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Norm minima in certain Siegel leaves

LI CAI

In this paper we shall illustrate that each polytopal moment-angle complex can be
understood as the intersection of the minima of corresponding Siegel leaves and
the unit sphere, with respect to the maximum norm. Consequently, an alternative
proof of a rigidity theorem of Bosio and Meersseman is obtained; as piecewise linear
manifolds, polytopal real moment-angle complexes can be smoothed in a natural way.

57R30; 57R70, 05E45

1 Introduction

An admissible configuration of m complex vectors in Cd=2 (m> d with d even) satis-
fying so called Siegel and weak hyperbolicity conditions (see Meersseman [15, page 82],
and Section 2 for a real analogue), gives rise to a free action on Cm via exponential
functions. There are two types of leaves in the holomorphic foliation given by this
action: a leaf is of Siegel type if the origin is not in its closure; otherwise it is said to
be of Poincaré type.

These objects originated in the work of C Camacho, N Kuiper and J Palls [6] on
the complex analogue of a dynamical system for which the real version appeared in
an earlier work of Poincaré, and were later developed and generalized by S López
de Medrano and A Verjovsky [14] and L Meersseman [15]. From their works, the
projectivization of the minima of all Siegel leaves, with respect to the Euclidean norm,
can be endowed with the structure of a compact, complex .m� d=2� 1/–manifold
C1–embedded in CPm�1 , which is not symplectic except in the trivial case. This
class of complex manifolds is now named LVM manifolds.

On the other hand, by a direct calculation, the space of minima of all Siegel leaves can
be described by d real quadrics arising from the given configuration in Rd , whose
intersection with the unit Euclidean sphere in Cm is transverse, hence it is a smooth
manifold of real dimension 2m� d � 1. F Bosio and L Meersseman [3] observed that
this method also works for odd d , and call these manifolds embedded in spheres links.

This special class of links is a model for polytopal moment-angle manifolds. In
general their topology is known to be complicated (see [3] and Gitler and López de
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Medrano [10]), for instance, arbitrary torsion can appear in the cohomology, as well as
nonvanishing triple Massey products (see Baskakov [2] and Denham and Suciu [9]); in
the case d D 2, the classification work [13] by S López de Medrano shows that they are
diffeomorphic to a triple product of spheres or to the connected sum of sphere products.
An important way to understand them is that they inherit the natural .S1/m –action on
Cm , with each quotient space homeomorphic (as manifolds with corners) to a simple
convex polytope. Via the basic construction originating from reflection group theory
and then generalized by M W Davis and T Januszkiewicz in their influential work [8],
each link discussed above is homeomorphic to a moment-angle complex (named in
Buchstaber and Panov [5]), ie a polyhedral product with pairs .D2;S1/ corresponding
to the boundary complex of a simplicial polytope.

The polyhedral product model was studied in detail and generalized by V Buchstaber
and T Panov in [5]. Later a more categorical treatment by A Bahri, M Bendersky,
F R Cohen and S Gitler [1] provided a penetrating viewpoint from homotopy theory.

These spaces have spawned a large body of work; see most notably that by Davis and
Januszkiewicz [8] on quasitoric varieties, Buchstaber and Panov [5] on moment-angle
complexes, Goresky and MacPherson [11] on complements of complex arrangements,
S López de Medrano [13] on the topology of these varieties, as well as many others.
The interconnections between these subjects is developed in the beautiful book [4] by
Buchstaber and Panov.

The objective of this paper is to show that, for an admissible configuration of m real
vectors in Rd whose centroid is located at the origin, the corresponding foliation
provides a direct relation between the model of links and the model of polyhedral
products: there are continuous paths in the space of the union of all Siegel leaves (which
is the complement of a coordinate subspace arrangement in Cm ) such that each point
of the link is connected by a path to a unique point in the respective moment-angle
complex, yielding a homeomorphism between them. Every path is parameterized by
real numbers p 2 Œ1;1/, with each p associated to the intersection of the Lp –norm
minima in the Siegel leaves and the Lp –norm unit sphere in Cm , which is a topological
manifold homeomorphic to the link. In this way, we can understand each polytopal
moment-angle complex as the intersection of the unit sphere and the minima of all
Siegel leaves, with respect to the L1–norm.

This paper develops a more analytic approach to these spaces in the spirit of the work [3]
by Bosio and Meersseman.

I would like to thank my PhD supervisor, Professor Osamu Saeki, for many discussions.
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2 Notation and main results

Let AD .A1;A2; : : : ;Am/ be an m–tuple of vectors in Rd , with m> d � 0 (Ai � 0

when d D 0); occasionally we treat such a tuple as a .d �m/–matrix. Denote by Œm�
the set f1; 2; : : : ;mg, and for I � Œm�, let A.I/ be the subtuple .Ai/i2I and convA

(resp. convA.I/) the convex hull of vectors from A (resp. from A.I/).

We say A is admissible if it satisfies the following two conditions (cf [3, Lemma 0.3]):

�1 (Siegel condition) 0 2 convA.

�2 (Weak hyperbolicity condition) If 0 2 convA.I/, then we have card.I/ > d

(where card refers to the cardinality).

Up to Section 5, we always assume that A is admissible.

Let R>0 be the set of positive real numbers, in which p � 1 is a real number. For each
z D .zi/

m
iD1
2 Cm , denote by kzkp its Lp –norm, namely kzkp D

�Pm
iD1jzi j

p
�1=p,

where jzi j D
p

zixzi .

