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Left-orderability and cyclic branched coverings

YING HU

We provide an alternative proof of a sufficient condition for the fundamental group of
the nth cyclic branched cover of S3 along a prime knot K to be left-orderable, which
is originally due to Boyer, Gordon and Watson. As an application of this sufficient
condition, we show that for any .p; q/ two-bridge knot, with p � 3 mod 4 , there
are only finitely many cyclic branched covers whose fundamental groups are not
left-orderable. This answers a question posed by Da̧bkowski, Przytycki and Togha.

57M05; 57M12, 57M27

1 Introduction

1.1 Background and results

A group G is called left-orderable if there exists a strict total ordering < on the set of
group elements, such that given any two elements a and b in G , if a< b then ca< cb

for any c 2G .

It is known that any connected, compact, orientable 3–manifold with a positive first
Betti number has a left-orderable fundamental group; see Boyer, Rolfsen and Wiest [4,
Theorem 1.1] and Howie and Short [12]. In contrast, for a rational homology sphere,
the left-orderability of its fundamental group is a nontrivial property, which is closely
related to the co-oriented taut foliations on the manifold; see Calegari and Dunfield
[5]. Moreover, Boyer, Gordon and Watson [3] conjectured that an irreducible rational
homology 3–sphere M is an L–space (see Ozsváth and Szabó [19]) if and only if its
fundamental group �1.M / is not left-orderable.

Let XK be the complementary space obtained by removing an open tubular neighbor-
hood of the knot K from the three sphere S3 and X

.n/
K

be the nth cyclic branched
cover of S3 branched over the knot K . The first Betti number b1.X

.n/
K
/ equals zero if

and only if no root of the Alexander polynomial �K .t/ is an nth root of unity. Hence,
most of the cyclic branched covers along a knot are rational homology spheres. In
particular, this is the case if n is a prime power.
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For this class of rational homology spheres, the L–space conjecture [3] has been
verified in the following cases, where they are all L–spaces and have non-left-orderable
fundamental groups:

� The twofold branched cover of any nonsplit alternating link; see Boyer, Gordon
and Watson [3], Greene [10], Ito [13] and Ozsváth and Szabó [20].

� The nth cyclic branched cover of a .p; q/ two-bridge knot with p=q D 2mC 1
2k

,
mk > 0 and n arbitrary; see Da̧bkowski and Przytycki [7], and Peters [21].

� The 3rd and 4th cyclic branched cover of a .p; q/ two-bridge knot with

p=q D n1C
1

1C 1
n2

;

where n1; n2 are positive odd integers (ie p=q D 2mC 1
2k

, mk < 0); see Da̧bkowski
and Przytycki [7], Gordon and Lidman [9], Peters [21] and Teragaito [25].

The motivation of this paper is a question posed in [7]: Given a two-bridge knot K ,
is �1.X

.n/
K
/ always non-left-orderable if b1.X

.n/
K
/ D 0? We answer this question

negatively. In fact, we prove that for .p; q/ two-bridge knots with p � 3 mod 4, there
are only finitely many cyclic branched covers that have non-left-orderable fundamental
groups. At the end, we will present the knot 52 as an example and show that the
fundamental group �1.X

.n/
52
/ is left-orderable if n� 9. Shortly after this article was

posted on the arXiv, Tran [26] computed an upper bound (depending on the knot) on
the order n so that the nth cyclic branched cover has a non-left-orderable fundamental
group for a large class of two-bridge knots.

A similar question for hyperbolic knots was also posed in [7] and was first answered by
Clay, Lidman and Watson [6, Proposition 23]. They showed that the twofold branched
cover of S3 along the Conway knot, which is a nonalternating hyperbolic knot listed
as 11n34 in the standard knot tables, has a left-orderable fundamental group, and so do
all even order cyclic branched covers.

1.2 Plan of the paper

Section 2 is devoted to proving Lemma 2.1, essential to our proof of Theorem 3.1.

