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Stratified obstruction systems for equivariant
moduli problems and invariant Euler cycles

XIANGDONG YANG

The purpose of this paper is to study finite-dimensional equivariant moduli problems
from the viewpoint of stratification theory. We show that there exists a stratified
obstruction system for a finite-dimensional equivariant moduli problem. In addition,
we define a coindex for a G –vector bundle that is determined by the G –action on the
vector bundle and prove that if the coindex of an oriented equivariant moduli problem
is bigger than 1 , then we obtain an invariant Euler cycle via equivariant perturbation.
In particular, we get a localization formula for the stratified transversal intersection of
S1 –moduli problems.

57R22, 57R91

1 Introduction

Let � W E!B be an oriented smooth vector bundle of rank k over an n–dimensional
closed manifold B and S W B ! E a smooth section. The zero locus S�1.0/ � B

contains a lot of topological information about the bundle E when it is transversal to
the zero section, and that information is reflected as a cycle in B , called the Euler cycle
of E . The Euler cycle represents a homology class which is a topological invariant of
E . For an oriented vector bundle, there are two dual viewpoints to the construction of
such a topological invariant.

(1) For any smooth section S W B ! E (not necessarily transversal), via a slight
smooth perturbation we get a smooth section S C P which is transverse to
the zero section, so the zero locus .S C P /�1.0/ � B is an oriented closed
submanifold of dimension n� k . This submanifold yields a homology class
Œ.SCP /�1.0/� 2Hn�k.BIZ/, which is independent of the choice of the initial
perturbation.

(2) There exists a unique cohomology class on E , denoted by ‚2H k
vc.E/ (vertical

compact cohomology), that restricts to the generator of H k
c .F / (compact co-

homology) on each fiber F . This class is called the Thom class of E , and the
cohomological Euler class of E is defined as the pullback of the Thom class by
the zero section.
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Now let us consider the equivariant case. Given a finite group � , if � W E! B is a
smooth � –equivariant vector bundle and S is a smooth � –equivariant section, then
the technique of perturbation for the section S is ineffective since in general there
is no � –equivariant smooth perturbed section of S that is transversal to the zero
section. Fukaya and Ono [8] were able to use that � is finite to construct a multivalued
perturbation such that each branch is transverse to the zero section. The zero locus
of such a multisection gives rise to a cycle over the rational numbers Q and through
this technique Fukaya and Ono defined the Euler class of an oriented orbibundle. In
particular, for an oriented orbibundle E!X with a smooth section S having compact
locus S�1.0/, Lu and Tian [14] gave a very thorough presentation of a construction of
a multivalued perturbation of S by gluing together sections that resolve fiber products
over the local uniformizing charts of S�1.0/. They also showed that the zero locus of
the perturbed section yields a rational Euler cycle.

Generally, let G be a connected compact Lie group and B be a smooth manifold on
which G acts smoothly and effectively. Suppose that � W E!B is an oriented smooth
G–vector bundle. Using equivariant cohomology theory, Mathai and Quillen [15]
constructed an equivariant Thom class ‚eq of E , which is a compactly supported
closed equivariant form such that its integral along the fibers is the constant function
1 on B . Thus the equivariant Euler class of E can be defined as the pullback of the
equivariant Thom class by the zero section. For a nontrivial action of a Lie group G

on the vector bundle E , it is generally unrealistic to require a smooth section to be
equivariant and transversal. In fact, for a G–equivariant smooth section S W B!E ,
there exist some global obstructions (see Costenoble and Waner [4] and Petrie [19]) to
deforming S to a G –equivariant smooth transversal section. Therefore transversality
is too rigid in the equivariant case and a natural problem is the following.

� Can we define a new version of transversality in the G–equivariant case such
that every G–equivariant smooth section has an equivariant perturbation that
satisfies this new transversality?

� How do we construct the invariant Euler cycle of an oriented G –vector bundle?

This is a finite-dimensional equivariant moduli problem in the sense of Cieliebak, Riera
and Salamon [3]. Independently, Bierstone and Field also discussed the transversality
problem in the equivariant case. In [1], Bierstone introduced the notion of general
position for smooth G –equivariant maps between smooth G –manifolds. Meanwhile,
Field [6] proposed the concept of G –transversality and showed that the two definitions
are equivalent (see Field [5]). An infinite-dimensional version of equivariant general
position was defined by Hambleton and Lee [12]. They also studied the equivariant
perturbation of Yang–Mills moduli space with a compact Lie group action.
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For an oriented finite-dimensional G–moduli problem that is regular, ie the isotropy
subgroup of the G–action on B is finite, Cieliebak, Riera and Salamon constructed
a rational cycle through multi-valued perturbation in the paper [3]. The method of
Cieliebak, Riera and Salamon is similar to the one that Fukaya and Ono used in
constructing the Euler class of an oriented orbibundle. The main issue is that for
an equivariant vector bundle with a finite group action we cannot guarantee that the
transversal perturbation of an equivariant section is also equivariant in general, so the
perturbed section cannot descend to a single-valued section of the associated orbibundle.
Therefore the multi-valued perturbation is necessary to obtain the transversality.

The method we use here is to perturb the equivariant smooth section in the sense of
equivariant general position and to represent the fundamental class with a Whitney
object rather than a smooth submanifold. Using the geometric chain (cycle) technique
introduced by Goresky, we obtain the following main theorem.

Theorem 1.1 Let .B;E;S/ be a finite-dimensional oriented G –moduli problem with
dim BD n and rank ED k . If coind.B;E/ > 1, then there exists a smooth equivariant
perturbation P W B!E supported in an invariant open neighborhood of S�1.0/ such
that S C P is in general position with respect to the zero section. The zero locus
.S CP /�1.0/ � B yields a G–invariant .n� k/–geometric cycle that represents a
homology class

Œ.S CP /�1.0/� 2Hn�k.BIZ/;

which is independent of the choice of the perturbation.

This paper is organized as follows. We devote Section 2 to the preliminaries of
the definition of Whitney stratified chains and the definition of general position for
equivariant smooth maps. In Section 3 we construct the obstruction system of a
G–moduli problem. We also define a coindex coind.B;E/ for a G–vector bundle
� W E! B . In Section 4 we give the proof of Theorem 1.1. Finally, in Section 5 we
study the transversal intersection of S1 –moduli problems and show that all geometric
information of transversal intersection is contained in the fixed submanifold of the
S1 –action (Theorem 5.2).
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discussions. Particular thanks go to Professor Bohui Chen, who made numerous helpful
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2 Preliminaries

2.1 Whitney stratification and geometric cycles

The stratified space is motivated by the study of singular manifolds. It naturally arises
in the study of algebraic, analytic varieties and singularities of smooth mappings.
Intuitively, a stratified space is an object constructed by gluing some smooth manifolds
with different dimensions together in a nice way.

Definition 2.1 Let X be a Hausdorff and paracompact topological space, and let I be
a poset with order relations denoted by �. If X is a locally finite collection of disjoint
locally closed manifolds Si �X .i 2 I/ that satisfies

(1) X D
[
i2I

Si ,

(2) Si \
xSj ¤∅ , Si �

xSj , i � j ,

then the family S D fSi � X j i 2 Ig is called a stratification of X and .X;S/ is
called a stratified space. A piece Si 2 S is called a stratum of X .

A stratified subspace of .X;S/ is a subset Y �X such that

SY D fS \Y j S 2 Sg

with the induced topology is a stratification of Y .

If Si �
xSj , we write Si � Sj . If Si � Sj and Si ¤ Sj , we write Si < Sj .

Definition 2.2 Let S be a stratification of the space X . The length of a stratum S 2 S
is the integer

lX .S/ WD supfn j S D S0 < S1 < � � �< Sng

where S1; : : : ;Sn are strata of X . The length of stratified space .X;S/ is

l.X / WD sup
i2I

lX .Si/:

A stratum S 2 S is called maximal (resp. minimal) if it is open (resp. closed). The
dimension of a stratified space .X;S/ is defined to be the dimension of its maximal
stratum. The stratum S 2 S is called a regular stratum if it is open in X ; otherwise it
is called singular stratum. The union of all singular strata, denoted by †, is called the
singular part of X . And the minimal part, denoted by †min , is the union of minimal
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strata. Let Xi D
S

j�i Sj , and call Xi a skeleton of X . There exists a finite filtration
of skeletons

X DXm �Xm�1 � � � � �X0 �X�1 D∅;

where m is called the depth of X .