With respect to an m–tuple A, there is a smooth foliation F of Cm given by the orbits
of the action

(1)
F W Cm

�Rd
!Cm;

.z;T / 7!
�
zie
hAi ;T i

�m
iD1

:

For each z 2Cm , let Lz be the leaf passing through z . We call Lz a Siegel leaf if 0

is not in its closure, otherwise we say the leaf Lz is of Poincaré type. It follows that
the union of all Siegel leaves can be described by the set (see [6; 3] and Meersseman
and Verjovsky [16])

(2) SA D fz 2Cm
j 0 2 convA.Iz/g;

where Iz is the set of nonzero entries for zD .zi/
m
iD1

, ie Iz Dfi 2 Œm� j jzi j 6D 0g. With
an argument involving foliations, complex analysis and the convexity, the following
fact is a combination of the works mentioned above, which is our starting point:

Theorem 1 (cf [3, Lemma 0.8, pages 61–62]) For each z 2 SA , there is a unique
point f2.z/ in the leaf Lz such that its L2 –norm kf2.z/k2 is minimal and positive.
The foliation F is trivial when restricted to SA , and

ˆA.2/W XA.2/�Rd
�R>0! SA;

.z;T; r/ 7! r
�
zie
hAi ;T i

�m
iD1

;
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is a global diffeomorphism, where XA.2/ is given by the transverse intersection

(3)

8̂<̂
:

mX
iD1

Ai jzi j
2
D 0;

kzk2 D 1;

and is thus a smooth manifold.

It follows that there is a smooth function

(4) T2W SA!Rd such that f2.z/D F.z;T2.z//;

and after differentiating F.z;T / with respect to T 2Rd , one easily checks that the
critical point corresponding to the minimum satisfies

(5)
mX

iD1

Ai jzi j
2e2hAi ;T i D 0;

in which T2.z/ is the unique solution. Moreover, f2=kf2k2W SA!XA.2/ is a smooth
retraction.

Following their approach, we consider the space of Lp –norm minima of those Siegel
leaves. Our first main theorem is the following, whose proof is based on some real
analysis and will be given in Section 3.

Theorem 2 Let XA.p/ be the intersection

(6)

8̂<̂
:

mX
iD1

Ai jzi j
p
D 0;

kzkp D 1:

There is a unique point fp.z/ in the leaf Lz for each element z 2 SA , whose Lp –
norm kfp.z/kp is minimal and positive, and the restriction of the smooth function
f2=kf2k2W SA ! XA.2/ to XA.p/ induces a homeomorphism onto XA.2/ for all
p � 1. Moreover,

ˆA.p/W XA.p/�Rd
�R>0! SA;

.z;T; r/ 7! r
�
zie
hAi ;T i

�m
iD1

;

is a homeomorphism.

Similar to (4), for each p we can define a continuous function TpW SA!Rd such that
fp=kfpkpW SA! XA.p/ is a retraction, where fp.z/D F.z;Tp.z// is the function
of Lp –norm minima in the leaf Lz .

Algebraic & Geometric Topology, Volume 15 (2015)
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It is interesting to imagine what will happen when p tends to infinity, and we will
discuss this in Section 4. First note that the set

(7) KA D f� � Œm� j 0 2 convA.Œm� n �/g

is an abstract simplicial complex (see [3, Lemma 0.12]), ie all subsets of � will be in
KA if � is. It turns out that with each z2SA fixed, Tp.z/ and fp.z/=kfp.z/kp are con-
tinuous in p 2 Œ1;1/ (see Proposition 4.2); when p goes to infinity, fp.z/=kfp.z/kp
approaches the moment-angle complex .D2;S1/KA (see Section 4.1 and Proposition 4.4
for details), which is a subset of the intersection of SA with the L1–norm unit sphere
in Cm (kzk1 Dmaxfjzi jg

m
iD1

).

We say that the tuple A is centered at the origin if the centroid of all vectors in A are
located at the origin:

(8)
mX

iD1

Ai D 0:

Under this additional assumption, KA is isomorphic to the boundary of a convex
polytope arising from the Gale transform of A (see Proposition 5.3); based on a
result of Panov and Ustinovsky [18], in Section 5 we will show that fp.z/=kfp.z/kp
converges to a unique point in .D2;S1/KA as p tends to infinity. With a similar
treatment as the one for Theorem 2, the following theorem holds:

Theorem 3 Assume that A is an admissible tuple centered at the origin. Then the
restriction f2=kf2k2j.D2;S1/KA W .D

2;S1/KA !XA.2/ is a homeomorphism. More-
over,

ˆA.1/W .D
2;S1/KA �Rd

�R>0! SA;

.z;T; r/ 7! r
�
zie
hAi ;T i

�m
iD1

;

is a homeomorphism.

Therefore, we can understand such a moment-angle complex .D2;S1/KA as “XA.1/”,
namely the intersection of the L1–norm minima in the Siegel leaves with the L1–
norm unit sphere in Cm (the reader is encouraged to imagine the deformation from
XA.1/ to XA.1/ in the case d D 0).

As an application, in Section 6 we give an alternative proof for a rigidity theorem of
Bosio and Meersseman [3, Theorem 4.1]: if two admissible m–tuples A and A0 are
both centered at the origin such that KA and KA0 are isomorphic simplicially, then there
is a diffeomorphism between associated links XA.2/ and XA0.2/ (see Proposition 6.1
for more details).

Algebraic & Geometric Topology, Volume 15 (2015)
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From its definition (1), notice that each leaf Lz is contained in SA\Rm if and only if
z 2 SA\Rm . Hence the theorems and properties above are also true when restricted
to the subspace Rm in Cm .

At last in Section 6, we shall illustrate that the restriction of f2=kf2k2 to the real
moment-angle complex .D1;S0/KA D .D2;S1/KA\Rm is a piecewise differentiable
homeomorphism onto XA.2/\Rm , provided that A is admissible and centered at the
origin (see Definition 6.2, Lemma 6.3 and Proposition 6.4 for more details). In this way
these real moment-angle complexes can be smoothed as piecewise linear manifolds.