Lemma 2.1 Given a knot K in S3 , denote by Z a meridional element in the knot
group �1.XK /. Suppose that there exists a group homomorphism � from �1.XK / to
a group G and �.Zn/ is in the center of G . Then � induces a group homomorphism
from �1.X

.n/
K
/ to G . In particular, if � is nonabelian, then the induced homomorphism

is nontrivial.
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We finish the proof of Theorem 3.1 in Section 3.

Theorem 3.1 Given any prime knot K in S3 , denote by Z a meridional element of
�1.XK /. If there exists a nonabelian representation �1.XK / to SL.2;R/ such that
Zn is sent to ˙I then the fundamental group �1.X

.n/
K
/ is left-orderable.

This result was first observed by Boyer, Gordon and Watson:

Theorem [3, Theorem 6] Let K be a prime knot in the 3–sphere and suppose that
the fundamental group of its twofold branched cyclic cover is not left-orderable. If
� W �1.S

3 nK/! HomeoC.S1/ is a homomorphism such that �.�2/ D 1 for some
meridional class � in �1.S

3 nK/, then the image of � is either trivial or isomorphic
to Z2 .

Here we make two remarks to compare Theorem 3.1 with [3, Theorem 6].

� The proof of [3, Theorem 6] naturally extends to the nth cyclic branched cover
for arbitrary n. Since PSL.2;R/ is a subgroup of HomeoC.S1/, the group of
orientation preserving homeomorphisms of S1 , Theorem 3.1 is contained in [3,
Theorem 6] in this sense.

� On the other hand, if we replace the central extension

0 �! Z �! fSL.2;R/ �! SL.2;R/ �! 1

that we use in the proof of Theorem 3.1 by the extension [8]

0 �! Z �!BHomeoC.S1/ �! HomeoC.S1/ �! 1;

we can achieve a proof of [3, Theorem 6].

Finally, in Section 4, we prove our main result in this paper.

Theorem 4.3 A .p; q/ two-bridge knot K with p � 3 mod 4 has only finitely many
cyclic branched covers whose fundamental groups are not left-orderable.
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Theorem 3.1 and [3, Theorem 6] and his or her many helpful comments.
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2 The fundamental groups of cyclic branched covers

Given a Seifert surface F , one can present the knot group �1.XK / as an HNN
extension of �1.S

3 nF / over the surface group �1.F /, (the usual definition of the
HNN extension requires F to be incompressible, but we do not need it here). We then
apply the Reidemeister–Schreier method to the presentation of �1.XK / and obtain a
presentation of �1.X

.n/
K
/, from which Lemma 2.1 follows.

More precisely, let F be a Seifert surface of an oriented knot K . It has a regular
neighborhood that is homeomorphic to F � Œ�1; 1�, where the positive direction is
chosen so that the induced orientation on the boundary @F is the same as the chosen
orientation on the knot K .

K

F�

F

FC
PC

P�

C

Z

Figure 1: A cross-sectional view of a collar neighborhood of F in the knot
complement XK , where F˙ represent F �˙1 , respectively. In addition, the
point PC (resp. P� ) is the intersection point of the meridian Z and FC

(resp. F� ).

Suppose that the free groups �1.F�;P�/ and �1.FC;PC/ are generated by the
elements fa�i giD1;:::;2g and faCi giD1;:::;2g respectively, where g is the genus of the
Seifert surface F .

We denote by ˛�i the image of a�i under the inclusion map

�1.F�;P�/ �! �1.S
3
�F;P�/

and denote by ˛Ci the image of aCi in �1.S
3�F;P�/ under the composition map

�1.FC;PC/ �! �1.S
3
�F;PC/ �! �1.S

3
�F;P�/;

where the second map from �1.S
3�F;PC/ to �1.S

3�F;P�/ is the isomorphism
induced by the arc C connecting P� to PC as depicted in Figure 1. By the van Kampen
theorem, we have

