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Cohomological non-rigidity of
eight-dimensional complex projective towers

SHINTARÔ KUROKI

DONG YOUP SUH

A complex projective tower, or simply CP tower, is an iterated complex projec-
tive fibration starting from a point. In this paper, we classify a certain class of
8–dimensional CP towers up to diffeomorphism. As a consequence, we show that
cohomological rigidity is not satisfied by the collection of 8–dimensional CP towers:
there are two distinct 8–dimensional CP towers that have the same cohomology rings.

57R22; 57S25

1 Introduction

Let M be a collection of diffeomorphism classes of smooth manifolds, and let H �M be
the isomorphism classes of cohomology rings of manifolds in M. Let H�WM!H �M
be the map defined by M 2M 7!H�.M IZ/. In general, H� is not bijective. However,
if we restrict the class of manifolds then this map sometimes becomes a bijection. For
example, if M is a collection of orientable 2–dimensional manifolds then it is well
known that the map H� is bijective. We say such a collection M is cohomologically
rigid, or that M satisfies cohomological rigidity. The problem of whether the map
H�WM!H �M is bijective or not is called the cohomological rigidity problem. In
this paper, we study the cohomological rigidity problem for complex projective towers
(or simply CP towers), which we introduced in [7].

A CP tower of height m is a sequence of complex projective fibrations

(1) Cm
�m
�! Cm�1

�m�1
�! � � �

�2
�! C1

�1
�! C0 D fpointg;

where Ci DP .�i�1/ is the projectivization of a complex vector bundle �i�1 over Ci�1 .
We call each Ci the i th stage of the tower. If we forget the tower structure, then we
call Ci an (i –stage) CP manifold. In [7], we show that the diffeomorphism types
of 6–dimensional CP manifolds are determined by their cohomology rings; ie the
collection of 6–dimensional CP manifolds CPM6 is cohomologically rigid. This is a
generalization of the fact, due to Choi, Masuda and Suh [5], that the collection GBM6
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of 6–dimensional generalized Bott manifolds is cohomologically rigid. It is also known
that the collection GBM2n

2
of 2n–dimensional 2–stage generalized Bott manifolds is

cohomologically rigid. The purpose of this paper is to show that the collection CPM8
2

of 8–dimensional 2–stage CP manifolds is not cohomologically rigid.

To state our main theorem, let us recall a theorem of Atiyah and Rees [1, Theorem 2.8].
Let Vect2.CP3/ be the collection of isomorphism classes of 2–dimensional complex
vector bundles over CP3 .

Theorem 1.1 (Atiyah–Rees) There exists an injective map

�W Vect2.CP3/! Z2˚Z˚Z; � 7! .˛.�/; c1.�/; c2.�//;

where c1.�/ and c2.�/ are the first and the second Chern classes of � , and ˛.�/ 2 Z2

is 0 when c1.�/ is odd.

By Theorem 1.1, any element in Vect2.CP3/ can be denoted by �.˛;c1;c2/ , where
.˛; c1; c2/2Z2˚Z˚Z is such that ˛�0 (mod 2) when c1�1 (mod 2). On the other
hand, it’s easy to see that P .�.˛;c1;c2// is diffeomorphic to P .�.0;1;c2�.c

2
1
�1/=4// if

c1�1 mod 2, and diffeomorphic to P .�.˛;0;c2�c2
1
=4// if c1�0 mod 2; see Lemma 3.2.

We now state the main result of the paper; see Theorem 4.2 for (1) and Theorem 5.2
for a more precise statement of (2).

Theorem 1.2 Let N.u/ WD P .�.0;1;u// and N WD fN.u/ j u 2 Zg. Similarly, let
M˛.u/ WD P .�.˛;0;u// and M WD fM˛.u/ j ˛ 2 f0; 1g;u 2 Zg.