3 Proof of Theorem 2

We start with a well-known lemma due to Meersseman and Verjovsky, whose proof is
omitted here:

Lemma 3.1 [16, Lemma 1.1; 3, Lemma 0.3] For an admissible tuple AD .Ai/
m
iD1

,
let zAD . zAi/

m
iD1

be the augmentation with zAi D .A
T
i ; 1/

T 2 RdC1 , i D 1; 2; : : : ;m.
Then for any I � Œm� such that 0 2 convA.I/, the rank of the subtuple zA.I/ is d C 1.

Proposition 3.2 For each z 2 SA given, there is a unique point fp.z/ in the leaf Lz

such that kfp.z/kp is minimal and positive.

Proof Uniqueness (cf [6; 15; 16]) Assume Fz has two local minima, ie T1 and T2

in Rd that are both critical points of .kF.z;T /kp/p D
Pm

iD1 jzi j
pephAi ;T i , which

means
mX

iD1

Ai jzi j
pephAi ;Tj i D 0; j D 1; 2:

We define a function hW Œ0; 1�! R such that h.t/ D .kF.z; .1� t/T1 C tT2/kp/
p ;

clearly

(9) dh

dt
D p

mX
iD1

hAi ;T2�T1ijzi j
pephAi ;.1�t/T1CtT2i:

From Lemma 3.1, the subtuple A.Iz/ has rank d (Iz � Œm� consists of entries i

such that zi 6D 0), which is independent of z 2 SA , thus there exists i 2 Iz such that
hAi ;T2 � T1i does not vanish; it follows that the second derivative of h is strictly
positive, hence its first derivative (9) is strictly increasing, which is a contradiction.

Existence First from the Cauchy–Schwarz inequality

(10) kF.z;T /k2 � kF.z;T /k1 �
p

mkF.z;T /k2;
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together with Theorem 1 and Lemma 3.3 below, we conclude that kF.z;T /k1 bounds
away from zero, and stays large whenever kT k2 is large. Thus the minimum of
kF.z;T /k1 is positive, and it appears only when T is in the interior of a ball of finite
radius. So the case pD 1 is clear. For general cases when p 6D 1; 2, Hölder’s inequality
implies

(11) kF.z;T /kp � kF.z;T /k1 �
q
p

mkF.z;T /kpI

here q > 1 such that 1=pC 1=q D 1. We can repeat the previous argument and then
the proof is completed.

Lemma 3.3 With z 2 SA given, for any N > 0, there exists R > 0 such that
kF.z;T /k2 >N whenever kT k2 >R.

Proof Let T2.z/ be the point in Rd such that kF.z;T2.z//k2 is minimal (see (4) for
details). Denote by u.t IT1;T2/ the derivative of .kF.z; .1� t/T1C tT2/k2/

2 with
respect to t 2 Œ0; 1�, for T1;T2 2 Rd , and let B.r;T2.z// be the ball with radius r

centered at T2.z/. Since T2.z/ is the unique minimum, for all y 2 @B.1;T2.z// on
the boundary, there is a positive " such that

.kF.z;y/k2/
2
� .kF.z;T2.z//k2/

2
D

Z 1

0

u.t IT2.z/;y/ dt > "I

therefore we can choose t.y/ 2 .0; 1/ such that

u.t.y/IT2.z/;y/ > ";

by the mean value theorem. For r >1, assume yr 2@B.r;T2.z// with y 2@B.1;T2.z//

on the ray from T2.z/ to yr ; by the monotonicity of u.t IT2;yr / (see the uniqueness
part in the proof of Proposition 3.2), we have

u.t Iy;yr / > u.t.y/IT2;y/;

thus

.kF.z;yr /k2/
2
� .kF.z;T2.z//k2/

2

D

Z 1

0

u.t IT2;y/ dt C

Z 1

0

u.t Iy;yr / dt > "C .r � 1/";

from which the conclusion follows.

The function of minima fpW SA! SA is well-defined by Proposition 3.2; but except
for the case pD 2, it remains to prove its continuity. In what follows we shall illustrate
this by showing the continuity of the restriction fp=kfpkp

ˇ̌
XA.2/

first, and then it will
follow from the global diffeomorphism ˆA.2/ defined in Theorem 1.
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Proposition 3.4 The restriction f2=kf2k2

ˇ̌
XA.p/

of the smooth function

f2=kf2k2W SA!XA.2/

induces a homeomorphism onto XA.2/, whose inverse is

fp=kfpkp

ˇ̌
XA.2/

W XA.2/!XA.p/:

Proof Consider the function

ˆAW SA �Rd
�R>0! SA;

.z;T; r/ 7! r
�
zie
hAi ;T i

�m
iD1

;

from Theorem 1 and Proposition 3.2. Given z 2SA , its image under ˆA intersects both
XA.p/ and XA.2/ exactly once, respectively, hence f2=kf2k2jXA.p/ is a bijection.
Moreover, it is easy to see that XA.p/ is compact and XA.2/ is Hausdorff; since a
closed subspace of a compact space is compact, and a compact subspace of a Hausdorff
space is closed, it follows that f2=kf2k2jXA.p/ is closed and hence a homeomorphism
by the bijectiveness. As a conclusion, its inverse fp=kfpkpjXA.2/ is continuous.

Theorem 3.5 The continuous function

ˆA.p/W XA.p/�Rd
�R>0! SA;

.z;T; r/ 7! r
�
zie
hAi ;T i

�m
iD1

;

is a homeomorphism for all p � 1.

