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An Abel map to the compactified Picard scheme
realizes Poincaré duality

JESSE LEO KASS

KIRSTEN WICKELGREN

For a smooth algebraic curve X over a field, applying H1 to the Abel map X !

Pic X=@X to the Picard scheme of X modulo its boundary realizes the Poincaré
duality isomorphism

H1.X;Z=`/! H1.X=@X;Z=`.1//Š H1
c .X;Z=`.1//:

We show the analogous statement for the Abel map X=@X ! Pic X=@X to the
compactified Picard, or Jacobian, scheme, namely this map realizes the Poincaré
duality isomorphism H1.X=@X;Z=`/! H1.X;Z=`.1// . In particular, H1 of this
Abel map is an isomorphism.

In proving this result, we prove some results about Pic that are of independent
interest. The singular curve X=@X has a unique singularity that is an ordinary
fold point, and we describe the compactified Picard scheme of such a curve up to
universal homeomorphism using a presentation scheme. We construct a Mayer–
Vietoris sequence for certain pushouts of schemes, and an isomorphism of functors
�`

1
Pic0.�/Š H1.�;Z`.1//:

14F35; 14D20, 14F20

1 Introduction

In this paper we extend a classical relation between Poincaré duality and the Abel map.
The classical Abel map of a smooth proper curve over a field k is a map Ab from the
curve X to its Picard, or Jacobian, scheme Pic X . The Picard scheme Pic X is the
moduli space of invertible sheaves, and Ab sends a point x to the sheaf OX .x/ of
rational functions with at worst a pole at x . The Abel map induces a homomorphism
from the homology of X to the homology of Pic X . Moreover, there is a canonical
isomorphism � between the homology of Pic X and the cohomology of X , making
the composition ��1 ı H1.Ab/ a homomorphism between the homology and the
cohomology of X . This composition is exactly the Poincaré duality isomorphism

(1) Poincaré dualityD ��1
ıH1.Abel map/:
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In other words, the Abel map of a smooth proper curve realizes the Poincaré duality
isomorphism. In this paper we extend this result by showing that the Poincaré duality
isomorphism associated to a smooth nonproper curve is realized by the Abel map from
an explicit singular proper curve XC to its compactified Picard scheme. The singular
curve XC plays the role of the curve modulo its boundary, as in topological Poincaré
duality of manifolds.

When X is smooth and proper, the isomorphism � is constructed as follows. Fix
a prime ` distinct from the characteristic char k . The étale cohomology of X with
coefficients in the Tate twist Z=`.1/D�` , or `th roots of unity, is recorded by Pic X in
the following manner. The points of Pic X are invertible sheaves or, equivalently, Gm –
torsors and thus correspond to elements of H1.X;Gm/. The inclusion Z=`.1/!Gm

induces an isomorphism

(2) H1.X
k
;Z=`.1// �!Š Pic X Œ`�.k/

from étale cohomology to the `–torsion subgroup of the group of k –valued points
of Pic X , as is seen with the long exact sequence associated to the Kummer exact
sequence

1 �! Z=`.1/ �!Gm
z 7!z`

����!Gm �! 1:

Thus the moduli definition of the Picard scheme identifies its torsion points with
H1.X

k
;Z=`.1//.

The structure of the Picard scheme computes these torsion points in terms of its
fundamental group. Let Pic0 X denote the connected component of Pic X containing
the identity e , and note that the open immersion Pic0 X ! Pic X determines a canon-
ical isomorphism �1.Pic0 X

k
; e/ ! �1.Pic X

k
; e/ between the fundamental group

of Pic0 X
k

based at the identity and the fundamental group of Pic X
k

based at the
identity. The multiplication-by-` map Pic0 X ! Pic0 X , defined as I 7! I˝` , is a
Galois covering space map with Galois group equal to the group of `–torsion, inducing
a homomorphism

(3) �1.Pic X
k
; e/! Pic X Œ`�.k/

from the fundamental group of Pic X
k

to Pic X Œ`�.k/. The Serre–Lang theorem
implies that (3) becomes an isomorphism after tensoring �1.Pic X

k
; e/ with Z=`.

Since the fundamental group is abelian, for instance by Serre–Lang or alternatively by
the Eckmann–Hilton argument, for any definition of homology satisfying the Hurewicz
theorem, there is an isomorphism

(4) H1.Pic X
k
;Z=`/ �!Š Pic X Œ`�.k/:

Algebraic & Geometric Topology, Volume 15 (2015)



An Abel map to the compactified Picard scheme realizes Poincaré duality 321

Define � to be the composition of (2) with the inverse of (4). Equation (1) is then a
consequence of Proposition 3.4 of SGA 41

2
[9, Dualité, page 164].

In other words, the canonical isomorphism � results from combining the moduli
definition of Pic with its structure theory.

In this paper we extend the relation between the classical Abel map and Poincaré
duality for a smooth proper curve to a relation between the Altman–Kleiman Abel
map and Poincaré duality for a smooth nonproper curve, which we place in analogy
with manifolds with boundary. Topological Poincaré duality works for manifolds with
boundary, resulting in isomorphisms between the homology of the manifold modulo its
boundary and the cohomology of the manifold. We will discuss the algebraic analogue
below, in which to a smooth nonproper algebraic curve X (satisfying a technical
assumption), we associate a singular curve XC which should be thought of as X

modulo a sort of natural boundary.

The Altman–Kleiman Abel map does not embed XC into its Picard scheme, but
rather embeds XC into its compactified Picard scheme. Like the Picard scheme, the
compactified Picard scheme has a moduli definition and structure theory, of course, but
the structure of the compactified Picard scheme is more complicated than that of the
Picard scheme, and is studied in this paper.

1.1 The main result

This paper computes the structure of the compactified Picard scheme of XC , and uses
this computation to show that Poincaré duality for a nonproper smooth curve X is
realized by the Abel map of XC , extending the result discussed above. Embedded
in this statement is the claim that the compactified Picard scheme admits a canonical
isomorphism

� W H1.X
k
;Z=`.1// �!Š H1.Pic X C

k
;Z=`/:

We develop a structure theory for Pic XC which, when combined with the moduli
definition of Pic, allows us to define � .

It is natural to consider a smooth curve modulo its boundary in the context of Poincaré
duality. The Poincaré duality perfect pairing

Hi.M=@M;Z=`/˝Hdim M�i.M;Z=`/! Z=`

for an oriented manifold M with boundary @M follows from Michael Atiyah’s for-
mula [5] for the dual of M=@M in terms of the tangent bundle of M in the category
of spectra. In this sense, M=@M is dual to a shift of M itself. The analogous duality
in algebraic geometry, or rather P1 –spectra (see Hu [19]), produces perfect pairings of
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étale cohomology groups; see Isaksen [20]. In particular, let X be a smooth curve and
assume that X is an open subscheme of a smooth proper curve zX such that the residue
fields of the points of zX �X are separable extensions of k . (For instance, when k

has characteristic 0 this assumption is automatically satisfied.) Form X=@X WDXC ,
where XC is defined by the pushout diagram (see Ferrand [15, Theorem 5.4])

@X //

��

zX

��
Spec k // XC

and @X denotes the complement zX �X with its reduced closed subscheme structure.
(This pushout is discussed further in Section 2.) Let R denote Z=` or Z` , with `
relatively prime to char k . By Milne [25, Corollary 11.2, Chapter VI] and the canoni-
cal isomorphism H1

c .Xk
;R.r//Š H1.X C

k
;R.r//, there is a perfect pairing of étale

cohomology groups

H1.X C
k
;R.r//˝H1.X

k
;R.1� r//!R:

For simplicity, define H1..�/k ;R/ for geometrically connected k–schemes using the
abelianization of the `–étale fundamental group by

H1..�/k ;R/ WD �
`
1.�/

ab
k
˝Z`

R;

but see Friedlander [16, Section 7] for a discussion of étale homology in more gen-
erality. The tautological pairing between H1 and H1 produces the Poincaré duality
isomorphisms (see Section 7)

Poincaré dualityW H1.Xk
;R/! H1.X C

k
;R.1//;(5)

Poincaré dualityW H1.X
C

k
;R/! H1.X

k
;R.1//:(6)

It is not hard to modify the argument given in the proper case to show that an Abel map
realizes the isomorphism (5). More explicitly, the moduli space Pic XC of invertible
sheaves on XC exists, and the rule x 7!OXC.x/ defines an Abel map

AbW X ! Pic XC

whose domain is the nonproper curve X . The connected component of Pic XC

containing the trivial line bundle is a semi-abelian variety, and a generalization of the
Serre–Lang theorem due to Mochizuki [26, Appendix, page 221 (III)] computes the
fundamental group of Pic XC in terms of torsion points. Using the fact that these
torsion points are line bundles, a canonical isomorphism � can be constructed as before,
and this isomorphism satisfies (1).
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What about the isomorphism (6)? The rule x 7! OX .x/ does not define an Abel
map from XC to Pic XC because OX .x/ is undefined when x is a singularity. The
generalized Picard scheme Pic XC is not proper, but it is contained in the proper
scheme Mod XC defined as the moduli space of rank-1, torsion-free sheaves on XC .
The ideal sheaf Ix D OXC.�x/ of a point on XC is a rank-1, torsion-free sheaf,
and so the rule x 7! Ix defines a map XC!Mod XC . The scheme Mod XC has
the undesirable property that the connected components are reducible, so rather than
working with Mod XC we work with the Zariski closure of the line bundle locus,
which we call the compactified Picard scheme Pic XC . The rule x 7! Ix defines a
morphism AbW XC! Pic XC , which will be called the Abel map of XC .

The main theorem of this paper is that Ab realizes the Poincaré duality isomorphism (6).
The theorem applies under the following hypothesis:

Hypothesis 1.2 The curve X has the following properties:

(1) The normal proper model zX of X is smooth over k .

(2) The extension of residue fields k.x/=k is separable for every point

x 2 @X WD zX �X:

The theorem states the following:

Theorem 1.3 If X is a smooth curve over k that satisfies Hypothesis 1.2, then

(7) �Poincaré dualityD ��1
ıH1.Abel map/

for an explicit isomorphism of Gal.k=k/–modules � W H1.X
k
;R.1//!H1.Pic X C

k
;R/.

This result is Theorem 7.1 below. Observe that in (7), Poincaré duality appears with a
minus sign. We discuss the significance of this sign and Hypothesis 1.2 later in this
introduction.

We prove Theorem 1.3 using a strategy similar to the one used to prove (1). The isomor-
phism � is constructed using a description of the structure of Pic XC and the definition
of Pic zX as a moduli space. We then prove (7) using analogues of results of SGA 41

2

[9, Dualité, Section 3]; we also obtain a generalization of Propositions 3.2 and 3.4
therein in the case of a proper smooth curve zX . Together, these two propositions imply
that the Poincaré dual of a loop on zX can be described as the associated monodromy
on the pullback of the multiplication-by-` map Pic! Pic under a translation of the
Abel map. We give the monodromy of a path in terms of Poincaré duality on a quotient
curve. The different fibers have a canonical identification after tensoring with the
cohomology of the quotient curve, allowing us to speak of monodromy as an element
of this cohomology. See Section 7.
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1.4 New results about Pic XC

In proving Theorem 1.3, we prove new results about the compactified Picard scheme
that are of independent interest. Unlike the Picard scheme of a smooth proper curve,
the compactified Picard scheme does not have a group structure, so we cannot use,
for example, the Serre–Lang theorem, and instead compute the structure of Pic XC

up to universal homeomorphism. Prior to this paper, very little was known about
Pic XC when @X contains at least three points. In this case, the singularity of XC is
non-Gorenstein and non-planar. While there is a large body of work describing the
structure of the compactified Picard scheme of a curve with planar singularities, the
only results that apply to XC that the authors are aware of are Altman and Kleiman’s
result that Pic XC is a projective scheme [1] and Kleiman and Kleppe’s result that the
moduli space ModdXC of degree-d , rank-1, torsion-free sheaves is reducible [23].

To construct � in Theorem 1.3, we describe the structure of Pic XC as follows. Let
f W zX ! XC denote the map from the pushout definition of XC , which is also the
normalization map. Let x0 denote the singular point of XC . There is a projective
bundle Pres XC over the Picard scheme Pic�1 zX representing a certain presentation
functor, and a birational morphism Pres XC ! Pic�1XC from the bundle to the
compactified Picard scheme. The bundle map Pres XC! Pic�1 zX admits sections
labeled by the points of f �1.x0/, and the birational morphism Pres XC! Pic�1XC

is the map that, up to universal homeomorphism, identifies these sections in the sense
that a natural pushout diagram (21) defines a universal homeomorphism. This is
Theorem 3.19.

The geometric description of Pic�1XC given by Theorem 3.19 is of independent
interest. For example, the theorem (or more precisely Proposition 3.16, which is used
to prove the theorem) shows that a rank-1, torsion-free sheaf lies in Pic�1XC , rather
than in a different component of the reducible scheme Mod�1XC , precisely when the
sheaf is the direct image of a line bundle under a partial normalization map Y !XC

out of a curve Y with at most one singularity. In particular, we have:

Corollary 1.5 Assume char k > 3. Define XC to be the rational curve with a 4–
fold point that is obtained from zX WD P1 by identifying the points @X D f˙1;˙2g.
Define Y to be the rational curve with two nodes that is obtained from zX by identifying
1 with �1 and 2 with �2. If gW Y !XC is the natural morphism, then

I D g�OY

is not the limit of line bundles.
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Note that when @X consists of two points, the singularity of XC is a node. The
projective bundle Pres XC that appears in Theorem 3.19 is a generalization of the
presentation scheme of a nodal curve constructed by Oda and Seshadri [29] and Altman
and Kleiman [2] and as such, is also called the presentation scheme. The presentation
scheme of a nodal curve was also studied by Bhosle in [6], where the scheme appears
as an example of a moduli space of generalized parabolic bundles.