(1) N is cohomologically rigid. In fact, the following are equivalent:

(a) N.u/ is diffeomorphic to N.u0/.
(b) uD u0 .
(c) H�.N.u/IZ/ and H�.N.u0/IZ/ are isomorphic as graded rings.

(2) M is not cohomologically rigid. In fact, H�.M0.u/IZ/ and H�.M1.u/IZ/
are isomorphic as graded rings for all u, but if u.uC 1/=12 2 Z then M0.u/ is
not diffeomorphic, or even homotopic, to M1.u/.

We prove (2) in Proposition 5.4 by showing that �6.M0.u// 6Š �6.M1.u// when
u.uC 1/=12 2 Z.

The organization of this paper is as follows. In Section 2, as examples of CP towers,
we explain when a flag manifold admits the structure of a CP tower. In Section 3, we
recall some basic facts from [7]. In Section 4, we show that N satisfies cohomological
rigidity. In Section 5, we compute the 6–dimensional homotopy group of the elements
in some class of M and show that M does not satisfy cohomological rigidity.
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2 Flag manifolds of type A and C

CP towers include many interesting classes of manifolds. In a previous paper [7], we
showed that generalized Bott manifolds and the Milnor hypersurface admit a CP tower
structure. We first introduce two other examples of CP towers. Let CPM2n

m be the
collection of 2n–dimensional m–stage CP manifolds up to diffeomorphism.

Example 2.1 A partial flag manifold F.d1; d2; : : : ; dk/, where 0D d0 < d1 < d2 <

� � �< dk�1 < dk D nC 1, is defined by the set of partial flags

f0g � V1 � V2 � � � � � Vk�1 � Vk DCnC1;

where Vi is a complex subspace of CnC1 of complex dimension di . This is well
known to be diffeomorphic to the homogeneous space U.nC1/=.U.n1/�� � ��U.nk//,
where ni D di � di�1 for i D 1; : : : ; k . Denote the partial flag manifold F.i; i C 1;

: : : ; nC 1/ by Fi . In particular, we call F1 D F.1; 2; : : : ; nC 1/ a flag manifold of
type A (or a complete flag manifold), and denote it by Fl.CnC1/. We will show that
the flag manifold of type A has the structure of a CP tower with height n. We first
define a map pi W Fi! FiC1 by

pi W f0g � Vi � ViC1 � � � � � Vn �CnC1
7! f0g � ViC1 � � � � � Vn �CnC1:

As the pull-back of a point in FiC1 by pi can be regarded as the set of codimension-
one subspaces Vi � ViC1 , Fi is a Gri.ViC1/–bundle over FiC1 . Here, Gri.ViC1/
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is the complex Grassmaniann of i –dimensional subspaces in ViC1 ; ie F.i; i C 1/.
Because the normal subspace of a codimension-one subspace Vi � ViC1 is just a
line through the origin, the complex Grassmaniann Gri.ViC1/ may be regarded as
the i –dimensional complex projective space CP.ViC1/ D .ViC1n f0g/=C

� . Using
this fact, it is easy to check that Fi is the projectivization of the tautological bundle
over FiC1 ; ie Fi D CP.�iC1/, where the tautological bundle �iC1 is the complex
.i C 1/–dimensional vector bundle defined by the subset˚

.f0g � ViC1 � � � � � Vn �CnC1;x/ j x 2 ViC1

	
of FiC1 �CnC1 . Therefore, Fl.CnC1/ has the structure of a CP tower:

Fl.CnC1/D P .�2/
CP1

�! F2 D P .�3/
CP2

�! � � �
CPn�1

�! Fn 'CPn
�! f�g:

Hence the flag manifold of type A is an element of CPMn2Cn
n .

