), (ii) or (iii):

(i) ŒT �C ŒD2�.

(ii) ŒD2�C ŒD3�C ŒD4�C ŒO�.
(iii) ŒD2�C ŒD3�C ŒD5�C ŒI�.

From Proposition 2.20 or the author [5, Theorem 3.2], we conclude that these elements
are in turn d4ŒG Ë�id4�, where G D ŒT �; ŒO�; ŒI�, respectively.

2 Algebraic properties of d

Suppose G as a linear group is the direct sum .�1˚�2/.G/ of the representations �1

and �2 of the abstract group G with degrees n1 and n2 . Let �i , i D 1; 2, be the
projections O.n1/�O.n2/! O.ni/, i D 1; 2. Let K1 D ker�2jG , K2 D ker�1jG .
We have that Ki is isomorphic to a subgroup of �i.G/ which we also denote by Ki .
The product K1 �K2 is a linear subgroup of G , and it is the largest linear product
in G . The projection �ijG factors through �i.G/ and we get the isomorphisms

(1) G=K2 Š im�1jG Š �1.G/; G=K1 Š im�2jG Š �2.G/:

Using the third isomorphism theorem, we have that G=.K1 � K2/ Š �1.G/=K1

Š �2.G/=K2 . We denote this common quotient group as L. The quotient of Rn1Cn2

by G can be factored as Rn1Cn2 ! Rn1=K1 �Rn2=K2! Rn1Cn2=G . The second
quotient comes from the diagonal action of L, where the choices of representatives act
linearly on each Rni . The above argument follows along that used for determining the
subgroups of S3 �S3 in Du Val [6, Chapter 3].

We use this sequence of quotients in the following decomposition of Sn�1=G , which
will aid in the calculation of d of the direct sum:

(2) Sn�1=G D .Sn1�1=K1 �L Dn2=K2/[�i .D
n1=K1 �L Sn2�1=K2/:

Here �i indicates the two products are sewn together along Sn1�1=K1�L Sn2�1=K2 .

For F a subset of �1.G/, respectively of �2.G/, let F� denote the corresponding
subset in the linear group G containing K2 , respectively K1 in (1). Let cci be the
conjugacy classes .Fi/�i .G/ 2 L.�i.G// for which the other summand �j .F

�
i / has

full degree and hence the corresponding subgroup F�i of G is a vertex group.
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By considering the two products in the union in (2), we obtain the following.

Proposition 2.1 We have

d ŒG�D
X

.F1/�1.G/
2cc1

nF1;�1.G/ŒF
�
1 �C

X
.F2/�2.G/

2cc2

nF2;�2.G/ŒF
�
2 �:

Proof The first and second summands correspond to vertex groups of the first and
second products of (2). By the third isomorphism theorem, we need only consider
conjugacy classes and normalizers in �i.G/ instead of G . However we cannot further
group according to O.ni/ conjugacy classes in these sums as those classes may not be
preserved in pulling back to G .

Proposition 2.2 (i) If G has no direct summands of real type, then d ŒG�D 0.

(ii) For any faithful representation � of a finite group G into O.n/ and k > 1 with
�.G/˚k 2 SO.nk/, d Œ�.G/˚k �D 0:

(iii) We can decompose G as �1.G/˚�2.G/ where the first summand has only real,
nonrepeating (as in (ii)) direct summands and the second has the repeating or
complex or symplectic summands. Then d ŒG�D

P
.F1/�1.G/

2cc1
nF1;�1.G/ŒF

�
1
�.

Proof (i) This is because G and all its subgroups are of even degree, and so no
subgroup is of codegree 1.

(ii) No subgroup has codegree 1.

(iii) We apply Proposition 2.1 and (i) and (ii).

Using the standard inclusion of SO.n1/�SO.n2/ in SO.n1Cn2/, we define a product
in ˇ via ŒG1� � ŒG2� D ŒG1 �G2� for groups and then extend this to sums of such
elements.

Corollary 2.3 d is a derivation.

Proof It suffices to check this on basis elements which are products. If G is a linear
product, then GDK1�K2 and L is trivial in the discussion preceding Proposition 2.1.
Equation (2) above becomes

Sn�1=G D .Sn1�1=K1 �Dn2=K2/[�i .D
n1=K1 �Sn2�1=K2/:

A vertex group in the first product above must be of the form H1�K2 , where H1 is a
vertex group of K1 , and a similar result holds for the second product. Furthermore
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by considering the portion Sn1�1=K1 �Dn2=K2 , we see that �H1�K2
.K1 �K2/D

�H1
.K1/. Thus we have

d ŒK1 �K2�D
X

SOn�1;f

�H .K1 �K2/ŒH �

D

X
S1

�H1�K2
.K1 �K2/ŒH1 �K2�C

X
S2

�K1�H2
.K1 �K2/ŒK1 �H2�

D

��X
S1

�H1
.K1/ŒH1�

�
� ŒK2�

�
C

�
ŒK1��

�X
S2

�H2
.K2/ŒH2�

��
D .dn1

ŒK1�/� ŒK2�C ŒK1�� .dn2
ŒK2�/:

Here Si stands for SOni ;f . Since we are working with Z2 , the usual power of �1 in
front of the second summand is irrelevant.