Let us use what has been said about the structure of Pic�1XC to define � . Assume
for simplicity that k D k , and that zX has genus greater than 0. As above, we have the
presentation scheme Pres XC and maps

Pres XC

p1

yy

p2

&&

Pic�1 zX Pic�1XC

with p1 a projective bundle, equipped with sections in bijection with the points of @X , or
equivalently in bijection with the points of f �1.x0/, and p2 a quotient map identifying
the images of the sections in a certain manner. As zx varies over all points of @X ,
apply the corresponding section to Ab.zx/ to produce a set E of points of Pres XC .
In the description of p2 , we will see that the points of E all have the same image
under p2 , inducing a map from the étale fundamental groupoid �1.Pres XC; E/ to the
étale fundamental group of Pic�1XC . Composing with the Hurewicz map, which is
tautological with our definition of H1 , yields

(8) �`1.Pres X C
k
; E/! H1.Pic�1X C

k
;R/:

The projective bundle p1 identifies this fundamental groupoid with the fundamental
groupoid of Pic�1 zX based at the images of the points of @X under the Abel map

p1�W �
`
1.Pres XC; E/ �!Š �`1.Pic�1 zX ;Ab�.@Xk

//:

In Theorem 5.1, we show that the moduli definition of Pic yields a canonical isomor-
phism

FR�
`
1.Pic�1 zX ;Ab�.@Xk

//! H1.X
k
;R.1//

from the free R–module FR�
`
1
.Pic�1 zX

k
;Ab�.@Xk

// on the fundamental groupoid

�`1.Pic�1 zX
k
;Ab�.@Xk

//

to the étale cohomology group H1.X
k
;R.1//.

The map (8) and universal property of FR then give

� W H1.X
k
;R.1//! H1.Pic X C

k
;R/;

Algebraic & Geometric Topology, Volume 15 (2015)



326 Jesse Leo Kass and Kirsten Wickelgren

which is shown to be an isomorphism in Proposition 6.1. This is the � which appears
in Theorem 1.3.

1.6 Connections with autoduality

Theorem 1.3 is related to the theory of autoduality of the compactified Picard scheme.
Under various hypotheses on X , Arinkin [4], Esteves, Gagné and Kleiman [13], Esteves
and Rocha [14], and Melo, Rapagnetta and Viviani [24] have proved that Pic.Ab/ is
an isomorphism between the Picard schemes Pic0 X and Pic0 Pic X . How are those
results related to the results of this paper?

One consequence of Theorem 1.3 is the following.

Corollary 1.7 Applying either the functor H1..�/k ;R/ or H1..�/
k
;R/ to

AbW XC! Pic XC

produces an isomorphism.

For cohomology, the result is established using a tautological pairing between

H1..�/k ;R/ and H1..�/
k
;R/;

discussed in the second paragraph of Section 7 and Appendix B (41). The pairing is
induced from the monodromy pairing between torsors and �1 .

Results similar to Corollary 1.7 can be deduced from autoduality results using the
following proposition:

Proposition 1.8 Let k be a perfect field. There is a natural isomorphism of functors
from proper, geometrically connected schemes over k to Gal.k=k/–modules

�`1.Pic0.�/
k
; e/Š H1..�/

k
;Z`.1//:

We provide a proof of Proposition 1.8 in Appendix A.

The above proposition implies that Corollary 1.7 remains valid when XC is replaced
by a curve X whose compactified Picard scheme satisfies autoduality. Currently,
autoduality results have only been proven under the hypothesis that X has plane curve
singularities, and XC has plane curve singularities exactly when x0 2XC is a node.
For such an XC , Theorem 2.1 of Esteves, Gagné and Kleiman [13] implies that Ab
induces an isomorphism on homology and cohomology; alternatively, see Arinkin [3,
Theorem C].
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1.9 Concluding remarks

Let us conclude our discussion with two remarks about Theorem 1.3. First, in the
theorem, we assume X satisfies Hypothesis 1.2. This assumption allows us to assert
that the curve X C

k
obtained by extending scalars to k is obtained from a smooth curve

by a suitable pushout, and, in particular, allows us to avoid curves that are normal but
not geometrically normal (ie not smooth). Second, the conclusion of Theorem 1.3
differs from (1) by the minus sign of (7), because the Abel map of (7) is not the classical
Abel map appearing in (1). Classically, the Abel map is defined by x 7!OX .x/, while
the Abel map in (7) is defined by x 7! Ix DOX .�x/. On a smooth proper curve, the
difference is a matter of notation, as they differ by the automorphism I 7!Hom.I;OX /.
On such a singular curve XC , however, the difference is significant, as only the second
rule necessarily defines a regular map, as we show in Example 4.1.

This paper is organized as follows. In Section 2 we record the definition of the one-point
compactification XC of a suitable smooth curve X over k . We study the compactified
Picard scheme Pic XC of XC in the next two sections. In Section 3 we define the
presentation scheme and then use it in Theorem 3.19 to compute the compactified Picard
scheme up to universal homeomorphism. We study the Abel map in Section 4, where
we prove that the classical Abel map can fail to extend to a morphism out of XC and
that the Altman–Kleiman Abel map lifts to a morphism into the presentation scheme.

In the last three sections, we describe the homology of Pic�1XC and apply that
description to prove Theorem 1.3. In Section 5 we prove that the cohomology of the
smooth curve X can be recovered from the fundamental groupoid of Pic�1 zX . We use
this fact in Section 6 to construct the isomorphism � appearing in (7). We prove that (7)
holds in Section 7. There are two appendices. Appendix A proves Proposition 1.8,
identifying cohomology and the fundamental group of the Picard scheme. Appendix B
proves a Mayer–Vietoris sequence for pushouts by closed immersions and finite maps.
This sequence is of cohomology groups, or homology groups in small dimensions. The
homology sequence is used in Sections 6 and 7.

Conventions

� k is a field.

� k is a fixed algebraic closure of k .

� A curve X=k is a separated, finite type, geometrically integral k–scheme of
pure dimension 1.
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� If T is a k–scheme, then a family of rank-1, torsion-free sheaves on a curve
X parametrized by T is a OT –flat finitely presented OXT

–module I with the
property that the restriction to any fiber of XT ! T is rank-1 and torsion-free.

� The degree-d compactified Picard scheme Picd .X / of a proper curve X is the
Zariski closure of the line bundle locus in the moduli space of rank-1, torsion-free
sheaves of degree d .

� A T–relative effective Cartier divisor is a T–flat closed subscheme D � XT

whose ideal ID is invertible.

� If D is a T–relative effective Cartier divisor, then we write OXT
.D/ for

Hom.ID ;OX /.

� �`
1

denotes the maximal pro-` quotient of the étale fundamental group, and �.p
0/

1

denotes the maximal prime-to-p quotient of the étale fundamental group, where
a profinite group is said to be prime-to-p if it can be expressed as an inverse
limit of finite groups whose orders are not divisible by p . If two geometric
points a and b are included in the notation, as in �1.�; a; b/, this �1.�; a; b/

denotes the set of étale paths from a to b , ie the natural transformations from
the fiber functor associated to a to the fiber functor associated to b . If E is a set
of geometric points, �1.�; E/ denotes the fundamental groupoid based at E .

� R denotes Z` or Z=`n .

Acknowledgements We wish to thank Dennis Gaitsgory and Carl Mautner for useful
discussions. We thank Karl Schwede for explaining seminormality to us, and Anton
Geraschenko for helpful information about coproducts of schemes. We also thank
Alastair King for informing us of the work of Bhosle, and Nicola Pagani, Emily Riehl,
and Nicola Tarasca for helpful feedback concerning exposition.

During the writing of this paper, the first author was a Wissenschaftlicher Mitarbeiter at
the Institut für Algebraische Geometrie, Leibniz Universität Hannover. The first author
was supported by an AMS-Simons Travel Grant, and the second author is supported by
an American Institute of Mathematics 5–year fellowship.

2 Construction of a one-point compactification

Here we define the one-point compactification XC of a nonproper smooth curve X

over k . We describe the structure on the compactified Picard scheme of XC in
Section 3 below. For the remainder of this section, we fix a smooth and proper curve zX
over k and a collection @X � zX of closed points with the property that k.x/ is a
separable extension k for all x 2 @X . We will consider @X as a closed subscheme
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j W @X ! zX with the reduced scheme structure, and the separability assumption is
equivalent to the assumption that @X is k–étale.

To zX we associate the curve XC defined by the pushout diagram

(9)

@X
j //

��

zX

f
��

Spec.k/
x0 // XC

The pushout exists by [15, Theorem 5.4]. (Certainly zX satisfies Condition AF because
the curve is projective.) Furthermore, zX is smooth over k and f is finite by [15,
Proposition 5.6], so f W zX ! XC is the normalization map. We call the singularity
x0 WD x0.0/ an ordinary fold singularity. We write b.x0/ WD rankk H0.@X;O@X / for
the number of geometric branches of X at x0 .

Diagram (9) remains a pushout diagram after tensoring with an arbitrary field extension
k 0 of k by [15, Lemma 4.4]. Since zX k0 is k 0–smooth, XC

k0
is thus constructed from

a k 0–smooth curve by identifying a finite collection of closed points with separable
residue fields.

For later use, we need a concrete description of the local ring of XC at x0 . Ferrand
constructs XC as the pushout in the category of ringed spaces. As such a pushout, the
structure sheaf OXC is the pullback defined by this diagram:

f�O@X f�O zX
j�oo

k.x0/

OO

OXC
x�

0

oo

f �

OO

Equivalently, OXC can be described by the exact sequence

0!OXC ! f�O zX ! f�O@X =k.x0/! 0:

Taking the stalk at x0 , we get

(10) 0!OXC;x0
!O zX f �1.x0/

!

M
f .zx/Dx0

k.zx/=k.x0/! 0:

Here O zX f �1.x0/
is the semilocalization of zX at the closed subset f �1.x0/ � zX .

When k D k , we have k.zx/D k for all zx 2 f �1.x0/, and so
L

k.zx/=k.x0/ is just
a k.x0/–module of rank b.x0/� 1.
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We will occasionally need to describe the curves Y lying between XC and its normal-
ization zX . These curves are exactly the curves constructed by partitioning the points @X
into subsets and gluing each subset together. More precisely, given a finite surjection
@X ! @Y , the two obvious pushout squares fit into the commutative diagram:

(11)

@X
j //

��

zX

h
��

@Y
i //

��

Y

g

��
Spec.k/

x0 // XC

The morphism g is proper and birational, so Y lies between XC and zX , and every
curve lying between XC and zX can be constructed in this manner. Indeed, suppose
that we are given a factorization

zX
h
�! Y

g
�!XC

with g a proper birational map. The scheme @Y WD g�1.x0/ naturally fits into the
commutative diagram (11), and now the squares are pullback squares. These squares
are in fact also pushout squares. To verify this, we can reduce to the affine case (as h

and g are affine), in which case the claim follows by direct computation.

3 Construction of the presentation scheme

Here we define and study the presentation scheme associated to a curve XC from
Section 2. Thus we fix a smooth curve zX over k and a collection @X � zX of closed
points with separable residue fields, and then define XC by the pushout diagram (9).
As in Section 2, we write x0 2 XC for the unique singularity of XC , b.x0/ WD

rankk H0.@X;O@X / for the number of geometric branches, and f W zX !XC for the
normalization of XC .

Our definition of the presentation scheme is motivated by the following observation:
if L is a line bundle on XC , then the adjoint

(12) icanW L! f�f
�L

of the identity f �L! f �L is an inclusion whose cokernel is naturally isomorphic to

(13) f �Lj@X =Ljx0
D

�M
f .zx/Dx0

k.zx/˝f �L
�
=k.x0/˝L;
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which is a k.x0/–module of rank b.x0/� 1. This assertion is the exact sequence (10)
when LDOXC and is proven below in Lemma 3.12 when L is any line bundle.

With ican in mind, we make the following definition.

Definition 3.1 Let T be a k–scheme. A family of presentations of a family of rank-1,
torsion-free sheaves I over T is an injective homomorphism i W I! .fT /�M from I

to the direct image of a line bundle M on zX T with the property that the cokernel
is a locally free Ofx0g�T –module of rank b.x0/� 1. A presentation is a family of
presentations over T D Spec.k/.

Presentations are functorial in the following sense. Suppose that we are given a
morphism sW S ! T and a family of presentations i W I ! .fT /�M over T . Be-
cause f is finite, the base-change homomorphism �sW s

�.fT /�M ! .fS /�s
�M is

an isomorphism, and the resulting composition

(14) �s ı s�i W s�I ! .fS /�s
�M

is a family of presentations over S . Indeed, because Coker.i/ is T–flat, the homomor-
phism s�i , or equivalently the homomorphism (14), is injective with cokernel equal to
s�.Coker.i//, which is a locally free Ofx0g�S –module of rank b.x0/�1. We will use
this functoriality to define a functor, but first we need to put an equivalence relation on
presentations.