(1) �1.XK ;P�/D �1.S
3
�F;P�/� hZi=hhZ˛

C
i Z�1

D ˛�i ; i D 1; : : : ; 2gii:
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If the complement of the Seifert surface F in S3 is also a handlebody, which is
always the case when F is constructed through Seifert’s algorithm, then the group
�1.S

3�F;P�/ is also free and we assume that

�1.S
3
�F;P�/D hx1; : : : ;x2gi:

In this case, from (1), we obtain Lin’s presentation for the knot group �1.XK ;P�/

[16, Lemma 2.1] as

(2) �1.X;P�/D hx1;x2; : : : ;x2g�1;x2g;Z W Z˛Ci Z�1
D ˛�i ; i D 1; : : : ; 2gi;

where ˛˙i are words in xi as described above.

Let zX .n/
K

be the nth cyclic cover of the knot complement XK . Its fundamental group

�1

�
zX
.n/
K

�
Š Ker

�
�1.XK / �! Zn

�
is an index-n subgroup of the knot group �1.XK /. Choose fZigiD0;:::;n�1 to be the
representative from each coset. By applying the Reidemeister–Schreier method [17] to
the presentation (2), we obtain a presentation of the group �1. zX

.n/
K
/ with generators

Zn and Zkx1Z�k ; : : : ; Zkx2gZ�k for k D 0; : : : ; n� 1

and relations

ZkC1˛Ci Z�.kC1/
DZk˛�i Z�k for k D 0; : : : ; n� 2 and i D 1; : : : ; 2g;(3)

Zn
�˛Ci �Z

�n
DZn�1˛�i Z�.n�1/ for i D 1; : : : ; 2g:(4)

In the presentation above, ZkxiZ
�k and Zn should be viewed as abstract symbols

rather than products of Z and xi . Thus, words Zk˛Ci Z�k as in (3) are products of
the generators ZkxiZ

�k and the word Zn � ˛Ci �Z
�n in (4) is the product of Z˙n

and xi . The notation is chosen to emphasize the fact that the isomorphism between
the presented group and the subgroup Ker.�1.XK /! Zn/ is given by sending the
abstract symbol ZkxiZ

�k in the presentation to the element ZkxiZ
�k of the knot

group �1.XK / for k D 0; : : : ; n� 1 and i D 1; : : : ; 2g .

Intuitively, this presentation can be understood as follows. The nth cyclic cover zX .n/
K

can be constructed by gluing n copies of S3�F � .�1; 1/ together. We denote each
copy by Yk . Let Fk be the Seifert surface associated with Yk and F˙

k
be Fk �˙1

on @Yk for k D 0; : : : ; n� 1. Then ZkxiZ
�k are generator loops in Yk and each

relation ZkC1˛Ci Z�.kC1/ D Zk˛�i Z�k in (3) is due to the isomorphism between
�1.F

�
k
/ and �1.F

C

kC1
/. In addition, the relation (4) is from the identification between

FC
0

and F�
n�1

.
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Now let’s look at the fundamental group of the nth cyclic branched cover X
.n/
K

. From
the construction of X

.n/
K

, we have the isomorphism

�1

�
X
.n/
K

�
Š Ker

�
�1.XK /! Zn

�
=hhZn

ii:

Therefore the group �1.X
.n/
K
/ inherits the presentation with generators

Zkx1Z�k ; : : : ; Zkx2gZ�k for k D 0; � � � ; n� 1

and relations

ZkC1˛Ci Z�.kC1/
DZk˛�i Z�k for k D 0; � � � ; n� 2 and i D 1; : : : ; 2g;(5)

˛Ci DZn�1˛�i Z�.n�1/ for i D 1; : : : ; 2g:(6)

Lemma 2.1 Given a knot K in S3 , denote by Z a meridional element in the knot
group �1.XK /. Suppose that there exists a group homomorphism � from �1.XK / to
a group G and �.Zn/ is in the center of G . Then � induces a group homomorphism
from �1.X

.n/
K
/ to G . In particular, if � is nonabelian, then the induced homomorphism

is nontrivial.