The following propositions are immediate consequences of Corollary 2.3.

Proposition 2.4 We have d ŒG �G�D 0.

Proposition 2.5 If G DG1 �G2 where G2 has no direct summand of real type, then
d ŒG�D d ŒG1�� ŒG2�.

Definition 2.6 For .G/2 SOn;f , let N.G/�
2

be the set of orientation-reversing linear
automorphisms ˛ of G in O.n/ with ˛2 2G . Let ˇ�n , respectively ˇCn , denote the
subspace of ˇn generated by classes of groups G for which N.G/�

2
is nonempty,

respectively empty.

Proposition 2.7 We have im dnC1 � ˇ
�
n . Hence ker dn \ ˇ

C
n is isomorphic to a

subgroup of Hn .

Proof If ŒH � is a nonzero summand of d ŒG�, �H .G/¤ 0, and so by Proposition 1.7
L.G;H /� is nonempty. Thus assume H <G and ˛ 2G folds the line fixed by H . We
can also assume H < SO.n/ < SO.nC1/, in which case ˛D .˛1;�1/ with ˛1 2O.n/

the orientation-reversing automorphism of H .

Proposition 2.8 We have that H4 is nontrivial.

Proof Let G D
˝�

e.2�i/=m

0
0

e.2�i/=m

�˛
. Here we are considering the generator of G

as an element of O.4/ via the standard inclusion of U.2/ in O.4/. If m > 2, ŒG� 2
ker d4\ˇ

C

4
, and we can apply Proposition 2.7.
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Proposition 2.9 We have ˇ�
2kC1

D ˇ2kC1 .

Proof We have that �idn commutes with any group of degree n.

Definition 2.10 Suppose ˛ 2 N.G/�
2

. Let y̨ D .˛;�1/ 2 SO.nC 1/ and s˛.G/ D

hG; y̨i. Then Sn=s˛.G/ is the quotient of Sn by G followed by the folding by y̨ .

One goal in considering s˛.G/ is to replace G with simpler vertex groups. Hence we
would like to relate the parity of the vertex groups of G to those of s˛.G/. Suppressing
the choice of ˛ for G , we have sW ˇ�n ! ˇ�nC1 . (The image is in ˇ�nC1 since the
diagonal matrix .idn;�1/ commutes with s˛.G/.) A natural question is: what is
ds�sd ? Theorem 2.12 below gives a partial answer to this. Here we are interpreting sd

with s being distributed past the sum for d and applied in a natural manner to each
summand; see Corollary 2.18. As in Proposition 2.1, we cannot necessarily group
the O.n/ conjugates of vertex subgroups of G .

Definition 2.11 We have that ˛ acts on the conjugacy classes of G and hence on L.G/.
Let L.G/˛ denote those elements which are invariant under ˛ . In addition, let L.G/˛

˙
D

L.G/˛ \L.G/˙ .

Theorem 2.12 We have

d Œs˛.G/�D ŒG�C
X

L.G/˛�

Œs˛H;G
.H /�CA:

Furthermore, we have that 1̨H ;G is either ˛ or ˛
H where 
H is an element of G

which folds the fixed line of H . Here A consists of the summands which are Z2 or
Z2 –extensions of isotropy groups of G of degree less than n� 1.

For each .H / 2 Gv.G/, we want to look more closely at that portion of the orbifold
graph of s˛G labelled by .H /; see the proof of Lemma 1.14 for the definition of the
orbifold graph of a group D . For a given representative .H /G 2L.G/, the contribution
by the fixed point set of .H /s˛.G/ to this subgraph is specified by Proposition 2.15.

Definition 2.13 For D a finite degree-n subgroup of SO.n/ and K <D , the .K/D –
singular set is the closure of those points in Sn�1=D whose isotropy group is conjugate
to K in D . If the degree of K is n�2, the .K/D –singular set is a graph whose edges
are labelled by .K/ and whose vertices are labelled by elements of Gv.D/.
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Proof of Theorem 2.12 In Sn=s˛.G/ the image of the point in Sn with last coordi-
nate ˙1 contributes one singular vertex point labelled G . All other singular vertex
points occur at the images of points .v; 0/, v 2 Sn�1 and become vertex points only
when we quotient Sn=G by y̨ . These points have vertex groups which are Z2 or
Z2 –extensions of isotropy groups of G . The orbifold graph for Sn=s˛.G/ is the
quotient of that for Sn=G with possible vertices and edges added at xnC1 D 0.