Definition 3.2 Two families of presentations i W I! .fT /�M and i 0W I 0! .fT /�M
0

over T are said to be equivalent if there exist a line bundle N on T and isomorphisms
I Š I 0˝T N , .fT /�M Š .fT /�M

0˝N that make the following diagram commute:

I
i //

��

.fT /�M

��
I 0˝T N

i0 // .fT /�M
0˝T N

Using this definition of equivalence, we define the presentation functor.

Definition 3.3 The presentation functor Pres]XC of XC is the functor

Pres]XCW k–Sch! Sets

defined as follows. Given a k–scheme T , we set .Pres]XC/.T / equal to the set
of equivalence classes of families of presentations of degree �1 sheaves over T .
Given a morphism sW S ! T of k–schemes, we define Pres] sW .Pres]XC/.T /!

.Pres].XC/.S/ by the rule that sends i to the presentation �s ı s�i in (14).
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The presentation functor is represented by a Grassmannian bundle over the Picard
scheme Pic�1 zX under suitable hypotheses. Recall that the relative Grassmannian

Grass.V; b/! B

associated to, for example, a non-negative integer b , an algebraic k–scheme B and
a locally free OB –module V is a k–scheme Grass.V; b/ whose T–valued points are
pairs .t; q/ consisting of a k–morphism t W T ! B and a surjective homomorphism
t�V!W onto a locally free OT –module of rank b .

The exact relation between a Grassmannian bundle and the presentation functor is
described by the following lemma.

Lemma 3.4 Assume a universal line bundle Muni exists on zX �Pic�1 zX , and let

V WD
�
.f � 1/�.Muni/

�
j fx0g �Pic�1 zX :

Then the presentation functor is representable by the projective k–scheme

Grass.V; b.x0/� 1/:

Remark 3.5 When XC is a nodal curve, this lemma was proven by Altman and
Kleiman [2, Proposition 9], and the following proof is closely modeled on their
argument.

Proof We construct a natural transformation Grass.V; b.x0/� 1/! Pres]XC , and
then we construct the inverse transformation. The main point is that the cokernel of a
family of presentations i W I! .fT /�M can be written as qW .fT /�M ! .jT /�W for
some locally free sheaf W on fx0g �T of rank b.x0/� 1, and the rule that sends i

to the adjoint q#W .fT /�M j fx0g � T ! W essentially defines the isomorphism
Pres]XC Š Grass.V; b.x0/� 1/.

We construct Grass.V; b.x0/�1/! Pres]XC by exhibiting a family of presentations
over Grass.V; b.x0/� 1/. Temporarily set G equal to Grass.V; b.x0/� 1/, gW G!
fx0g �Pic�1 zX equal to the structure morphism, WG equal to the universal quotient,
quniW g

�V!WG equal to the universal surjection, and j W fx0g!X , j 0W f �1.x0/!zX

equal to the inclusions.

Consider the line bundle M WD .1�g/�Muni on zX�G. We claim that there is a canonical
isomorphism �canW .f � 1/�M j G� fx0g Š g�V . Given the claim, the composition

.f � 1/�M j fx0g �G
�can
�! g�V

qcan
�!WG
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is adjoint to a family of presentations .f � 1/�M ! .j � 1/�WG over G, and this
family defines the desired morphism G! Pres]XC .

The existence of �canW .f � 1/�M j fx0g �GŠ g�V follows from the cohomological
flatness of f , which follows since f is finite. Cohomological flatness implies that the
base-change homomorphism

(15) .f � 1/�M j fx0g �GŠ .f jf �1.x0/
� 1/�.j

0
�g/�Muni

is an isomorphism. A second application of cohomological flatness shows that the
sheaf on the right-hand side of (15) appears in another base-change isomorphism

.j �g/�.f � 1/�Muni Š .f jf �1.x0/
� 1/�.j

0
�g/�Muni;

and we have

.1�f jf �1.x0/
/�.g� j 0/�Muni Š .g� j /�.f � 1/�Muni(16)

Š g�.1� j /�.f � 1/�Muni Š g�V:

We now define �can to be the composition of (15) and (16).

To show that G ! Pres]XC is an isomorphism, we construct the inverse natural
transformation. Thus, suppose that I ! .fT /�M is a family of presentations over a
given k–scheme T . By definition, the cokernel .fT /�M=I of the presentation can
be written as .jT /�W for some locally free sheaf W on fx0g �T of rank b.x0/� 1.
We now construct a surjection from t�V to a sheaf constructed from W .

The line bundle M defines a morphism t W T ! Pic�1 zX . The pullback .1� t/�Muni

may not be isomorphic to M , but by [1, Proposition 5.6(i)] there exists a line bundle N

on T with the property that there exists an isomorphism .1 � t/�Muni Š M ˝N .
(Here we are confusing N with its pullback under X �T ! T , and we will continue
to do so for the rest of the proof.) If we fix one such isomorphism ˛ , then we can
consider the composition

(17) .iT /
�.fT /

�.1� t/�Muni
.iT /�.fT /�˛
���������! .iT /

�.fT /�M ˝N
.q˝1/]

�����!W˝N;

with .q˝1/] the adjoint to q˝1W .fT /�M ˝N ! .iT /�W˝N . A third application
of the cohomological flatness of f shows that a suitable base-change homomorphism
defines an isomorphism

t�V Š .iT /�.fT /�.1� t/�Muni;

and the composition of this isomorphism with the homomorphism (17) is a surjection
t�V ! W ˝ N with locally free quotient of rank b.x0/ � 1. To show that this
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construction defines a map .Pres XC/.T /!G.T /, we need to show that this surjection
only depends on the equivalence class of the presentation I ! .fT /�M .

Thus suppose that we are given a second N 0 and a second isomorphism

˛0W .1� t/�Muni ŠM ˝N 0:

Because f�M is simple [1, Lemma 5.4], ˛0 ı ˛�1W M ˝N ŠM ˝N 0 must be of
the form 1˝ˇ for an isomorphism ˇW N ŠN 0 . The isomorphisms

.iT /�f
�

T 1˝ˇW .iT /�f
�

T M˝N Š .iT /�f
�

T M˝N 0 and ˇ˝1W W˝N ŠW˝N 0

define an isomorphism between the quotient associated to .N; ˛/ and the quotient asso-
ciated to .N 0; ˛0/. This shows that the construction from the previous paragraph defines
a map .Pres XC/.T /!G.T /. To complete the proof, we now simply observe that the
maps .Pres XC/.T /!G.T / and G.T /! .Pres XC/.T / are inverse to each other.

Lemma 3.4 does not assert that Pres]XC is representable for all XC because a
universal line bundle Muni does not always exist. When Muni fails to exist, we do
not prove that Pres]XC is representable, but in Proposition 3.8 below we prove that
the associated étale sheaf is representable. Motivated by this, we make the following
definition.

Definition 3.6 Let Presét XC be the étale sheaf associated to Pres]XC . A k–scheme
Pres XC that represents Presét XC is called the presentation scheme.

We prove that the presentation scheme exists by reducing to Lemma 3.4, and we make
the reduction by extending scalars. If k 0 � k is a field extension, then XC

k0
has an

associated presentation functor because, as we observed in Section 2, XC
k0

is described
by a suitable pushout construction. Comparing the two definitions of the presentation
functor, we have:

Lemma 3.7 The formations of Pres]XC and Presét XC commute with field exten-
sions k 0 � k .

Proposition 3.8 The presentation scheme exists and is a projective Pic�1 zX –scheme.

Remark 3.9 As with Lemma 3.4, our proof is closely modeled on work of Altman
and Kleiman [2, Theorem 12].
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Proof When Pic�1 zX admits a universal family of line bundles, the proposition is
Lemma 3.4. In general, there exists a finite separable extension k 0�k with the property
that zX k0!Spec.k 0/ admits a section, and hence Pic�1 zX k0 admits a universal family of
line bundles. Thus the presentation scheme Pres XC

k0
exists. By Lemma 3.7, Pres XC

k0

represents Presét XC
k0

. The k 0–scheme Pres XC
k0

thus carries natural descent data, and
to complete the proof, it is enough to show that these descent data are effective.

Consider the morphism Pres XC
k0
! Pic�1 zX k0�Pic�1XC

k0
that sends i W I! .fT /�M

to the pair .M; I/. The descent data on Pres XC
k0

extend to descent data on this
morphism. Furthermore, the morphism has finite fibers by the proof of [2, Lemma 8]
(or Proposition 3.16 below). Both Pres XC

k0
and Pic�1 zX k0 � Pic�1XC

k0
are k 0–proper,

so Pres XC
k0
! Pic�1 zX k0�Pic�1XC

k0
must be finite. Descent data for finite morphisms

are always effective, so we can conclude that the morphism and hence Pres XC
k0

descend
to k .

The presentation scheme admits the following two morphisms.

Definition 3.10 The morphism p1W Pres XC! Pic�1 zX is defined by the rule that
sends a family of presentations i W I ! f�M to the line bundle M . The morphism
p2W Pres XC! Pic�1XC is defined by the rule that sends i W I ! f�M to I .

Certainly the rule sending i W I ! f�M to I defines a morphism from Pres XC to
the moduli space of all rank-1, torsion-free sheaves, but we should explain why the
rule defines a morphism into the closure Pic�1XC of the line bundle locus. The
presentation scheme Pres XC is geometrically irreducible because, by Lemma 3.4,
p1 realizes Pres XC as a projective bundle over Pic�1 zX . We can conclude that the
image of p2 is geometrically irreducible, and the image also contains the line bundle
locus because every line bundle M admits a presentation; the presentation ican . We
can conclude that the image of Pres XC is Pic�1XC , and in particular p2 maps to
Pic�1XC .

Next we construct some presentations.

Definition 3.11 Let T be a k–scheme. Given yW T ! f �1.x0/, the image of

y � 1W T ! zX T

is a Cartier divisor that we denote by y � zX T . Suppose that we are also given a line
bundle N on zX T . Then set

M WDN ˝O zX T
.f �1.x0/T �y/:

The divisor f �1.x0/T �y is effective, so there is a natural inclusion i W .fT /�N !

.fT /�M . We define .M; i/ to be the presentation associated to .N;y/.
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To see that .M; i/ is a family of presentations, observe that on zX T we have the exact
sequence

0!N !M !M jf �1.x0/T�y! 0:

Here N ! M is the natural inclusion and M ! M jf �1.x0/T�y is the natural re-
striction. The direct image of N !M under fT is i , and so the cokernel of i is
.fT /�M jf �1.x0/T�y . This cokernel is a free k.x0/–module of rank b.x0/�1 because
f �1.x0/T �y is a finite flat k–scheme of degree b.x0/� 1.

Because the associated presentation is a presentation, if N is a line bundle on zX and
f �1.x0/ admits a k–valued point, then f�.N / admits a presentation: the presentation
associated to .N;y/. We now classify all the sheaves that admit a presentation.

Lemma 3.12 Assume k D k . If gW Y !XC is a proper birational morphism out of
a curve Y with at most one singularity, then g�N admits a presentation for every line
bundle N on Y .

Proof Given Y , factor the normalization map f W zX !XC as

zX
h
�! Y

g
�!XC:

By the discussion at the end of Section 2, the curve Y can be constructed as the
pushout of zX and some subset @Y as in the diagram (11). Label the fiber g�1.x0/D

fy0;y1; : : : ;yng so that the points y1; : : : ;yn are not singularities.

On Y , we have the homomorphism icanW N ! g�g
�N that is adjoint to the identity.

This homomorphism is injective with cokernel equal to a k.y0/–module of rank
b.y0/� 1. To see this, observe that ican is certainly an isomorphism away from y0 .
Thus, the kernel of ican is supported on a proper subset of Y , but this is only possible if
the kernel is zero, as N is torsion-free, showing injectivity. The cokernel is supported
on y0 , so to compute it we can pass to an open neighborhood of y0 and hence
assume N is trivial. When N is trivial, the claim follows from the existence of the
exact sequence (10). We now use ican as follows.

Because the points y1; : : : ;yn are not singularities, the line bundle OY .y1C� � �Cyn/

is well defined, and we set j W N ! N ˝ OY .y1 C � � � C yn/ equal to the natural
inclusion and M equal to h�.N ˝OY .y1C � � �Cyn//. The homomorphism

(18) f�h
�.j / ıg�.ican/W g�N ! f�M

is a presentation of g�N . To verify this, we need to show that the cokernel is a
k.x0/–module of rank b.x0/� 1.
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We compute the cokernel using

(19) h�h
�.j / ı icanW N ! h�M:

The direct image of this homomorphism under g� is (18).

Temporarily set Q equal to the cokernel of (19). The module Q must be supported
on fy0; : : : ;yng because (19) equals ican away from y1; : : : ;yn . For the same reason,
the localization Qy0

is a k.y0/–module of rank b.y0/ � 1. Away from y0 , the
homomorphism (19) coincides with j , so the stalk of Q at yi for i D 1; : : : ; n is a
rank-1 module over k.yi/. Since g�Q is the cokernel of the homomorphism (18), we
can conclude that this cokernel is a k.x0/–module of rank

b.y0/� 1C 1C � � �C 1D b.y0/� 1C nD b.x0/� 1:

Next we show that the only sheaves that admit a presentation are the sheaves appearing
in the previous lemma.

