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Uniformly finite homology and amenable groups

MATTHIAS BLANK

FRANCESCA DIANA

Uniformly finite homology is a coarse invariant for metric spaces; in particular, it
is a quasi-isometry invariant for finitely generated groups. In this article, we study
uniformly finite homology of finitely generated amenable groups and prove that it is
infinite-dimensional in many cases. The main idea is to use different transfer maps to
distinguish between classes in uniformly finite homology. Furthermore we show that
there are infinitely many classes in degree zero that cannot be detected by means.

20J05; 43A07

1 Introduction

Uniformly finite homology was introduced by Block and Weinberger [5] to study the
large-scale structure of metric spaces having bounded geometric complexity. It is
a coarse invariant in the sense that two quasi-isometric metric spaces have isomor-
phic uniformly finite homology. The chains considered are the ones introduced by
Roe [19] to define coarse homology, but with an additional boundedness condition on
the coefficients (Definition 2.1).

The uniformly finite homology groups of a metric space X are denoted by H uf
� .X IR/.

One of the main properties of H uf
0
.X IR/ is the relation with the notion of amenability

for spaces having coarse bounded geometry (in particular for finitely generated groups).
The following result is due to Block and Weinberger [5, Theorem 3.1]:

Theorem 1.1 If X is a metric space with coarse bounded geometry, then X is
amenable if and only if H uf

0
.X IR/¤ 0.

On the other hand, it is not so clear how H uf
0
.X IR/ looks in the amenable case.

Moreover, higher-degree uniformly finite homology groups are not yet well understood;
see Block and Weinberger [6] and Dranishnikov [12].

In this paper, we show that uniformly finite homology groups of amenable groups are
infinite-dimensional in many cases. Our main result is:
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Theorem 3.8 Let n2N and let G be a finitely generated amenable group. Let H �G

be a subgroup such that ŒG WH �D1 and that the map

Hn.i/W Hn.H IR/ �!Hn.GIR/

induced by the inclusion i W H ,�!G is nontrivial. Then dimR.H
uf
n .GIR//D1.

Therefore, for many amenable groups we can use regular group homology to deduce
that uniformly finite homology is infinite-dimensional.

The zero-degree uniformly finite homology group has been used for a number of
different applications. For instance, rigidity problems for uniformly discrete metric
spaces with bounded geometry have been investigated with the help of uniformly finite
homology; see Dymarz [15] and Whyte [23]. Vanishing classes in H uf

0
.X IR/ have

also been used to construct aperiodic tilings for nonamenable manifolds [5].

Higher-degree uniformly finite homology groups prove to be a powerful tool to inves-
tigate large-scale notions of dimensions. Dranishnikov [12; 13; 14] uses the “lifting”
map H�.GIR/!H uf

� .GIR/ to study the macroscopic dimensions of some manifolds.

We also present some examples that follow directly from our main theorem. For
instance, from the calculation of group homology of nilpotent groups we can deduce:

Example 4.4 (Nilpotent groups) Let G be a finitely generated virtually nilpotent
group of Hirsch rank h 2N . Then

H uf
k .GIR/D

8<:
infinite-dimensional if k 2 f0; : : : ; h� 1g,
R if k D h,
0 else.

Our main technique for proving Theorem 3.8 is to use invariant means on G and the
corresponding transfer maps to distinguish between different homology classes. This is
straightforward in the degree-zero case and doing so we give a very simple proof that
any infinite amenable group G has infinite-dimensional homology group H uf

0
.GIR/.

In order to extend this to the higher-degree case, we construct functions in `1.G/ that
are invariant with respect to a subgroup H �G and can be distinguished by means.

We also define a subspace yH uf
0
.GIR/�H uf

0
.GIR/ of classes that can not be detected

by means and hence are different from the classes constructed before. In the last part
of this article, we give a geometric condition for classes in uniformly finite homology
to be in yH uf

0
.GIR/. We then present a method of differentiating between such classes,

following Whyte. Hence we can show:

Theorem 5.1 Let G be a finitely generated infinite amenable group. Then

dimR
yH uf

0 .GIR/D1:
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The article is structured in the following way. In Section 2 we introduce uniformly
finite homology both following Block and Weinberger and in terms of group homology
with `1 coefficients and discuss its properties most relevant for this article. Section 3
contains our main results and proofs. In Section 4 we present some examples and
immediate applications of our main theorem. Finally, in Section 5 we introduce and
study sparse classes in H uf

0
.GIR/ and prove Theorem 5.1.
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especially thank Clara Löh for many helpful suggestions and discussions.

2 Basic facts and notation

In this section we fix some notation and present the main object we will investigate,
namely uniformly finite homology. This was introduced by Block and Weinberger as a
coarse homology invariant. The basic references for uniformly finite homology are [5;
23] and Nowak and Yu [17]. We will also define group homology with `1 coefficients.
For finitely generated groups there is a canonical isomorphism between the correspond-
ing chain complexes (Remark 2.6). Hence, to study uniformly finite homology we will
often use the description in terms of `1 coefficients.

Definition 2.1 Let .X; d/ be a metric space.

(i) For each n 2 N let C uf
n .X IR/ be the vector space of functions cW X nC1 ! R

satisfying:

(a) The map c is bounded.

(b) For all r 2 R>0 there exists a Kr 2 R>0 (depending on c ) such that for all
y 2X nC1

jfx 2 Br .y/ j c.x/¤ 0gj �Kr :

Here we consider X nC1 endowed with the metric

dn.x;y/ WD max
i2f0;:::;ng

d.xi ;yi/:

(c) There exists an Rc 2 R>0 (depending on c ) such that for all x 2 X nC1 for
which supi;j2f0;:::;ng d.xi ;xj / >Rc , we have c.x/D 0.

We will write such a function also as a formal sum
P

x2X nC1 c.x/ �x .
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(ii) Define for each n 2N>0 a boundary operator

@nW C
uf
n .X IR/ �! C uf

n�1.X IR/

by setting for each x 2X

@n.x/D

nX
jD0

.�1/j .x0; : : : ; yxj ; : : : ;xn/

and extending to C uf
n .X IR/ in the obvious way. In this fashion, we get indeed a chain

complex.