Proof It suffices to find a continuous inverse for ˆA.p/. Suppose fp.z/=kfp.z/kp D

.xi.z//
m
iD1

. For .z;T; r/ 2XA.2/�Rd �R>0 , we can rewrite

z D ��1.z/F
�
fp.z/=kfp.z/kp;T2.fp.z/=kfp.z/kp/

�
D ��1.z/

�
xi.z/e

hAi ;T2.fp.z/=kfp.z/kp/i
�m
iD1

;

where �.z/D k.xi.z/e
hAi ;T2.fp.z/=kfp.z/kp/i/m

iD1
k2 . The continuity of ��1.z/, xi.z/

and ehAi ;T2.fp.z/=kfp.z/kp/i follows from Proposition 3.4 (by Theorem 1, T2 is smooth).
Observe that

ˆA.2/.z;T; r/D r
�
zie
hAi ;T i

�m
iD1
D r��1.z/

�
xi.z/e

hAi ;TCT2.fp.z/=kfp.z/kp/i
�m
iD1

DˆA.p/
�
fp.z/=kfp.z/kp;T CT2.fp.z/=kfp.z/kp/; r�

�1.z/
�
;
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hence we have a coordinate transition function

'W XA.2/�Rd
�R>0!XA.p/�Rd

�R>0;

.z;T; r/ 7!
�
fp.z/=kfp.z/kp;T CT2.fp.z/=kfp.z/kp/; r�

�1.z/
�
:

It is straightforward to check the continuity of ' , thus ' ı .ˆA.2//
�1 is the inverse

of ˆA.p/.

Corollary 3.6 The function

(12) TpW SA!Rd such that fp.z/D F.z;Tp.z//

is well-defined and continuous. That is to say, for each z 2 SA , Tp.z/ is the unique
solution of the equation

mX
iD1

Ai jzj
p
i ephAi ;T i D 0;

which depends continuously on z .

4 When p tends to infinity

In this section we treat Tp.z/ and fp.z/ (defined in Corollary 3.6 and Proposition 3.2
respectively) as functions of p 2 Œ1;1/, with z 2 SA fixed.

Lemma 4.1 There exists a bound N.z/ such that kTp.z/k2<N.z/ for all p 2 Œ1;1/.

Proof By definition, kF.z;Tp.z//kp is the unique minimum in the leaf Lz . Suppose
that on the contrary, there exists a sequence fpkg

1
kD1

tending to infinity such that
kTpk

.z/k2 > k for each k . First by Lemma 3.3 and the Cauchy–Schwarz inequal-
ity (10), kF.z;T /k1 becomes arbitrarily large whenever kT k2 is large enough, thus

there exists N > 0 such that for all k >N; mkF.z;T1.z//k1 < kF.z;Tpk
.z//k1:

Then by Hölder’s inequality (11), we have
qk
p

mkF.z;T1.z//kpk
�

qk
p

mkF.z;T1.z//k1 < kF.z;Tpk
.z//k1

�
qk
p

mkF.z;Tpk
.z//kpk

;

where 1=pk C 1=qk D 1. It follows that kF.z;Tpk
.z//kpk

is strictly greater than
kF.z;T1.z//kpk

, yielding a contradiction.

Proposition 4.2 The function Tp.z/ is continuous for all p 2 Œ1;1/.

Algebraic & Geometric Topology, Volume 15 (2015)
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Proof Suppose again on the contrary there is a sequence fpkg
1
kD1

with limk pk Dp0 ,
but kTpk

.z/�Tp0
.z/k2� ı , for some ı > 0. Without loss of generality we may assume

that limk Tpk
D T0 6D Tp0

.z/, or we can choose a subsequence satisfying the property,
by the lemma above. Consider the smooth function

�W Œ1;1/�Rd
!Rd ;

.p;T / 7!

mX
iD1

Ai jzi j
pephAi ;T iI

we have 0D limk �.pk ;Tk.z//D �.p0;T0/ by continuity, contradicting the unique-
ness (see Corollary 3.6).

Corollary 4.3 As a function of p 2 Œ1;1/, fp.z/=kfp.z/kp is continuous with its
image in the Lp –link XA.p/ (defined by (6)), and we have

(13) lim
p!1

fp.z/=kfp.z/kp

1
D 1:

Proof Denote fp.z/=kfp.z/kp by y.p/D .yi.p//
m
iD1

. Observe that

1D ky.p/kp D ky.p/k1

� mX
iD1

ˇ̌̌̌
yi.p/

ky.p/k1

ˇ̌̌̌p�1=p

;

where the last term in the bracket does not exceed m, thus (13) holds as desired.

4.1 Moment-angle complexes

Let KA be the simplicial complex defined by (7). The associated moment-angle
complex .D2;S1/KA is defined as the polyhedral product

.D2;S1/KA D

[
�2KA

D.�/; D.�/D

mY
iD1

Yi ;

Yi D

�
D2 D fjzj � 1 j z 2Cg if i 2 � ,
S1 D fjzj D 1 j z 2Cg otherwise.

The proposition below implies that fp.z/=kfp.z/kp 2XA.p/ approaches .D2;S1/KA

as p tends to infinity.

Proposition 4.4 Let S1 be the unit sphere of Cm with respect to the L1–norm, and
let z 2SA be a given point. Then for every point z0D .z0i/

m
iD1
2S1\SAn.D

2;S1/KA ,
fp.z/=kfp.z/kp will go outside of the set

C.z0/D f.zi/
m
iD1 2Cm

j jzi j � jz
0
i j for all i D 1; 2; : : : ;mg;

whenever p is sufficiently large.
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Proof Denote by B �Rd the union of all convex hulls of the form convA.Œm� n �/

with � � Œm� not contained in KA (in other words, 0 62 convA.Œm� n �/). It is clear
that B is empty when and only when KA bounds the .m� 1/–simplex (ie KA D

2Œm� n Œm�, this happens only when d D 0, by the admissibility of A), which means
S1 D .D

2;S1/KA and we have nothing to prove; otherwise B is compact thus there
is an open neighborhood UB such that 0 62 UB .