Example 2.2 Let .C2n; !/ be a complex vector space with a symplectic structure !
given by the skew-symmetric bilinear form

�D

�
O In

�In O

�
;

where O is the n� n zero matrix and In is the n� n identity matrix. Let V be a
complex linear subspace in C2n . Define the !–perpendicular space of V to be the
subspace

V !
D fw 2C2n

j !.v;w/D vT�w D 0 for all v 2 V g:

Note that .V !/! D V and dimC V C dimC V ! D 2n. We call V isotropic or
coisotropic if V � V ! or V ! � V , respectively. A symplectic partial flag manifold
Spn F.d1; d2; : : : ; dk/, where 0D d0 < d1 < d2 < � � �< dk�1 < dk � n, is defined by
the set of (isotropic) partial flags

f0g � V1 � V2 � � � � � Vk�1 � Vk �C2n;

where Vi is a complex isotropic subspace of .C2n; !/ of complex dimension di . It is
easy to check that this is equivalent to the set of partial flags

f0g � V1 � � � � � Vk�1 � Vk � V !
k � V !

k�1 � � � � � V !
1 �C2n:

This is well known to be diffeomorphic to the homogeneous space Sp.n/=.U.n1/�� � ��

U.nk/�Sp.nkC1//, where ni D di�di�1 for i D 1; : : : ; k and nkC1D
1
2
.dim V !

k
�

dim Vk/ D n� dk . If dk D
1
2

dim Vk D n, ie Vk D V !
k

is a Lagrangian subspace,
then Spn F.d1; d2; : : : ; dk�1; n/ is diffeomorphic to Sp.n/=.U.n1/ � � � � � U.nk//.
Denote the symplectic partial flag manifold Spn F.1; 2; : : : ; i/ by Spn Fi for i � 1.
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In particular, we call Spn Fn D Spn F.1; 2; : : : ; n/ a flag manifold of type C (or a
symplectic flag manifold), and denote it by SpFl.C2n/. We will show that the flag
manifold of type C has the structure of a CP tower with height n. We first define a
map qi W Spn FiC1! Spn Fi by

qi W f0g � V1 � � � � � Vi � ViC1 � V !
iC1 � V !

i � � � � � V !
1 �C2n

7! f0g � V1 � � � � � Vi � V !
i � � � � � V !

1 �C2n:

The pull-back of a point in Spn Fi by qi can be regarded as the set of isotropic
subspaces ViC1 in C2n which contain the isotropic subspace Vi as a codimension-one
subspace. Note that for any vectors v 2 V !

i nVi , the subspace Vi ˚ spanC.v/ is an
isotropic subspace which contains Vi as a codimension-one subspace. Therefore, there
exists a one-to-one correspondence between the pull-back of a point in Spn Fi by qi

and all complex lines in the quotient vector space V !
i =Vi 'C2n�2i ; ie Spn FiC1 is

a CP2n�2i�1 –bundle over Spn Fi . Using this fact, it is easy to check that Spn FiC1

is the projectivization of the quotient bundle over Spn Fi ; ie Spn FiC1 D P .�!i =�i/,
where the two tautological bundles �!i and �i are defined by the following subsets in
Spn Fi �C2n , respectively:˚

.f0g � V1 � � � � � Vi � V !
i � � � � � V !

1 �C2n;x/ j x 2 V !
i

	
;˚

.f0g � V1 � � � � � Vi � V !
i � � � � � V !

1 �C2n;x/ j x 2 Vi

	
:

Note that �!i is a C2n�i –vector bundle and �i is a Ci –vector bundle; therefore, the
quotient bundle �!i =�i is a C2n�2i –vector bundle. Therefore, SpFl.C2n/ has the
structure of a CP tower:

SpFl.C2n/D P .�!n�1=�n�1/
CP1

�! Spn Fn�1 D P .�!n�2=�n�2/
CP3

�! � � �
CP2n�3

�! Spn F1

'CP2n�1
�! f�g:

Hence the flag manifold of type C is an element of CPM2n2

n .