Proof Let �jker be the restriction of � to the subgroup Ker.�1.XK /! Zn/. We are
going to show that the assignment

ZkxiZ
�k
7! �jker.Z

kxiZ
�k/ for i D 1; : : : ; 2g and k D 0; : : : ; n� 1

also defines a homomorphism from �1.X
.n/
K
/ to G .

First of all, the relations in (3) which are the same as the relations in (5) automatically
hold. It follows from (4) that

�jker.Z
n/ � �jker.˛

C
i / � �jker.Z

�n/D �jker.Z
n�1˛�i Z�.n�1//:

Since by assumption �jker.Z
n/D �.Zn/ is in the center of G , we have

�jker.˛
C
i /D �jker.Z

n/ � �jker.˛
C
i / � �jker.Z

�n/D �jker.Z
n�1˛�i Z�.n�1//:

That is, the relations in (6) hold as well.

In addition, if � is a nonabelian homomorphism, then as the commutator subgroup
Œ�1.XK /; �1.XK /� is the normal subgroup generated by fx1; : : : ;x2gg, we have that
�.xi/ is not equal to the identity in G for some i . Therefore, the induced homomor-
phism from �1.X

.n/
K
/ to G is nontrivial.
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3 The left-orderability of the fundamental group �1.X
.n/

K
/

We finish the proof of Theorem 3.1 in this section.

Theorem 3.1 Given any prime knot K in S3 , denote by Z a meridional element of
�1.XK /. If there exists a nonabelian representation �1.XK / to SL.2;R/ such that
Zn is sent to ˙I then the fundamental group �1.X

.n/
K
/ is left-orderable.

We will make use of the following criterion due to Boyer, Rolfsen and Wiest.

Theorem 3.2 [4] Let M be a compact, orientable, irreducible 3–manifold. Then
�1.M / is left-orderable, if there exists a nontrivial homomorphism from �1.M / to a
left-orderable group.

Note that the group SL.2;R/ itself is not left-orderable, but its universal covering
group, denoted by fSL.2;R/, is left-orderable [1]. Let E be the covering map fromfSL.2;R/ to SL.2;R/. Since fSL.2;R/ and SL.2;R/ are both connected, we have

Z.fSL.2;R//DE�1.Z.SL.2;R///;

where Z.fSL.2;R// and Z.SL.2;R// are the centers of the Lie groups fSL.2;R/ and
SL.2;R/ respectively [11, page 336]. Therefore, Z.fSL.2;R//DE�1.f˙Ig/.

Lemma 3.3 Given any knot K in S3 , let Z be a meridional element in the knot group
�1.XK /. Suppose that there exists a nonabelian SL.2;R/ representation of �1.XK /

such that Zn is sent to ˙I . Then this representation induces a nontrivial fSL.2;R/
representation of the fundamental group of the nth cyclic branched cover �1.X

.n/
K
/ .

Proof The kernel of the covering map Ker.E/ is isomorphic to �1.SL.2;R//Š Z
and we have the central extension

0 �! Z �!fSL.2;R/ �! SL.2;R/ �! I:

Suppose that � is a representation of �1.XK / into SL.2;R/. Then the pullbackfSL.2;R/�SL.2;R/ �1.XK /D f.M;x/ 2fSL.2;R/��1.XK / W E.M /D �.x/g;

is a central extension of �1.X / by Z. On the other hand,

H 2.�1.XK /;Z/ŠH 2.XK ;Z/D 0;

so every central extension of �1.Xk/ by Z splits. Hence, � can be lifted to a represen-
tation into fSL.2;R/. That is, the composition of a splitting map with the projection
from fSL.2;R/�SL.2;R/ �1.XK / to fSL.2;R/ is a lifting of � [27].
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Now assume that the representation � of the knot group �1.XK / satisfies the property
�.Zn/D˙I . We denote by z� a lifting of � . Since �.Zn/D˙I , we see that z�.Zn/

is inside E�1.˙I/, which is equal to Z.fSL.2;R//, the center of fSL.2;R/.