Lemma 3.13 Assume k D k . If I is a rank-1, torsion-free sheaf that admits a
presentation, then there exists a proper birational morphism gW Y ! XC out of a
curve Y with at most one singularity and a line bundle N on Y such that I D g�N .

Proof Let I be given. We first show that there exists gW Y ! XC and N0 such
that the stalks Ix0

and .g�N0/x0
are isomorphic. We then modify N0 to produce a

suitable N .

We construct Y and N0 as follows. Fix a presentation i W I! f�M of I with quotient
qW f�M !Q and consider the induced map qx0

W Mf �1.x0/
D .f�M /x0

!Qx0
on

stalks. By definition, ix0
.Ix0

/ is the kernel of qx0
, but we can also compute this

kernel directly. The kernel must contain the product px0
�Mf �1.x0/

with the maximal
ideal px0

� OXC;x0
because Q is a k.x0/ D OX ;x0

=px0
–module. The induced

homomorphism

(20) qW k.x0/˝Mf �1.x0/
D

M
f .zx/Dx0

.k.zx/˝M /! k.x0/˝Q:

on fibers is a surjection from a rank-b.x0/ vector space to a rank-.b.x0/� 1/ vector
space, so q has a rank-1 kernel. Pick s0 2Mf �1.x0/

mapping to a generator of this
kernel. The element s0 itself lies in ix0

.Ix0
/, and ix0

.Ix0
/ is generated by s0 together

with px0
�Mf �1.x0/

. By using the prime avoidance lemma to modify an arbitrary s0 ,
we can assume that s0 satisfies s0 62 p

2
zx
�Mzx for all zx 2 f �1.x0/.

We now use s0 to construct Y and N0 . Define @Y be the scheme that is the union
of copies of Spec.k/ labeled by the points zx 2 f �1.x0/ with s0.zx/ D 0 plus one
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additional copy of Spec.k/. There is a natural morphism @X ! @Y that sends a zx
satisfying s0.zx/D 0 to the point labeled by zx and sends every zx with s0.zx/¤ 0 to
the additional Spec.k/. With this @X ! @Y , we define Y by the diagram (11). Let

f D zX
h
�! Y

g
�!XC

be the natural factorization. We claim that an isomorphism

�x0
W .g�OY /x0

DOY ;g�1.x0/
Š ix0

.Ix0
/

is given by �x0
.r/D r � s0 . This rule defines a homomorphism �x0

W OY ;g�1.x0/
!

Mf �1.x0/
that is injective, as it is a nonzero homomorphism out of a rank-1, torsion-free

module. Now let us show that the image is contained in ix0
.Ix0

/.

The element �x0
.1/Ds0 certainly lies in ix0

.Ix0
/, but we cannot immediately conclude

that �x0
.r/ 2 ix0

.Ix0
/ for all r because Ix0

is not (a priori) a OY ;g�1.y0/
–module.

However, a computation shows that

q.r � s0/D
X

f .zx/Dx0

q.r � s0.zx//D
X

f .zx/Dx0

q.r.h.zx//s0.zx//D
X
zx2@Y

q.r.y0/s0.zx//

D r.y0/q.s0/D 0;

ie that �x0
.r/ lies in the kernel of q .

To conclude that �x0
is an isomorphism, we need to show surjectivity. Certainly

the image of �x0
contains s0 , so we need to show that the image also contains

px0
�Mf �1.x0/

. A typical generator of px0
�Mf �1.x0/

is r � s with r 2 px0
and

s 2Mf �1.x0/
. Since Mf �1.x0/

is generically free of rank 1, we can certainly write
r � s D r0 � s0 for a unique rational function r0 . We show that r0 2 OY ;g�1.x0/

by
examining the stalk at a point zx 2 f �1.x0/.

If zx 2 @Y , then Mzx is freely generated by s0 . Writing s D r1 � s0 for r1 2OX ;zx , we
see r0 D r � r1 , so r0 2 pzx � O zX ;zx . If zx 62 @Y , then s0 does not generate Mzx , but
the section does generate pzx �Mzx , and similar reasoning shows r0 2O zX ;zx . We can
conclude that r0 2

T
O zX ;zx DO zX ;f �1.x0/

and r0.zx/D 0 for zx 2 @Y , or equivalently
r0 2OY ;g�1.x0/

. This completes the first part of the proof, that Ix0
is isomorphic to

.g�N0/x0
for N0 DOY .

We now modify N0 as in [21, Lemma 3.1]. We can extend the isomorphism �x0
W Ix0

Š

.g�N0/x0
to an isomorphism �1 over some open neighborhood of x0 . The complement

of that neighborhood is contained in some open subset over which there exists an
isomorphism �2 between the restrictions of I and g�N0 . If we define L to be the line
bundle given by gluing the trivial line bundle to the trivial line bundle using ��1

2
ı�1 ,
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then the isomorphisms �1 and �2 define an isomorphism L˝ g�N0 Š I . The line
bundle N D g�L˝N0 then satisfies the conditions of the lemma.

Lemma 3.14 Assume k D k . Let N be a line bundle on XC , M a line bundle
on zX , and ix0

W Nx0
! .f�M /x0

an injection whose cokernel is a k.x0/–module. If
XC ¤ zX , then rankk.x0/.f�M /x0

= ix0
.Nx0

/D b.x0/� 1.

Proof We can pass to the local ring and hence replace N with OXC;x0
and M

with O zX f �1.x0/
. The homomorphism i is then given by r 7! f �.r/ � s0 for some

s0 2O zX f �1.x0/
. We claim that s0 is a unit.

We assume s0 is not a unit and then derive a contradiction by constructing an element of
Coker.i/ not killed by the maximal ideal px0

of x0 . If not a unit, s0.zx0/D 0 for some
zx0 2 f

�1.x0/. By the prime avoidance lemma, we can pick a generator r0 of pzx0

with the property that r0.zx/¤ 0 for zx 2 f �1.x0/, zx ¤ zx0 . The element s WD r�1
0
� s0

lies in O zX f �1.x0/ , and its image in Coker.i/ is not killed by any t 2 px0
satisfying

f �.t/ 62 p2
zx0

. Indeed, if t kills s , then f �.t0/D r�1
0
� f �.t/ for some t0 2 OXC;x0

.
Evaluating this equation at any zx ¤ zx0 , we see that t0.x0/ D 0, and by comparing
orders of vanishing at zx0 , we see that this is only possible if f �.t/ 2 p2

zx0
. This shows

that Coker.i/ is not a k.x0/–module, so we have derived the desired contradiction.
We can conclude that s0 is a unit, and so Coker.i/DO zX f �1.x0/

=f �.OXC;x0
/ visibly

has k.x0/–rank b.x0/� 1.

We now classify the presentations i W I ! f�M with I and M fixed.

Lemma 3.15 Assume kDk . Up to equivalence, a rank-1, torsion-free sheaf I admits
at most one presentation unless I D f�N for N a line bundle on zX . When I D f�N ,
there are exactly b.x0/ inequivalent presentations: the associated presentations from
Definition 3.11.

Proof By Lemma 3.13, we can assume I D g�N for some line bundle N on a
curve Y with at most one singularity. Factor f as

zX
h
�! Y

g
�!XC

and label the fiber g�1.x0/ D fy0; : : : ;yng so that the points y1; : : : ;yn are not
singularities.

Suppose that i is a given presentation. We can write i as i D g�i
0 for i 0W N ! h�M

by [2, Proposition 3]. If ad.i 0/W h�N !M is the adjoint to i 0 and i 0canW h
�h�N !N

is the adjoint to the identity h�N ! h�N , then we have

i 0 D h� ad.i 0/ ı i 0can:
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We first consider the case where Y ¤ zX , the case where we need to prove that i is
equivalent to the presentation constructed in Lemma 3.12.

Consider the cokernel Q0 of i 0 . The direct image g�Q
0 is the cokernel of i , so,

since g�Q
0 is a k.x0/–module of rank b.x0/� 1, it follows that Q0 is a module over

k.y0/˚ k.y1/˚ � � � ˚ k.yn/ and the sum
P

rankk.yi /Q0yi
is b.x0/� 1. We have

rankk.y0/Q0y0
D b.y0/� 1 by Lemma 3.14, and, for i ¤ 0, the k.yi/–rank of Q0yi

is
at most 1, as this module is a quotient of the rank-1 module .h�M /yi

. Combining
these inequalities, we get

b.x0/� 1D rankk.y0/Qy0
C � � �C rankk.yn/Qyn

� b.y0/� 1C 1C � � �C 1D b.y0/� 1C nD b.x0/� 1;

so all the inequalities must be equalities. In other words, Qyi
is a rank-1 module

over k.xi/ for all i ¤ 0, and Qy0
has rank b.y0/� 1.

The cokernel of .i 0can/y0
W Ny0

! .h�h
�N /y0

is a k.y0/–module of rank b.y0/� 1

(this was a computation in Lemma 3.12), so h�.ad.i 0//y0
must be an isomorphism.

Similar reasoning shows that h�.ad.i 0//yi
has a rank-1 kernel. In other words,

ad.i 0/W h�N !M

has cokernel isomorphic to k.zy1/˚ � � �˚ k.zyn/. Equivalently, ad.i 0/ factors as

h�N !O zX .zy1C � � �C zyn/˝ h�N !M;

with O zX .zy1C� � �C zyn/˝h�N !M an isomorphism (by degree considerations). This
isomorphism defines an equivalence between the given presentation and the presentation
from Lemma 3.12.

To complete the proof, we must consider the case Y D zX . Most of the argument given
in the previous case remains valid except that the rank of k.y0/˝My0

is b.y0/D 1,
not b.y0/ � 1 D 0. Thus we can only conclude from the fact that b.x0/ � 1 DP

rankk.yi /Qyi
that the rank of Qyi

is 1 for all but exactly one i D i0 , in which
case rankk.yi0

/Qyi0
D 0. The rest of the argument shows that the given presentation

.i;M / is equivalent to the presentation associated to M and yi0
.

The following proposition summarizes the past four lemmas.

Proposition 3.16 Assume k D k . Then a rank-1, torsion-free sheaf I on XC admits
a presentation i W I ! f�M if and only there exists a curve Y with at most one
singularity, a proper birational morphism gW Y !XC , and a line bundle N on Y such
that I D g�N .
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Furthermore, the presentation is unique unless Y D zX is the normalization, in which
case every presentation is isomorphic to the presentation associated to some .M;y/. In
particular, there are exactly b.x0/ different presentations of I .

Using this proposition, we can immediately construct rank-1, torsion-free sheaves that
are not limits of line bundles. For example:

Corollary 3.17 Assume char k > 3. Define XC by the pushout diagram (9) with
zX WD P1 and @X WD f˙1;˙2g. Define Y by the pushout diagram (11) with @Y WD
f˙1;˙2g and @X ! @Y the morphism ˙1 7! 1, ˙2 7! 2. If gW Y ! XC is the
natural morphism, then

I D g�OY

is not the limit of line bundles.

Proof If we fix a degree-1 line bundle L0 on XC , then the map Pres XC! Pic0XC

that sends i W I!f�M to I˝L0 is surjective, and the image does not contain Œg�OY �

by Proposition 3.16.

We now use the result just proven to describe the structure of Pic XC .

Definition 3.18 Define the canonical embedding into the presentation scheme

y�W Pic0 zX �f �1.x0/! Pres XC

by the rule that sends .N;y/2 .Pic0 zX /.T /�f �1.x0/.T / to the associated presentation
of .N ˝O zX T

.�@XT /;y/.

The canonical embedding into the compactified Picard scheme

�W Pic0 zX ! Pic�1XC

is defined by the rule L 7! f�.L˝O zX T
.�@XT //.

The canonical embedding into the compactified Picard scheme is a closed embedding
by [2, Section 5, page 19] (which deduces this property by using [2, Proposition 3]
to assert that � is a monomorphism), and the same argument shows that y� is a closed
embedding.

Proposition 3.16 allows us to describe Pic�1XC up to universal homeomorphism as
follows. By [15, Theorem 5.4], we may define P \ by the pushout diagram

(21)

f �1.x0/�Pic0 zX
y� //

��

Pres XC

��

Pic0 zX // P \
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where f �1.x0/�Pic0 zX ! Pic0 zX is the projection morphism. Because the diagram

f �1.x0/�Pic0 zX
y� //

��

Pres XC

p2

��

Pic0 zX
� // Pic�1XC

commutes, the universal property of the pushout defines a map P \! Pic�1XC .

Theorem 3.19 The map P \! Pic�1XC is a universal homeomorphism.

Proof The morphism P \! Pic�1XC is surjective because, as we observed after the
construction of Pres XC , the morphism Pres XC! Pic�1XC is surjective. Because
both Pres XC and Pic�1XC are k–proper, it is enough to show that the induced map
P \.k/! .Pic�1XC/.k/ on k –points is injective [18, Proposition 2.4.5, page 20].

We can describe the k –valued points of P \ explicitly. Applying the functor taking a
scheme to the set of its k –points sends (21) to a pushout diagram, as can be verified,
for example, by using the fact that Pres XC ! Pic�1XC is an isomorphism away
from the image of the canonical embedding and that (21) is a pullback diagram [15,
Theorem 5.4]. Because the formation of the presentation scheme commutes with field
extensions, .Pres XC/.k/D .Pres X C

k
/.k/, so P \.k/! .Pic�1XC/.k/ is bijective

by Proposition 3.16.