Suppose the contrary, namely there is a sequence fpkg
1
kD1

tending to infinity such
that xk D .xki/

m
iD1
D fpk

.z/=kfpk
.z/kp 2 C.z0/. Since C.z0/ is compact, we may

assume that fxkg
1
kD1

converges to a point x0 D .x0i/
m
iD1
2 C.z0/, without loss of

generality.

We claim that the vector

(14)
mX

iD1

Ai jxki j
pk

lies in UB whenever k is large enough. Notice that this will be a contradiction since
xk 2XA.p/, whose definition implies that the vector above should always be zero.

To see this, first note that because x0 62 .D
2;S1/KA , there exists � 62KA , such that

jx0i j < ı < 1 for all i 2 � . This means for those i 2 � , there exists an N > 0 such
that jxki j< ı < 1 holds when k >N ; thus for any given " > 0, we can find N" >N

such that jxki j
pk < " for all k >N" . It is not difficult to see that, if " is small enough,

vector (14) shall lie in UB , as claimed.

5 The convergence

In this section we shall prove that the function fp.z/=kfp.z/kW SA!XA.p/ indeed
converges to a point in .D2;S1/KA , as one may expect from Proposition 4.4, with an
additional assumption that A is centered at the origin (see (8)). The main technique
we use here is combinatorial, in which Gale transforms play an essential role.1

Suppose V D .V1;V2; : : : ;Vm/ is a tuple of vectors in Rm�d�1 such that the affine
dimension of V is m� d � 1, ie the matrix with columns .V T

i ; 1/
T (i D 1; 2; : : : ;m)

has rank m� d .

Denote by AV D .A1;A2; : : : ;Am/ the Gale transform of V (see Grünbaum [12, Chap-
ter 5.4, pages 85–86]), which is the transpose of a basis of solutions of the following

1I would like to thank the referee for pointing out that analogues of Lemma 5.2 and Proposition 5.3 are
already proven in [16; 3], where Gale transforms have been intensely used. The approach here is motivated
by those in these works.
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linear system:

(15)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

mX
iD1

Vixi D 0;

mX
iD1

xi D 0:

It is clear that each Ai is a vector in Rd and different choices of AV are linearly
equivalent.

Recall that for any J � Œm�, the subtuple V .J / D .Vi/i2J is a face of V if the
intersection of convV .Œm� n J / with the affine space spanned by vectors in V .J / is
empty (see [12, Chapter 5.4, page 88]). For instance, if V consists of the vertices of
a convex polytope P , then V .J / is a face of V when and only when convV .J / is a
face of P . Now we need two facts about Gale transforms:

Proposition 5.1 [12, Chapter 5.4, page 88] Let V D .Vi/
m
iD1

be a tuple of vectors
in Rm�d�1 , whose affine dimension is m� d � 1, and let AV D .Ai/

m
iD1

be its Gale
transform.

Then for any I � Œm�, convV .Œm� n I/ is a face of V if and only if either I is empty
or 0 is in the relative interior of convAV .I/.

Moreover, V coincides with the vertex set of a convex polytope P if and only if either

(i) d D 0 (thus P is a simplex) or

(ii) for every open halfspace HC of Rd containing 0 in its closure, we have that
card.fi jAi 2HCg/� 2.

It follows that if V is centered at the origin, then the double Gale transform of V

gives the same configuration in Rm�d�1 . However, this is not true in general (see
Remark 5.5).

Based on the facts above, we have the following lemma (in which we use the same
notation as in Proposition 5.1).

Lemma 5.2 Suppose that every vector of V is a face, and every face of V has at
most m�d � 1 vectors. Then V coincides with the vertex set of a convex polytope P ,
whose boundary is simplicial.
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Proof Let AV D .Ai/
m
iD1

be the Gale transform of V . It suffices to show either (i)
or (ii) in Proposition 5.1 holds. Note that the case d D 0 is trivial: this happens if and
only if V spans an .m� 1/–simplex in Rm�1 .

Now suppose that d > 0. Notice that by Proposition 5.1, the Siegel and weak hyper-
bolicity conditions hold for AV , with the assumption above. Moreover, since every
vector in V is a face, we have 0 2 convAV .J /, for all J with card.J /Dm� 1.

Let HC be an open halfspace of Rd with 0 on the boundary. From its admissibility, AV

has rank d , with a neighborhood of 0 2Rd contained in convAV (see Lemma 3.1);
hence there exists Ai 2AV such that Ai 2HC . Observe that now 02convAV .Œm�nfig/

with AV .Œm� n fig/ again being admissible, by the same argument, there exists another
Aj 2AV with Aj 2HC , which means (ii) holds hence the statement follows.

Proposition 5.3 Let KA be the simplicial complex induced from an admissible m–
tuple AD .Ai/

m
iD1

centered at the origin, with vectors in Rd . Let the tuple V D .Vi/
m
iD1

be the transpose of a basis of the system

(16)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

mX
iD1

Aixi D 0;

mX
iD1

xi D 0:

Then fVigfig2KA
is the vertex set of a convex polytope PA of affine dimension m�d�1,

with each Vj in its interior, where fj g 62 KA . Moreover, the boundary of PA is
isomorphic to KA and we can assume that PA contains 0 in its interior.

Proof First from Lemma 3.1, the affine dimension of V is m� d � 1.

Since the centroid of A is 0, now A is the Gale transform of V , with the subtuple
.Vi/fig2KA

satisfying the assumptions in Lemma 5.2; thus it coincides with the vertex
set of a convex polytope PA whose boundary is simplicial. For those fj g 62KA , if Vj

lies outside, or on the boundary of PA , it must be in a face of V that is contained in a
supporting hyperplane of PA ; by Proposition 5.1, this is impossible.

The last statement is also a consequence of Proposition 5.1, together with the observation
that any translation of the form V C v0 D .Vi C v0/

m
iD1

also satisfies (16).