(iii) The homology of .C uf
n .X IR/; @n/n2N is called the uniformly finite homology

of X and denoted by H uf
� .X IR/.

An important fact about uniformly finite homology is that it is a coarse invariant;
see [5, Proposition 2.1].

Proposition 2.2 Let X and Y be metric spaces and f W X ! Y a quasi-isometry.
Then f induces a chain map

C uf
n .X IR/ �! C uf

n .Y IR/;X
x2X nC1

c.x/ �x 7�!
X

x2X nC1

c.x/ � .f .x0/; : : : ; f .xn//:

The induced map in homology

H uf
� .X IR/ �!H uf

� .Y IR/

is an isomorphism in every degree.

In particular, we can define the uniformly finite homology of a group G with a fixed
set of generators S , by endowing G with the word metric with respect to S . We recall
the definition here.

Definition 2.3 Let G be a group with generating set S . The word metric on G with
respect to S is the metric defined as

dS .g; h/ WDminfn2N j there exist s1; : : : ; sn 2S[S�1 such that g�1
�hD s1 � � � sng

for any g; h 2G .
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By Proposition 2.2 the uniformly finite homology of a finitely generated group does not
depend on the finite generating set up to canonical isomorphism. Hence, this defines a
quasi-isometry invariant for finitely generated groups. Notice that in this case condition
(ib) in Definition 2.1 can be dropped.

Most important for us and many applications is the following result of Block and
Weinberger [5, Theorem 3.1]:

Theorem 2.4 Let G be a finitely generated group. Then G is amenable if and only if
H uf

0
.GIR/¤ 0.

We define now group homology with `1 coefficients. Let G be a (discrete) group.
Consider the RŒG�–chain complex .C�.GIR/; @�/ defined as follows:

(i) For any n 2N , set

Cn.GIR/ WD
M

.g0;:::;gn/2GnC1

R � .g0; : : : ;gn/

with the G –action given by g � .g0; : : : ;gn/D .gg0; : : : ;ggn/.

(ii) For any n 2N>0 , let @n be the boundary map

@nW Cn.GIR/ �! Cn�1.GIR/;

.g0; : : : ;gn/ 7�!

nX
jD0

.�1/j .g0; : : : ; ygj ; : : : ;gn/:

Consider the space of real-valued bounded functions on G , `1.G/; this is a left
RŒG�–module with respect to the action

G � `1.G/ �! `1.G/;

.g; '/ 7�! g �' D .g0 7�! '.g�1g0//:

Let C�.GI `
1.G// be the R–chain complex given by

C�.GI `
1.G// WD xC�.GIR/˝RŒG� `

1.G/;

where xC�.GIR/ denotes the right RŒG�–module obtained by C�.GIR/ via the canon-
ical involution g 7! g�1 .

Definition 2.5 For a group G we define the group homology of G with coefficients in
`1.G/ by H�.GI `

1.G// WDH�.C�.GI `
1.G///.

The following remark was observed by Brodzki, Niblo and Wright [7]:
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Remark 2.6 For a finitely generated group G , the uniformly finite chain complex
.C uf
� .GIR/; @�/ is canonically chain isomorphic to .C�.GI `1.G//; @�/.

Indeed, for any n 2N , the simplices in a fixed uniformly finite n–chain c are tuples
.g0; : : : ;gn/ 2GnC1 having diameter less than a uniform constant Rc 2R>0 . These
simplices are contained in the G–orbits of the finitely many simplices of the form
.e; t1; : : : ; tn/ of diameter less than Rc . Hence, the following chain isomorphism is
well defined:

�nW C
uf
n .GIR/ �! Cn.GI `

1.G//;X
.g0;:::;gn/2GnC1

c.g0; : : : ;gn/ � .g0; : : : ;gn/ 7�!
X

.t1;:::;tn/2Gn

.e; t1; : : : ; tn/˝'.t1;:::;tn/:

Here for each .t1; : : : ; tn/ 2Gn the map '.t1;:::;tn/ 2 `
1.G/ is given by

'.t1;:::;tn/.g/D c.g�1;g�1
� t1; : : : ;g

�1
� tn/:

In particular, H uf
� .GIR/ŠH�.GI `

1.G//. Therefore, certain aspects of uniformly
finite homology are accessible through methods of ordinary group homology.

We recall the definition of amenable groups that will be the main class of groups we
will study in this article.

Definition 2.7 Let G be a group. A mean is a linear map m W `1.G/!R satisfying
the following properties:

(i) We have m.�G/D 1 for the characteristic function �G 2 `
1.G/ of the group.

(ii) For any ' 2 `1.G/ such that ' � 0 (ie, '.g/ � 0 for all g 2 G ) we have
m.'/� 0.

A mean m is said to be left G –invariant if:

(iii) For any g 2G and any ' 2 `1.G/, we have m.g �'/Dm.'/.

Similarly one could define right G –invariant means.

Definition 2.8 A group G is amenable if it admits a left G –invariant mean.

Remark 2.9 The class of amenable groups contains for example all solvable, all
finite and all subexponential groups and is closed under taking extensions, subgroups,
quotients, etc; see Ceccherini-Silberstein and Coornaert [10] and Paterson [18].
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For an amenable group G , let M.G/ be the set of left G–invariant means and let
LM.G/ be its linear span in HomR.`

1.G/;R/. We have the following result due to
Chou [11]:

Theorem 2.10 If G is an infinite amenable group, then G has exactly 22jGj left
invariant means, where jGj denotes the cardinality of G . Thus LM.G/ is infinite-
dimensional.

3 Main results

In this section, we compute uniformly finite homology of finitely generated (discrete)
amenable groups in many cases: in Theorem 3.7 we show that in degree zero this is
always infinite-dimensional, while in Theorem 3.8 we calculate higher-degree uniformly
finite homology.