�1.XK / SL.2;R/

fSL.2;R/

�

z�
E

In addition, if � is a nonabelian representation, then z� is nonabelian. By Lemma 2.1,
the representation z� induces a nontrivial fSL.2;R/ representation of �1.X

.n/
K
/.

Proof of Theorem 3.1 Let � be a nonabelian SL.2;R/–representation of the knot
group �1.XK /, with �.Zn/ D ˙I . By Lemma 3.3, this representation induces
a nontrivial fSL.2;R/–representation of the group �1.X

.n/
K
/.

The group fSL.2;R/ can be embedded inside the group of order-preserving homeomor-
phisms of R, so it is left-orderable [1]. Moreover, the nth cyclic branched cover X

.n/
K

is
irreducible if K is a prime knot [22]. Thus, Theorem 3.1 follows from Theorem 3.2.

4 Application to .p; q/ two-bridge knots with p � 3 mod 4

In this section we apply Theorem 3.1 to .p; q/ two-bridge knots with p D 3 mod 4.
We show that given any two-bridge knot of this type, the fundamental group of the nth

cyclic branched cover is left-orderable if n is sufficiently large.

Let K be a .p; q/ two-bridge knot. From the Schubert normal form [14, page 21], the
knot group has a presentation of the form

�1.XK /D hx;y W wx D ywi;

where w D .x�1y�2/ � � � .x�p�2y�p�1/ and �i D˙1.

Let � W �1.XK /! SL.2;C/ be a nonabelian representation of the knot group into
SL.2;C/. Up to conjugation, we can assume that

(7) �.x/D

�
m 1

0 m�1

�
; �.y/D

�
m 0

s m�1

�
:

Hence �.w/D�.x/�1�.y/�2 � � � �.x/�p�2�.y/�p�1 is a matrix with entries in ZŒm˙1; s�;
we write

�.w/D

�
w11 w12

w21 w22

�
; wij 2 ZŒm˙1; s�:
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From the group relation wx D yw , we have�
w11 w12

w21 w22

��
m 1

0 m�1

�
D

�
m 0

s m�1

��
w11 w12

w21 w22

�
:

This is equivalent to

(8)
�

0 w11C .m
�1�m/w12

.m�m�1/w21� sw11 w21� sw12

�
D 0;

so s and m must satisfy the equation

w11C .m
�1
�m/w12 D 0:

The above equation is also a sufficient condition for � to define a representation:

Proposition 4.1 [24, Theorem 1] The assignment of x and y as in (7) defines a
nonabelian SL.2;C/ representation of the knot group

�1.XK /D hx;y W wx D ywi

if and only if

(9) '.m; s/, w11C .m
�1
�m/w12 D 0:

We need to make use of several properties of Riley’s polynomial '.m; s/. All of these
properties are either proven or claimed in Riley’s paper [24]. For readers’ convenience,
we organize them and provide a proof in the following lemma.

Lemma 4.2 (cf [24]) The polynomial '.m; s/ in ZŒm˙1; s� satisfies the following:

(1) As a polynomial in s with coefficients in ZŒm˙1�, '.m; s/ has s–degree equal
to .p� 1/=2, with the leading coefficient ˙1.

(2) '.1; 0/¤ 0.

(3) '.m; s/ does not have repeated factors.

(4) '.m; s/ D '.m�1; s/ and thus '.m; s/ D f .mCm�1; s/, where f is a two-
variable polynomial with coefficients in Z.