4 The Abel map

Here we study the Abel map of the curve XC from Section 2. We first compare
the definitions of two different Abel maps associated to a smooth curve over k and
show that only one of them naturally extends to XC . Second, we lift the Altman–
Kleiman Abel map AbW XC ! Pic�1XC to a morphism zX ! Pres XC from the
normalization to the presentation scheme. In Section 6 we will use this lifted Abel map
to compute H1.Ab/.

The Abel map of a smooth curve zX over k is defined in standard texts such as [28]
to be the map zX ! Pic1 zX that sends a point x to the line bundle O zX .x/, which is
the dual O zX .x/ WD Hom.Ix;O zX / of the ideal Ix of x . We denote this morphism by
Ab_W zX ! Pic1 zX to distinguish it from the morphism AbW zX ! Pic�1 zX studied by
Altman and Kleiman in [1]. There the authors define the Abel map AbW zX ! Pic�1 zX

to be the map that sends a point x to its ideal sheaf Ix .
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Altman and Kleiman prove that this second definition extends to singular curves: given
a singular curve X , the rule x 7! Ix defines a morphism AbW X ! Pic�1X that is a
closed embedding provided the genus of X is at least 1 [1, Theorem 8.8]. We call this
map the Altman–Kleiman Abel map of X .

The first definition, the definition of Ab_ , does not always extend to singular curves.
This issue is slightly subtle. To show that the rule

(22) x 7! Hom.Ix;OX /

defines a morphism X ! Pic1X , one must show that a flat deformation of x induces a
flat deformation of Hom.Ix;OX /. That is, given a k–morphism x.t/W T !X T , one
must show that the duals Hom.Ix.t0/;OX / of the ideals of the fibers x.t0/ of x.t/ fit
together to form the fibers of an OT –flat family of sheaves on X T .

When x.t/ maps into the smooth locus X WDX sm , essentially the same construction
as in the smooth case produces a suitable family of sheaves, and so (22) defines a
morphism Ab_W X ! Pic1 X from the smooth locus to the Picard scheme. We call
this morphism the classical Abel map. When X is Gorenstein, the classical Abel map
extends to a morphism defined on all of X because a construction using cohomology
and base change produces a suitable family for an arbitrary x.t/. (For the construction,
see [22, Definition 5.0.7]. The argument is a modification of [12, (2.2)].)

The one-point compactification XC is Gorenstein, however, only when b.x0/ D 2.
When b.x0/�3, not only does the construction just reviewed fail to produce a morphism
XC! Pic1XC extending the classical Abel map Ab_ , but it may be impossible to
extend the classical Abel map to a morphism out of XC by any construction. We
demonstrate this with an example.

Example 4.1 The classical Abel map Ab_W X ! Pic1 XC can fail to extend to a
morphism Ab_W XC! Pic1XC .

Proof of example Let k be a field of characteristic not 2. Define XC by the pushout
diagram (9) with zX WD P1 and @X WD f0; 1;�1g, so XC is a rational curve with a
unique singularity x0 that is an ordinary 3–fold point. We will show that the classical
Abel map Ab_ of XC is undefined at x0 .

We argue as follows. The composition Ab_ ıf W zX �f �1.x0/! Pic XC extends to a
regular map out of zX D P1 by the valuative criterion, and we show directly that the

Algebraic & Geometric Topology, Volume 15 (2015)



344 Jesse Leo Kass and Kirsten Wickelgren

points Ab_ ıf .0/, Ab_ ıf .1/, and Ab_ ıf .�1/ are distinct. More precisely,

(23)

Ab_ ıf .0/D Œ.g0/�OY 0
�;

Ab_ ıf .1/D Œ.g1/�OY 1
�;

Ab_ ıf .�1/D Œ.g�1/�OY �1
�;

where g0W Y 0 ! XC , g�1W Y �1 ! XC , and g1W Y 1 ! XC are the three nodal
curves lying between XC and zX . So, Y 0 is the pushout of zX D P1 and f1;�1g over
Spec.k/ etc.

We verify (23) for the point 0 and leave the remaining cases (which involve only
notational changes to the argument given) to the interested reader. To verify the
equation, we use the dualizing sheaf ! . Recall that the rule I 7!Hom.I; !/ defines an
involution on the set of rank-1, torsion-free sheaves and the formation of Hom.I; !/
commutes with families [12, (2.2)]. We verify (23) by constructing a family of sheaves
such that the dual family defines Ab_ ıf .

The dualizing module ! can be described as the module of Rosenlicht differentials,
ie rational differentials on zX with at worst simple poles at 0, �1 and 1 and satisfying
the condition that the residues at these points sum to zero. Because a section of !
has at worst a simple pole at 0, the rule �.p.t/=q.t/dt/ D ap.a/=q.a/ defines a
homomorphism

�W !˝ kŒa� Œ1=.a2
� 1/�! kŒa� Œ1=.a2

� 1/�:

Let Ia be the kernel. Note that, away from a D 0, this kernel consists of those
differentials in ! which vanish at t D a. At a D 0, this kernel consists of such
differentials whose residue at 0 is 0. In other words, for ˛ ¤ 0;�1; 1, the fiber I˛
of Ia over Spec.kŒa�=.a � ˛// ! Spec.kŒa� Œ1=.a2 � 1/�/ is !.�f .a//, and I0 is
the sheaf of rational differentials on zX with at worst simple poles at �1 and 1 and
satisfying the condition that the residues sum to zero. By Rosenlicht’s definition (or
description) of .g0/�!Y0

, we see that I0 D .g0/�!Y0
.

The kernel Ker� D Ia is kŒa� Œ1=.a2� 1/�–flat because � is surjective.

Furthermore, the !–dual Hom.Ia; !/ defines Ab_ ıf . Indeed, Hom.Ia; !/ is flat
and its formation commutes with passing to fibers by [12, (2.2)]. Since IaD!.�f .a//

for ˛ ¤ 0;�1; 1, we deduce

Ab_ ıf .0/D ŒHom.I0; !/�:

By the above, I0 D .g0/�!Y0
. The morphism

.g0/�OY0
! Hom.g�!Y0

; !/
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defined by sending a rational function to multiplication by that function defines an
isomorphism, showing that Ab_ ıf .0/D .g0/�OY0

, as claimed.

While the classical Abel map Ab_ may not be defined on all of XC , the Altman–
Kleiman Abel map Ab is not only defined on all of XC , but it admits a natural lift to a
morphism Pres.Ab/W zX!Pres X . Given xDf .zx/ with zx2X � zX , the ideal sheaf Ix

of x in XC admits the presentation icanW Ix! f�Izx D f�f
�Ix defined in (12). The

resulting morphism X ! Pres XC extends to the morphism Pres.Ab/W zX ! Pres XC

that we now define.

Definition 4.2 Let � �XC � zX be the transpose of the graph of f and z�� zX � zX
to be the diagonal. Define Izx.t/ to be the ideal of z� and Jt the ideal of � .

Lemma 4.3 The natural inclusion i W Jt ! .f � 1/�Izx.t/ is a family of presentations
over zX .

Proof We prove that i is family of presentations by showing that Coker.i/ is iso-
morphic to .

L
k.zx//=k.x0/˝O zX . This last module is the cokernel of the inclusion

OXC� zX ! O zX� zX , as the formation of the pushout XC commutes with the flat
base change XC � zX ! XC . All of the modules in question fit into the following
commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 // Jt

��

// .f � 1/�Izx.t/

��

// Coker.i/

��

// 0

0 // O
XC� zX

��

// .f � 1/�O zX� zX

��

// .
L

k.zx//=k.x0/˝O zX

��

// 0

0 // O�

��

// .f � 1/�Oz�

��

// C

��

// 0

0 0 0

The existence of the diagram follows by, for example, applying the snake lemma to
the first two columns. In the diagram, O� and Oz� are structure sheaves, and C is the
cokernel of Coker.i/! .

L
k.zx//=k.x0/ or equivalently of O� ! .f � 1/�Oz� .
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Now � and z� are both images of zX under a closed embedding, and under the associated
identifications � D zX , z�D zX , the morphism f � 1W z�! � becomes identified with
the identity. In particular, the natural morphism O�! .f �1/�Oz� is an isomorphism
and so C D 0. We can conclude that the natural morphism

Coker.i/!
�M

k.zx/
�
=k.x0/˝O zX

is an isomorphism. The target of this isomorphism is a free Ofx0g� zX –module of rank
b.x0/� 1, so we can conclude that i is a family of presentations.

Definition 4.4 We define the lifted Abel map Pres.Ab/W zX ! Pres XC to be the
morphism defined by the family of presentations from Lemma 4.3.

By construction, the lifted Abel map has the property that the composition p1ıPres.Ab/
is the Altman–Kleiman Abel map zAb of zX , and the composition p2 ıPres.Ab/ is the
composition Ab ıf of Altman–Kleiman Abel map of XC with the normalization map.

5 Cohomology of X via Pic

Let X be a smooth curve over k , contained as an open subset of zX , which is smooth
and proper. Assume that zX has genus greater than 0, so its Abel map is non-trivial.
We show that H1.X

k
;R.1// with its Gal.k=k/–module structure is obtained from the

fundamental groupoid of Pic�1 zX . When zX has genus 0, a degenerate form of this
result holds, given in Remark 5.3.

For RD Z=`m (respectively Z` ), let UR denote the functor taking a finitely gener-
ated R–module to the underlying (topological) groupoid. Under suitable finiteness
hypotheses on the category of groupoids, say connected groupoids with finitely many
objects and finitely (topologically) generated morphism spaces, UR has a left adjoint,
denoted FR .

For such a groupoid � , with objects D and source and target maps s; t W � ! D ,
respectively, there is a canonical functorial exact sequence

(24) 0 �! FR�1 �! FR�
t�s
��!

M
D

R

L
D id
����!R �! 0;

where �1 is the sub-groupoid spanned by any single object of D . To see that (24)
is canonical, note that the group FR�1 is independent of the choice of object defin-
ing �1 because a morphism ds ! dt in � determines an isomorphism �ds

! �dt

between the corresponding sub-groupoids, and applying FR gives an isomorphism
FR�ds

! FR�dt
independent of the choice of morphism from ds to dt .
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Let @X ¨ zX be a closed subscheme with open complement X . For each point zx of @X
k

choose a k –geometric point with image zx , and let @X.k/ be the set of these chosen
geometric points. We may assume that @X.k/ is stable under the Gal.k=k/–action.

Theorem 5.1 There is a canonical functorial isomorphism of Gal.k=k/–modules

FR�
`
1.Pic�1 zXk ;Ab� @X.k//Š H1.X

k
;R.1//:

Remark 5.2 When @X D∅ one may take Ab� @X.k/ to be the set consisting of any
single geometric point of Pic�1 zXk .

Remark 5.3 When zX has genus 0, we have a canonical functorial short exact sequence
of Gal.k=k/–modules

0 �! H1.X
k
;R.1// �!

M
@X .k/

R

L
@X.k/

id
������!R �! 0:

This follows from applying cohomology to the pair .X
k
; zXk/. Compare with (24) and

Theorem 5.1.

Proof Multiplication by `n

m`n W Pic0 zXk ! Pic0 zXk

is a finite étale map. For a geometric point a of Pic0 zXk , let �aŒm`n �, abbreviated
�aŒ`

n�, denote the fiber above a.

For every n and zxs , zxt in @X.k/, there is a canonical, functorial map

(25) �`1.Pic�1 zXk ;Ab� zxs;Ab� zxt /! �Ab� zxt�Ab� zxs
Œ`n�

constructed as follows.

Addition by a k –point a of Pic1 zXk defines CaW Pic�1 zXk ! Pic0 zXk . Pulling back
m`n by Ca produces a finite étale map to Pic�1 zXk , whence a map

�`1.Pic�1 zXk ;Ab� zxs;Ab� zxt /!Mor.�Ab� zxs
ŒC�am`n �; �Ab� zxt

ŒC�am`n �/:

Since elements of �`
1

are natural transformations between fiber functors, the image is
contained in the morphisms

�aCAb� zxs
Œ`n�Š �Ab� zxs

ŒC�am`n �! �Ab� zxt
ŒC�am`n �/Š �aCAb� zxt

Œ`n�

given by addition by an element of �Ab� zxt�Ab� zxs
Œ`n�. Sending the morphism to this

element of �Ab� zxt�Ab� zxs
Œ`n� defines (25), which is independent of the choice of a.

Algebraic & Geometric Topology, Volume 15 (2015)



348 Jesse Leo Kass and Kirsten Wickelgren

By the moduli definition of the Picard functor, the k –points of Pic zXk determine
invertible sheaves on zXk . For the image zx in zXk of any element of @X.k/, the
restriction of OzXk

.zx/ to X
k

has a canonical trivialization coming from the inclusion
of the ideal sheaf Izx D OzXk

.�zx/ into OzXk
which becomes an isomorphism after

pullback to X
k

. Thus elements of �Ab� zxt�Ab� zxs
Œ`n� determine an invertible sheaf L

on X
k

equipped with a trivialization of ˝`
n

L.