3.1 Transfer via means

Let G be an amenable group. Every left G–invariant mean m 2M.G/ induces a
transfer map m�W C�.GI `

1.G//! C�.GIR/, which averages the coefficients. Our
next proposition is similar to a result of Attie [2, Proposition 2.15]:

Proposition 3.1 Let G be an amenable group and let �G 2`
1.G/ be the characteristic

function of G . Then every mean m 2M.G/ induces a transfer map

m�W H�.GI `
1.G// �!H�.GIR/;

Œc˝'� 7�! Œm.'/ � c�;

which is a left inverse to the map

i�W H�.GIR/ �!H�.GI `
1.G//;

Œc� 7�! Œc˝�G �;

induced by the canonical inclusion R ,�! `1.G/ as constant functions.

Proof Consider R as G–module with the trivial action; then every m 2 M.G/

is a G–equivariant map mW `1.G/! R and thus induces a change-of-coefficients
chain map

m�W C�.GI `
1.G// �! C�.GIR/;

c˝' 7�!m.'/ � c:
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The inclusion i W R! `1.G/ is also G –equivariant and induces a chain map

i�W C�.GIR/ �! C�.GI `
1.G//;

c 7�! c˝�G :

Obviously, for every mean m 2M.G/ the map m� is a left inverse for i� . Applying
homology proves the claim.

Remark 3.2 Under the canonical identification between uniformly finite homology
and homology with `1 coefficients for finitely generated groups, the maps m� defined
in Proposition 3.1 translate (by precomposition with �� ) to transfer maps for uniformly
finite homology that we denote by xm� .

Hence, for any finitely generated amenable group there is an inclusion

H�.GIR/ ,�!H uf
� .GIR/:

Remark 3.3 Given m2M.G/, in degree zero we have C0.GI `
1.G//Š `1.G/ and

the transfer map m0 coincides with the mean m. Also C uf
0
.GIR/Š `1.G/ and �0

is just the canonical inversion

`1.G/ �! `1.G/;

' 7�! .g 7�! '.g�1//:

Therefore the transfer map xm0 on C uf
0
.GIR/ coincides with the corresponding right-

invariant mean.

Definition 3.4 The uniformly finite homological dimension of a group G is defined by

hduf G D supfn 2N jH uf
n .GIR/¤ 0g 2N [f1g:

Because uniformly finite homology is invariant under quasi-isometry, we obtain the
following fact as an immediate corollary of Proposition 3.1.

Corollary 3.5 The Hirsch rank of a finitely generated virtually nilpotent group G

equals hduf.G/ and is therefore a quasi-isometry invariant.

Proof We can assume G to be nilpotent; indeed, by definition, the Hirsch rank of
a virtually nilpotent group is the Hirsch rank of any nilpotent subgroup G0 � G of
finite index, and since G is finitely generated it is quasi-isometric to G0 . Clearly
hduf G � hdR G , where hdR denotes the homological dimension of G .
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Conversely, for a finitely generated nilpotent group the homological dimension coincides
with the largest integer n for which Hn.GIR/ ¤ 0 and with its Hirsch rank; see
Stammbach [21]. In view of the inclusion H�.GIR/ ,�! H uf

� .GIR/ obtained in
Proposition 3.1, this integer must be smaller than or equal to hduf G .

3.2 Degree zero

Definition 3.6 We call the subspace

yH uf
0 .GIR/ WD fc 2H uf

0 .GIR/ j for all m 2M.G/; xm0.c/D 0g

the mean-invisible part of H uf
0
.GIR/.

Theorem 3.7 Let G be a finitely generated infinite amenable group. Then

dimR H uf
0 .GIR/=

yH uf
0 .GIR/D1:

In particular, dimR H uf
0
.GIR/D1.

Proof By definition we have the canonical inclusion

LM.G/� `1.G/� D C0.GI `
1.G//�:

Since this inclusion corresponds to the construction of the chain maps in Proposition 3.1
in degree 0, this induces a well-defined injection

LM.G/ ,�!H0.GI `
1.G//�;

m 7�! .Œg˝'� 7�!m.'//:

In view of Remarks 2.6 and 3.2, this translates into an inclusion

LM.G/ ,�!H uf
0 .GIR/

�;

m 7�! .Œc� 7�! xm0.c//:

By the definition of yH uf
0
.GIR/ this also induces an injection

LM.G/ ,�! .H uf
0 .GIR/=

yH uf
0 .GIR//

�:

Hence, by Theorem 2.10 we have dimR H uf
0
.GIR/= yH uf

0
.GIR/D1.
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3.3 Higher degrees

Now we consider uniformly finite homology in higher degrees. We construct infinitely
many different classes coming from elements in `1.G/ that are invariant with respect
to the action of an infinite index subgroup.

Theorem 3.8 Let n2N and let G be a finitely generated amenable group. Let H �G

be a subgroup such that ŒG WH �D1 and that the map

Hn.i/W Hn.H IR/ �!Hn.GIR/

induced by the inclusion i W H ,�!G is nontrivial. Then dimR.H
uf
n .GIR//D1.

The idea behind the proof of Theorem 3.8 is to construct a family of infinitely
many means on G that can be distinguished by a family of H–invariant functions
(Theorem 3.11). Following Mitchell [16], in Lemma 3.10 we give a condition for
a subset � � G to support a left G–invariant mean m such that m.��/ D 1. We
construct infinitely many such subsets and we separate them using Lemma 3.9.

We will also give an alternative proof of Theorem 3.8 in the case that H is a normal
subgroup of G .

Lemma 3.9 Let G be an amenable group and H � G such that ŒG WH �D 1. Let
� W G!HnG be the canonical projection. Then for any pair of finite subsets T;T 0�G

there exists g 2G such that �.T �g/\�.T 0/D∅.