Now suppose .H /G 2L.G/. We consider the portion of the orbifold graph of Sn=s˛.G/

given by the .H /s˛.G/–singular set. By Proposition 2.15 this singular set looks like
one of the four diagrams in Figure 2 and is (c) if and only if .H /G 2 L.G/˛�: This is
the only case where an extension of .H /s˛.G/ contributes exactly one singular point
to Sn=s˛.G/ at xnC1 D 0. Furthermore that extension is s˛H;G

.H /, where 1̨H ;G is
either ˛ or ˛
H , depending on whether ˛v D˙v .

It may not be true that .s˛H;G
.H //D .s˛H 0;G

.H 0// when .H /D .H 0/, so we cannot
necessarily group according to O.n/ conjugacy in the sum for dsŒG�.

Remark 2.14 The portion of our orbifold graph with edges labelled .H / which arises
from L.G;H / may consist of a wedge of some combination of the graphs given in
Figure 2, all joined at the vertex point labelled .G/, since the action of ˛ on the various
representatives of .H / in L.G/ may differ. Additionally there may be new edges
labelled .H / occurring at xnC1 D 0; see Example 2.16 and the associated Figure 3.

G

H

(a)

G

s˛H
H s˛H

H

H H

(b)

G

s˛H
H

H

(c)

G

H H

(d)

Figure 2

Proposition 2.15 Suppose that .H /G 2 L.G/. Then the .H /s˛.G/–singular set in
Sn=s˛.G/ is one of the four labelled graphs in Figure 2. These graphs correspond in
order to:

(a) .H /G 2 L.G/˛C and ˛v D�v , or .H /G 2 L.G/��L.G/˛ .

(b) .H /G 2 L.G/˛C and ˛v D v .

(c) .H /G 2 L.G/˛� .

(d) .H /G 2 L.G/C�L.G/˛ .
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Proof If .H /G 2L.G/ and H is the isotropy group for ˙v 2Sn�1 , it fixes the circle
.˙
p

1� t2v; t/ in Sn . The quotient of this circle in Sn=G is either a circle or an arc
labelled .H / with opposite points (the image of .0;˙1/) labelled G , according to
whether .H /G 2 L.G/C or .H /G 2 L.G/� .

We now look at the quotient of Sn=G by y̨ .

Consider first the case where .H /G 2 L.G/˛ and thus y̨ sends the circle or arc to
itself. For the circle we get (a) or (b), depending on whether ˛v D�v: For ˛v D v
in (b) we have 1̨H ;G D ˛ . For the arc we get (c) and 1̨H ;G D ˛ or ˛
H , according
to whether ˛v D˙v:

If .H /G 62 L.G/˛ , we consider the two circles or two arcs in Sn=G coming from the
fixed point sets for .H /G and .H˛/G . When NG.H /DH , we have the two circles,
which are then identified by y̨ to get graph (d). For NG.H /¤H , we get two arcs,
which are then identified by y̨ giving us (a).

Example 2.16 Let ˛ D �id3 . The orbifold graph for G D s˛Dk is given below as
(a) for k even or (b) for k odd. We have L.Dk/

˛ D L.Dk/. The graph for .Cj /s˛Dk
,

j D k , or j D 2 when k is even, is given in (c). When j D 2 and k is odd, the graph
is as in (d). The full graph for .C2/ (as in Figure 3(a) and (b)) is larger and involves
symmetry arising from the fact that G D s2Ck . In the figure the open circles indicate
the image of the point at .0;˙1/ and unlabelled edges have local group C2 .

D2

Dk

D2

Dk

Ck

(a)

Dk Dk

Ck

Dk

(b)

Dk

Dj

Cj

(c)

Dk

(d)

Figure 3

Proposition 2.17 Suppose ˛ 2N.G/�
2

. Then �H .G/D ŒjL.G/˛�\L.G;H /j �2 .

Proof We look at .v; 0/ in Sn�1=G � Sn=G in the proof for Proposition 2.15 and
note that when .K/G 2 L.G;H / it only contributes to �H .G/ nontrivially when we
are in case (c).
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Corollary 2.18 The formula in Theorem 2.12 would give us ds˛ � s˛d D id if:

(i) AD 0.

(ii) s˛H 0;G
.H 0/�O.n/ s˛H;G

.H / for each .H 0/G 2 L.G;H /.

Proof For dGD
P
�H .G/ŒH �, it makes sense by (ii) to group according to conjugacy

in O.n/ and have s˛dG D
P
�H .G/Œs˛H;G

H �. Further, by Proposition 2.17,X
.K /G2L.G/˛�

Œs˛K;G
.K/�D

X
.H /2SOn;f

X
.K /G2L.G/˛�\L.G;H /

Œs˛K;G
.K/�

D

X
.H /2SOn;f

�H .G/Œs˛H;G
.H /�:

This completes the proof.