Example 2.3 A smooth manifold M is a stratified space with empty singular part.

Example 2.4 A subset V of Rn is called an algebraic set if it is the common zero
loci of finitely many real polynomials. The singular set †V of all points where V

fails to be a smooth manifold is also an algebraic set, hence there is a finite filtration

V D Vm � Vm�1 � � � � � V0 � V�1 D∅

with Vi�1 D†Vi . Then V is a stratified space with stratum Si D Vi �Vi�1 .

Inspired by the ideas of Thom on stratifications, Whitney [22] introduced Condition A
and Condition B. Condition B implies Condition A; this was proved by Mather in
his lecture notes [16]. Therefore, in general we only use Condition B to define a
Whitney stratification. Let us recall the definition of Whitney’s Condition B. Given
any x;y 2Rn such that x ¤ y , the secant xy

_ is defined to be the line in Rn , which is
parallel to the line xy (line joining x and y ) and passes through the origin.

Definition 2.5 (Condition B for submanifolds of Rn ) Let X and Y be the smooth
submanifolds of Rn . Assume that dim X D r . We say that the pair .X;Y / satisfies
Condition B at a given point y 2 Y , if the following holds: Let fxig and fyig be two
sequences of points in X and Y respectively, such that fxig and fyig converge to y .
Suppose that the tangent space Txi

X converges to some r –plane � � Rn and the
secants

xiyi
_

.xi ¤ yi/

converge to some line l �Rn . Then l � � .

This definition can be extended to submanifolds of arbitrary smooth manifolds.

Definition 2.6 Let M be a smooth m–manifold, X and Y be smooth submanifolds.
Given y 2 Y , we say that the pair .X;Y / satisfies Condition B at y if for some
coordinate chart .';U / about y the pair

.'.U \X /; '.U \Y //

satisfies Condition B at '.y/ in Rm . This definition is well-defined, as it is independent
of the choice of the coordinate chart (see [16]).
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Example 2.7 [20, Theorem 4.3.7] Let G be a compact Lie group. If M is a smooth
manifold on which G acts smoothly, then the stratification by orbit types of M ,
denoted by

M D
G

H<G

M.H /;

makes M into a Whitney stratified space, where M.H / is the set of points in M such
that the isotropy subgroup of each point is conjugate to H .

Remark 2.8 In general, a stratum M.H / may have connected components with
different dimensions. In this case we can refine the decomposition to make each piece
of the stratification a submanifold in M . To keep our notation manageable we refine
such decomposition and still write it as M.H / .

Definition 2.9 Let X be a closed subset of a smooth manifold M . We say that X

admits a Whitney stratification if there exists a stratification S on X with a filtration
of X by closed subsets

X DXm �Xm�1 � � � � �X0 �X�1 D∅

and any pair of strata .Si ;Sj / .i � j / satisfies Condition B.

The subset X together with the Whitney stratification is called a Whitney object.
Specially, if W � X is a closed subset with a Whitney stratification such that each
stratum of W is contained in a single stratum of X , then W is called a Whitney
substratified object of X .

The idea of representing cocycles by geometric objects was introduced by Whitney [21].
In [9], Goresky gave all technical constructions for a geometric description of homology
and cohomology in the context of Whitney stratifications. Let us recall Goresky’s
method of geometric chains (cycles).

Definition 2.10 (Goresky [9]) A geometric k–chain � in a fixed Whitney object X

consists of a compact k–dimensional Whitney substratified object j�j �X , which is
called the support of � , together with an orientation of j�j, which is a choice of an
orientation and multiplicity of each k–dimensional stratum. The set of orientations of
j�j is just the group Hk.j�j; j�jk�1/.

Definition 2.11 Let � be a geometric k–chain in X . The reduction of � is the
geometric chain whose support is the closure of the union of all components of
j�j � j�jk�1 that have been assigned a nonzero multiplicity. In particular, we can
identify a geometric chain with its reduction.
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Consider the pairs .j�j; j�jk�1/ and .j�jk�1; j�jk�2/. There exist two exact homology
sequences

� � � !Hk.j�jk�1/
i�
�!Hk.j�j/

j�

�!Hk.j�j; j�jk�1/
@k
�!Hk�1.j�jk�1/! � � � ;(2-1)

� � � !Hk�1.j�jk�2/
i�
�!Hk�1.j�jk�1/

j�

�!Hk�1.j�jk�1; j�jk�2/(2-2)

@k�1
���!Hk�2.j�jk�2/! � � � ;

where @k and @k�1 are the boundary operators. Given a geometric k–chain � , the
boundary of � , denoted by @� , is defined to be the geometric .k � 1/–chain with
support j�jk�1 and orientation induced from sequence

(2-3) Hk.j�j; j�jk�1/
@k
�!Hk�1.j�jk�1/

j�

�!Hk�1.j�jk�1; j�jk�2/:

Definition 2.12 We say that � is a geometric k–cycle if @� D 0.

Note that the orientation of � is a homology class O� 2Hk.j�j; j�jk�1/, and @� D 0

implies that @kO� D 0. Due to the exactness of the homology sequence (2-1), there
exists a unique fundamental class �� 2Hk.j�j/ such that j�.��/DO� . Let �W j�j!X

be the inclusion. Then � represents a homology class Œ��D ���� 2Hk.X /. There is
an equivalence relation, called cobordism, between geometric k–cycles.

Definition 2.13 Two geometric k–cycles �0 and �1 in X are cobordant if there exists
a geometric .kC 1/–chain � in X �R and some " > 0 such that

(1) j�j �X � Œ0; 1�,

(2) j�j \X � Œ0; "/D j�0j � Œ0; "/,

(3) j�j \X � .1� "; 1�D j�1j � .1� "; 1�,

(4) @�D �1 � f1g� �0 � f0g (modulo reduction).

Denote by WHk.X / the set of cobordism classes of geometric k–cycles in X . Note
that the cobordant cycles represent the same homology class, and therefore we get a
representation map

(2-4) RW WHk.X /!Hk.X /:

In particular, assume that Y �X is an oriented compact Whitney substratified object.
If there are no strata of Y with codimension one, then the cycle condition automatically
holds, ie Y represents a homology class in X .
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2.2 General position of equivariant smooth maps

In this subsection, we recall the definition of general position for a G –equivariant map
and state some elementary properties; for more details, we refer to [1].

Let V be a finite-dimensional vector space. Then V is called a G –space if there exists
a representation of G over V , �V W G! GL.V /. A smooth map F W V !W of two
G–spaces is called a G–equivariant map if for any g 2 G we have .�W .g// ıF D

F ı .�V .g//. The set of all smooth G–equivariant maps is denoted by C1
G
.V;W /.

Let G act trivially on R. A smooth function f W V !R is G –invariant if it satisfies
f ı .�V .g//D f for all g 2G .

Let C1
G
.V / be the set of G–invariant smooth functions on V . Then C1

G
.V;W / has

the structure of a C1
G
.V /–module with finite polynomial generators [6, Lemma 3.1].

Suppose that fF
1
; : : : ;Fkg is the set of polynomial generators; then for every G–

equivariant map F 2 C1
G
.V;W / there exist unique G –invariant functions hi 2 C1G .V /

.1� i � k/ such that

F.x/D

kX
iD1

hi.x/Fi.x/ for all x 2 V:

Define a map

(2-5) U W V �Rk
!W; .xI t1; : : : ; tk/ 7!

kP
iD1

tiFi.x/:

The zero set of U , denoted

E WD f.x; t/ 2 V �Rk
j U.x; t/D 0g;

is called the universal variety.

The universal variety E is a real affine algebraic variety which is uniquely determined
(up to a product with an affine space) by V and W ; moreover, E admits a unique
minimum Whitney stratification.