Proof For each g 2G such that �.T �g/\�.T 0/¤∅ there exist t 2 T and t 0 2 T 0

such that tg 2Ht 0 , hence g 2 t�1Ht 0 . Thus, if �.T �g/\�.T 0/¤∅ for all g 2G ,
then G D T �1HT 0 . Since G is amenable, there exists a bi-G–invariant mean m,
inducing a finitely additive probability measure � on the power set of G , given by
�.A/Dm.�A/, [10, Proposition 4.4.4]. Moreover, since H has infinite index in G it
follows that �.H /D 0. Then we have

1D �.G/D �.T �1HT 0/�
X

t2T;t 02T 0

�.t�1Ht 0/D
X

t2T;t 02T 0

�.H /D 0;

hence a contradiction.

Lemma 3.10 Let G be a finitely generated amenable group and � � G a subset.
Assume that for each finite set F � G there exists g 2 G such that F � g � � . Then
there exists a left G –invariant mean m on G such that m.��/D 1.
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Proof Let .Fn/n2N be a (left) Følner sequence in G (Definition 5.5). Choose for
each n 2N a gn 2G , such that Fn �gn � � . Then .Fn �gn/n2N is also a left Følner
sequence, since for all h 2G and all n 2N

jh �Fn �gn nFn �gnj

jFn �gnj
D
jh �Fn nFnj

jFnj
:

For each n 2N consider the function

mnW `
1.G/ �!R;

x 7�!
1

jFnj

X
h2Fn

x.h �gn/:

By [10, Theorem 4.9.2] there is a subsequence of .mn/n2N that converges in the
weak-�–topology to a left G–invariant mean m. Since mn.��/ D 1 for all n 2 N ,
we also have m.��/D 1.

Theorem 3.11 Let G be a finitely generated amenable group and H �G a subgroup
such that ŒG WH �D1 . Then there exists an infinite family .mj /j2J of left G –invariant
means and an infinite family .fj /j2J of (left) H–invariant functions in `1.G/ such
that mk.fj /D ık;j for any k; j 2 J .

Proof Let n 2 N and let � W G ! HnG be the canonical projection. Consider G

equipped with the word metric with respect to a (finite) set of generators. We inductively
construct finite sets Ak

l
�G for all k 2 f1; : : : ; ng and for all l 2N such that:

� The family .�.Ak
l
//k2f1;:::;ng;l2N is pairwise disjoint.

� For all k 2 f1; : : : ; ng and l 2N there exists g 2G such that Ak
l
D Bl.e/ �g ,

where Bl.e/ denotes the ball of radius l centered at the identity element.

Let A1
1
WD B1.e/; assume that the sets have been constructed for all indices smaller

than or equal to .l; k/ (using lexicographic order). Then:

� If k < n, by Lemma 3.9 there exists g 2G such that

�

� [
.l 0;k0/�.l;k/

Ak0

l 0

�
\�.Bl.e/ �g/D∅:

Set AkC1
l
WD Bl.e/ �g .
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� If k D n, by Lemma 3.9 there exists g 2G such that

�

� [
.l 0;k0/�.l;k/

Ak0

l 0

�
\�.BlC1.e/ �g/D∅:

Set A1
lC1
WD BlC1.e/ �g .

Now set for all k 2 f1; : : : ; ng

T k
WD

[
l2N

HAk
l :

Notice that T 1; : : : ;T n are pairwise disjoint by construction.

For any finite subset F � G , there exists r 2 N such that F � Br .e/, hence for
all k 2 f1; : : : ; ng there exists g 2 G such that F � g � Br .e/ � g � T k . So by
Lemma 3.10, for each k 2 f1; : : : ; ng there exists a left G –invariant mean mk such that
mk.�T k /D 1. Moreover, for each k 2 f1; : : : ; ng and for each j 2 f1; : : : ; ngnfkg we
have that mk.�T j /D0 since the sets T 1; : : : ;T n are pairwise disjoint and mk.G/D1.
By definition of T k , the functions �T k are H–invariant for any k 2 f1; : : : ; ng.

We have constructed a family of left G –invariant means fmkgk2f1;:::;ng and a family
of bounded H–invariant functions f�T k gk2f1;:::;ng on G . We can repeat the same
construction for any n 2N , so we can have an arbitrarily large finite family of means
and of functions satisfying the theorem. Using a slightly different induction step, it is
possible to construct a family of finite sets Ak

l
�G for all k 2N and for all l 2N as

above. In this way we are able to construct directly an infinite family of means and of
functions satisfying the theorem.

We are now ready to prove our main theorem.

First proof of Theorem 3.8 If dimR Hn.GIR/ D 1 then by Proposition 3.1 we
immediately conclude that H uf

n .GIR/ must be infinite-dimensional.

So we assume dimR Hn.GIR/ <1. We prove the statement for Hn.GI `
1.G// and

in view of Remark 2.6 the theorem will also follow for H uf
n .GIR/.

Let c 2 Cn.H IR/ be a cycle such that Œi.c/� 2Hn.GIR/ is nontrivial. Consider the
space `1.G/H WD f' 2 `1.G/ j for all h 2H ; h �' D 'g. Then

Sc WD fi.c/˝' 2 Cn.GI `
1.G// j ' 2 `1.G/H g

is a subspace of cycles in Cn.GI `
1.G//. Indeed, for every ' 2 `1.G/H one can

define the H–equivariant map f' W R! `1.G/, 1 7! ' , which induces a chain map
Cn.i; f'/W Cn.H IR/! Cn.GI `

1.G// that maps c to i.c/˝' .
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Let .mj /j2J and .fj /j2J be as in Theorem 3.11; since for all j 2 J , the map fj is
H–left invariant, the elements .i.c/˝fj /j2J 2 Cn.GI `

1.G// belong to Sc , so they
are all cycles in Cn.GI `

1.G//. Now consider the family of induced transfer maps
.mj�/j2J 2 HomR.Hn.GI `

1.G//;Hn.GIR//. For any k; j 2 J , by Theorem 3.11
mk�.Œi.c/˝fj �/D ıi;j � Œi.c/�, hence the family .mj�/j2J is linearly independent in
HomR.Hn.GI `

1.G//;Hn.GIR//. Thus Hn.GI `
1.G// is infinite-dimensional.