Corollary 2.19 In the case where ˛ D�idn ,

d Œs˛.G/�D ŒG�C
X

L.G/�

Œs�
H
.H /�CA

and all singular sets in Sn=s˛.G/ for H a vertex group for G look like either (a) or (c)
in Figure 2, depending on whether NG.H /DH or not.

Proof We have that ˛ commutes with G , so L.G/˛ D L.G/ and ˛v D�v . Hence
we are in case (a) or (c) of Proposition 2.15.

We illustrate these results with an application to degree-three groups. This is a formal-
ization in our current notation of a proof we gave in [5].

Proposition 2.20 For ˛ D�id3 , d Œs˛I�D ŒI�C ŒD2�C ŒD3�C ŒD5�, d Œs˛O�D ŒO�C
ŒD2�C ŒD3�C ŒD4�, d Œs˛T �D ŒT �C ŒD2�, and d Œs˛Dk �D 0.

Proof When K is a finite subgroup of SO.3/, its nontrivial subgroups have degree 2,
so AD 0 in Corollary 2.18. Also for any � 2N.Ck/

�
2

, s�Ck is conjugate to Dk and
so condition (ii) of that corollary also holds. Hence d Œs˛.K/�D ŒK�C sd ŒK�. Applying
Proposition 1.11 for d ŒK� and the fact that .sCj /D .Dj /, we get our result.

Definition 2.21 Let ˇn;0 be generated by those ŒG�2ˇn such that G does not have Z2

as a direct summand. For k > 0 we inductively define ˇn;k to be generated by those
ŒG� 2 ˇn such that G D �1.G/˚�2.G/, where �1.G/ has an index-one or index-two
subgroup in ǰ ;k�1 for some j < n, G=�1.G/DZ2 , and �2.G/D h�idn�j i. Also
let ˇ˙

n;k
D ˇn;k \ˇ

˙
n . Our convention is that h�idni, n� 0 and even, is in ˇn;1 .
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Example 2.22 We have ˇ3;0 D ŒI�˚ ŒO�˚ ŒT � and ˇ3;1 D
L

k�3ŒDk �. ˇ3;2 D ŒD2�.

Proposition 2.23 (i) All irreducible groups in ˇn fall in ˇn;0 .

(ii) With the exception of Z2 , the representation of any simple group is in ˇn;0 .

(iii) We have that ˇn;k D ˇ
�
n;k

for k > 0.

Proof (i) If ŒG� 2 ˇn;k with k > 0, G has a direct summand of Z2 .

(ii) All representations of simple groups are faithful, and so unless a simple group
is Z2 , it cannot have a Z2 direct summand.

(iii) We can assume the Z2 summand acts by �1 on xn , and then we have that
.idn�1;�1/ commutes with G .

Corollary 2.24 Suppose ŒG� 2 ˇ�
n;0

and ˛ 2N.G/�
2

. Then:

(i) We have that �G.s˛.G//D 1, and hence d Œs˛.G/�¤ 0.

(ii) If M 2 ker dnC1 with Œs˛.G/� as a nontrivial summand, then there is another
summand ŒL� of M with �G.L/D 1, and either ŒL�2ˇnC1;0 or .L/D .s� .G//
for some � 2N.G/�

2
with .s� .G//¤ .s˛.G//.

Proof Statement (i) is verified by applying Theorem 2.12 and noting that ŒG� ¤
Œs˛H

.H /� nor is it a summand of A.

For (ii), Proposition 2.1 and Theorem 2.12 tell us that the only way that ŒG� is a nontrivial
summand of d ŒL� for ŒL�2ˇnC1;k with k>0 is if .L/D .s� .G// for some � 2N.G/�

2
.

In that case, since Œs˛.G/� is a nontrivial summand of M , .s˛.G//¤ .s� .G//.

Definition 2.25 Define an equivalence relation �b on N.G/�
2

by setting ˛ �b ˛
0 if

.s˛.G//D .s˛0.G//.

Definition 2.26 Let ˇn;1;j be generated by those elements of ŒK� 2 ˇn;1 for which
the maximal Z2 summand has degree j . Let ˇ�

n;1;1
be generated by those Œs˛.G/�,

ŒG� 2 ˇ�
n�1;0

for which j.N.G/�
2
=�b/j> 1.

Corollary 2.27 Let M 2 ˇn . Then:

(i) M �d M 0 where M 0 2 ˇCn ˚ˇn;k>0 .

(ii) If M 2 ker dn\ˇn;k>0 , M 2 ˇ�
n;1;1
˚ˇn;1;j>1˚ˇn;k>1 .

(iii) If n is odd and M 2 ker dn , M �d M 0 where M 0 2ˇ�
n;1;1
˚ˇn;1;j>1˚ˇn;k>1 .