Definition 2.14 Define the graph map �.F / of F by

(2-6) �.F /W V ! V �Rk ; x 7! .x; h1.x/; : : : ; hk.x//:

Clearly we get F D U ı �.F / and F�1.0/ D �.F /�1.E/. The universal variety E
contains information about all possible zero sets for F 2 C1

G
.V;W /. Suppose that

X is a smooth manifold and E �Rq is an algebraic subvariety. That a smooth map
f W X ! Rq is transverse to E means that f is transverse to each stratum of the
minimum Whitney stratification of E .
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Definition 2.15 Let F 2 C1
G
.V;W / such that F.0/ D 0. Then F is in general

position with respect to 0 2W at 0 2 V if the graph map �.F / is transversal to the
minimum Whitney stratification of the universal variety E in V �Rk .

Definition 2.16 If W DW1˚W2 is a direct sum decomposition of G–spaces W1

and W2 , then the G –equivariant map

F D .F1;F2/W V !W1˚W2

is in general position with respect to W1 �W at 0 2 V if and only if the map

F2W V !W2

is in general position with respect to 0 2W2 at 0 2 V .

Next we review some basic properties of smooth actions of a compact Lie group on
manifolds. Let G be a compact Lie group and M be a smooth manifold. A smooth
G –action on M is a smooth map

(2-7) l W G �M !M; .g;x/ 7! gx

such that l.e;x/D x and .g1g2/x D g1.g2x/ for any g1;g2 2G;x 2M .

For any g 2G we can construct a smooth map

(2-8) �gW M !M; x 7! gx:

A point x 2M is called a fixed point if �g.x/D x for any g 2 G . For any x 2M

the set
G.x/D fgx j for all g 2Gg

is called the orbit of x , and the closed subgroup

Gx D fg 2G j gx D xg

is called the isotropy subgroup of x . The action of G on M is effective if the map �g

is the identity mapping on M only for g D e , where e is the identity of G . We say
that the G –action of G is free if for any x 2M , �g.x/D x implies that g D e .

Definition 2.17 Assume that the Lie group G acts smoothly on manifold M . The
action is proper if for every compact subset K �M , the set

GK D fg 2G j .gK/\K ¤∅g

is compact.
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If G is a compact Lie group, then the smooth action of G on a smooth manifold M is
proper. A manifold M is called a G –manifold if G acts on M smoothly. In particular,
if the action is proper then M is called a proper G–manifold. The set of all closed
subgroups of G admits an equivalence relation

H �H 0 , H D gH 0g�1 for some g 2G .

The equivalence classes, denoted by .H /, are called conjugacy classes. The set of
conjugacy classes bears a partial order: .H /� .H 0/ if there exists a g 2G such that
H � gH 0g�1 . For an orbit G.x/, the isotropy groups Ggx form a conjugacy class
.Gx/, which is called the isotropy type of the orbit G.x/.

Given any x 2M , the orbit G.x/ describes a G –invariant closed submanifold of M .
Furthermore, G.x/ is isomorphic to G=Gx via the canonical mapping

(2-9) ˆx W G=Gx!M; gGx 7! gx:

In particular, for a proper G–manifold there exists a G–invariant partition of unity
[20, Theorem 4.2.4] for any covering of the manifold by G –invariant open subsets and
a G –invariant tubular neighborhood theorem [2, Theorem 2.2] for a closed invariant
submanifold.

For each x 2M , the normal space SxDTxM=Tx.G.x// is called the slice of x . Note
that the homogenous space G!G=Gx is a Gx –principal fiber bundle; furthermore,
we get an associated bundle Nx D G �Gx

Sx , which is called the slice bundle of x .
The following differential slice theorem shows that every smooth G –manifold M with
a proper G–action locally looks like a neighborhood of the zero section in the slice
bundle. For the original proof of the slice theorem we refer to Palais [18].

Theorem 2.18 (cf [20, Theorem 4.2.6]) Let ˆW G �M !M be a proper group
action, x a point of M and Sx D TxM=Tx.G.x// the normal space of the orbit of x .
Then there exists a G –equivariant diffeomorphism from a G –invariant neighborhood
of the zero section of G �Gx

Sx onto a G –invariant neighborhood of G.x/ such that
the zero section is mapped onto G.x/ in a canonical way.

We summarize what we can get from the differential slice theorem: If G is a compact
Lie group, then for each x 2M there exists a Gx –invariant submanifold in M , denoted
by S , such that:

(1) x 2 S .
(2) gS \S ¤∅) g 2Gx .
(3) For any y 2 S , Gy �Gx .
(4) GS D fgy j g 2 G;y 2 Sg is a G–invariant open neighborhood of the orbit

G.x/ in M .
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Definition 2.19 Suppose that M and N are smooth G–manifolds. A smooth map
f 2 C1.M;N / is called a G–equivariant smooth map if the G–action commutes
with f , ie for any x 2M and g 2G we have

f .gx/D g.f .x//:

Clearly, if f is G–equivariant, then Gx � Gf .x/ for any x 2M . Let P � N be
a G–invariant submanifold. For any x 2 f �1.P /, we can choose a Gx –equivariant
diffeomorphism � from a neighborhood V of f .x/ in N to a Gx –vector space
W1 ˚W2 such that �.V \ P / D W1 . The pair .V; �/ is called a Gx –chart for P

at f .x/. Choose a slice at x , denoted by Sx . Then f determines a smooth Gx –
equivariant map

zf W Sx!W1˚W2:

Definition 2.20 We say that f is in general position with respect to P at x 2M if

(1) f .x/ 62 P ; or

(2) f .x/ 2 P and for some choice of slice Sx and Gx –chart for P at f .x/,

zf W Sx!W1˚W2

is in general position with respect to W1 at x in the sense of Definition 2.16.

If f is in general position with respect to P at every point of M , then we say that f
is in general position with respect to P .

Remark 2.21 The above definition is well-defined since the definition is independent
of the choice of the slices (cf [1, Proposition 5.6]).

If f is in general position with respect to P at x 2M , then the definition implies that
f is in general position with respect to P at gx for any g 2G ; furthermore, it is in
general position in a neighborhood of x .

In classical differential topology the set of smooth maps that are in general position is
open and dense. Similarly, for the G –manifolds and equivariant maps we have:

Theorem 2.22 (Bierstone [1, Theorem 1.4]) Suppose that P is an invariant submani-
fold of N . Then the set of smooth equivariant maps f 2 C1

G
.M;N / that are in general

position with respect to P is a countable intersection of open dense sets in the Whitney
of C1–topology.
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Particularly, when P is a closed invariant submanifold, the set of smooth equivariant
maps that are in general position is open and dense in the Whitney topology. Further-
more, Bierstone showed that if f 2 C1

G
.M;N / is in general position with respect

to P , then f �1.P /�M is a Whitney object and every stratum of f �1.P / is a G–
invariant submanifold of M . Note that the proper action of a Lie group on a manifold
induces a natural stratification; thus a natural approach to the transversality problem in
equivariant case is to consider the stratumwise transversality of a smooth equivariant
map f W M !N with respect to an invariant submanifold P of N . Given a closed
subgroup H of G we can define following three subspaces of M :

M.H / WD fx 2M jGx �H g;

MH
WD fx 2M jGx �H g;

MH WD fx 2M jGx DH g:

In general, M.H / , MH and MH are not connected and each connected component
is a submanifold of M . In fact, MH is just the set of fixed points of H in M . If
H �G is compact, then these three spaces satisfy

MH DM.H /\MH :

Since G is a compact Lie group, the fact that H is an isotropy subgroup of some
points in M means H is a closed subgoup of G and hence the compactness of H is
automatic. Furthermore, M.H / can be decomposed into

M.H / D

G
J2.H /

MJ :

The equivariant map f does not always map M.H / into the set N.H / since in general
Gx �Gf .x/ , however, f maps MH into N H . Let fH D f jMH

, then the image of
fH is contained in N H and the stratumwise transversality of f is defined as follows.

Definition 2.23 Let f 2 C1
G
.M;N / and P �N be a G–invariant submanifold. If

for any subgroup H of G the map fH W MH ! N H is transverse to the submani-
fold PH of N H , then we say it is a G –equivariant map which admits the stratumwise
transversality with respect to the G –invariant submanifold P of N .