Proof (1) Since we assign

�.x/D

�
m 1

0 m�1

�
; �.y/D

�
m 0

s m�1

�
;
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a direct computation gives

�.xy/D

�
m2C s m�1

m�1s m�2

�
; �.x�1y/D

�
1� s �m�1

ms 1

�
;

�.xy�1/D

�
1� s m

�m�1s 1

�
; �.x�1y�1/D

�
m�2C s �m

�ms m2

�
:

Say a matrix A in M2.ZŒm
˙1; s�/ has s–degree equal to n if

AD

�
˙snCf11.m; s/ f12.m; s/

f21.m; s/ f22.m; s/

�
;

where the s–degrees of f11 , f12 and f22 are strictly less than n and the s–degree
of f21 is less than or equal to n. Hence the matrices �.xy/, �.x�1y/, �.xy�1/ and
�.x�1y�1/ all have s–degrees equal to 1. Moreover, the product of an s–degree n

matrix and an s–degree m matrix is an s–degree mC n matrix. Since

w D .x�1y�2/ � � � .x�p�2y�p�1/; �i D˙1;

the matrix

�.w/D

�
w11 w12

w21 w22

�
is a product of .p � 1/=2 s–degree 1 matrices. Therefore the matrix �.w/ has s–
degree equal to .p � 1/=2. That is, the entry w11 has ˙s.p�1/=2 as the leading
term and the s–degree of w12 is strictly less than .p� 1/=2. As a result, '.m; s/D
w11C .m

�1�m/w12 has leading term equal to ˙s.p�1/=2 .

(2) Since mD 1 and s D 0, we have

�.x/D

�
1 1

0 1

�
; �.y/D

�
1 0

0 1

�
:

This assignment can not define a representation of the knot group

�1.XK /D hx;y W wx D ywi;

because the matrices �.x/D
�

1 1
0 1

�
and �.y/D

�
1 0
0 1

�
are not conjugate to each other.

Therefore '.1; 0/¤ 0 by Proposition 4.1.

(3) Let �K .t/ be the Alexander polynomial of the knot K . It is shown in [18,
Proposition 1.1, Theorem 1.2] that any knot group has .j�K .�1/j � 1/=2 irreducible
SL.2;C/ metabelian representations up to conjugation (see also [2; 16]) and that these
metabelian representations send meridional elements to matrices of eigenvalues ˙i . For
a .p; q/ two-bridge knot, p equals j�K .�1/j. This implies that the degree-.p� 1/=2
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polynomial equation '.i; s/D 0 has .p� 1/=2 distinguished roots. Therefore '.i; s/
does not have repeated factors and neither does '.m; s/.

Note that we can also use the fact that '.1; s/ does not have any repeated factors to
prove that '.m; s/ has no repeated factors [23, Theorem 3].

(4) Assume that the assignment

�.x/D

�
m 1

0 m�1

�
; �.y/D

�
m 0

s m�1

�
defines a representation of the knot group

�1.XK /D hx;y W wx D ywi:

Then

�0.x/D P

�
m 1

0 m�1

�
P�1

D

�
m�1 1

0 m

�
;

�0.y/D P

�
m 0

s m�1

�
P�1

D

�
m�1 0

s m

�
;

also defines a representation, where

P D

�
1 .m�1�m/=s

m�m�1 1

�
:

The matrix P is well-defined and invertible whenever .m; s/ is not in the finite set

S , f.m; s/ W s D 0; '.m; s/D 0g[ f.m; s/ W s D�.m�m�1/2; '.m; s/D 0g:

The set S is finite because neither '.m; 0/ nor '.m;�.m�m�1/2/ is a zero polyno-
mial. Otherwise, .1; 0/ would be a solution for '.m; s/, which contradicts part .2/.

Denote by V .g/ the solution set of a polynomial g . As we described above,

V .'.m; s//�S � V . .m; s//;

where  .m; s/D '.m�1; s/. Points in S are not isolated, since they are embedded
inside the algebraic curve V .'.m; s//. By continuity, we have

V .'.m; s//� V . .m; s//:

By part .3/, neither of '.m; s/ nor  .m; s/ have repeated factors, so the ideal
h .m; s/i is contained inside the ideal h'.m; s/i in ZŒm˙1; s�. On the other hand,
both '.m; s/ and  .m; s/ have the same leading term, which is either s.p�1/=2 or
�s.p�1/=2 , so '.m; s/D  .m; s/D '.m�1; s/.
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Now we are ready to prove the main result.

Theorem 4.3 A .p; q/ two-bridge knot K with p � 3 mod 4 has only finitely many
cyclic branched covers whose fundamental groups are not left-orderable.