Remark 1 As is well known, both of the flag manifolds Fl.CnC1/'U.nC1/=T nC1

and SpFl.C2n/'Sp.n/=T n with n� 2 do not admit the structure of a toric manifold;
see [3], for example. On the other hand, U.2/=T 2 Š Sp.1/=T 1 Š CP1 is a toric
manifold.

Moreover, by computing the generators of flag manifolds of other types — Bn .n� 3/,
Dn .n�4/;G2;F4;E6;E7;E8 — we see that not all flag manifolds admit the structure
of a CP tower; see [2], or [6] for classical types. This leads us to the following
proposition.
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Proposition 2.3 Let M D G=T be a flag manifold, where G is a compact simple
Lie group and T is its maximal torus. If M admits the structure of a CP tower, then G

must be a compact Lie group of type A or C.

The following open problem naturally arises (also see Remark 2).

Problem 1 Let H�W CPM!H �CPM be the map defined by taking cohomology
rings. Classify the diffeomorphism types of all manifolds in the classes

.H�/�1
�
H�.U.nC 1/=T nC1/

�
and .H�/�1

�
H�.Sp.n/=T n/

�
:

3 Some preliminaries

3A Preliminaries from [7]

We first recall some basic facts from [7, Section 2].

Let � be an n–dimensional complex vector bundle over a topological space X , and
let P .�/ denote its projectivization. Then

(2) H�.P .�/IZ/ŠH�.X IZ/Œx�
. �

xnC1
C

nX
iD1

.�1/ici.�
��/xnC1�i

�
;

where ��� is the pull-back of � along � W P .�/! X and ci.�
��/ is the i th Chern

class of ��� [7]. Here x can be viewed as the first Chern class of the canonical line
bundle over P .�/; ie the complex 1–dimensional sub-bundle 
� in ���! P .�/ such
that the restriction 
� j��1.a/ is the canonical line bundle over ��1.a/ŠCPn�1 for
all a2X . Therefore deg xD 2. Since it is well known that the induced homomorphism
��W H�.X IZ/!H�.P .�/IZ/ is injective, we often abuse the notation ci.�

��/ by
writing ci.�/. The formula (2) is called the Borel–Hirzebruch formula.

To prove the main theorem, we often use the following two lemmas.

Lemma 3.1 Let 
 be any complex line bundle over M and let P .�/ be the pro-
jectivization of a complex vector bundle � over M . Then P .�/ is diffeomorphic
to P .�˝ 
 /.

Lemma 3.2 Let 
 be a complex line bundle and let � be a 2–dimensional complex
vector bundle over a manifold M . Then the Chern classes of the tensor product �˝ 

are

c1.�˝ 
 /D c1.�/C 2c1.
 /;

c2.�˝ 
 /D c1.
 /
2
C c1.
 /c1.�/C c2.�/:
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3B The Atiyah–Rees theorem

By Theorem 1.1, all of the complex 2–plane bundles over CP3 can be written �.˛;c1;c2/

for some .˛; c1; c2/2Z2�Z�Z. Using Lemma 3.1, its projectivization P .�.˛;c1;c2//

is diffeomorphic to P .�.˛;c1;c2/˝ 
 / for any complex line bundle 
 over CP3 . By
Lemma 3.2 and the proof of [1, Theorem 2.8] (Theorem 1.1 here), we also have

�
.˛; c1; c2/

˝ 
 � �.˛; c1C2c1.
 /; c1.
 /2Cc1.
 /c1Cc2/
:

Thus we may assume c1 2 f0; 1g. Consequently, to classify all P .�.˛;c1;c2// up to
diffeomorphisms, it is enough to classify

M0.u/D P .�.0;0;u//;

M1.u/D P .�.1;0;u//;

N.u/D P .�.0;1;u//;

with u 2 Z. We denote the class of M0.u/;M1.u/ up to diffeomorphism by M and
that of N.u/ by N . Then both classes M and N are subclasses of CPM8

2
consisting

of 8–dimensional 2–stage CP manifolds.