The concepts of general position and stratumwise transversality are generalizations of
classical transversality in differential topology. However, the stratumwise transversality
is not open, ie if f 2 C1

G
.M;N / admits stratumwise transversality with respect to

a G–invariant submanifold P of N , then a small perturbation of f may break the
stratumwise transversality. In particular, if a map f 2 C1

G
.M;N / is in the general
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position with respect to a G –invariant submanifold P of N , then f is stratumwisely
transverse to P (see [1, Proposition 6.4]). In conclusion, we have the following relation
for equivariant smooth maps:

fclassical transversalityg�fbeing in general positiong�fstratumwise transversalityg:

3 Stratified obstruction system of a G–moduli problem

In this section we show that for an equivariant vector bundle there exists a family of
obstruction bundles and we call it the stratified obstruction system. The existence of
the obstruction system implies that there is no equivariant perturbed section that is
transversal to the zero section in general.

Let G be a compact Lie group and B be a G –manifold. A G –vector bundle over B

is defined as follows.

Definition 3.1 If B is a G–manifold, a G–vector bundle on B is a G–space E

together with a G –equivariant map � W E! B such that

(1) � W E! B is a real vector bundle on B ;

(2) for any g 2G and x 2B , the action gW Ex!Egx is homomorphism of vector
spaces.

The above definition implies that g�1W Egx!Ex is also a homomorphism of vector
spaces such that g�1 ıg is the identity map on Ex and g ıg�1 is the identity map on
Egx . Thus gW Ex!Egx is an isomorphism of vector spaces. Two G –vector bundles
over B are called G –equivalent if they are equivalent as ordinary vector bundles via a
G –equivariant bundle map. Next we describe the appropriate generalization of product
bundle in the equivariant case, which gives the local model of G –vector bundles.

Assume that H is a closed subgroup of G and �W H !GL.RI k/ a homomorphism.
For each H –space V we denote by "�.V / the G–vector bundle over G �H V with
fiber Rk given by

(3-1) � W G �H .V �Rk/!G �H V; �.Œg; .v; e/�/D Œg; v�;

where H acts on the fiber Rk via the homomorphism � . Generally, for any G –space
X , suppose that H is a closed subgroup of G and V �X is a H –invariant subspace;
then V is called a H –slice provided that the equivariant map

(3-2) �W G �H V !X; �.Œg; v�/D gv

is a homomorphism onto an open subset of X .
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Definition 3.2 (Lashof [13]) A G–vector bundle � W E ! B of rank k is called
G –locally trivial if there exists a G –invariant open cover fGV˛g˛2I of B , where V˛
is an H˛–slice, such that the restriction EjGV˛ is G –equivalent to "�˛ .V˛/ for some
homomorphism �˛W H˛! GL.RI k/ (under the identification �W G �H V˛!GV˛ ).

In particular, every smooth G –vector bundle is G –locally trivial (cf [13, Corollary 1.6]).

According to Definition 3.1(2), for any x 2 B there is a representation of the isotropy
subgroup Gx over the fiber Ex , therefore Ex is a Gx –vector space. Denote by Ef

x

the Gx –fixed subspace of the fiber space Ex , ie

Ef
x D fv 2Ex j gv D v for all g 2Gxg:

Given a closed subgroup H of G , let B.H / D fx 2 B jGx �H g.

Proposition 3.3 If x and y are contained in the same connected component of B.H / ,
then dim Ef

x D dim Ef
y .

To prove the proposition, we need the following lemma (cf [17, Lemma 6.12]):

Lemma 3.4 Let G be a compact Lie group and H a closed subgroup of G . Then
gHg�1 �H implies that gHg�1 DH .

Proof of Proposition 3.3 Without loss of generality, we may assume that B.H / is
connected. Observe that EjB.H /

is a smooth G –vector bundle; thus it admits a G –local
trivialization. Since B.H / is connected, given any smooth path1


 W Œ0; 1�! B.H /

such that 
 .0/D x and 
 .1/D y , we can find finitely many points on the path 


x0 D x;x1; : : : ;xm D y

with associated slices Vi .0� i �m/ such that the G –invariant open subsets fGVig
m
iD0

cover the path 
 , and GVi \GViC1 ¤∅ for 0� i �m� 1. Further, we can choose
GVi such that for each GVi , ��1.GVi/ is G –equivalent to

"�i .Vi/DG �Hi
.Vi �Rk/;

where Hi DGxi
and �i W Hi! GL.RI k/ is a homomorphism. The next thing to do

is to verify that for any z 2GVi , we have dim Ef
z D dim Ef

xi
.

1Recall that a connected space is not always pathwise connected. However, if a space is connected
and locally pathwise connected then it is pathwise connected. A connected manifold is always pathwise
connected since the manifold is locally pathwise connected.
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We divide the proof into three cases.

Case 1 Assume that z 2 Vi . Then Gz � Hi . According to the definition of B.H / ,
we get that Gz and Gxi

DHi are conjugate to H . Since the conjugate relation is an
equivalence relation, by transitivity Gz is conjugate to Hi , ie there exists a g 2 G

such that Gz D gHig
�1 � Hi . By Lemma 3.4, we get Gz D Hi . Furthermore, the

representation of Gz over the fiber Ez is equivalent to �i jGz
D �i . It follows that the

fixed subspaces Ef
z and Ef

xi
have the same dimension, ie dim Ef

z D dim Ef
xi

.

Case 2 Assume that z 2G.xi/, ie there exists a g 2G such that z D gxi . Note that
z D gxi implies that Gz D gGxi

g�1 and the map

(3-3) gW Exi
!Ez

is an isomorphism of vector spaces. By definition we have

Ef
xi
D fu 2Exi

j huD u for all h 2Gxi
g;

Ef
z D fv 2Ez j zgv D v for all zg 2Gzg

D fv 2Ez j zgv D v for all zg 2 gGxi
g�1
g .Gz D gGxi

g�1/

D fv 2Ez j .ghg�1/v D v for all h 2Gxi
g:

For any v 2E
f
z , we have g�1v 2Exi

and h.g�1v/Dg�1v for all h2Gxi
. It follows

that the homomorphism of vector spaces

(3-4) g�1
W Ez!Exi

maps Ef
z onto the subspace Ef

xi
. It is straightforward to show that the homomorphism

(3-3) maps Ef
xi

onto the subspace Ef
z . So Ef

xi
Š Ef

z and we obtain dim Ef
z D

dim Ef
xi

.

Case 3 Assume that z 2GVi and z 62 Vi . Then there exists a v 2 Vi such that zD gv

for some g 2G . On one hand, due to the result of Case 1 we have

(3-5) dim Ef
v D dim Ef

xi
:

On the other hand from the result of Case 2 we get

(3-6) dim Ef
v D dim Ef

z :

At last, according to (3-5) and (3-6) we obtain

(3-7) dim Ef
z D dim Ef

xi
:
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Note that the path 
 is covered by the G–invariant subsets fGVig
m
iD0

and for each
0� i �m� 1 GVi \GViC1 ¤∅, and therefore we have

dim Ef
x D dim Ef

x1
D � � � D dim Ef

xm�1
D dim Ef

y :

This completes the proof.

Definition 3.5 (Finite-dimensional G –moduli problem) Let G be an oriented com-
pact Lie group. A finite-dimensional G –moduli problem is a triple .B;E;S/ with the
following properties:

� B is a compact smooth manifold (without boundary) on which G acts smoothly.

� E is a G –vector bundle over B .

� S W B!E is a G –equivariant smooth section.

A G–moduli problem .B;E;S/ is oriented if B and E are oriented and G acts on
B and E by orientation-preserving diffeomorphisms.