The data of an invertible sheaf L on X
k

equipped with a trivialization of
N`n

L

produces a canonical element of H1.X
k
;Z=`n.1//, as follows: there is a map L!N`n

L taking a section a of L over a Zariski-open U to
N`n

a. The coherent sheaves
L and

N`n

L determine Gm –torsors, which we view as sheaves of sets in the étale
topology equipped with an action of Gm . Under this identification a 7!

N`n

a respects
the actions of Gm in the sense that, for b 2Gm ,

a � b 7!

`nO
a � b`

n

:

There is an element 1 in the set of sections over any étale open of the Gm –torsor
N`n

L

determined by the chosen trivialization of
N`n

L. The sections s of the Gm –torsor L

such that
N`n

s equals 1 determine a �`n –torsor, whence a canonical element of
H1.X

k
;Z=`n.1//.

Thus there is a canonical, functorial map

(26) �Ab� zxt�Ab� zxs
Œ`n�! H1.X

k
;Z=`n.1//:

Composing (25) and (26) determines a Gal.k=k/–equivariant map

�`1.Pic�1 zXk ;Ab� @X.k//! H1.X
k
;R.1//;

whence a map

� W FR�
`
1.Pic�1 zXk ;Ab� @X.k//! H1.X

k
;R.1//;

which we will show to be an isomorphism.

Applying H�.�;R.1// to the pair .X
k
; zXk/ gives the exact sequence

� � � ! H1.X
k
; zXk IR.1//! H1.zXk ;R.1//! H1.X

k
;R.1//

! H2.X
k
; zXk IR.1//! H2.zXk ;R.1//! H2.X

k
;R.1//! � � �

By purity [25, Chapter VI, Theorem 5.1], the relative cohomology groups are computed
by

H1.zXk ;Xk
IR.1//Š 0 and H2.zXk ;Xk

IR.1//Š H0.@X
k
;R/:
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By Poincaré duality [25, Chapter VI, Theorem 11.1], there is a unique isomorphism
H2.zXk ;R.1//!R taking the cycle class of a point to 1 [9, Cycle, 2.1.5, page 139].
Since X

k
is affine of dimension 1, the group H2.X

k
;R.1// vanishes. Substituting

these computations into the above gives

(27) 0 �! H1.zXk ;R.1// �! H1.X
k
;R.1// �!

M
@X .k/

R

L
id

���!R �! 0:

It is straightforward to check that � induces a map of exact sequences from (24) with
� D �`

1
.Pic�1 zXk ;Ab� @X.k// to (27) which is the identity on

L
@X .k/

R and R. By
(25), there is a map

�1! lim
 ��

n

Pic0 zX .k/Œ`n�;

which is an isomorphism because Pic0 zXk is an abelian variety [27, Chapter IV, 18,
Serre–Lang theorem]. Since the Néron–Severi group of zXk is torsion-free,

Pic0 zX .k/Œ`n�Š Pic zX .k/Œ`n�:

By the moduli definition of the Picard functor, its `n –torsion points over k are

Pic zX .k/Œ`n�Š H1.zXk ;Gm/Œ`
n�:

The Kummer exact sequence

1 �! �`n �!Gm
b 7!b`n

�����!Gm �! 1

and the fact that k� is `n –divisible shows

H1.zXk ;Gm/Œ`
n�Š H1.zXk ; �`n/;

whence

�1 Š H1.zXk ;Z`.1//:

Thus � is an isomorphism.

6 Homology of Pic XC

This section gives a canonical isomorphism of Gal.k=k/–modules

H1.Pic�1X C
k
;R/! H1.X

k
;R.1//:
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By Theorem 3.19, there is a universal homeomorphism P \! Pic�1XC , where P \ is
given by the pushout square

Pic0 zX �f �1.x0/

��

// Pres XC

p2
\

��

Pic0 zX // P \

which after base change to k becomes the pushout square:

(28)

`
@X .k/

Pic0 zXk

`
id
��

O�
k
// Pres X C

k

��

Pic0 zXk
// P

\

k

Assume zXk is not genus 0. Let e be a geometric point of Pic0 zXk whose image is
the identity element. The maps Pic0 zXk ! Pres X C

k
making up O�

k
send e to a set of

geometric points of Pres X C
k

, denoted E . Since all points of E have the same image
in P

\

k
, there is an induced Gal.k=k/–equivariant map

�`1.Pres X C
k
; E/! �`1.P

\

k
/:

Composing with the Hurewicz map gives �`
1
.Pres X C

k
; E/! H1.P

\

k
;R/, whence

(29) FR�
`
1.Pres X C

k
; E/! H1.P

\

k
;R/:

By Proposition 3.8, the presentation scheme is a projective bundle

p1k
W Pres X C

k
! Pic�1 zXk

such that the composite mapa
@X .k/

Pic0 zXk ! Pres X C
k
! Pic�1 zXk

is the coproduct over zx in @X.k/ of the maps L 7! L˝ Izx . This projective bundle
induces a Gal.k=k/–equivariant isomorphism

�`1.Pres X C
k
; E/! �`1.Pic�1 zXk ;Ab� @X.k//

by the homotopy exact sequence for the fundamental group [17, Exposé X, Corol-
lary 1.4], which extends to this isomorphism of groupoids, for instance by (24). Here
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we are using that the geometric points of Ab� @X.k/ are distinct, which follows from
the hypothesis that zXk is not genus 0. Applying Theorem 5.1 defines

� W H1.X
k
;R.1//! H1.P

\

k
;R/:

Proposition 6.1 � is an isomorphism.

Proof The Mayer–Vietoris sequence (see Appendix B) corresponding to (28) gives
the exact sequence of Gal.k=k/–modulesM
@X .k/

H1.Pic0 zXk ;R/! H1.Pic0 zXk ;R/
M

H1.Pres X C
k
;R/! H1.P

\

k
;R/

!

M
@X .k/

H0.Pic0 zXk ;R/! H0.Pic0 zXk ;R/
M

H0.Pres X C
k
;R/! H0.P

\

k
;R/

by Theorem B.4.

Let �D0 or 1. Applying H� to O�
k

is the @X.k/–fold coproduct of a fixed isomorphism,
as can be seen by noting that H�.Pres X C

k
;R/!H�.Pic�1 zXk ;R/ is an isomorphism

since Pres X C
k
! Pic�1 zXk is a projective bundle, and

H�.L 7!L˝ Izx W Pic0 zXk ! Pic�1 zXk/

is an isomorphism.

This gives the exact sequence

0!H1.Pres X C
k
;R/!H1.P

\

k
;R/!

M
@X .k/

H0.Pic0 zXk ;R/!H0.Pic0 zXk ;R/! 0;

where the map M
@X .k/

H0.Pic0 zXk ;R/! H0.Pic0 zXk ;R/

is the @X.k/–fold coproduct of the identity map.

Identifying H0.Pic0 zXk ;R/ with R, we obtain

(30) 0! H1.Pres X C
k
;R/! H1.P

\

k
;R/!

M
@X .k/

R!R! 0:

By (30), the definition of the Mayer–Vietoris sequence and (24), it follows that (29) is
an isomorphism, proving the proposition.
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If zXk is genus 0, we have that Pic0 zXk Š Spec k . By the Mayer–Vietoris sequence
(Theorem B.4) corresponding to (28), we have an exact sequence

0! H1.Pres X C
k
;R/! H1.Pic�1X C

k
;R/!

M
@X .k/

R!R! 0:

By Proposition 3.8, the presentation scheme is a projective bundle over Spec k , whence
H1.Pres X C

k
;R/D 0, giving the desired isomorphism in this case by Remark 5.3.

7 The Abel map gives Poincaré duality

In this section we prove the main theorem, namely that the Altman–Kleiman Abel map
realizes Poincaré duality.

Let TrW H2.X C
k
;R.1//Š H2

c .Xk
;R.1//!R denote the trace map, sending the class

of a point to 1 [9, Cycle, 2.1.5, page 139].

Let }W H1.X
C

k
;R/! H1.X

k
;R.1// be the Poincaré duality isomorphism charac-

terized by Tr. [}.�// D h�;  i for all � in H1.X
C

k
;R/ and  in H1.X C

k
;R/ Š

H1
c .Xk

;R/, where h�;�i denotes the tautological pairing between H1 and H1 , de-
fined as follows: if l in �`

1
.X C

k
/ represents �, then l acts by addition by h�;  i on

the fiber of the torsor classified by  .

Theorem 7.1 �} D ��1H1.Ab
k
/

To prove Theorem 7.1, we equip ourselves with three lemmas.

For a product Y �Z , let pr1W Y �Z! Y and pr2W Y �Z!Z denote the projections.
Let N be a positive integer not divisible by the characteristic of k .

Let gW X
k
! zXk denote the open immersion, resulting in another open immersion

g� 1W X
k
�X

k
! zXk �X

k
:

The diagonal � of X
k
� X

k
defines a class cl.�/ in H2

�
.X

k
� X

k
; �N / by [25,

Chapter VI, Section 6, Theorem 6.1]. Furthermore, � is closed in zXk �X
k

, allowing
us to apply excision [25, Chapter III, Section 1, Proposition 1.27] which defines an
isomorphism H2

�
.X

k
�X

k
; �N /Š H2

�
.zXk �X

k
; .g� 1/!�N /.

The adjunction .g�1/!; .g�1/� and the map �N ! pr�
1

g�g!�N Š .g�1/� pr�
1

g!�N

on X
k
�X

k
define a map .g�1/!�N ! pr�

1
.g!�N /, which is an isomorphism because

it induces isomorphisms on all stalks. The isomorphisms

.g� 1/!�N Š pr�1.g!�N /Š pr�1.g!Z=N ˝�N /Š pr�1.g!Z=N /˝�N

Š pr�1.g!Z=N /˝ pr�2 �N
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allow us to apply the Künneth formula to H�.zXk �X
k
; .g� 1/!�N /, from which we

obtain
H�.zXk �X

k
; .g� 1/!�N /Š H�.zXk ;g!Z=n/˝H�.X

k
; �N /

Š H�c .Xk
;Z=N /˝H�.X

k
; �N /:

This allows us to speak of .i; j / Künneth components of elements of

H�.zXk �X
k
; .g� 1/!�N /:

Let c1;1 be the .1; 1/ Künneth component of the image of cl.�/ under

H2
�.
zXk �X

k
; .g� 1/!�N /! H2.zXk �X

k
; .g� 1/!�N /:

We may view c1;1 as an element of

H1
c .Xk

;H1.X
k
; �N //Š H1.zXk ;g!Z=N /˝H1.X

k
; �N /:

The diagonal z� of zXk �
zXk determines a class

cl.z�/ 2 H2
z�
.zXk �

zXk ; �N /:

Let d1;1 denote the .1; 1/ Künneth component of the image of cl.z�/ under

H2
z�
.zXk �

zXk ; pr�1 Z=N ˝ pr�2 �N /! H2.zXk �
zXk ; pr�1 Z=N ˝ pr�2 �N /;

which we view as an element of H1.zXk ;H
1.zXk ; �N //.

Since there is a map of smooth pairs .�;X
k
�X

k
/! .z�; zX

k
� zX

k
/, we have

(31) .g�g/� cl.z�/D cl.�/

by [25, Chapter VI, Section 6, Theorem 6.1(c)].

Our first lemma rewrites (31) in terms of f W zX !XC . The viewpoint is that

H1
c .Xk

;H1.X
k
; �N // and H1.zXk ;H

1.zXk ; �N //

classify certain torsors on X C
k

and zXk , respectively, and (31) computes in terms of d1;1

the pullback under f of the torsor classified by c1;1 .

To describe pullback by f W zX !XC more specifically, note that f induces

f �W H1.XC
k
;H1.X

k
; �N //Š H1

c .Xk
;H1.X

k
; �N //! H1.zXk ;H

1.X
k
; �N //:

Equivalently, tensoring the map g!Z=N ! Z=N of sheaves on zX with H1.X
k
; �N /

and applying H1.zXk ;�/ gives f � .
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We introduce one last piece of notation. The open immersion gW X ! zX induces a map

g�W H1.zXk ; �N /! H1.X
k
; �N /;

and applying H1.zXk ;�/ gives a map

H1.zXk ;g
�/W H1.zXk ;H

1.zXk ; �N //! H1.zXk ;H
1.X

k
; �N //:

Lemma 7.2 H1.zXk ;g
�/d1;1 D f �c1;1

Proof We may assume k D k . The following diagram is commutative: the top two
rows commute by commutativity of boundary maps associated to the map of pairs

.�;X �X /! .z�; zX � zX /I

the second and third rows by naturality of the Künneth formula; the right trapezoid
also by naturality of the Künneth formula; and the bottom triangle obviously:

H2
z�
. zX � zX ; �N / //

��

H2
�.X �X; �N /

ŠH2
�
. zX�X;g!Z=N��N /

��

// H2. zX �X;g!Z=N ��N /

tt
Künneth

��

H2. zX � zX ; �N / //

Künneth

��

H2.X �X; �N /

Künneth

��
H1. zX ;Z=N /

˝H1. zX ; �N /

g�˝g� //

id˝g�

,,

H1.X;Z=N /˝H1.X; �N / H1. zX ;g!Z=n/˝H1.X; �N /

f �˝id

��
H1. zX ;Z=N /˝H1.X; �N /

jj

Here the notation .�/� .�/ is an abbreviation for pr�
1
.�/˝ pr�

2
.�/.