Proof We are going to show that for sufficiently large n, the group

�1.XK /D hx;y W wx D ywi

has a nonabelian SL.2;R/–representation with xn sent to �I .

As before, we set

�.x/D

�
m 1

0 m�1

�
; �.y/D

�
m 0

s m�1

�
:

Let mD ei� . Since p D 3 mod 4, by Lemma 4.2, we have that '.ei� ; s/ is an odd-
degree real polynomial in s . So for any given � , the equation '.ei� ; s/D 0 has at least
one real solution for s . We assume that s0 is a real solution of the equation '.1; s/D 0.
It is known that the polynomial '.1; s/ does not have repeated factors [23, Theorem 3].
Hence 's.e

i� ; s/j�D0;sDs0
¤ 0 and locally there exists a real function s.�/ such that

'.ei� ; s.�//D 0 and s.0/D s0 .

Consider the one-parameter family of nonabelian representations

�f�g.x/D

�
ei� 1

0 e�i�

�
; �f�g.y/D

�
ei� 0

s.�/ e�i�

�
:

As � ¤ 0, the representations �f�g can be diagonalized to the following forms, which
we still denote by �f�g:

(10) �f�g.x/D

�
ei� 0

0 e�i�

�
; �f�g.y/D

 
ei� �

s.�/
2 sin.�/ i �1C s.�/

4 sin2.�/

s.�/ e�i� C
s.�/

2 sin.�/ i

!
:

According to [15, page 786], this representation can be conjugated to an SL.2;R/–
representation if and only if either

(11) s.�/ < 0 or s.�/ > 4 sin2.�/:

We can verify this by a direction computation. In fact, when s < 0 or s > 4 sin2.�/,
the representation �f�g is conjugate to an SU.1; 1/–representation by the matrix q

1p
t
C t t

p
t

pp
t C t2

!
where t D

1

4 sin2.�/
�

1

s
is positive;
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and SU.1; 1/ is conjugate to SL.2;R/ via the matrix
�

1 �i
1 i

�
in GL.2;C/.

On the other hand,
lim
�!0

s.�/D s0;

where s0 is not equal to 0 by Lemma 4.2(2). Hence, when � is small enough, either
s.�/<0 or s.�/>4 sin2.�/. Now let �D�=n. For sufficiently large n, the nonabelian
representation �f�g as in (10) satisfies �f�g.x/nD�I and conjugates to an SL.2;R/
representation. Therefore, by Theorem 3.1, the conclusion follows.

Example 4.4 Consider the two bridge knot .7; 4/, which is listed as 52 in Rolfsen’s
table. The fundamental group �1.X52

/ has a presentation

�1.X52
/D hx;y W wx D ywi;

where w D xyx�1y�1xy .

From this presentation, we can compute the polynomial

'.m; s/D s3
C
�
2.m2

Cm�2/� 3
�
s2

C
�
.m4
Cm�4/� 3.m2

Cm�2/C 6
�
sC 2

�
m2
Cm�2

�
� 3:

as defined in (9), and

'.ei� ; s/D s3
C
�
4 cos.2�/� 3

�
s2
C
�
2 cos.4�/� 6 cos.2�/C 6

�
sC 4 cos.2�/� 3;

which is a real polynomial in s with degree 3. Hence, we can find a closed formula
for s.�/ such that '.ei� ; s.�//D 0. Figure 2 is the graph of the solution s.�/ on the
interval � 2 Œ0; 1�.

2:5

2:0

1:5

1:0

0:5

�0:5

0:2 0:4 0:6 0:8 1:0

Figure 2
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In particular, when nD 9, we have that �
9
� 0:349 and s.�

9
/��0:03667. The group

�1.X
.n/
52
/ is left-orderable when n� 9. For cyclic branched covers X

.n/
52

with n< 9,
the other known cases are nD 2; 3 [7] and nD 4 [9], none of which has a left-orderable
fundamental group.
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