3C The intersection of M and N is empty

We prove that M\N D∅ by comparing cohomology rings. Namely, we prove the
following lemma.

Lemma 3.3 Two cohomology rings H�.M˛.u// and H�.N.u0// are not isomorphic
for any u;u0 2 Z.

Proof Using the Borel–Hirzebruch formula (2), we have the cohomology rings with
Z2 –coefficients

H�.M˛.u/IZ2/Š Z2ŒX;Y �=hX
4;uX 2

CY 2
i;

H�.N.u0/IZ2/Š Z2Œx;y�=hx
4;u0x2

CxyCy2
i:

Now, the element uX CY in H 2.M˛.u/IZ2/ satisfies

.uX CY /2 D u2X 2
C 2uXY CY 2

� uX 2
CY 2.D 0/ mod 2:

However, the squares of all non-zero elements x , y , xCy in H 2.N.u0/IZ2/ are not
zero because of its ring structure. Hence

H�.M˛.u// 6ŠH�.N.u0// for all u;u0 2 Z.

Corollary 3.4 The classes M and N are disjoint.
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4 Cohomological rigidity of N

In this section, we prove the cohomological rigidity of the class N . It is enough to
prove the following lemma.

Lemma 4.1 The following statements are equivalent for integers u;u0 :
(1) H�.N.u//ŠH�.N.u0//.
(2) uD u0 .

Proof Because .2/) .1/ is trivial, it is enough to show .1/) .2/. Assume there is
an isomorphism f W H�.N.u//ŠH�.N.u0//, where

H�.N.u//Š ZŒX;Y �=hX 4;uX 2
CxyCY 2

i;

H�.N.u0//Š ZŒx;y�=hx4;u0x2
CxyCy2

i:

Here we may set

f .X /D axC by and f .Y /D cxC dy

for some a; b; c; d 2 Z such that ad � bc D � D˙1. By taking its inverse, we also
have

f �1.x/D d�X � b�Y and f �1.y/D�c�X C a�Y:

Because f .Y 2CXY CuX 2/D 0 and f �1.y2CxyCu0x2/D 0, we get

c2
� d2u0 D�ua2

C b2uu0� acC bdu0;(3)

2cd � d2
D�2abuC b2u� ad � bcC bd:(4)

Because f .X 4/D 0 and f �1.x4/D 0, one of the following holds:
(1) b D 0.
(2) b 6D 0 and 4a3�6a2bC4ab2.1�u0/Cb3.2u0�1/D�4d3�6d2b�4db2.1�

u/C b3.2u� 1/D 0.

If b D 0, then jaj D jd j D 1. Therefore, by (4), 2c D d � a; ie c D 0 if d D a or
c D�a if d D�a. Because c2�u0 D�u� ac by (3), we have that uD u0 .

Assume b 6D 0. Because 4a3 � 6a2bC 4ab2.1� u0/C b3.2u0 � 1/ D 0, b is even.
Therefore, since ad � bc D˙1, a is odd. We note that the equation 4a3 � 6a2bC

4ab2.1�u0/C b3.2u0� 1/D 0 can be written

.2a� b/.2a2
� 2abC b2

� 2b2u0/D 0:

Because a is odd and b is even, the second factor is not zero; therefore

b D 2a:
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Since ad � bc D˙1, we conclude .a; b/D˙.1; 2/. The same argument applied to
the equation �4d3�6d2b�4db2.1�u/Cb3.2u�1/D 0 shows that �b D 2d and
.d; b/D˙.�1; 2/. Therefore, .a; b; d/ must be either .1; 2;�1/ or .�1;�2; 1/. Then
c D 0 or �1 in the former case while c D 0 or 1 in the latter because ad � bc D˙1.
In any case, it follows from (3) that u0CuD 4uu0 , an identity which holds only when
uD u0 D 0 since u;u0 2 Z. This completes the case where b 6D 0.