Example 5.4 Let A be the 5–tuple given by the matrix�
0 0 1 1 �2

1 1
2

0 0 �3
2

�
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which is admissible and centered at the origin. By solving (16) we can choose V that
is given by �

0 0 �1 1 0

6 �9 2 0 1

�
:

Observe that the last point .0; 1/T is in the interior of the square spanned by the other
four vertices.

Remark 5.5 Note that Proposition 5.3 is independent of the choice of V . If the
centroid of A is not at the origin, Proposition 5.3 may not hold. Consider the case
that A is given by the matrix (one can check its admissibility)�

1 1 4 �2

4 �2 1 1

�
;

then we choose V D .�1;�1; 1; 1/ by (16), but now points V2 D .�1/ and V4 D .1/

are not contained in the interior of PA D conv.V1;V3/. This is because the Gale
transform of V can be �

0 0 1 �1

1 �1 0 0

�
;

which is no longer admissible.

The following proposition is essentially due to Panov and Ustinovsky [18].

Proposition 5.6 Let AD .Ai/
m
iD1

be an admissible m–tuple centered at the origin.
Then for each z 2 SA given, there is a unique pair .r;T / 2 R>0 � Rd such that
ˆA.z;T; r/D r.zehAi ;T i/m

iD1
2 .D2;S1/KA (see Section 4.1 for the definition).

Proof The proof which is presented here is adapted from Panov [17, Theorem 9.2,
pages 37–40]. Observe that in the trivial case when d D 0, ie KA is a simplex, we can
simply take r D kzk�1

1 . In what follows suppose d > 0.

Let R�0 (resp. R�0 ) be the set of nonnegative (resp. nonpositive) real numbers. Note
that it suffices to prove the cases when z 2 .R�0/

m , since for each z D .zi/
m
iD1
2Cm ,

there is a rotation e
p
�1� D .e

p
�1�i /m

iD1
2 .S1/m such that

e
p
�1�z D

�
e
p
�1�i zi

�m
iD1
2 .R�0/

m;

and we have
e
p
�1�ˆA.z;T; r/DˆA

�
e
p
�1�z;T; r

�
:

For the tuple AD .Ai/
m
iD1

, let V D .Vi/
m
iD1

be the tuple defined in Proposition 5.3,
which satisfies (16). Since A is centered at the origin, the row vectors of zV D . zVi/

m
iD1
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with zVi D .V
T

i ; 1/
T are a basis of the orthogonal complement of the space spanned by

the row vectors of A.

Let ˛ be the linear morphism

˛W Rm
!Rm�d ;

.xi/
m
iD1 7!

mX
iD1

zVixi :

For x D .xi/
m
iD1
2 .R�0/

m , we shall abbreviate .ln.xi//
m
iD1

as ln.x/ in what follows.

First we consider the case z 2 SA\ .R>0/
m . Observe that there exists a pair .r;T / 2

R>0�Rd such that yD .yi/
m
iD1
DˆA.z;T; r/ when and only when ln.y/�w�ln.z/D

.hAi ;T i/
m
iD1

, where w D .wi/
m
iD1

with wi � ln.r/, and this happens if and only if
the vector ln.y/�w� ln.z/ belongs to Ker.˛/.

Let .R�0; 0/
KA be the polyhedral product

(17) .R�0; 0/
KA D

[
�2KA

D.�/; D.�/D

mY
iD1

Yi ; Yi D

�
R�0 if i 2 � ,
f0g otherwise,

and it is clear that y 2 .D2;S1/KA\.R>0/
m if and only if ln.y/2 .R�0; 0/

KA , hence
now it suffices to find a unique pair .u; c/ 2 ..R�0; 0/

KA ;R/, such that

(18)
mX

iD1

.V T
i ; 1/

T.ui C c/D

mX
iD1

.V T
i ; 1/

T ln.zi/

holds, where uD .ui/
m
iD1

. Let xPA be the convex polytope spanned by f�Vigfig2KA
. By

Proposition 5.3, xPA contains a neighborhood of 0 in its interior, and the boundary of xPA

is the union �
S
�2KA

convV .�/, which is simplicially isomorphic to KA . Therefore
every vector � in Rm�d�1 has a unique expression ��0 , where � 2 R�0 and �0

lies in the relative interior of the corresponding face. Together with the observationPm
iD1 Vi D 0 (see (16)), we conclude that there exists a pair .u; c/ 2 ..R�0; 0/

KA ;R/
such that

mX
iD1

Viui D

X
fig2KA

Viui D

mX
iD1

Vi ln.zi/;

mX
iD1

.ln.zi/�ui/D

mX
iD1

c Dmc;

namely (18) holds, which is unique by the construction.

Next we consider general case when z2SA\Rm
�0

with xIzDfi jziD0g not empty. First
note that by definition, xIz is a simplex of KA . Let �z W Rm�d�1!Rm�d�1�card.xIz /
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be the orthogonal projection onto the linear subspace\
i2xIz

f� 2Rm�d�1
j h�;Vii D 0g;

and denote by Link.xIz;KA/ the union

f� 2KA j .� [ xIz/ 2KA; � \ xIz D∅g;

which is a subcomplex of Star.xIz;KA/D f� 2KA j
xIz � �g. It is not difficult to see

that in the image of �z , �z.convV .Star.xIz;KA// is a convex polytope bounded by
�z.convV .Link.xIz;KA// (for example, by induction on card.xIz/). Then by a similar
argument as in the previous case, we deduce that there exists a unique uD .ui/

m
iD1

in the
polyhedral product .R�0; 0/

Link.xIz ;KA/ (defined by replacing KA with Link.xIz;KA/

in (17)), such that

�z

� mX
iD1

Viui

�
D �z

� mX
iD1

Vi�.zi/ ln.zi/

�
; �.zi/ ln.zi/D

�
ln.zi/ if jzi j> 0,
0 otherwiseI

note that vectors of fVigi2xIz
are linearly independent, hence we have a unique x D

.xi/
m
iD1
2Rm with Ix �

xIz , such that

mX
iD1

Vi.ui Cxi/D

mX
iD1

Vi�.zi/ ln.zi/

holds. With c obtained from
mX

iD1

.�.zi/ ln.zi/�ui �xi/Dmc;

we have
mX

iD1

.V T
i ; 1/

T.ui Cxi C c/D

mX
iD1

.V T
i ; 1/

T�.zi/ ln.zi/:

At last, by solving T 2Rd from

hAi ;T i D �.zi/ ln.zi/�ui �xi � c

for i D 1; 2; : : : ;m, and setting r D ec , we have ˆA.z;T; r/2 .D
2;S1/KA as desired;

the uniqueness follows from the arguments above and the observation that the rank
of A is d .