In order to make our notation manageable, from now on we assume that B.H / is
connected for each closed subgroup H of G . In the general case we may consider
it component by component. From Proposition 3.3, for any x;y 2 B.H / we have
dim Ef

x D dim Ef
y , ie the dimension of Ef

x is independent of the choice of x 2B.H / .
Assume that rank ED k and dim Ef

x D l . Let F D fEf
x gx2B.H /

. Then the collection
F is an G–invariant subspace of EjB.H /

. Using the local trivialization of EjB.H /
,

we get that for every x 2 B.H / , there exists a neighborhood U of x in B.H / and a
trivialization

(3-8) �U W EjU ! U �Rk :

Moreover, the restriction of �U on F jU induces a map

(3-9) z�U W F jU ! U �Rl
� U �Rk ;

which gives a local trivialization of F over U . For any pair of trivializations �U and
�V of EjB.H /

, we have the smooth transition functions

(3-10) gU V W U \V ! GL.RI k/

given by gU V .x/D .�U ı�
�1
V
/jfxg�Rk and satisfying the cocycle condition

(3-11) gU V �gV W D gU W ; .U \V \W ¤∅/:

For any x 2 U \ V , the fiber Ex is a Gx –vector space. For each e 2 Ex , under
the trivialization �U we get �U .e/ 2 Rk , and similarly, under the trivialization �V ,

Algebraic & Geometric Topology, Volume 15 (2015)



Stratified obstruction systems for equivariant moduli problems 303

we have �V .e/ 2 Rk . Consider the action of g 2 Gx on e . Under the different
trivializations �U and �V we get

��1
U �TU ��U .e/D ge;(3-12)

��1
V �TV ��V .e/D ge;(3-13)

where TU WD .�U �g ��
�1
U
/jx and TV WD .�V �g ��

�1
V
/jx .

According to (3-12) and (3-13), we get

(3-14) �U ı�
�1
V �TV ��V .e/D TU ��U .e/:

Since gU V D �U ı�
�1
V

and �U .e/D gU V .x/ ı�V .e/, (3-14) is equivalent to

(3-15) gU V .x/ ıTV ı�V .e/D TU ıgU V .x/ ı�V .e/:

This implies that the action of Gx on Ex is independent of the trivialization. Thus
gU V induces a transition function

(3-16) zgU V W U \V ! GL.RI l/

given by zgU V .x/ D .z�U ı
z��1

V
/jfxg�Rl . The cocycle condition of transition func-

tions fzgU V g is determined by (3-11). This implies that the collection F with the
cocycle fzgU V g forms a subbundle of EjB.H /

, denoted by EH . Since the projection
� W EH ! B.H / is G –equivariant and for any g 2G and x 2 B.H / the action

(3-17) gW Ef
x !Ef

gx

is a homomorphism of vector spaces, EH is a G –equivariant subbundle. Observe that
if the section S W B!E is equivariant, for any x 2 B and g 2Gx we have

g.S.x//D S.gx/D S.x/:

Then S.x/ is contained in the Gx –fixed subspace E
f
x �Ex . Therefore SH WDS jB.H /

is an equivariant smooth section of EH ; moreover we say that the triple .B.H /; EH ;SH /

is the fixed subbundle of EjB.H /
with the induced G –equivariant smooth section.

Definition 3.6 (Partition of G –moduli problem) The family of the fixed subbundles

f.B.H /; EH ;SH / jH <Gg

is called the partition of .B;E;S/. Also we write

.B;E;S/D
G
.H /

.B.H /; EH ;SH /;

where .H / runs over the all isotropy classes.
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Define OH be the quotient bundle of EH : it is also a G–equivariant bundle and we
have a direct sum decomposition of G –vector bundles

EjB.H /
D EH ˚OH :

In particular, we say that the vector bundle oH W OH !B.H / is the obstruction bundle
of EjB.H /

.

Definition 3.7 (Obstruction system of G–moduli problem) The family of the ob-
struction bundles

f.B.H /;OH ; oH / jH <Gg

is called the obstruction system of .B;E;S/.

Definition 3.8 (Coindex of G–vector bundle) The coindex of G–vector bundle
� W E! B is defined to be the integer

coind.B;E/D max
H<G;H¤e

fcodim B.H /� rankOH g;

where e is the identity of G . The coindex is uniquely determined by the G –actions on
B and E .

Suppose that the G–moduli problem .B;E;S/ is oriented. Then the orientation on
E determines an orientation on each fiber Ex . In particular, the induced orientation
on Ex is preserved by the Gx –action on Ex . Let Em

x D Ex=E
f
x be the quotient

space of E
f
x , ie the moving part under the Gx –action. Then each fiber Ex can be

decomposed into the direct sum of Gx –subspaces as

(3-18) Ex DEf
x ˚Em

x :

In fact, the moving subspace Em
x is the fiber of obstruction bundle OH at x 2 B.H / .

The orientation on Ex induces the orientations on Ef
x and Em

x , which are preserved
by the Gx –action. Therefore we assign to each fiber of fixed subbundle EH an induced
orientation. If this induced orientation is smooth, then EH is oriented. In particular,
the obstruction bundle

oH W OH ! B.H /

is oriented if and only if EH is oriented. We say that the obstruction system of an
oriented G–moduli problem is oriented if each obstruction bundle is oriented. Next
we consider the transversality of the partition of G –moduli problem. We say that the
partition f.B.H /; EH ;SH / j H < Gg is transversal if for each H of G the section
SH is transverse to the zero section of EH .
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Proposition 3.9 Let .B;E;S/ be a G–moduli problem. If S W B!E is in general
position with respect to the zero section over B , then the partition

f.B.H /; EH ;SH / jH <Gg

is transversal.

Proof Notice that E is a G –vector bundle over B , and therefore B can be considered
as an embedded G–invariant closed submanifold in E . Given any closed subgroup
H of G , let J 2 .H /. For any b 2 B assume that J �Gb and define .Eb/

J as the
J –fixed subspace of Eb , ie

.Eb/
J
D fe 2Eb j ge D e for all g 2 J g:

Consider the J –fixed submanifold of E :

EJ
D f.b; e/ 2E j g.b; e/D .b; e/ for all g 2 J g

D f.b; e/ 2E j gb D b;ge D e for all g 2 J g

D f.b; e/ 2E j b 2 BJ ; e 2 .Eb/
J
g

D

G
b2BJ

.Eb/
J :

Observe that the section S W B ! E is in general position with respect to the zero
section over B , and hence it admits stratumwise transversality, ie

(3-19) S jBJ
W BJ !EJ

is transverse to the J –fixed submanifold BJ �EJ . For each b 2 S�1.0/\BJ we
have Gb D J and

dS.b/.Tb.BJ //CTb.B
J /D Tb.E

J /D Tb.B
J /˚ .Eb/

J

D Tb.B
J /˚ .Eb/

Gb .Gb D J /

D Tb.B
J /˚E

f

b
: ..Eb/

Gb DE
f

b
/

It follows that the linear map

(3-20) ıS.b/W Tb.BJ /
dS.b/
����! Tb.B

J /˚E
f

b

proj
��!E

f

b

is surjective. Consider the H–fixed subbundle .B.H /; EH ;SH /. To verify that the
section

(3-21) SH W B.H /! EH
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is transversal to the zero section, we only need to show that for each b 2S�1.0/\B.H /

the vertical differential

(3-22) ıS.b/W TbB.H /

dS.b/
����! Tb.EH /

proj
��!E

f

b

is surjective. Note that B.H / D
F

J2.H /BJ . For any b 2 S�1.0/\B.H / there exists
a BJ such that b 2 S�1.0/\BJ . The stratumwise transversality of S implies that
the map (3-20) is surjective. Observe that Tb.BJ / is a tangent subspace of TbB.H / ,
and therefore the vertical differential

ıS.b/W TbB.H /!E
f

b

is surjective. It follows that for any H �G the section SH W B.H /! EH is transverse
to the zero section; moreover, the partition f.B.H /; EH ;SH / jH <Gg is transversal.

4 Invariant Euler cycle of a G–moduli problem

Proof of Theorem 1.1 Our first goal is to show that there exists a G–equivariant
perturbation P W B! E supported in a G–invariant open neighborhood of S�1.0/

such that S CP is in general position with respect to the zero section over B . The
idea of the proof is canonical. We can reduce the problem to the local situation and
construct a local equivariant perturbation. Then using the G –invariant partition of unity
we can glue those local perturbations to get a global one.

For any x 2S�1.0/, let Sx be the slice at x . From the differential slice theorem, there
exists a triple .U; �;Gx/ satisfying the following properties:

(1) U � Sx is a Gx –invariant open neighborhood of zero in the Gx –vector
space Sx .

(2) �W U ! B is a Gx –equivariant embedding such that x D �.0/.