Theorem 1.1 and Lemma 4.1 give the next theorem, which establishes Theorem 1.2(1).

Theorem 4.2 The following three statements are equivalent:

(1) N.u/ and N.u0/ are diffeomorphic.

(2) The cohomology rings H�.N.u// and H�.N.u0// are isomorphic.

(3) uD u0 2 Z.

In particular, the class N is cohomologically rigid.

5 Cohomological non-rigidity of CPM8
2

Lemma 5.1 The following two statements are equivalent for integers u;u0 :

(1) H�.M˛.u//ŠH�.M˛0.u
0//, where ˛; ˛0 2 f0; 1g.

(2) uD u0 .

Proof Because .2/) .1/ is trivial, it is enough to show .1/) .2/. Assume there is
an isomorphism f W H�.M˛.u//!H�.M˛0.u

0//, where

H�.M˛.u//Š ZŒX;Y �=hX 4;uX 2
CY 2

i;

H�.M˛0.u
0//Š ZŒx;y�=hx4;u0x2

Cy2
i:

We may use the same representation for f as in the proof of Lemma 4.1. Note that
f .uX 2CY 2/D 0 and f �1.u0x2Cy2/D 0. Using the representation of f , we have

ua2
�uu0b2

C c2
�u0d2

D 0;(5)

u0d2
�uu0b2

C c2
� a2uD 0;(6)

which lead to

c2
D b2uu0;(7)

ua2
D u0d2:(8)
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Because X 4 D 0,
ab.a2

� b2u0/D 0:

We first assume ab 6D 0. Then
a2
D b2u0:

Together with (7) and (8), we have

c2b2
D b4uu0 D b2a2uD b2d2u0 D a2d2:

This implies
.ad � bc/.ad C bc/D �.ad C bc/D 0:

Hence adD�bc . However this gives a contradiction because ad�bcD2adD �D˙1.
Consequently, abD 0. Since ad�bcD � , if aD 0 then jbj D jcj D 1, so uDu0D˙1

by (7), and if bD 0 then jajD jd jD 1, so uDu0 by (8). This establishes the lemma.

Lemma 5.1 says that cohomology rings of M are not affected by ˛ 2Z2 . On the other
hand, the goal of this section is to prove the following theorem, that some topological
types of M are affected by ˛ 2 Z2 .

Theorem 5.2 Assume u.uC1/=12 2Z and ˛; ˇ 2Z2 . The following are equivalent:

(1) M˛.u/ and Mˇ.u
0/ are diffeomorphic.

(2) .˛;u/D .ˇ;u0/ 2 Z2 �Z.

(3) M˛.u/ and Mˇ.u
0/ are homotopy equivalent.

In order to prove Theorem 5.2, we first compute the 6–dimensional homotopy group
of M˛.u/ in Proposition 5.4. Now M˛.u/ can be defined by the following pull-back
diagram.

M˛.u/

��

// EU.2/�U.2/CP1

��
CP3

�˛;u // BU.2/

Let pW S7 ! CP3 be the canonical S1 –fibration and P .�˛;u/ be the pull-back of
M˛.u/ along p . Namely, the following diagram commutes.

(9)

P .�˛;u/

��

// M˛.u/

��

// EU.2/�U.2/CP1

��
S7 p // CP3

�˛;u //
�˛;u // BU.2/
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Lemma 5.3 For � � 3, ��.P .�˛;u//Š ��.M˛.u//.

Proof Because P .�˛;u/ is the pull-back of M˛.u/, the homotopy exact sequences of
P .�˛;u/ and M˛.u/ satisfy the following commutative diagram.

��C1.S
7/ �!

��

��.CP1/ �!

��

��.P .�˛;u// �!

��

��.S
7/ �!