Here ˇn;k>l D
L

k>l ˇn;k and similarly for ˇn;1;j>l .
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Proof (i) We can write M as MC CM� where M˙ 2 ˇ
˙
n . We then apply

Theorem 2.12 to those summand of M� which are in ˇ�
n;0

.

(ii) We use Corollary 2.24 for those summands of M which are in ˇn;1;1 and hence
of the form s˛.G/ for ŒG� 2 ˇ�

n�1;0
. Since M has no summands from ˇn;0 , we have

our result.

(iii) When n is odd, ˇCn (which is ˇC
n;0

) is trivial and so (i) implies M �d M 0 with
M 0 2 ker dn\ˇn;k>0 , and then we apply (ii).

3 The relationship of d and Hn to orbifolds and oriented
orbifold cobordism

We now collect some definitions and constructions relevant to oriented orbifold cobor-
disms. Most of these are from a previous paper [5] as well as the many other references
on orbifolds, including Adem, Leida and Ruan [1]. We are restricting our attention to
effective, smooth orbifolds.

An n–orbifold Q is built out of charts C D .U;H; xU ; �/, where U is an open subset
of the underlying topological space jQj, xU is an open subspace of Rn , H is a finite
group acting effectively on xU and � W xU ! U is an open onto map which factors
as hpU with pU the orbit map and h a homeomorphism from xU =H to U . The local
group at a point x 2U � jQj is the subgroup of H which fixes an element of ��1.x/.
One has the notion of an overlap map between two compatible charts, C1 and C2 . This
is a local diffeomorphism between some open subsets of xU1 and xU2 which commutes
with �1 and �2 . An orbifold is then defined by a maximal atlas of compatible charts.
Using the differential of H the local group at a point is well defined up to conjugacy
as a subgroup of Gl.n;R/. Once a Riemannian metric is placed on the orbifold this
local group is well defined up to conjugacy in O.n/. For a paracompact orbifold we
can assume such a metric is given. We denote by G.Q/ the set of O.n/ conjugacy
classes of local groups of the orbifold Q. If all the local groups of an orbifold are
subgroups of SO.n/, the orbifold is said to be locally orientable. An orientation for a
locally orientable orbifold is given by specifying an atlas whose charts are oriented
and the overlap maps are orientation-preserving [5].

For W an oriented orbifold with boundary, let @oW denote the orbifold boundary of W

with the standard induced orientation. Two oriented orbifolds Q1;Q2 are oriented
orbifold cobordant, written Q1�o Q2, if Q1q�Q2D @oW for some W . Let �n;orb

be the group of oriented orbifold cobordism classes of compact n–dimensional oriented
orbifolds as defined in a previous paper [4].
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For an isolated singular point x in the oriented orbifold Q, once one chooses the chart
with the standard orientation, the vertex group is well defined up to conjugacy class
in SO.n/, not necessarily just O.n/; we will call it the oriented vertex group of the
point. If H is an oriented vertex group for Q at x , a neighborhood of x in Q is then
oriented orbifold diffeomorphic (see [4, page 300]) to PDn=H , where PDn is the open
disc with standard orientation. If ˛ 2 O.n/ has determinant �1, PDn=H is oriented
orbifold diffeomorphic to � PDn=.˛H˛�1/ via the natural quotient map x̨ .

If ŒH �2ˇ�n and 
 is an orientation-reversing automorphism of H , we have that PDn=H

is orientably diffeomorphic to PDn=.˛
H
�1˛�1/, which in turn is identical to
PDn=.˛H˛�1/. Thus in this case, the oriented vertex group is well defined up to

conjugacy in O.n/.

In our paper on rational oriented orbifold cobordisms [4], rational H–characteristic
numbers are defined for an oriented n–orbifold Q and any finite subgroup of SO.n/.
In the following definition we give the formal interpretation of what these numbers are
for degree-n groups.

Definition 3.1 For .H / 2 SOn;f the rational H–characteristic numbers of the com-
pact, oriented, n–orbifold Q are defined as follows. Let QH D fx1;x2; : : : ;xkg be
the points in Q with vertex group H (not necessarily oriented vertex group.) Then
the H–characteristic numbers of Q are defined to be

P
hf �i y [p0.xi/; Œxi �i, where

y 2H 0.BNO.n/.H /=H I yQ/ and fi is a classifying map for the (trivial) normal bundle
to xi . Also yQ denotes the coefficient system defined by the orientation of the canonical
.Rn=H;NO.n/.H /=H /–bundle over the classifying space B.NO.n/.H /=H /.

When ŒH � 2 ˇ�n , these numbers are zero since H�.BNO.n/.H /=H I yQ/ consists
of the �1 eigenvectors of the natural involution on H�.BNSO.n/.H /=H IQ/ and
H 0.BNSO.n/.H /=H IQ/ is invariant under this involution.