The image of cl.z�/2H2
z�
.zX�zX ; �N / under the top two horizontal morphisms followed

by the right vertical morphism is f �c1;1 . The image of cl.z�/ under the left two vertical
morphisms followed by the bottom diagonal morphism is H1.zX ;g�/d1;1 , showing the
proposition.

The next lemma is a close analogue of [9, Dualité, Proposition 3.4, page 164], whose
proof is almost identical, but we include it for completeness.

The trace map TrW H2
c .Xk

; �N /! Z=N defines a map

Tr0W H1.zXk ;g!Z=N /˝H1.X
k
; �N /˝H1.X

k
; �N /! H1.X

k
; �N /
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given by

(32) a˝ b˝ c 7! Tr.a[ c/b:

Lemma 7.3 For all x 2 H1.X
k
; �N /, we have Tr0.�c1;1˝x/D x .

Proof We may assume k D k . The above isomorphism .g� 1/!�N Š pr�
1

g!�N in-
duces an isomorphism .g�1/!�N˝�N Šg!�N��N of sheaves on zX�X . We obtain
a Künneth formula for H�.zX �X; .g� 1/!�N ˝�N /Š H�.zX ;g!�N /˝H�.X; �N /,
allowing us to define Tr3 to be the composition

Tr3W H3.zX �X; .g� 1/!�N ˝�N /Š H3.zX �X;g!�N ��N /

�! H2.zX ;g!�N /˝H1.X; �N / �! H1.X; �N /

which takes the .2; 1/ Künneth component and then applies trace.

There is a cup product [9, Cycle, 1.2.4, page 134]

H2.zX �X; .g� 1/!�N /�H1.X �X; �N /! H3.zX �X; .g� 1/!�N ˝�N /:

Note that

(33) Tr0.�c1;1
˝x/D�Tr3.�c1;1

[ pr�1 x/D Tr3.c
1;1
[ pr�1 x/;

where the minus sign after the first equality comes from permuting cochains of degree 1

in (32).

Since c1;1[ pr�
1

x and cl.�/[ pr�
1

x have the same .2; 1/ Künneth component,

(34) Tr3.c
1;1
[ pr�1 x/D Tr3.cl.�/[ pr�1 x/:

The cup product on the right-hand side may be reinterpreted as the cup product

H2
�.
zX �X; .g� 1/!�N /�H1.�;�N /! H3

�.
zX �X; .g� 1/!�N ˝�N /

defined in [9, Cycle, 1.2.2.2, page 133].

Since pr1 D pr2 when restricted to �, we therefore have

(35) Tr3.cl.�/[ pr�1 x/D Tr3.cl.�/[ pr�2 x/D Tr4.cl.�//[x D x;

where

Tr4W H2.zX �X; .g� 1/!�N /Š H2.zX �X;g!�N �Z=N /! Z=N

takes the .2; 0/ Künneth component and applies Tr.

Combining (33), (34), and (35) completes the proof.
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Recall the notation FR for the free R–module on a groupoid from Section 5. The next
lemma identifies H1.X

C

k
;R/ in terms of the free R–module associated to paths in zXk

between geometric points of @X .

Lemma 7.4 The map FR�
`
1
.zXk ; @X.k//! H1.X

C

k
;R/ induced by

�`1.
zXk ; @X.k//

f�
�! �`1.X

C

k
;x0/ �! H1.X

C

k
;R/

is an isomorphism.

Proof The Mayer–Vietoris sequence (Theorem B.4 of Appendix B) corresponding to

@X
k

//

��

zXk

f

��
Spec k

x0 // X C
k

gives the exact sequence of Gal.k=k/–modulesM
@X .k/

H1.Spec k;R/! H1.Spec k;R/˚H1.zXk ;R/! H1.X
C

k
;R/

!

M
@X .k/

H0.Spec k;R/! H0.Spec k;R/˚H0.zXk ;R/! H0.X
C

k
;R/;

which we can rewrite as

0! H1.zXk ;R/! H1.X
C

k
;R/!

M
@X .k/

R!R! 0

using the isomorphisms H1.Spec k;R/D 0, H0.Spec k;R/Š H0.zXk ;R/ŠR, and
noting that the mapM

@X .k/

H0.Spec k;R/! H0.Spec k;R/˚H0.zXk ;R/

is identified with the coproduct over @X.k/ of the diagonal map R!R˚R.

Associated to FR�
`
1
.zXk ; @X / is the exact sequence (24)

0! FR�
`
1.
zXk ;x0/! FR�

`
1.
zXk ; @X /!˚@Xk

R!R! 0;
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which is compatible with the Mayer–Vietoris sequence in the sense that the diagram

0 // H1.zXk ;R/
// H1.X

C

k
;R/ //

L
@X .k/

R // R // 0

0 // FR�
`
1
.zXk ;x0/

OO

// FR�
`
1
.zXk ; @X /

//

OO

L
@X .k/

R

id

OO

// R

id

OO

// 0

commutes.

Since FR�
`
1
.zXk ;x0/!H1.zXk ;R/ is an isomorphism, FR�

`
1
.zXk ; @X /!H1.X

C

k
;R/

is also an isomorphism.

We now give the proof of Theorem 7.1.

Proof of Theorem 7.1 Suppose R D Z=`n , and let N D `n . By definition of the
cohomology of an `–adic sheaf [25, pages 163–164], it suffices to prove the theorem
in this case.

Since } , � , and H1.Ab
k
/ are R–module morphisms, by Lemma 7.4 it suffices to

show that
�}.f� /D �

�1H1.Ab
k
/.f� /

for  2 �`
1
.zXk ; @X /.

By Lemma 7.3,
�}.f� /D Tr0.c1;1

˝}.f� //:

By the definition of } ,

Tr0.c1;1
˝}.f� //D hf�; c

1;1
i:

The element c1;1 classifies a H1.X
k
;R.1//–torsor, which we will denote Y !X C

k
.

As in Section 5, let �x.T / denote the fiber of a torsor T at a geometric point x . Pulling
back Y by f gives a H1.X

k
;R.1//–torsor f �Y with isomorphisms � Qxf �Y Š�x0

Y

for all Qx 2 @X.k/, allowing us to speak of the monodromy of f �Y along  as an
element h; f �c1;1i in H1.X

k
;R.1//. Furthermore,

hf�; c
1;1
i D h; f �c1;1

i:

By Lemma 7.2, f �Y is classified by H1.zXk ;g
�/d1;1 in H1.zXk ;H

1.X
k
;R.1///, which

allows us to write
h; f �c1;1

i D h;H1.zXk ;g
�/d1;1

i;

giving

(36) �}.f� /D h;H1.zXk ;g
�/d1;1

i
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by combining with the three previous equations.

Now consider ��1H1.Ab
k
/.f� /. By the construction of the lifted Abel map (see

Definition 4.4),
p2 ıPres.Ab/D Ab ıf;

whence H1.Ab
k
/.f� / is the element of homology represented by

p2� ıPres.Ab/� 2 �`1.Pic�1XC;Ab� x0/:

Consider an element of the homology group H1.Pic�1X C
k
;R/ represented by an

element of �`
1
.Pic�1X C

k
;Ab� x0/ which is the image under p2 of a path in Pres X C

k
.

The image under ��1 of such an element is particularly easy to evaluate. Here is the
resulting description of ��1p2�ıPres.Ab/� . As in the proof of Theorem 5.1, let a be
a geometric point of Pic1 zXk , defining CaW Pic�1 zXk! Pic0 zXk . Let mN W Pic0 zXk!

Pic0 zXk denote the finite étale cover given by multiplication by N . Let zxs and zxt

in @X.k/ be the source and target of  . Since  is a path,  induces a morphism
between fibers

�zxs
.Ab�C�amN /! �zxt

.Ab�C�amN /;

which is given by addition by an element h;Ab�C�amN i of �Ab� zxt�Ab� zxs
ŒmN �. By

construction, ��1p2�.Pres.Ab/� / is the image under (26) of h;Ab�C�amN i.

By [9, Dualité, Proposition 3.2, page 162], d1;1 classifies the pullback of mN by
CaıAb. (The notation in [9] is that u is the pullback of mN by the negative of CaıAb,
whence the appearance of the sign.) Thus the torsor classified by H1.zXk ;g

�/d1;1 is

.Ab�C�amN /�H1.zXk ;R.1//
H1.X

k
;R.1//;

which identifies the action of  on the fibers of H1.zXk ;g
�/d1;1 with its action on the

fibers of d1;1 . In particular, the map induced by  from the fiber of H1.zXk ;g
�/d1;1

over zxs to the fiber over zxt is addition by h;Ab�C�amN i. The isomorphisms
�zxs

f �Y Š�zxt
f �Y are compatible with (26), giving that the image of h;Ab�C�amN i

under (26) is h;H1.zXk ;g
�/d1;1i. Combining with (36) completes the proof.

Appendix A: Cohomology in terms of the fundamental group
of Pic

In this appendix we prove Proposition 1.8, identifying H1..�/
k
;Z`.1// with the `–

étale fundamental group of the Picard scheme, as well as Proposition A.4, giving a
similar description of H1..�/

k
;Z=N.1//.
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Proposition 1.8 Let k be a perfect field. There is a natural isomorphism of functors
from proper, geometrically connected schemes over k to Gal.k=k/–modules

�`1.Pic0.�/
k
; e/Š H1..�/

k
;Z`.1//;

for ` a prime not equal to the characteristic of k .

Remark A.1 In the statement of Proposition 1.8, the `–étale fundamental group �`
1

can be replaced by H1.�;Z`/.

Briefly, this proposition is proven by applying the Kummer exact sequence to obtain
H1..�/

k
;Z=`n.1//ŠPic.�/

k
Œ`n�, and then relating torsion points and �`

1
for algebraic

groups.

Let k and ` be as above. Let p denote the characteristic of k , which could be 0.
H� denotes étale cohomology. By an algebraic group, we mean a connected, smooth
k–group scheme. An algebraic group is automatically geometrically connected by [10,
Exposé VIA , Proposition 2.4, page 299].

Lemma A.2 Let G be a commutative algebraic group over k , and N an integer which
is prime to p . Then the k –points of G form an N–divisible group.

Proof The subcategory of groups whose k –points are N–divisible is closed under
extensions. The k –points of Gm , Ga and all abelian varieties are N–divisible. Thus
the lemma follows by the classification of (connected) commutative, algebraic groups
[11, Exposé XVII, Théorème 7.2.1, page 613].

Let �.p
0/

1
denote the prime-to-p étale fundamental group, and �`

1
denote its maximal

pro-` quotient as above. By [8, Proposition 1.1 and Remark 4.3], it follows that:

Proposition A.3 If G is a commutative algebraic group over k , then there is a natural
isomorphism �.p

0/
1

.G
k
; e/Š lim

 ��
GŒN �.k/, where GŒN � denotes the N–torsion and N

runs over positive integers which are prime to p .

Proof By [8, Proposition 1.1], �.p
0/

1
.G

k
; e/ is abelian, whence isomorphic to the

maximal prime-to-p quotient of lim
 ��Y

Gal.Y=G
k
/, where Y runs over the finite, étale,

abelian Galois covers of G
k

. Thus

�.p
0/

1 .G
k
; e/Š lim

 ��
Y

Gal.Y=G
k
/.p
0/;

where Gal.Y=G
k
/.p
0/ denotes the maximal prime-to-p quotient of Gal.Y=G

k
/. The

quotient Gal.Y=G
k
/.p
0/ is naturally isomorphic to the Galois group of a finite, étale,
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abelian cover ZY !G
k

whose degree is prime to p . It follows that �.p
0/

1
.G

k
; e/Š

lim
 ��Z

Gal.Z=G
k
/, where Z runs over such covers. By [8, Remark 4.3], for N prime

to p ,
0!G

k
ŒN �!G

k
!G

k
! 0

is the largest abelian, étale, Galois cover of G of exponent N , whence

�.p
0/

1 .G
k
; e/Š lim

 ��
GŒN �.k/;

as claimed.

Let Z be a proper scheme over k . By [7, Section 8.2, Theorem 3], Pic Z is represented
by a locally finite type scheme over k , which is automatically a commutative group
object. Let Pic0 Z denote the connected component of the identity e of Pic Z , and
.Pic0 Z/red denote the reduced closed subscheme. By [18, Proposition 4.6.1, page 68],
.Pic0 Z/red �k .Pic0 Z/red is reduced, and it follows that .Pic0/red is a commutative
group scheme. By generic smoothness, .Pic0/red is an algebraic group.

For Z as above, let NS Z
k

denote the Néron–Severi group of connected components
of Pic Z

k
[7, page 234],

NS Z
k
D Pic Z

k
.k/=Pic0 Z

k
.k/Š Pic Z.k/=Pic0 Z.k/:

Proposition A.4 For N prime to p , there is a short exact sequence of functors

0! Pic0.�/
k
ŒN �.k/! H1..�/

k
;Z=N.1//! NS.�/

k
ŒN �! 0

from proper, geometrically connected schemes over k of locally finite type to Z=N –
modules with Gal.k=k/–action.