Now we give a more direct proof of the main result under the additional assumption
that H is normal in G .

Second proof of Theorem 3.8 Let H now be normal in G . Since H is a subgroup
of the amenable group G , it is also amenable. Let m0 be a left H–invariant mean.
Consider the transfer map

� W `1.G/ �! `1.G=H /;

' 7�!
�
gH 7�!m0..g

�1
�'/jH /

�
:

For any ' 2 `1.G/, the map �.'/ is well defined. Indeed, let g1;g2 be elements
of G such that g1H D g2H ; then g2 D g1h for some h 2H , hence

�.'/.g2H /Dm0..g
�1
2 �'/jH /Dm0..h

�1g�1
1 �'/jH /Dm0..g

�1
1 �'/jH /D�.'/.g1H /

by the H–invariance of m0 . It is clear that �.'/ is bounded for any ' 2 `1.G/.

We also have a map induced by the canonical projection � W G!G=H ,

��W `1.G=H / �! `1.G/;

 7�!  ı�:

It is easy to see that Im.��/� `1.G/H ; indeed, for any  2 `1.G=H /, any h 2H

and any g 2G ,

h ���. /.g/D ��. /.h�1g/D  .h�1gH /D  .gH /:

Notice that the equality h�1gH D gH holds since we have assumed H to be normal
in G . The composition

`1.G=H /
��

��! `1.G/H
� j

`1.G/H

�������! `1.G=H /

is the identity on `1.G=H /. Indeed, for any  2 `1.G=H / and any class gH 2G=H

we have

�. ı�/.gH /Dm0.g
�1
� . ı�//jH /Dm0.h 7!  .gH //D  .gH /;
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since the function h 7!  .gH / is constant. In particular, � j`1.G/H is surjective. It is
easy to see that �.�G/D 1 and that �.'/� 0 for any ' � 0 in `1.G/. Moreover, �
is G –equivariant: indeed, for any g;g0 2G and any ' 2 `1.G/, we have

�.g0 �'/.gH /Dm0..g
�1
�g0 �'/jH /Dm0...g

0�1
g/�1

�'/jH /

D �.'/.g0
�1

gH /D g0 � �.'/.gH /:

By dualising � we get a map

��W `1.G=H /� �! `1.G/�;

F 7�! F ı �:

Since H is a normal subgroup of G with infinite index, G=H is also an infinite
amenable group, so restricting �� to LM.G=H / we have a well-defined map

��W LM.G=H / �! LM.G/:

Indeed, let m 2M.G=H / be a mean on G=H . Then, since �.�G/D 1 and �.'/� 0

for any ' � 0 in `1.G/, it immediately follows that ��.m/ satisfies conditions (i)
and (ii) of Definition 2.7. Condition (iii) follows by the G –equivariance of � , which
implies that ��.m/ is a left G –invariant mean.

Let ŒSc � be the space of classes represented by elements of Sc as defined in the first
proof of Theorem 3.8. Now consider the diagram

LM.G/ HomR.Hn.GI `
1.G//;Hn.GIR//

LM.G=H / HomR.ŒSc �;Hn.GIR//

ˆ

��

x̂

res

where the upper horizontal map ˆ takes every mean m 2 M.G/ to the induced
homomorphism m� . Here res denotes the restriction map and the lower horizontal
map is given by composition.

Since Hn.GIR/ can be assumed to be finite-dimensional, to prove the theorem it
suffices to show that x̂ is injective; indeed, by Theorem 2.10 of Chou, since G=H is
infinite amenable, LM.G=H / is infinite-dimensional and from the injectivity of x̂ it
would follow that ŒSc ��Hn.GI `

1.G// must be infinite-dimensional.
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We now show that x̂ is injective. So, consider two means m1¤m2 2 LM.G=H /; then
there exists  2 `1.G=H / such that m1. /¤m2. /. By surjectivity of � j`1.G/H
we know that there exists ' 2 `1.G/H such that �.'/D  . Consider now the image
of Œi.c/˝ '� 2 ŒSc � by the homomorphisms x̂ .m1/; x̂ .m2/ 2 Hom.ŒSc �;Hn.GIR//.
We have for k 2 f1; 2g

x̂ .mk/.Œi.c/˝'�/Dˆ.�
�.mk//.Œi.c/˝'�/D Œmk.�.'// � i.c/�Dmk. / � Œi.c/�:

Since m1. /¤m2. / and Œi.c/�¤ 0, the two classes m1. /�Œi.c/� and m2. /�Œi.c/�

are also different in Hn.GIR/, which implies that x̂ .m1/¤ x̂ .m2/; in particular, x̂

is injective.

4 Examples

Corollary 4.1 Let G be a finitely generated amenable group. Assume that H1.GIR/
is nontrivial, ie that the abelianization of G is not a torsion group. Then

H uf
1 .GIR/Š

�
R if G is virtually Z,
infinite-dimensional otherwise.

Proof Let g 2 G be an element such that .1;g/ 2 H1.GIR/ is a nontrivial cycle.
Such a g exists by assumption and the isomorphism H1.GIR/Š Gab˝R. If G is
not virtually Z, the claim follows from Theorem 3.8, since then ŒG W hgi�D1. And
for the virtually Z case see the following example.

Example 4.2 Let G be a finitely generated infinite amenable group. Consider semidi-
rect products of the form G Ì Zl for l 2N . Then for all k 2 f0; : : : ; lg,

dimR H uf
k .G Ì Zl

IR/D1:

Similar results hold if one replaces Zl by an amenable group with nonvanishing
homology in the correct degrees. In particular, for all l 2N

H uf
k .Z

l
IR/D

8<:
R if k D l ,
infinite-dimensional if k 2 f0; : : : ; l � 1g,
0 else.