From Proposition 5.6, we can define a map f1W SA! SA , with f1.z/ the point in
the leaf Lz such that f1.z/=kf1.z/k1 2 .D2;S1/KA .
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The proofs of Proposition 5.7 and Theorem 5.8 are similar to the ones for Proposition 3.4
and Theorem 3.5, respectively, which we shall omit here.

Proposition 5.7 With the assumption that A is admissible and centered at the ori-
gin, the restriction f2=kf2k2

ˇ̌
.D2;S1/KA

W .D2;S1/KA !XA.2/ is a homeomorphism,
whose inverse is the restriction f1=kf1k1

ˇ̌
XA.2/

W XA.2/! .D2;S1/KA .

Theorem 5.8 The continuous function

ˆA.1/W .D
2;S1/KA �Rd

�R>0! SA;

.z;T; r/ 7! r
�
zie
hAi ;T i

�m
iD1

;

is a homeomorphism, provided that A is admissible and centered at the origin.

Recall that for each p 2 Œ1;1/, we have defined TpW SA! Rd such that fp.z/ D

F.z;Tp.z// has the minimal Lp –norm in each leaf Fz . By Theorem 3.5, Tp is
the composition of ˆ�1

A
.p/ and the projection onto Rd , and fp.z/=kfp.z/kp is the

composition of ˆ�1
A
.p/ and the projection onto XA.p/.

Corollary 5.9 Let T1W SA!Rd be the composition of ˆ�1
A
.1/ and the projection

onto Rd , with A admissible and centered at the origin. Then we have

lim
p!1

Tp.z/D T1.z/;

which means
lim

p!1
fp.z/=kfp.z/kp D f1.z/=kf1.z/k1;

with any z 2 SA given.

Proof By Lemma 4.1, Corollary 4.3 and Proposition 4.4, there exists a sequence
fpkg

1
kD1

such that fTpk
.z/g1

kD1
converges to a point T0 2 Rd , and ffpk

.z/g1
kD1

converges to some y0 such that y0=ky0k1 2 .D
2;S1/KA . We claim that

lim
p!1

Tp.z/D T0 D T1.z/

with
lim

p!1
fp.z/=kfp.z/kp D y0=ky0k1 D f1.z/=kf1.z/k1:

Note that

y0=ky0k1 D lim
k!1

ˆA.z;Tk.z/; kfpk
k
�1
pk
/DˆA.z;T0; ky0k

�1
1 / 2 .D

2;S1/KA ;
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which is uniquely determined by z (see Proposition 5.6), therefore y0=ky0k1 must be
f1.z/=kf1.z/k1 and T0 must be T1.z/. It is not difficult to see that the argument
above is independent of the choice of the sequence fpkg

1
kD1

, hence the claim holds
and the proof is completed.

6 Some applications

In this section we shall revisit several known results from another perspective. First
notice that by Proposition 5.3, a simplicial complex KA induced from an admissible
tuple that is centered at the origin can be realized as the boundary of a convex polytope
dual to a simple one; the converse is also true: for a convex polytope with simplicial
boundary, the Gale transform of its vertices will be a tuple with the property above.

Our first application is an alternative proof of a rigidity theorem on polytopal moment-
angle manifolds, due to Bosio and Meersseman:

Proposition 6.1 [3, Theorem 4.1] Let KA and KA0 be the simplicial complexes
induced from two admissible m–tuples A and A0 that are centered at the origin,
respectively. If there is a simplicial isomorphism �W KA ! K0

A
, then there is a

diffeomorphism between XA.2/ and XA0.2/.

Proof Observe that under the assumption, � can be extended as a bijection from Œm� to
itself (possibly not unique), and let z�W SA! SA0 be the diffeomorphism via permuting
coordinates with respect to � . Clearly z� gives a homeomorphism between associated
moment-angle complexes .D2;S1/KA and .D2;S1/KA0 . On the other hand, we have
a smooth map .f 0

2
=kf 0

2
k2/ ı z�W XA.2/!XA0.2/ given in the diagram

SA

z�

diffeo:
// SA0

f 0
2
=kf 0

2
k2

��
XA.2/

.f 0
2
=kf 0

2
k2/ız� //

OO

homeo:f1=kf1k1

��

XA0.2/

.D2;S1/KA

z�

homeo:
// .D2;S1/KA0

f 0
2
=kf 0

2
k2 homeo:

OO

where f 0
2
W SA0 ! SA0 is the function of L2 –norm minima of Siegel leaves. By

commutativity, it follows that .f 0
2
=kf 0

2
k2/ ı z� is a homeomorphism (see Theorem 1

and Proposition 5.7), whose inverse can be constructed by interchanging the roles of A

and A0 , which is also smooth.
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In what follows we shall discuss everything with Cm replaced by its subspace Rm .
In the foliation F given by the action (1), a leaf Lz lies in SA \Rm if and only if
z 2 SA\Rm . Therefore all properties hold true when restricted to the real case.