Proof The Kummer exact sequence

1! �N !Gm!Gm! 1

and the fact that k� is N–divisible gives an identification

H1..�/
k
;Z=N.1//D H1..�/

k
; �N /Š H1..�/

k
;Gm/ŒN �:

By the definition of Pic, its N–torsion points over k are

Pic.�/
k
ŒN �.k/D H1..�/

k
;Gm/ŒN �:

Thus the claim is equivalent to showing a natural exact sequence

0! Pic0.�/
k
ŒN �.k/! Pic.�/

k
ŒN �.k/! NS.�/

k
ŒN �! 0:
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By the definition of the Néron–Severi group

0! Pic0.�/
k
.k/! Pic.�/

k
.k/! NS.�/

k
! 0

is exact, and it follows that

0! Pic0.�/
k
ŒN �.k/! Pic.�/

k
ŒN �.k/

! NS.�/
k
ŒN �! Pic0.�/

k
.k/=N Pic0.�/

k
.k/

is also exact.

Note the canonical isomorphism Pic0.�/
k
.k/ Š .Pic0.�/

k
/red.k/. By the above,

.Pic0.�/
k
/red is an algebraic group, so by Lemma A.2,

.Pic0.�/
k
/red.k/=N.Pic0.�/

k
/red.k/Š 0;

proving the claim.

Proof of Proposition 1.8 By Proposition A.3, we have a natural isomorphism of
functors

�`1.�; e/ ıPic0.�/
k
D lim
 ��
N

Pic0.�/
k
ŒN �.k/;

where N ranges over the powers of `, because the k –points and étale fundamental
group of Pic0.�/

k
can be identified with those of its reduction, and .Pic0.�/

k
/red is a

commutative algebraic group.

By Proposition A.4, we have exact sequences

0! Pic0.�/
k
ŒN �! H1..�/

k
;Z=N.1//! NS.�/

k
ŒN �! 0;

where N ranges over the powers of `.

Taking the inverse limit gives the exact sequence

0 // �`
1
.Pic0.�/

k
; e/Š lim

 ��N
Pic0.�/

k
ŒN �

��
H1..�/

k
;Z`.1// WD lim

 ��N
H1..�/

k
;Z=N.1// // lim

 ��N
NS.�/

k
ŒN �:

Since NS.�/
k

is finitely generated [7, Chapter 8.4, Theorem 7], multiplication by `n

is the 0 map for large enough n, and if follows that lim
 ��N

NS.�/
k
ŒN �D 0.
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Appendix B: A Mayer–Vietoris sequence for pushouts
of schemes

Consider diagrams of finite-type schemes over k of the form

V
i //

p

��

W

Z

with i a closed immersion and p finite. By [15, Theorem 5.4], the pushout

(37)

V
i //

p

��

W

p
��

Z
i

// W

exists and commutes with base change by field extensions [15, Lemma 4.4]. The
resulting morphisms p and i are finite, with i a closed immersion [15, Theorem 5.4].

This appendix proves a Mayer–Vietoris sequence in cohomology for pushouts of this
form, and then obtains a truncation of such a sequence in homology. The truncation
results from the fact that we only define H1 and H0 . It is not mathematically essential.

Theorem B.1 There is a functorial association of a long exact sequence of Gal.k=k/–
modules

� � �!Hn.W
k
;R/!Hn.W

k
;R/˚Hn.Z

k
;R/!Hn.V

k
;R/!HnC1.W

k
;R/!� � �

to a pushout diagram (37).

Here the adjective “functorial” means that a map of pushout diagrams of the form (37)
induces a map of long exact sequences.

Proof Let f W V !W be defined by f D ip D pi . Let R.V
k
/ denote the constant

sheaf with stalk R on the étale site of V
k

for RDZ=`m and the corresponding `–adic
sheaf for RD Z` [25, page 163], with similar definitions for W , Z , and W . Note
that p�R.W

k
/ŠR.W

k
/, giving a natural map R.W

k
/! p�R.Wk

/.

The horizontal arrows in the commutative diagram

f�R.Vk
/ p�R.Wk

/oo

i�R.Zk
/

OO

R.W
k
/oo

OO
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are surjective. Indeed, to check surjectivity, it is enough to verify the condition on
stalks [25, Chapter II, Theorem 2.15(c)], and surjectivity on stalks follows from [25,
Chapter II, Corollary 3.5(a)]. The resulting morphism of short exact sequences

(38)

0 f�R.Vk
/oo p�R.Wk

/oo Ker p�.i�i
� id/oo 0oo

0 i�R.Zk
/oo

OO

R.W
k
/oo

OO

Ker.i�i� id/oo

N

OO

0oo

is such that N is an isomorphism. To see this, note that by [25, Chapter II, Theo-
rem 2.15(b) and Corollary 3.5(c)] pushforward by a finite morphism is an exact functor
between categories of étale sheaves, whence Ker p�.i�i

� id/D p�Ker.i�i� id/.
Let j W W �V ,!W be the open immersion corresponding to the complement of V .
The exact sequence [25, Chapter II, page 76]

0! j!j
�R!R! i�i

�R! 0

gives Ker.i�i� id/Šj!R..W �V /
k
/. Similarly, Ker.i�i� id/Šj !R..W �Z/

k
/,

where j W W �Z ,! W is the open immersion. Since p induces an isomorphism
W �V !W �Z [15, Theorem 5.4(d)] and p�1Z � V [15, Theorem 5.4(b)], N is
an isomorphism by checking on all stalks.

A morphism of short exact sequences of sheaves with isomorphic kernels

0 Aoo Boo Coo 0oo

0 A0oo

OO

B0oo

OO

C 0oo

Š

OO

0oo

gives rise to a Mayer–Vietoris sequence

� � � ! Hn.B0/! Hn.B/˚Hn.A0/! Hn.A/! HnC1.B0/! � � � :

Applying this principle to (38) gives a long exact sequence

(39) � � � ! Hn.W
k
;R/! Hn.W

k
;p�R.Wk

//˚Hn.W
k
; i�R.Zk

//

! Hn.W
k
; f�R.Vk

//! HnC1.W
k
;R/! � � � :

Since pushforward by a finite morphism is an exact functor between categories of
étale sheaves, Hn.W

k
;R/ Š Hn.W

k
;p�R.Wk

//, and there are similar expressions
for Hn.V

k
;R/ and Hn.Z

k
;R/. Making these substitutions into (39) completes the

proof.
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Let Y be a k–scheme. Let H0.Yk
;R/ denote the free R–module on the connected

components �0.Yk
/ of Y

k
. Since �0.Yk

/ has a continuous Galois action, H0.Yk
;R/

is a Gal.k=k/–module. For y 2�0.Yk
/, let .Y

k
/y denote the corresponding connected

component. For R D Z=`n (or R a finite abelian group), define H1.Yk
;R/ as the

direct sum

H1.Yk
;R/Š

M
y2�0Y

k

.�1.Yk
/ab
y ˝R/;

where �1.Yk
/ab
y denotes the abelianization of the étale fundamental group of �1.Yk

/y .
For RD Z` , define H1.Yk

;Z`/ as

H1.Yk
;Z`/Š

M
y2�0Y

k

�1.Yk
/`�ab
y ;

where �1.Yk
/`�ab
y denotes the abelianization of the `–étale fundamental group, ie the

abelianization of the maximal pro-` quotient of the étale fundamental group. Note that
�1.Yk

/ab
y is independent of the choice of base point. The Gal.k=k/–action on étale

paths in Y
k

gives H1.Yk
;R/ the structure of a Gal.k=k/–module. More specifically,

for each y 2 �0.Yk
/ choose a base point by , which may or may not have a k–rational

point as its image, with which to define �1..Yk
/y ; by/. Then � 2Gal.k=k/ determines

a map �1..Yk
/y ; by/ ! �1.Yk

; ��by/. Then ��by has image in some connected
component of Y

k
, say the connected component w . The canonical isomorphism

�1..Yk
/w; bw/

ab
Š �1..Yk

/w; ��b/
ab

allows � to act on H1.Yk
;R/.

We prove the following technical lemma to avoid considering the question of finite
generation for �`

1
. Note that H1.Yk

;Z=`m/ has a natural topology induced from the
topology on étale fundamental groupoids. For a topological Z=`m –module M , let
M ? D Hom.M;Z=`m/ be the continuous homomorphisms M ! Z=`m .

Lemma B.2 For each y 2 �0.Yk
/, let My � H1..Yk

/y ;Z=`m/ be a closed sub-
Z=`m –module, and let M D

L
y My . For any  in H1.Yk

;Z=`m/ with  62M , there
exists f 2 H1.Yk

;Z=`m/? such that f . /¤ 0 and f .m/D 0 for all m 2M .

Proof We may assume k D k . By definition,

H1.Y;Z=`
m/D

M
y2�0.Y /

.�1.Yy/
ab
˝Z=`m/:
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Since  is not in M and M D
L

y My , there exists y 2�0.Y / such that the image y

of  under

H1.Y;Z=`
m/!

Y
y2�0.Y /

.�1.Yy/
ab
˝Z=`m/! �1.Yy/

ab
˝Z=`m

is not contained in My . Using the map .�1.Yy/
ab˝Z=`m/?! H1.Yk

;Z=`m/? , we
may assume that Y is connected. Since �1.Y /

ab˝Z=`m is profinite, there is a finite
quotient such that the image of  is not contained in the image of M , as otherwise the
intersection over all finite quotients of those elements of M with the same image as 
would be non-empty by compactness of M , which in turn would imply that  is in M .
Thus there exists an abelian finite étale cover Y ! Y such that the image of  under

(40) H1.Y;Z=`
m/! Gal.Y =Y /˝Z=`m

is not contained in the image of M . The Z=`m –module .Gal.Y =Y /˝Z=`m/=M is
finitely generated (even finite), whence the natural map

.Gal.Y =Y /˝Z=`m/=M !
�
..Gal.Y =Y /˝Z=`m/=M /?

�?
is an isomorphism. In particular, we may choose f 2 ..Gal.Y =Y /˝Z=`m/=M /?

such that f . /¤ 0. Let f be the image of f under the map�
.Gal.Y =Y /˝Z=`m/=M

�?
! .Gal.Y =Y /˝Z=`m/?! H1.Yk

;Z=`m/?:

As a corollary, we obtain:

Lemma B.3 The natural map H1.Yk
;Z=`m/! .H1.Yk

;Z=`m/?/? is injective.

We use these lemmas to show the Mayer–Vietoris sequence in homology used above.
Assume that V

k
, Z

k
,W

k
and W

k
have finitely many connected components.

Theorem B.4 There is a functorial exact sequence of Gal.k=k/–modules

H1.Vk
;R/! H1.Wk

;R/˚H1.Zk
;R/! H1.W k

;R/

! H0.Vk
;R/! H0.Wk

;R/˚H0.Zk
;R/! H0.W k

;R/! 0:

Proof Let nD 0; 1. Functoriality of Hn defines maps

Hn.i/�Hn.p/W Hn.Vk
;R/! Hn.Wk

;R/˚Hn.Zk
;R/;

Hn.i/�Hn.p/.x/D Hn.i/x˚Hn.p/x
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and

�Hn.p/˚Hn.i/W Hn.Wk
;R/˚Hn.Zk

;R/! Hn.W k
;R/;

�Hn.p/˚Hn.i/.x/D�Hn.p/.x/CHn.i/.x/:

Suppose first that RD Z=`m . The isomorphism H1..Y
k
/y ;R/Š Hom.�1.Yk

/y ;R/

between the first étale cohomology group and continuous homomorphisms from the
fundamental group (this isomorphism can be obtained from, for instance, [25, Chap-
ter III, Section 4; Section 2, Corollary 2.10 and Chapter I, Section 5]) determines an
isomorphism

(41) H1.Y
k
;R/Š Hom.H1.Yk

;R/;R/;

where Hom again denotes continuous homomorphisms.

The isomorphism (41) determines a map H1.W k ;R/! H1.W
k
;R/? . Dualizing the

boundary map in Theorem B.1 gives a map

H1.W
k
;R/?! H0.W

k
;R/?:

By assumption, W
k

has finitely many connected components, identifying
Q
�0W

k
R

and
L
�0W

k
R, and giving an isomorphism

H0.W
k
;R/? Š H0.W k

;R/:

Use the resulting composite

H1.W k ;R/! H1.W
k
;R/?! H0.W

k
;R/? Š H0.W k

;R/

to define the boundary map in the statement we are proving. Together with Hn.i/�

Hn.p/ and �Hn.p/˚Hn.i/, this defines the sequence in the statement.

Note that, with this definition, applying Hom.�;R/ to the sequence of Theorem B.4
gives the sequence of Theorem B.1. It thus follows from Lemma B.3 that the com-
position of adjacent maps in the sequence of Theorem B.4 is 0, ie this sequence is a
complex. We claim that this complex is exact. Suppose to the contrary that exactness
fails at

MjC1!Mj !Mj�1;

ie there exists  in Ker.Mj !Mj�1/ which is not in Image.MjC1!Mj /. Choose
f 2 M ?

j vanishing on the image of MjC1 and nonzero on  , using Lemma B.2.
Then f is in the kernel of M ?

j !M ?
jC1

. However, f cannot be in the image of
M ?

j�1
!M ?

j because any element of this image sends  to 0.
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The quotient map Z=`mC1! Z=`m determines maps

Hn.Yk
;Z=`mC1/! Hn.Yk

;Z=`m/:

It is tautological to check that these maps induce maps between the corresponding exact
sequences in the statement. The case RD Z` then follows from the isomorphisms

Hn.Yk
;Z`/Š lim

 ��
m

Hn.Yk
;Z=`m/

and exactness of inverse limits on profinite groups.
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