If ŒH � 2 ˇCn , we need to specify the sign of Œxi �. For those points whose oriented
vertex group is H , the points are given a positive orientation. Those points whose
oriented vertex group is only conjugate to H in O.n/� SO.n/ are given a negative
orientation. Thus in this case, these numbers are zero precisely when the number of
points with oriented vertex group H is the same as that of those with vertex group
conjugate to H in O.n/�SO.n/.

Let ŒH � 2 ˇn . Define W.H / D Dn=H � I , which is an oriented orbifold with
boundary once one straightens the angle [4]. The oriented vertex group at .x0; 0/ is H .
At .x0; 1/, with the induced boundary orientation, the boundary has a neighborhood
which is oriented orbifold diffeomorphic to � PDn=H , which in turn is oriented orbifold
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diffeomorphic to PDn=.˛H˛�1/ for any ˛ 2O.n/�SO.n/. Hence the oriented vertex
group for the boundary at .x0; 1/ is ˛H˛�1 . The rational H–characteristic numbers of
@oW.H / are zero.

Remark 3.2 Using @oW.H /, we see that when ŒH � 2 ˇ�n there is a closed, oriented
orbifold with exactly two isolated singular points and the oriented vertex group for
those points is H . If H 2 ˇCn , we have a similar case, but the oriented vertex groups
are H and ˛H˛�1 .

Suppose N is an oriented .nC 1/–dimensional orbifold with boundary Q and H and
˛H˛�1 , ˛ 2O.n/�SO.n/ are oriented vertex groups for the points x;x0 in Q. Let h

and h0 be orientation-preserving orbifold diffeomorphisms of PDn=H , respectively
PDn=.˛H˛�1/, to neighborhoods U , respectively U 0 , of x , respectively x0 , which

extend to diffeomorphisms of the closures.

Definition 3.3 Let M D N [W.H /= �, where y D .y1; 0/ 2W.H / is identified
with h0.y1/ 2 xU

0 and y0 D .y0
1
; 1/ 2 W.H / is identified with h.y0

1
/ 2 xU . Once

the angle is straightened, M is an oriented orbifold with boundary. The exchanging
of vertex groups was to ensure the orientation. We say M is obtained from N by
attaching an .H; 1/–handle.

More generally we have the following.

Definition 3.4 Suppose the finite linear group G < SO.nC 1/ decomposes as the
direct sum �1.G/ ˚ �2.G/, where the summands have degrees k1; k2 . Suppose
the locally oriented n–orbifold Q has a closed neighborhood U which is orbifold
diffeomorphic to .Sk1�1 �Dk2/=G . In the manner analogous to that for manifolds as
in Kosinski [8] or Ranicki [9], or tom Dieck and Hambleton [2] for equivariant surgery,
we define a .G; �1.G//–surgery and when Q is an orbifold boundary, attaching a
.G; �1.G//–handle.

(i) The procedure of .G; �1.G//–surgery on Q results in a new orbifold

Q0 D .Q� PU /[.Sk1�1�Sk2�1/=G .D
k1 �Sk2�1/=G:

(ii) In the case where Q D @oM we form a new orbifold with boundary, N , by
attaching a .G; �1.G//–handle to M via

N DM [.Sk1�1�Dk2�1/=G .D
k1 �Dk2/=G:

Remark 3.5 If Q is oriented, then Q0 is oriented by giving the second summand
negative the standard orientation and similarly for M and N .
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Remark 3.6 We have Q0�o Q, where the cobordism is provided by attaching a handle
to Q� I at Q� 1. When Q D @oM , @oN is obtained from Q via a .G; �1.G//–
surgery.

Definition 3.7 When �1.G/ is trivial, we refer to the above constructions as a
.�2.G/; k1� 1/–surgery and attaching a .�2.G/; k1/–handle. In this case, the surgery
replaces a �2.G/–singular set with singular sets with local groups from G.�2.G//.

Proposition 3.8 When G is a finite degree-n subgroup of SO.n/, some multiple of
the sphere quotient orbifold Sn�1=G bounds an oriented orbifold with set of local
groups no more than those found in Sn�1=G . Thus one can construct an oriented
orbifold Q whose only vertex group is G , possibly with repetition.

Proof The quotient orbifold Sn�1=G orientably bounds the disk quotient orbifold
Dn=G , and so by [5, Lemma 2.1] some multiple k of Sn�1=G bounds some oriented
orbifold W with no increase in local groups. We then define Q to be

.k.Dn=G//[kSn�1=G �W:

Proposition 3.9 For G a direct sum of complex type or symplectic type groups or
h�id2li, Sn�1=G bounds orientably with no increase in local groups and G can occur
as the only vertex group, with no repetitions, in an oriented orbifold.