We will still use the same notation as in the previous sections, with the exception that
the notation .D1;S0/KA is used for the associated real moment-angle complex, ie the
intersection of .D2;S1/KA with Rm (see Section 4.1 for details).

Notice that the real version of Proposition 6.1 holds, namely the Zm
2

–equivariant
(where Zm

2
acts on XA.2/ by changing the signs of coordinates) smooth structures

on XA.2/ are determined by combinatorial types of KA . This can be deduced from a
result of Wiemeler in [21, Corollary 5.2] (see also Davis [7, Corollary 1.3]).

Recall that a subspace X of Rm is a polyhedron if for every point x 2X there is a com-
pact set Cx such that x�CxDfaxCbl j l 2Cx; aCbD 1; a; b� 0g is a neighborhood
of x in X . For instance, .D1;S0/KA and XA.1/ are polyhedra embedded in Rm ,
hence they can be triangulated (see eg Rourke and Sanderson [19, Theorem 2.11]).

A polyhedron X is a piecewise linear (abbreviated PL) n–manifold if given a certain
triangulation, the link of each vertex is PL homeomorphic to the boundary of an
n–simplex or to an .n� 1/–simplex (ie these homeomorphisms become simplicial
after suitable subdivisions on both sides). Note that this property is independent of the
triangulation chosen for X (see eg [19, pages 20–22]).

Definition 6.2 (Whitehead triangulation) Let X be a polyhedron and M a smooth
manifold. A map �W X!M is a piecewise differentiable (abbreviated PD) homeomor-
phism if there exists a triangulation of X such that the restriction of � to each simplex
is smooth with the Jacobian matrix nondegenerate. Such a PD homeomorphism � is
called a Whitehead triangulation of M , and also a smoothing of X .

Note that by Propositions 3.4 and 5.7, the smooth function f2=kf2k2W SA! XA.2/

induces a homeomorphism when restricted to either .D1;S0/KA or XA.1/. Moreover,
the following lemma holds:

Lemma 6.3 Let AD .Ai/
m
iD1

be an admissible tuple centered at the origin. If a space
Y �Rm is either

(a) the intersection of the Lp –link XA.p/ (defined by (6)) with the first orthant
of Rm (ie points with nonnegative coordinates), for any p � 1, or

(b) a component of the polyhedral product D.�/D .D1;S0/� (see Section 4.1 for
definition, with the pair replaced), for any � 2KA with maximal dimension,

then Y is a smooth manifold with corners, and the differential of f2=kf2k2 at any
point of Y induces a linear injection between corresponding tangent spaces.
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Proof First we show that each Y is indeed a smooth manifold with corners, in both
cases. For (b) this is obvious since Y is a cube of dimension m� d � 1. As for (a),
observe that for each � 2KA with card.�/Dk , the augmented subtuple zA.Œm�n�/ has
rank d C 1, where zAD . zAi/

m
iD1

with zAi D .A
T
i ; 1/

T (see Lemma 3.1), therefore the
row vectors of zA, together with canonical basis vectors ei 2Rm (the vector with only
i th coordinate nonzero, which is one) for all i 2 � , form a matrix of rank d C kC 1.
This means that the intersection

Y
\
i2�

Fi

is transverse, where Fi D f.xi/
m
iD1
2Rm j xi D 0g.

Recall that ˆA.2/W XA.2/�Rd�R>0!SA is a diffeomorphism such that f2=kf2k2ı

ˆA.2/ is the identity on XA.2/ (see Theorem 1). Let

dˆA.2/x W R
m�d�1

�Rd
�R!Rm

2 TˆA.2/.x/SA;

be the differential of ˆA.2/ at the point x , and let � be the linear subspace f0g�Rd �

R � Rm of dimension d C 1. It suffices to show that for all y D .yi/
m
iD1
2 Y with

x D .xi/
m
iD1
D f2.y/=kf2.y/k2 , the intersection of the image of dˆA.2/xj� with the

tangent space TyY is trivial.

For (a), note that from its definition (6), the tangent space TyY is the orthogonal
complement of the .d C 1/–space spanned by the row vectors of the ..d C 1/�m/–
matrix

zAyp�1 D
�
.AT

i ; 1/
Ty

p�1
i

�m
iD1

and the image of dˆA.2/xj� is spanned by the row vectors of zAy D ..A
T
i ; 1/

Tyi/
m
iD1

.
From the previous argument, the subtuple zAyp�1.Iy/ has rank d C 1 (Iy � Œm� is the
set of nonzero entries of y ), hence any row vector of zAy.Iy/ cannot be orthogonal to
the corresponding one in zAyp�1.Iy/, otherwise itself must be zero (since we can write
each y

p
i as a square).

As for (b), the tangent space at y 2 .D1;S0/� is spanned by fei j i 2 �g, where
card.�/ D m� d � 1. But we have shown that the row vectors of zAy.Iy/ and the
basis of TyY has a full rank m, therefore the intersection of the image of dˆA.2/xj�
with TyY must be trivial.

As a corollary, we find that with given triangulations, the restriction of f2=kf2k2

to either .D1;S0/KA or XA.1/ will be a Whitehead triangulation of XA.2/. By a
theorem of Whitehead [20], if there is a PD homeomorphism from a polyhedron X

to a smooth manifold M , then X is a PL manifold, and the PL structure on X is
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uniquely determined by the smooth structure given on M . Consequently, it follows
that .D1;S0/KA and XA.1/ are homeomorphic as PL manifolds.

At last, we make a conclusion to end this section.

Proposition 6.4 For each simplicial complex KA induced from an admissible m–
tuple A centered at the origin, there is a PD homeomorphism from .D1;S0/KA onto
the smooth manifold XA.2/, thus .D1;S0/KA is a PL manifold of dimension m�d�1.
If .D2;S1/KA has an exotic PL structure, then either it is not smoothable, or XA.2/

must have different smooth structures.
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