Proof The splitting map Zl ,�!G Ì Zl induces a nontrivial map in degree 0; : : : ; l

in homology and hence the first part follows from Theorem 3.8. The product Zl�1 �Z
is a special case. The degrees k � l follow because the group is a Poincaré duality
group and H 0.GI `1.G//Š `1.G/G ŠR for all groups G .
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Example 4.3 For the integral three-dimensional Heisenberg group Heis3 we get

H uf
k .Heis3IR/D

8<:
R if k D 3,
infinite-dimensional if k 2 f0; 1; 2g,
0 else.

Proof We only have to consider k D 2, since the cases k D 0; 1 follow directly from
Theorem 3.7 and Corollary 4.1. The higher degrees are a consequence of Poincaré
duality. Consider the presentation Heis3Šhx;y; z j Œx;y�; Œy; z�;y

�1Œx;y�i. By Hopf’s
theorem (see Brown [8, II.5, Theorem 3]), to compute the second homology it suffices
to look at the Schur multiplier which, in this case, is generated by the symbols Œx;y�,
Œy; z�. Hence the inclusion of the subgroup generated by x and y is nontrivial in
homology in degree 2, so we can apply Theorem 3.8 again.

Actually, the last examples are simple special cases of a more general result:

Example 4.4 Let G be a finitely generated virtually nilpotent group of Hirsch rank
h 2N . Then

H uf
k .GIR/D

8<:
R if k D h,
infinite-dimensional if k 2 f0; : : : ; h� 1g,
0 else.

Proof We closely follow the calculation of the homology groups of nilpotent groups
of Baumslag, Miller and Short [4] to see that our condition in Theorem 3.8 is satisfied
in degrees 0; : : : ; h�1. After passing to a finite-index subgroup, we may assume G is
torsion-free and nilpotent. Then we can write G as a split extension of the form

1 �!N �!G �! Z �! 1

for N �G a normal subgroup of Hirsch rank h� 1. The Hochschild–Serre spectral
sequence for this split extension induces a short exact sequence

0 �!H0.ZIHi.N IR// �!Hi.GIR/ �!H1.ZIHi�1.N IR// �! 0

for all i 2N>0 . The map on the left-hand side is one edge map of the spectral sequence
and is induced by the canonical map Hi.N IR/!Hi.GIR/ under the identification
Hi.N IR/Z Š H0.Z;Hi.N IR//; see Weibel [22]. In particular, the canonical map
Hi.N IR/!Hi.GIR/ is nontrivial if Hi.N IR/Z is nontrivial. But these homology
groups are nontrivial [4, proof of Theorem 16]. The degrees k � h follow since finitely
generated nilpotent groups are Poincaré duality groups [8, VIII.10, Example 1].
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Example 4.5 Consider A 2 Sl.2;Z/. Then for the semidirect product Z2 ÌA Z given
by the action of Z on Z2 induced by A, we have

H uf
k .Z

2 ÌA ZIR/D

8<:
R if k D 3,
infinite-dimensional if k 2 f0; 1; 2g,
0 else.

In particular, this example includes cocompact lattices in Sol [20].

Proof This is similar to Example 4.4. We only have to consider k D 2; the other
cases follow as in the other examples. By the Hochschild–Serre spectral sequence we
get a short exact sequence

0 �!H0.ZIH2.Z
2
IR// �!H2.Z

2 ÌA ZIR/ �!H1.ZIH1.Z
2
IR// �! 0:

By Poincaré duality and the universal coefficient theorem, the dimension of the middle
term is equal to dimR H1.ZÌA ZIR/D 3. Since the dimension of the term at the right-
hand-side is at most 2, the map H0.ZIH2.Z

2IR//!H2.Z
2ÌAZIR/ is nontrivial. In

particular the canonical map H2.Z
2IR/!H2.Z

2 ÌA ZIR/ is also nontrivial. Hence
H uf

2
.Z2 ÌA ZIR/ is infinite-dimensional by Theorem 3.8.

There are many well-known examples of finitely generated amenable groups having
nontrivial real homology in each degree. If G is such a group, the group G�Z satisfies
dimR H uf

n .G �ZIR/D1 for all n 2N by Theorem 3.8. For instance:

Example 4.6 There exists a finitely presented metabelian group G such that for
all n 2N ,

dimR H uf
n .GIR/D1:

Proof For example, Baumslag and Dyer have shown [3] that Baumslag’s metabelian
group B WD ha; s; t j as D a � at ; Œa; at �D 1D Œs; t �i has nontrivial homology in degree
n� 3. Set G WD B �Z3 .

Example 4.7 Consider Thompson’s group F WD hx0;x1; : : : j x
xi
n D xnC1 for i < ni.

We have

F amenable H) for all n 2N; dimR H uf
n .F IR/D1:

Proof We follow Kenneth Brown’s calculation of the homology of F [9]. Con-
sider F as the group of dyadic piecewise linear homeomorphisms Œ0; 1� ! Œ0; 1�.
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Brown observes that in this description the commutator subgroup of F can be seen
as F 0 D ff 2 F j f 0.0/D 1D f 0.1/g. There is a product map

�W F �F �! F;

.f;g/ 7�!

�
t 7�!

�
f .2 � t/=2 0� t � 1

2

g.2 � t � 1/=2 1
2
� t � 1

�
Define the subgroup G WD ff 2 F j f 0.0/D 1g � F . The product map restricts both
to F 0 and G and induces a natural product in homology on H�.F

0IR/;H�.GIR/
and H�.F IR/.

Brown [9, Theorem 4.1] shows that H�.F IR/ is generated as a ring by elements "; ˛; ˇ ,
that alternating products ˛ �ˇ �˛ � � � and ˇ �˛ �ˇ � � � form a basis of H�.F IR/ in positive
degree and that the image of H�.F

0IR/!H�.F IR/ contains ˛ �ˇ 2H2.F IR/ and
hence is nontrivial in even degrees.

Since F 0 is strictly contained in G , the image of the map H�.GIR/!H�.F IR/ con-
tains a nontrivial linear combination of ˛ and ˇ (since they form a basis of H1.F IR/),
hence the map H�.GIR/!H�.F IR/ is nontrivial in each degree and we may apply
Theorem 3.8.