Proof In those cases S1 , considered as the standard diagonal subgroup of U.j / <

SO.2j / for complex type groups and h�id2li and via .�; x�/ 2 Sp.1/ < U.2/ as a
subgroup of SO.4j / for symplectic type groups, and finally as an appropriate direct
sum of these, commutes with the action of G . This affords us an action of S1 �G on
Sn�1 with S1\G acting as the identity. Let mD n=2, where n is the degree of G .
This action of S1 on S2m�1 over CPm�1 descends to an S1=.S1\G/–fibering of
S2m�1=G over CPm�1=.G=.S1\G//. An orbifold W is formed by replacing this
fiber by D2 to get that S2m�1=G bounds with no increase in local groups. We get
an orbifold with one vertex group, which is labelled by G , by the construction in the
proof of Proposition 3.8 with k D 1.

When G is as in Proposition 3.9, d ŒG�D 0, since no subgroup is of codegree 1. In
general, if one tries to construct a closed locally oriented n–orbifold with an isolated
singular point labelled by G , one sees that extending out from the point in Dn=G one
has the singular line segments labelled by the vertex groups of G . These segments will
have to match up, since there is only one terminal point for them. Hence we must have
d ŒG�D 0. This generalizes to multiple isolated singular points, but now the labelled
singular edges may connect these points. This motivates our following definition to
relate orbifolds to d .
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Definition 3.10 Define a map  from the set of diffeomorphism classes of closed
locally oriented orbifolds to ˇ as follows. For Q a compact locally oriented n–
dimensional orbifold let the isolated singular points in Q be denoted by x1;x2; : : : ;xk

and their associated vertex groups by G1;G2; : : : ;Gk . The group at xi is well defined
up to conjugacy in Gl.n;R/, or since a Riemannian metric can be provided, lies
in SO.n/, and since it is well defined up to conjugacy in Gl.n;R/ it is likewise well
defined in O.n/. Define  .Q/ 2 ˇn as

Pk
1 ŒGi �. Then  is a ring homomorphism

with disjoint union and Cartesian product the operations on the set of orbifolds.

Remark 3.11 If .G/ 2 SOn;f ,  .Sn�1=G/D d ŒG�. We concentrated on just d ŒG�

in previous sections to allow the algebra and geometry of representations to aid us in
calculating ker d and Hn .

Theorem 3.12 (i) If Q is a closed locally oriented n–dimensional orbifold, then
d. .Q//D 0. Hence d

Pk
iD1ŒGi � provides a first obstruction to whether a set

of degree-n groups G1;G2; : : : ;Gk 2 SO.n/ can be the set of vertex groups for
a locally oriented closed n–dimensional orbifold.

(ii) If QD @oW , then  .Q/ 2 im dnC1 , and so  induces a map x W �n;orb!Hn .

(iii) Suppose Q is oriented. If  .Q/ 2 im dnC1 and all its rational H–numbers are
zero for any H a vertex group, then Q �o Q0 , where Q0 has local groups of
degree less than n.

(iv) Suppose G has degree nC 1. If Q0 is obtained from the orbifold Q by a
.G; �1.G//–surgery,  .Q0/D  .Q/C d ŒG�.

Proof (i) Let Vi , 1 � i � k , be disjoint closed neighborhoods of the xi such that
there are orbifold diffeomorphisms fi W D

n=Gi!Vi for iD1; : : : ; k . Then Q�
Sk

1
PVi

has no vertex groups. If a point y in Sn�1=Gi has a degree-.n�1/ local group H ,
then the singular edge with local group H in Q�

Sk
1
PVi emanating from fi.y/ must

end at a different point (labelled H ) in some fj .S
n�1=Gj /�Q�

Sk
1
PVi .

(ii) Let H1;H2; : : : ;Hl be the (degree nC 1) vertex groups of the isolated singular
points x1; : : : ;xl interior to W , with possible repetition in vertex group. Suppose
V1; : : : ;Vl are disjoint closed neighborhoods of these points and fi W D

nC1=Hi! Vi

for i D 1; : : : ; l are oriented orbifold diffeomorphisms. Then either a vertex point
with (degree n) group, say K , on the

Sl
1 fi.S

n=Hi/ is linked by an edge labelled K

internal to W to another vertex point on it (hence even parity and contributing nothing to
d
Pl

1ŒHi �), or the edge terminates in Q and ŒK�D ŒGi � for some i . Also every vertex
point on Q is the terminus of a labelled edge in W . Therefore

Pk
1 ŒGi �D d

Pl
1ŒHi �.

Algebraic & Geometric Topology, Volume 15 (2015)



188 Kimberly Druschel

(iii) Suppose that  .Q/ D d
Pl

iD1ŒKi �, where this is a minimal sum. Let W1 D

.Q� I/q
`l

iD1 DnC1=Ki . We will attach handles to W1 as follows. First we can
assume that A D fG1; : : : ;Gj g for some j � k is a nonrepeating list of the vertex
groups which occur with odd parity in Q.