(3) � induces a G –equivariant diffeomorphism form G �Gx
U onto a G –invariant

open neighborhood of x in B , denoted by W , via

ˆW Œg;y� 7! g ��.y/;

where Œg;y� 2 G �Gx
U is the equivalence class determined by equivalence

relation

.g;y/� .h�1
�g; h �y/ for all h 2Gx :
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Since S�1.0/ � B is compact we can choose finitely many points xi 2 S�1.0/

.0� i � q/ with triples .Ui ; �i ;Hi/ and induced maps ˆi such that

S�1.0/�

q[
iD0

Wi ;

where Hi is the isotropy subgroup of xi and Wi is the G –invariant open neighborhood
of xi in B determined by the image of ˆi . Assume that Ei is the fiber of E at xi .
Since Ui is a contractible neighborhood of zero in Si there exists an Hi –equivariant
trivialization of the pullback bundle ��i E D Ui �Ei .

Given that Ui and Ei are Hi –vector spaces, the space of Hi –equivariant smooth maps
C1

Hi
.Ui ;Ei/ is a C1

Hi
.Ui/–module with finitely many polynomial generators. Suppose

that F1;F2; : : : ;Fri
are the generators of C1

Hi
.Ui ;Ei/. Since a G –equivariant map on

Wi is uniquely determined by its restriction to Ui , the local section S jWi
is uniquely

determined by an Hi –equivariant map zSi 2 C1Hi
.Ui ;Ei/. There exists a unique set of

Hi –invariant smooth functions hD .h1; : : : ; hri
/ 2 C1

Hi
.Ui/

ri such that

(4-1) zSi D

riX
jD1

hj Fj :

The graph map of zSi is

(4-2) �. zSi/W Ui! Ui �Rri ; x 7! .x;h.x//

and the universal variety is

Ei D

�
.x; t/ 2 Ui �Rri

ˇ̌̌̌ riX
jD1

tj Fj .x/D 0

�
:

From Definition 2.15, zSi is in general position if and only if (4-2) is transverse to Ei

(every stratum of Ei ) in Ui �Rri . Given any c D .c1; : : : ; cri
/ 2Rri we can make a

perturbation of the graph map (4-2) by setting

(4-3) x 7! .x; h1.x/C c1; : : : ; hri
.x/C cri

/:

Since the set of points c 2 Rri such that the map (4-3) is transversal to Ei is dense
in Rri we can choose Hi –invariant functions li D .l1; : : : ; lri

/ 2 C1
Hi
.Ui/

ri such that
the map

(4-4) x 7! .x; h1.x/C l1.x/; : : : ; hri
.x/C lri

.x//
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is transverse to Ei in Ui �Rri . Let

(4-5) �i D

riX
jD1

lj Fj :

Then zSi C �i is in general position over Ui . Furthermore, �i determines a unique G –
equivariant local section Pi W Wi !E such that S jWi

CPi is in general position. Let
WqC1DB�S�1.0/; then WqC1 is a G –invariant open subset since S�1.0/ is closed
and G –invariant. Notice that W0;W1; : : : ;WqC1 form a G –invariant open covering of
B , there exists a G –invariant partition of unity on B , ie there are G –invariant smooth
functions �j W B! Œ0; 1�, 0� j � qC 1 such that

supp.�j /�Wj ;

qC1X
jD1

�j .x/D 1 for all x 2 B:

Let P D
Pq

jD0
�j Pj ; then P is supported in

Sq
iD0

Wi , which is a G –invariant open
neighborhood of S�1.0/. According to the openness and the density of the set of the
smooth equivariant sections that are in general position, via the choice of

.l0; : : : ; lq/ 2

qY
iD0

C1Hi
.Ui/

ri

we can make S CP be in general position with respect to the zero section over B .

We are now in a position to verify that the zero locus .S CP /�1.0/� B represents a
homology class in Hn�k.BIZ/. Note that E is a G –vector bundle over B ; therefore
B can be considered as an embedded G –invariant submanifold of E . For simplicity,
let yS D S CP . Note that yS W B!E is a G –equivariant smooth section, which is in
general position with respect to the zero section. Hence, from the result of Bierstone [1,
Proposition 6.5], the zero locus X D yS�1.0/ � B is a compact Whitney object
with G–invariant submanifolds as its strata. From Proposition 3.9, for each closed
subgroup H of G the section ySH W B.H /! EH is transverse to the zero section of EH .
Thus we see that yS�1

H
.0/ D X \B.H / is a G–invariant submanifold of dimension

rH WD dim B.H /� rank EH . Let XH D
yS�1

H
.0/; then

X D
G

H<G

XH :

In particular, if H D e is trivial subgroup of G , then B.e/ D Be is an open subset
of B so that Be is oriented and dim B.e/ D dim B . Furthermore, the orientations on
B.e/ and E determines an orientation on Xe , ie Xe is an oriented submanifold with
dimension re D n� k . Note that the coindex of .B;E/ satisfies coind.B;E/ > 1:
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we obtain rH � n� k � 2 when H ¤ e . At last we get that X � B is an oriented
compact G–invariant Whitney object with dimension n� k ; especially, there is no
codimension-one stratum, thus the cycle condition is automatic. Therefore X yields a
G–invariant .n� k/–geometric cycle �X ; moreover, through the representation map
(2-4) we get a homology class Œ�X � 2Hn�k.BIZ/.

Finally, we have to show that homology class Œ�X � is independent of the choice of P . To
prove such independence, we only need to verify that different equivariant perturbations
of section S yield the G–invariant .n� k/–geometric cycles that are cobordant. In
this step we need the following lemma which is a relative version of Theorem 2.22 and
we give its proof at the end of this section for the completeness.

Lemma 4.1 Let � W E! B be a G–vector bundle, S W B!E be a G–equivariant
smooth section and K � B be a G–invariant closed compact subset. If S is in
general position with respect to the zero section over K , then there exists a G–
equivariant smooth section zS such that zS is in general position with respect to the zero
section over B , and the restriction of zS on K is equivalent to S , ie zS jK D S jK .

Suppose that S0 and S1 are two G–equivariant smooth sections that are in general
position. Let X0D S�1

0
.0/ and X1D S�1

1
.0/. Then we get two G –invariant .n�k/–

geometric cycles, denoted by �0 and �1 , such that j�0j D X0 and j�1j D X1 . Let G

act trivially on R; then E �R and B �R are two G –spaces and we can construct a
new G –vector bundle of rank k as follows:

Rk // E �R

�
��

B �R

Define a section of the above G –vector bundle,

(4-6) S W B �R!E �R; .x; t/ 7! .1� t/S0.x/C tS1.x/:

Clearly S is a G –equivariant smooth section and S.x; 0/D S0.x/, S.x; 1/D S1.x/.
Note that S0 and S1 are in general position over B , hence S is in general position
over the compact and closed subset K DK0[K1 of B �R, where K0 DX0 � f0g

and K1 DX1 � f1g. By the above lemma we can construct a G–equivariant smooth
section of E �R, denoted by zS , which is in general position and zS jK D S jK . Let
X D zS�1.0/\ .B � Œ0; 1�/. Then X is an oriented .n� kC 1/–dimensional compact
Whitney object; moreover, X yields a .n � k C 1/–geometric chain � such that
j�j DX �B� Œ0; 1�. From the equivariant isotopy theorem (cf [1, Theorem 1.5]) there
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exists a ı > 0 and an equivariant homeomorphism

(4-7) ‡0W B � .�ı; ı/! B � .�ı; ı/

covering the identity map, such that the restriction ‡0jB�f0g is the identity map and

‡0.. zS jB�.�ı;ı//
�1.0//D S�1

0 .0/� .�ı; ı/D j�0j � .�ı; ı/:

Similarly, there exists a � > 0 and an equivariant homeomorphism

(4-8) ‡1W B � .1� �; 1C �/! B � .1� �; 1C �/

such that ‡1jB�f1g is the identity map and

‡1.. zS jB�.1��;1C�//
�1.0//D S�1

1 .0/� .1� �; 1C �/D j�1j � .1� �; 1C �/:

Let � Dminfı; �g. Then we have

(1) j�j \B � Œ0; �/D j�0j � Œ0; �/,

(2) j�j \B � .1� �; 1�D j�1j � .1� �; 1�,

(3) @�D �1 � f1g� �0 � f0g.

Thus �0 and �1 are cobordant, and represent the same homology class in Hn�k.BIZ/.
This completes the proof.