5 Sparse classes in H uf
0

.G I R/

In this section, we give a geometric condition for classes in H uf
0
.GIR/ to be mean-

invisible and show that in an infinite amenable group, there are infinitely many linear
independent classes of this type. In particular, we show the following.

Theorem 5.1 Let G be a finitely generated infinite amenable group. Then

dimR
yH uf

0 .GIR/D1:

In this section, we always consider finitely generated groups equipped with a word
metric with respect to some finite generating set (Definition 2.3).

5.1 Distinguishing classes by asymptotic behavior

Let G be a finitely generated discrete group with a word metric d . For any S �G let

@r .S/ WD fg 2G j 0< d.g;S/� rg:

The following theorem due to Whyte [23, Theorem 7.6] gives a characterization of
trivial classes in uniformly finite homology in degree 0.
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Theorem 5.2 Let G be a finitely generated group. Let c be a cycle in C uf
0
.GIR/.

Then Œc� D 0 2 H uf
0
.GIR/ if and only if there exist C; r 2 N>0 such that for all

S �G finite, ˇ̌̌̌X
s2S

c.s/

ˇ̌̌̌
� C � j@r S j:

Remark 5.3 Whyte states Theorem 5.2 for uniformly finite homology with Z coeffi-
cients. However, for infinite finitely generated groups in degree zero, there is an isomor-
phisms of uniformly finite homology with Z coefficients and uniformly finite homology
with R coefficients induced by the canonical inclusion Z ,�! R [23, Lemma 7.7].
It is easy to see that this isomorphism translates the original statement of Whyte to
Theorem 5.2.

Whyte’s criterion can be reformulated in terms of the asymptotic behavior of a degree
zero chain in comparison to the behavior of a Følner sequence. First, we introduce a
notion to compare the asymptotic behavior of functions:

Definition 5.4 Let ˛; ˇW N!R>0 be two functions.

(i) We write ˛ � ˇ if

lim
n!1

˛.n/

ˇ.n/
D 0:

(ii) We write ˛ � ˇ if

lim
n!1

˛.n/

ˇ.n/
2R>0:

(iii) We also write ˛ � ˇ if ˛ � ˇ or ˛ � ˇ .

We recall the definition of a Følner sequence for finitely generated groups. Also
recall that a finitely generated group is amenable if and only if it admits a Følner
sequence [10, Theorem 4.9.2].

Definition 5.5 Let G be a finitely generated group. A Følner sequence in G is a
sequence .Sj /j2N of nonempty finite subsets of G such that for each r 2R>0

lim
j!1

j@r .Sj /j

jSj j
D 0:

Now fix a Følner sequence S WD .Sj /j2N of a finitely generated amenable group G .
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For all c 2 `1.G/ we define a function

ˇS
c W N �!R;

n 7�!

ˇ̌P
s2Sn

c.s/
ˇ̌

jSnj
:

Finally, we also consider the behavior of the boundaries

�S W N �!R>0;

n 7�!
j@1Snj

jSnj
:

By comparing the behavior of these functions, we can distinguish between classes
in H uf

0
.GIR/:

Lemma 5.6 Let G be a finitely generated amenable group and S a Følner sequence
in G . Let c 2 `1.G/.

(i) We have 0� ˇS
c � 1.

(ii) If ˇS
c � �S , then Œc�¤ 0 2H uf

0
.GIR/.

(iii) Conversely, if Œc�¤ 0 2H uf
0
.GIR/ then there exists a Følner sequence S 0 such

that �S 0 � ˇ
S 0

c .

(iv) More generally, if .cn/n2N is a sequence in `1.G/ such that �S � ˇ
S
c0

and for
all n 2N ,

ˇS
cn
� ˇS

cnC1
;

then the family .Œcn�/n2N of classes in H uf
0
.GIR/ is linearly independent.

Proof (i) This is obvious by definition.

(ii) Assume Œc� D 0. By Whyte’s criterion there exist C; r 2 N>0 such that for all
n 2N

0<
1

C
�

j@r Snj

j
P

s2S c.s/j
� jBr .e/j �

j@1Snj

j
P

s2S c.s/j
:

Hence ˇS
c 6� �S .

(iii) By Whyte’s criterion, if Œc�¤ 0, for each n2N there exists a finite subset S 0n�G

such that ˇ̌̌̌X
s2S 0n

c.s/

ˇ̌̌̌
> n � j@1S 0njI
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hence
1

kck1
�
j@1S 0nj

jS 0nj
�

j@1S 0nj

j
P

s2S 0n
c.s/j

<
1

n
:

In particular S 0 WD .S 0n/n2N is a Følner sequence and �S 0 � ˇ
S 0

c .

(iv) For each c 2 `1.G/ define the subspace

C uf
0 .GIR/

�c
WD

(
c0 2 C uf

0 .GIR/

ˇ̌̌̌
ˇ lim

n!1

P
s2Sn

c0.s/P
s2Sn

c.s/
exists

)
:

Choose a splitting of R–vector spaces C uf
0
.GIR/D C uf

0
.GIR/�c ˚V and define a

linear map

S
c W C

uf
0 .GIR/D C uf

0 .GIR/
�c
˚V �!R;

.c0; c00/ 7�! lim
n!1

P
s2Sn

c0.s/P
s2Sn

c.s/
:

If a 2 C uf
0
.GIR/ is a boundary, the function ˇS

a =�S is bounded by Whyte’s criterion.
Therefore, if �S � ˇ

S
c then ˇS

a � ˇ
S
c and hence S

c .a/D 0. Thus S
c induces a map

S
c W H

uf
0 .GIR/ �!R:

In our situation we have S
ci
.cj /D ıij for all j � i in N . Hence, .Œcn�/n2N is linearly

independent.