Since  .Q/D d
Pl

iD1ŒKi � the groups in A must be those which occur with odd parity
in
`l

iD1 Sn=Ki . Because of that, they all come from ˇ�n . For each 1� i � j we attach
a .Gi ; 1/–handle connecting .xi ; 1/ to a point in

`l
iD1 Sn=Ki with vertex group Gi .

The remaining vertex groups for the remaining isolated singular points in Q must
occur in pairs. We can then attach .Gs; 1/–handles for these pairs of points in Q� 1.
When ŒGs � 2 ˇ

C
n , we assume Gs is the oriented vertex group of xs . The fact that

the Gs –characteristic numbers of Q are zero implies that another point with vertex
group Gs has an opposite oriented vertex group. This is how we pair our points in
attaching handles to assure the resulting orbifold is oriented.

We now look at the remaining vertex groups for
`l

iD1 Sn=Ki . As in the previous
paragraph these must occur in pairs. Since Sn=KiD@oDnC1=Ki , the H–characteristic
numbers of Sn=Ki are zero for H a vertex group for some Ki . Hence we can proceed
as in the previous paragraph and attach an .H; 1/–handle to DnC1=Ki . We do this for
all such H . The resulting orbifold with boundary provides the cobordism between Q

and Q0 . We have that Q0 is Qq
`l

iD1 Sn=Ki surgered at all its vertex points.

(iv) We have that Q0 D .Q� .Sk1�1 �Dk2/=G/[�i .D
k1 � Sk2�1/=G/, so Q0

loses the isolated singular points contributing vertex groups in the first summand S1

of Proposition 2.1, and it gains those associated with the second summand S2 . Hence
 .Q0/ D  .Q/ � S1 C S2 . But in Z2 coefficients, this is  .Q/ C S1 C S2 D

 .Q/C d ŒG�.

Theorem 3.13 Suppose n� 4. If G1;G2; : : : ;Gk , are finite degree-n subgroups of
SO.n/ and

Pk
iD1 d ŒGi � D 0, there is a closed, oriented n–orbifold Q whose vertex

groups are precisely those groups. Hence  maps onto ker dn .

Proof For dimension two we have ker d2 D ˇ2 D
L

k�2ŒCk �. Thus for any linear
combination LD

Pk
sD1ŒCjs

�, dLD 0. The orbifold boundary of Q1D
`k

sD1 D2=Cjs

is diffeomorphic to k copies of S1 . One choice for Q is QD .S2�
`k

sD1 Us/[f Q1 ,
where the Us are disjoint disc neighborhoods whose boundary S is diffeomorphic to`k

sD1 S1 and f W S ! @oQ1 is an orientation-reversing diffeomorphism.
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We now consider the case where n is three or four. Let N1 D
`k

iD1 Dn=Gi and
Q1 D

`k
iD1 Sn�1=Gi , the orbifold boundary of N1 . Suppose H is a vertex group

for Q1 . Since
Pk

iD1 d ŒGi �D 0, and when n is three or four, ˇn�1D ˇ
�
n�1

, H occurs
as an oriented vertex group for an even number of points in Q1 . We then attach
.H; 1/–handles to N1 at all these points and repeat this for each such H to form a
new oriented orbifold with boundary which we will denote by N2 . By construction,
@oN2 has no vertex groups.

For nD 3 this means that @oN2 is an oriented 2–dimensional manifold and bounds an
oriented manifold, say W . We let QDN2[�W =�, where N2 and �W are glued
together by the identity map along their boundaries.

For nD 4, @oN2 is an oriented 3–orbifold with no vertex groups. Hence it is either an
oriented 3–manifold or its singular set consists of circles. In the former case we can
proceed as when nD 3, since from Rohlin [10] we have that any oriented 3–manifold
bounds an oriented 4–dimensional manifold.

In the latter case, its singular set is
`m

sD1 Vs , where each Vs is diffeomorphic to S1

and has a closed tubular neighborhood N .Vs/ which is oriented orbifold diffeomorphic
to the total space of a .D2=Cls

;NO.2/.Cls
/=Cls

/–orbibundle �s over S1 . Such a bundle
is classified by a map f W S1! BNO.2/.Cls

/=Cls
. We have NO.2/.Cls

/D O.2/ and
O.2/=Cls

Š O.2/ and, since the total space is oriented, as is S1 , we can reduce the
structure group to SO.2/Š S1 . Now �1.BS1/D 0, so �s is trivial, and hence has
total space diffeomorphic to S1 �D2=Cls

. This allows us to create N3 by attaching
.Cls

; 2/–handles along the N .Vs/. Since @oN3 is an oriented 3–manifold, it bounds
a manifold B . We let QD .N3 [�B/= �, where the two pieces are sewn together
along @oN3 .
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