Proof of Lemma 4.1 Since B is a proper G –manifold, for every point x 2 B there
exists a G –invariant open neighborhood of x , denoted by Ux � B . Clearly K has a
G –invariant open covering

K �
[

x2K

Ux :

Note that K is compact: there exist finitely many points x1; : : : ;xl of K such that
K �

Sl
iD1Ui , where Ui DUxi

. Let UK D
Sl

iD1Ui . Then UK is a G –invariant open
neighborhood of K . As K is G –invariant and closed, U0 WD B �K is a G –invariant
open subset of B . It follows that U0;U1; : : : ;Ul forms a finite open covering of B

with G–invariant open subsets. Using the G–invariant partition of unity on a proper
G –manifold, we have the G –invariant smooth functions

�i W B! Œ0; 1�; 0� i � l

such that supp.�i/� Ui and
Pl

iD0 �i.x/D 1 for any x of B . Furthermore, we get

�0.x/D

�
0 x 2K;

1 x 2 B �UK ;

lX
iD1

�i.x/D

�
1 x 2K;

0 x 2 B �UK :
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Assume that �0 D �0 and �1 D
Pl

iD1 �i . For any G –equivariant smooth section S 0

that is in general position with respect to the zero section over B , let zS D �0S 0C�1S .
Then zS is a G –equivariant smooth section. In particular, zS is in general position over
the invariant closed subset K [ .B �UK / and zS jK D S jK . In fact, it is in general
position over an invariant neighborhood of K[ .B �UK / since a smooth equivariant
map in general position at a point implies that it is in general position over an invariant
neighborhood of this point (cf [1, Lemma 6.2 and Proposition 6.3]). By density we can
choose S 0 such that zS is in general position over UK �K .

Example 4.2 Given three coprime integers p0 , p1 and p2 , consider

B D S5
D

�
.z0; z1; z2/ 2C3

ˇ̌̌̌ 2X
iD0

jzi j
2
D 1

�
:

Let G D S1 act on B by

�.z0; z1; z2/D .�
p0z0; �

p1z1; �
p2z2/ for all � 2 S1:

Then the singular strata of the orbit type stratification of B are

B0 WD fb 2 B jGb D Zp0
g Š S1=Zp0

;

B1 WD fb 2 B jGb D Zp1
g Š S1=Zp1

;

B2 WD fb 2 B jGb D Zp2
g Š S1=Zp2

:

Let � W E! B be a S1 –equivariant plane bundle. Note that the codimensions of B0 ,
B1 and B2 are 4, and moreover, the rank of obstruction bundle over each singular
stratum is smaller than or equivalent to 2, and by the above theorem we may obtain
the invariant Euler cycle via equivariant perturbation.

Example 4.3 (An application in symplectic geometry) Theorem 1.1 can be applied
to the study of symplectic geometry. Let .M; !;J / be a compact spherically positive
symplectic manifold, L �M a relatively spin Lagrangian submanifold and let ˇ 2
H2.M;LIZ/. Fukaya, Oh, Ohta and Ono [7] studied the moduli space of stable .kC1/–
marked pseudo-holomorphic discs with respect to L and ˇ . They proved that there
exists an oriented Kuranishi structure on the moduli space Mmain

kC1
.ˇIP1; : : : ;Pk/

2

and they developed a Lagrangian Floer theory over Z coefficients [7, Theorem 1.1].

To develop a Lagrangian Floer theory over Z, the main technique is to construct a
single-valued perturbation of the moduli space, which can give rise to a virtual moduli

2For the details of the definition of Lagrangian Floer moduli space and its Kuranishi structure refer to
the paper [7, Sections 2 and 11].
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cycle over Z. Using the notion of the sheaf of groups and the notion of normal bundles
in the sense of stacks the authors constructed a suitable single-valued perturbation of
the Kuranishi structure (see [7, Theorem 3.1]). Applying this single-valued perturbation
to the concrete Lagrangian Floer moduli space of the spherically positive symplectic
manifold, they constructed a Lagrangian Floer theory over the integers.

In fact, for any point p 2Mmain
kC1

.ˇIP1; : : : ;Pk/ the Kuranishi chart associated to
p is an oriented �p –equivariant moduli problem .Vp;Ep;Sp/ with coindex greater
than 1, where �p is a finite group (see [7, Proposition 12.1]). More precisely, Ep is a
�p –equivariant vector bundle over Vp and SpW Vp!Ep is a smooth �p –equivariant
section. Note that coind.Vp;Ep/ > 1; therefore by Theorem 1.1, we may construct a
�p –equivariant perturbation of Sp such that the perturbed section, denoted by S 0p , is
in general position with respect to the zero section of Ep over Vp . Furthermore, we
can construct a global perturbation of the moduli space by gluing together those local
equivariant perturbations over Kuranishi charts in a compatible way. In particular, this
global perturbation may yield a geometric cycle with dimension equal to the virtual
dimension of the moduli space.

5 Transversal intersection of S 1–moduli problems

In this section we study the intersection problem of S1 –moduli problems.

Definition 5.1 (Goresky [9]) Let X be a fixed Whitney object. Assume that V

and W are two substratified objects in X . We say V is transverse to W provided that
for every stratum R� V and every stratum S �W satisfy

(1) R\S D∅, or

(2) R is transverse to S in the stratum Xi �X that contains R and S .

For a compact smooth n–manifold B on which G D S1 acts, there exists a canonical
Whitney stratification on B determined by orbit types. For simplicity we assume that
the G–action is semi-free and the G–fixed loci is connected. With this assumption
there exist only two orbit types. Let

B0 D fx 2 B jGx D eg; B1 D fx 2 B jGx DGg:

Then B D B0 tB1 . Let .B;E˛;S˛/ and .B;Eˇ;Sˇ/ be two oriented G–moduli
problems such that rank E˛ D k and rank Eˇ D n� k . Assume that S˛ and Sˇ are
in general position. Then the associated moduli spaces

M˛ D fx 2 B j S˛.x/D 0g; Mˇ D fx 2 B j Sˇ.x/D 0g
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are Whitney substratified objects with G –invariant strata in B . Let

M˛;0 DM˛ \B0; M˛;1 DM˛ \B1;

Mˇ;0 DMˇ \B0; Mˇ;1 DMˇ \B1

:

Then the Whitney stratifications induced by orbit types on M˛ and Mˇ are

M˛ DM˛;0 tM˛;1; Mˇ DMˇ;0 tMˇ;1:

Denote the partitions of .B;E˛;S˛/ and .B;Eˇ;Sˇ/ by

.B;E˛;S˛/D .B0; E˛;0;S˛;0/t .B1; E˛;G ;S˛;G/;

.B;Eˇ;Sˇ/D .B0; Eˇ;0;Sˇ;0/t .B1; Eˇ;G ;Sˇ;G/:

Suppose that M˛ is transverse to Mˇ . By Definition 5.1 we get that M˛;0 is transverse
to Mˇ;0 in B0 and M˛;1 is transverse to Mˇ;1 in B1 . Since B0�B is an open subset,
dim B0 D n. Observe that M˛;0 is .n� k/–dimensional and Mˇ;0 is k–dimensional.
If the transversal intersection M˛;0\Mˇ;0 is nontrivial, ie M˛;0\Mˇ;0 ¤∅, then
M˛;0 \Mˇ;0 is an invariant submanifold of dimension 0. From another aspect, for
any z 2M˛;0 \Mˇ;0 the orbit G.z/ belongs to M˛;0 \Mˇ;0 since M˛;0 \Mˇ;0

is G–invariant. Note that the isotropy subgroup Gz D e ; G.z/ is isomorphic to
G D S1 . So

dim.M˛;0\Mˇ;0/� dim G.z/D 1

and this leads to a contradiction with dim.M˛;0\Mˇ;0/D 0. Hence M˛;0\Mˇ;0D∅
and we have that

Z WDM˛ \Mˇ DM˛;1\Mˇ;1

is a submanifold of B1 .

From now on, we assume that the G–fixed subbundles E˛;G ! B1 and Eˇ;G ! B1

are oriented. Consider the obstruction bundles o˛W O˛;1! B1 and oˇW Oˇ;1! B1 .
Suppose that

rankO˛;1 D k � n˛ and rankOˇ;1 D n� k � nˇ;

where n˛ and nˇ are the ranks of the G –fixed subbundles E˛;G and Eˇ;G respectively.
The orientations of E˛;G and Eˇ;G induce the orientations of the obstruction bundles.