Example 5.7 The sequence .fnk j n 2Ng/k2N>0
of subsets of Z satisfies the condi-

tions of the last part of Lemma 5.6, and hence induces a sequence of linearly independent
classes in H uf

0
.ZIR/.

5.2 Sparse classes

We now introduce a geometric condition that will ensure that a subset is mean-invisible:

Definition 5.8 Let G be a finitely generated group. We call a subset � �G (asymp-
totically) sparse if there exists C 2N such that for all r 2N>0 , there exists R 2N>0

such that for all g 2G nBR.e/,

j� \Br .g/j � C:

Example 5.9 For each k 2N>1 the subsets fnk j n 2Ng � Z are sparse.

Lemma 5.10 If � �G is sparse and G a finitely generated infinite amenable group
we have

Œ�� � 2 yH
uf
0 .GIR/:
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Proof Let m be a left-invariant mean on G and C 2N as in the definition of sparse.
Let r 2N>0 . Here we write �.S/ WD �S for the characteristic function of any subset
S �G . Since G is infinite we have for all R2N>0 that xm.�.�//D xm.�.�nBR.e///.
Hence we may assume that for all g 2G ,

jf 2 � j there exists h 2 Br .e/ such that  � hD ggj D j� \Br .g/j � C:

Therefore the coefficients of
P

h2Br .e/
�.� � h/ are bounded by C . So we see that

jBr .e/j � xm.�.�//D
X

h2Br .e/

xm.�.� � h//D xm

� X
h2Br .e/

�.� � h/

�
� C:

So xm.�.�//D 0.

B3.0; 0/

Figure 1: The black dots form a sparse subset in Z2 with the standard word metric

5.3 Constructing sparse classes

We recall the notion of tilings, which will be the building blocks for our sparse classes.

Definition 5.11 Let G be a finitely generated group with the word metric. For r 2N>0

we call a subset T �G an r –tiling for G if:

(i) For all g1;g2 2 T such that Br .g1/\Br .g2/¤∅, we have g1 D g2 .

(ii) G D
[
g2T

B2�r .g/.

By Zorn’s lemma, there exists an r –tiling [10, Proposition 5.6.3] for all r 2N>0 .
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Lemma 5.12 [10, Proposition 5.6.4] Let G be a finitely generated amenable group
and .Sj /j2N a Følner sequence. Let r 2N>0 and let T be an r –tiling for G . Set

Tj WD fg 2 T j Br .g/� Sj g � Sj :

Then there exists an l.T / 2N such that for all j � l.T /

1

j2�B2�r .e/j
�
jTj j

jSj j
�

1

jBr .e/j
:

Remark 5.13 The idea of the following proof of Theorem 5.1 is the following. Let
.Sj /j2N be a Følner sequence. For each “ring” Sj nSj�1 we choose a radius r.j / 2

N>0 and put part of an r.j /–tiling on this ring; see Figure 2. By letting the sequence
.r.j //j2N go to infinity, we make sure to get a sparse subset. On the other hand, we let
.r.j //j2N grow just slowly enough to be sure to get a nontrivial class in H uf

0
.GIR/.

We then vary the growth of the sequence .r.j //j2N and use Lemma 5.6 to get an
infinite family of linearly independent classes in H uf

0
.GIR/.

Proof of Theorem 5.1 By a result of T Adachi [1] there exists a monotonous and
exhausting Følner sequence of G . Hence there is a Følner sequence .Sj /j2N such that
for each j 2N there exists an R.j / 2N>0 such that

(�) Sj�1 � BR.j/.e/� B3�R.j/.e/� Sj :

Furthermore we can assume limj!1.jSj�1j=jSj j/D 0.

Choose for each r 2N>0 an r –tiling T r of G . For each j 2N>0 and each sequence
cD .c.l//l2N of positive real numbers converging to 0 define r.j ; c/ to be the maximal
number r 2 f1; : : : ;R.j /g satisfying

jBr .e/j

4 � jB2�r .e/j
�
jSj�1j

jSj j
;

1

4�jB2�r .e/j
�
p

c.j /;

l.T r /� j:

If no such r exists, we set r.j ; c/D 1.

The conditions on r.j ; c/ will force .r.j ; c//j2N to grow slowly enough so that the
class �c we are about to construct will satisfy c � ˇS

�c
.
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Figure 2: Construction of a sparse subset in Z2 (Remark 5.13)

By our assumption on .Sj /j2N we have limj!1 r.j ; c/D1. Define the subset

�c D T
r.0;c/
0

[

[
j2N>0

�
T

r.j ;c/
j nT

r.j ;c/
j�1

�
�G:

For each r 2N consider j 2N such that r.j ; c/ > 2 � r . By condition .�/ we know
that for each g 2 G n Sj the ball Br .g/ intersects at most two sets Sl n Sl�1 and
SlC1nSl . Because of the tiling condition and since r.j ; c/> 2 �r the ball also contains
at most one point each from

T
r.lC1;c/

lC1
nT

r.lC1;c/

l
and T

r.l;c/

l
nT

r.l;c/

l�1
;

hence jBr .g/\�cj � 2, so �c is sparse. We also have for all j 2N>0 , by definition
of � ,

j�c \Sj j

jSj j
�
jT

r.j ;c/
j j

jSj j
�
jT

r.j ;c/
j�1

j

jSj j

�
1

2 � jB2�r.j ;c/.e/j
�

jSj�1j

jBr.j ;c/.e/j � jSj j
(by Lemma 5.12)

�
1

4 � jB2�r.j ;c/.e/j
�
p

c.j /;

where the last inequality holds by definition of r.j ; c/. Therefore, ˇ�c
� c .

Since �c is sparse, limj!1 ˇ�c
.j /D limj!1 j�c \Sj j=jSj j D 0. Now inductively

define a sequence .�n/n2N of sparse subsets by setting �0 D ��S
and �nC1 D �ˇS

�n

for all n 2N . Then �S � ˇ�0
� ˇ�1

� � � � . Hence by Lemma 5.6 we have found a
sequence of linearly independent classes in yH uf

0
.GIR/.
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