��

���1.CP1/

��
��C1.CP3/ �! ��.CP1/ �! ��.M˛.u// �! ��.CP3/ �! ���1.CP1/

From the homotopy exact sequence of the fibration S1 ! S7 ! CP3 , we have
��.S

7/Š ��.CP3/ for � � 3. Therefore, by the five lemma, the proof is complete.

Proposition 5.4 Assume u.uC 1/=12 2 Z.

(1) �6.P .�˛;u//Š �6.M˛.u//Š Z12 if ˛ � u.uC 1/=12 .mod 2/.

(2) �6.P .�ˇ;u//Š �6.Mˇ.u//Š Z6 if ˇ 6� u.uC 1/=12 .mod 2/.

Proof First we prove (1). If u.uC 1/=12 2Z and ˛ � u.uC 1/=12 .mod 2/, then it
follows from [1] that �˛;u is induced from the rank-2 complex vector bundle over CP4 .
Namely, the following diagram commutes.

(10)

�˛;u

��

// �.˛;0;u/

��

// z�˛;u

��

// EU.2/�U.2/C2

��
S7 p // CP3 //// CP4 // BU.2/

On the other hand, �7.CP4/ Š �7.S
9/ D f0g, using the homotopy exact sequence

for the fibration S1! S9! CP4 . This implies that �˛;u is the trivial C2 –bundle
over S7 . Therefore,

P .�˛;u/D S7
�CP1

when u.uC 1/=12 2 Z and ˛ � u.uC 1/=12 .mod 2/. Hence, we also have

�6.M˛.u//Š �6.S
7
�CP1/Š �6.CP1/Š Z12:

Next we prove the second statement. Let �˛;uW CP3! BU.2/ be a continuous map
which induces the above �.˛;0;u/ , and ˇ be the element in Z2 which is not equal to ˛ .
Let x 2 CP3 and s D �˛;u.x/ 2 BU.2/ be base points. Take a disk neighborhood
around x 2 CP3 and pinch its boundary to a point, ie the boundary of D6 � CP3

pinches to a point; then we obtain a surjective map

�W CP3
!CP3

_S6;
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where CP3 _S6 may be regarded as the wedge sum with respect to the base points
x 2CP3 and y 2 S6 . Due to Theorem 1.1, we have �.ˇ;0;u/ 6� �.˛;0;u/ . This implies
that the vector bundle �.ˇ;0;u/ is induced from the continuous map

(11) �ˇ;uW CP3 �
�!CP3

_S6 �˛
�! BU.2/;

where �˛ D �˛;u _ � for the generator � 2 �6.BU.2/; s/Š Z2 .1 Hence, we have the
following commutative diagram.

(12)

P .�ˇ;u/

��

// Mˇ.u/

��

// EU.2/�U.2/CP1

��
S7 p //

%%

CP3

�
��

�ˇ;u //
�ˇ;u // BU.2/

CP3 _S6

�˛
66

From the CP1 –fibrations CP1 ! P .�ˇ;u/! S7 and CP1 ! EU.2/�U.2/ CP1 Š

BT 2! BU.2/ in the diagram (12), we get the following commutative diagram.

�7.S
7/Š Z //

��

�6.CP1/ //

Š

��

�6.P .�ˇ;u// //

��

�6.S
7/D f0g

��
�7.BU.2//Š Z12

Š // �6.CP1/ // �6.BT 2/D f0g // �6.BU.2//Š Z2

This diagram shows that the following sequence is exact:

(13) ZŠ �7.S
7/! �7.BU.2//.Š Z12/! �6.P .�ˇ;u//! f0g:

In this diagram, the left homomorphism is induced from z� WD�ˇ;u ıpW S7!BU.2/,
say z�#W Z ! Z12 . We claim z�#.1/ D Œ6�12 2 Z12 . Because the diagram (12) is
commutative, we can think of z� WD�ˇ;uıpW S7!BU.2/ as being defined by passing
through the map �˛W CP3_S6!BU.2/; ie z�D �˛ ı� ıp . Because �˛ D �˛;u_ � ,
we also have

z�D .�˛;u _ �/ ı � ıp D .�˛;u ı � ıp/_ .� ı � ıp/:

By the argument we used while proving the first statement, we see that �˛;u ı � ıp

induces the trivial bundle over S7 ; ie �˛;u ı�ıp is homotopic to the trivial map. This

1This construction induces the free �6.BU.2//Š �5.U.2//Š Z2 action on fKSp.CP3/Š Z2˚Z ;
see [1].
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also implies that the decomposition

z�W S7 p
�!CP3 �

�!CP3
_S6 �

�! S6 �
�! BU.2/

exists up to homotopy, where � is the collapsing map of CP3 to a point. Therefore,
we have the following decomposition for the induced map:

z�#W �7.S
7/

‰#
�! �7.S

6/Š Z2
�#
�! �7.BU.2//Š Z12;

where the first map is induced from the surjective map ‰ D � ı � ıp . Because ‰ is
surjective, ie not homotopic to the trivial map, we have ‰#.1/D Œ1�2 (the generator
of �7.S

6/Š Z2 ). Moreover, because � 2 �6.BU.2//Š Z2 is the generator, ie non-
trivial map, we have �#.Œ1�2/D Œ6�12 2 Z12 . This shows that z�#.1/D Œ6�12 ; therefore
z�#.�7.S

7//D fŒ0�12; Œ6�12g � Z12 .

Consequently, by the exact sequence (13),

�6.P .�ˇ;u//Š �7.BU.2//=z�#.�7.S
7//Š Z12=fŒ0�12; Œ6�12g Š Z6:

By Lemma 5.3, we have the statement.

Remark 2 For example, the condition u.uC 1/=12 2 Z is satisfied when uD 0 and
uD 3. In these cases, using Proposition 5.4, we have

�6.M˛.0//Š

�
Z12 for ˛ � 0

Z6 for ˛ � 1
and �6.M˛.3//Š

�
Z6 for ˛ � 0

Z12 for ˛ � 1:

On the other hand, the case when uD 1 does not satisfy the condition u.uC1/=122Z.
It follows from the cohomology ring of the flag manifold of type C (see for example [2]
or [6]) that the flag manifold Sp.2/=T 2 is one for which uD 1; ie M0.1/ or M1.1/.
However, using the homotopy exact sequence for the fibration T 2!Sp.2/!Sp.2/=T 2

and the computation in [8],

�6.Sp.2/=T 2/Š �6.Sp.2//D 0:

Therefore, Proposition 5.4 is not true in the case where u.uC 1/=12 62 Z.

Proof of Theorem 5.2 .2/) .1/ is trivial, as is .1/) .3/. We claim .3/) .2/. As-
sume M˛.u/ and Mˇ.u

0/ are homotopy equivalent. Then H�.M˛.u//ŠH�.Mˇ.u
0//.

Therefore, it follows from Lemma 5.1 that uDu0 . Moreover, in this case, �6.M˛.u//Š

�6.Mˇ.u//. If ˛ 6�ˇ mod 2, then this gives a contradiction to Proposition 5.4. Hence,
˛ � ˇ mod 2. We have .3/) .2/. This establishes Theorem 5.2.

Lemma 5.1 and Theorem 5.2 imply the following corollary, establishing Theorem 1.2(2).

Corollary 5.5 The set of 8–dimensional CP manifolds is not cohomologically rigid.
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Note that if we restrict the class of 8–dimensional CP manifolds to the 8–dimensional
generalized Bott manifolds with height 2, then cohomological rigidity holds [4]. On the
other hand, the following seems to be more natural to ask of the class of CP manifolds
CPM than the cohomological rigidity problem.

Problem 2 Is the class CPM of CP manifolds (up to diffeomorphism) determined
by homotopy types? More precisely, are M1;M2 2CPM diffeomorphic if they have
the same homotopy type?
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