Let dim B1 D n1 . Observe that S˛W B!E˛ is in general position, the section

S˛;G D S˛jB1
W B1! E˛;G

is transverse to the zero section of the G –fixed bundle E˛;G and the zero locus

M˛;1 D S�1
˛;G.0/� B1
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is an oriented submanifold with dimension n1� n˛ . Similarly,

Mˇ;1 D S�1
ˇ;G.0/� B1

is an oriented .n1�nˇ/–dimensional submanifold. Note that M˛ and Mˇ are Whitney
substratified objects; however, on the level of sets the intersection set Z DM˛ \Mˇ

is a submanifold of fixed loci B1 with dimension n1� n˛ � nˇ .

Consider the direct sum of .B;E˛;S˛/ and .B;Eˇ;Sˇ/. Let E D E˛ ˚Eˇ and
SDS˛˚Sˇ . Then we get a new oriented G –moduli problem .B;E;S/ with dim BD

rank E D n. The associated partition of .B;E;S/ is .B;E;S/ D .B0; E0;S0/ t

.B1; EG ;SG/, ie

E0G 66

��
B0G 44

S0

ZZ EGG 44

��
B1G 44

SG

ZZ

where
E0 D E˛;0˚ Eˇ;0; S0 D S˛;0˚Sˇ;0

EG D E˛;G ˚ Eˇ;G ; SG D S˛;G ˚Sˇ;G :

The obstruction bundle over B1 is

oW O1! B1;

where O1 DO˛;1˚Oˇ;1 and oD o˛˚ oˇ .

Note that S˛;0 and Sˇ;0 are transverse to the zero sections of E˛;0 and Eˇ;0 respectively
and M˛;0D S�1

˛;0
.0/ intersects with Mˇ;0D S�1

ˇ;0
.0/ in B0 transversally. This implies

that S0 is transverse to the zero section of E0 and we get

S�1
0 .0/DM˛;0\Mˇ;0 D∅:

Similarly, we obtain that SG is transverse to the zero section of EG and

S�1
G .0/DM˛;1\Mˇ;1 DZ:

Define

‰.E˛;Eˇ/D

Z
B

e.E˛˚Eˇ/:

We call ‰.E˛;Eˇ/ the intersection number of G –moduli problems .B;E˛;S˛/ and
.B;Eˇ;Sˇ/. Firstly, we consider the nondegenerate case, ie S˛ and Sˇ are transverse
to the zero sections and the moduli spaces M˛ intersect with Mˇ in B transversally.
In this case M˛ �B is an oriented G –invariant submanifold of dimension n�k , and
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Mˇ � B is a k–dimensional invariant submanifold. Since M˛ is transverse to Mˇ in
B the intersection number is

#.M˛ �Mˇ/D

Z
B

PD.M˛/^PD.Mˇ/;

where PD. � / is the Poincaré dual. Note that PD.M˛/D e.E˛/ and PD.Mˇ/D e.Eˇ/,
hence we getZ

B

PD.M˛/^PD.Mˇ/D

Z
B

e.E˛/^ e.Eˇ/D

Z
B

e.E˛˚Eˇ/:

Therefore, in the nondegenerate case the intersection number of G –moduli problems
is equivalent to the intersection number of the associated moduli spaces, ie

‰.E˛;Eˇ/D #.M˛ �Mˇ/:

In general, the existence of the obstruction system of G –moduli problems implies that
the equivariant smooth section that is transverse to the zero section does not always
exist. However, the equivariant sections which are in general position are generic, and
particularly we have the following.

Theorem 5.2 Assume that S˛W B ! E˛ and SˇW B ! Eˇ are in general position
with respect to the zero sections respectively. If the G –moduli space M˛ is transverse
to the G –moduli space Mˇ in the sense of Definition 5.1 then

‰.E˛;Eˇ/D

Z
Z

i�
�

eG.O1/

eG.NB1=B/

�
;

where Z DM˛ \Mˇ , NB1=B is the normal bundle of B1 in B and i� is the map
induced by the inclusion i W Z ,! B1 .

Proof Let ‚G 2 �
n
G;vc

.E/ be the equivariant Thom form of E . By the definition
of equivariant Thom form (cf [15, Theorem 6.4]), the leading component of ‚G ,
denoted by

‚D .‚G/Œn� 2�
n
vc.E/;

is a nonequivariant Thom form of E . Denote by i0W B!E the embedding of B in E

as the zero section, then the equivariant Euler class of E is eG.E/D i�
0
.‚G/ and the

ordinary one is e.E/D i�
0
.‚/. Observe that dim B D n. According to the definition

of equivariant integral we haveZ
B

eG.E/D

Z
B

i�0 .‚G/D

Z
B

i�0
�
.‚G/Œn�

�
D

Z
B

e.E/;
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and therefore we get

(5-1) ‰.E˛;Eˇ/D

Z
B

eG.E/:

Let NB1=B be the normal bundle of B1 in B . The G–action on NB1=B only fixes
the zero section B1 . This implies that the normal bundle NB1=B has even rank and
is orientable. In particular, with a fixed orientation the equivariant Euler class of
the normal bundle eG.NB1=B/ is invertible. Using the Atiyah–Bott–Berline–Vergne
localization formula (cf [10, Theorem C.53]) we have

(5-2)
Z

B

eG.E/D

Z
B1

j �eG.E/

eG.NB1=B/
;

where j � is the map induced by the inclusion j W B1 ,! B . Note that j �eG.E/ D

eG.j
�E/ and the pullback bundle j �E is equivalent to EjB1

. From another aspect,
EjB1

can split into the direct sum of a G –fixed subbundle and obstruction bundle that
are all G –equivariant, ie EjB1

D EG ˚O1 . Using equivariant Chern–Weil theory (cf
[11, Chapter 8]), and following the proof of Whitney product formula for the Euler
class, we get

(5-3) j �eG.E/D eG.EG/^ eG.O1/:

Consider the equivariant Euler class eG.EG/. Note that the equivariant section

SG W B1! EG

is transverse to the zero section; the zero locus Z D S�1
G
.0/ � B1 is an invariant

submanifold. Moreover, the normal bundle of Z in B1 , denoted by NZ=B1
, is

isomorphic to EG jZ . Assume that �W B1 ,! EG is the embedding of B1 into EG as
the zero section. Without loss of generality, we may choose an equivariant Thom form
of EG , denoted by ˆG 2�

n˛Cnˇ
G;vc

.EG/, such that the support of the pullback by SG

S�G.ˆG/ 2�
n˛Cnˇ
G

.B1/

is contained in an invariant tubular neighborhood of Z in B1 . Let

ˆD .ˆG/Œn˛Cnˇ� 2�
n˛Cnˇ
vc .EG/

be the leading component of ˆG . Then ˆ is a nonequivariant Thom form of EG .
Given any z 2Z , let Nz be the fiber of NZ=B1

at z and EG;z be the fiber of EG at z .
Because the image of a fiber of NZ=B1

under SG is homotopic to a fiber of EG we
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have Z
Nz

S�G.ˆG/D

Z
Nz

S�G.ˆ/ .dim Nz D n˛C nˇ/

D

Z
EG;z

ˆ .ˆ is a Thom form/

D 1:

Note that eG.EG/ D ��.ˆG/. The next thing to do is to verify that ��.ˆG/ is an
equivariant Thom form of NZ=B1

. The proof is straightforward since we haveZ
Nz

��.ˆG/D

Z
Nz

��.ˆ/ .dim Nz D n˛C nˇ/

D

Z
Nz

S�G.ˆ/ .��.ˆ/�S�G.ˆ/ is d–exact/

D 1:

Denote by PDG.Z/ the equivariant Poincaré dual of Z in B1 , which is defined as an
equivariant Thom form of the normal bundle NZ=B1

. It follows that

(5-4) eG.EG/D PDG.Z/:

Let i W Z ,! B1 be the inclusion. Combining (5-2), (5-3) and (5-4), we getZ
B

eG.E/D

Z
B1

PDG.Z/^ eG.O1/

eG.NB1=B/
D

Z
Z

i�
�

eG.O1/

eG.NB1=B/

�
:
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