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Quilted strips, graph associahedra, and A1 n–modules

SIKIMETI MA’U

We consider moduli spaces of quilted strips with markings. By identifying each
compactified moduli space with the nonnegative real part of a projective toric variety,
we conclude that it is homeomorphic under the moment map to the moment polytope.
The moment polytopes in these cases belong to a certain class of graph associahedra,
which include the associahedra and permutahedra as special cases. In fact, these
graph associahedra are precisely the polytopes whose facet combinatorics encode the
A1 equations of A1 n–modules.

14H10; 14M25

1 Introduction

Let r D .r0; r1; : : : ; rn/ 2ZnC1
�0

be a tuple of nonnegative integers, not all zero. In this
note we will define an associated moduli space Q.r/ of quilted strips with r markings,
and consider its Grothendieck–Knudsen compactification Q.r/. For the same tuple r ,
we will define a graph G.r/ and show the following.

Theorem 1.1 The compactified moduli space Q.r/ is homeomorphic as a manifold-
with-corners to (a convex hull realization of) the graph associahedron of the graph
G.r/.

Figure 1: Two moduli spaces of quilted strips with 3 markings
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Figure 1 illustrates two cases for r D 3. The hexagon is the graph associahedron of a
triangle, which is the permutahedron P3 . The pentagon is the graph associahedron of
a path on three vertices, the associahedron K4 .

Graph associahedra are a class of convex polytopes introduced independently by Carr
and Devadoss [2], Davis, Januszkiewicz, and Scott [3], Postnikov [7], and Toledano-
Laredo [9]. The family of graphs that appear as dual graphs to these moduli spaces
includes paths and complete graphs, which produce associahedra and permutahedra
respectively. The associahedra are parameter spaces for homotopy associativity, while
the permutahedra are parameter spaces for homotopy commutativity. The graph asso-
ciahedra that appear in this note are the parameter spaces for a mixture of homotopy
associativity and homotopy commutativity. In fact this particular class of graph associ-
ahedra also arises in the work of Bloom on a spectral sequence for links in monopole
Floer homology [1].

The combinatorics of moduli spaces of Riemann surfaces with markings are intimately
connected to higher algebraic structures. This is manifest, for instance, in constructions
such as Gromov–Witten invariants and Fukaya’s A1 categories which are based on
pseudoholomorphic curve theory. Quilted strips with markings belong to a class of
generalized Riemann surfaces called quilts, which are Riemann surfaces decorated with
some real-analytic submanifolds called seams. The moduli spaces of quilted strips with
markings govern the combinatorics of algebraic structures that we call A1 n–modules,
which are A1 analogues of modules over a tensor product of n algebras. Since quilts
are domains for a generalized pseudoholomorphic curve theory developed by Wehrheim
and Woodward [10] which employ Lagrangian correspondences as boundary conditions
for the seams, this A1 algebraic structure arises naturally in Lagrangian Floer theory.

Acknowledgements We thank Satyan Devadoss and Jon Bloom for conversations on
graph associahedra, and the Mathematical Sciences Research Institute (MSRI) for its
hospitality during the 2009–2010 Program in Symplectic and Contact Geometry and
Topology where this work began. While preparing this paper the author was supported
by an NSF All-Institutes Postdoctoral Fellowship administered by the Mathematical
Sciences Research Institute through its core grant number DMS-0441170, and partially
supported by NSF grant number DMS-1105837.

2 Quilted strips

Let C denote the complex plane with complex coordinate z D xC iy , and let †D
fz 2 C

ˇ̌
0 < Re z D x < 1g denote the infinite strip of unit width in C . Let n � 1,

and fix an increasing sequence of real values 0D a0 < a1 < � � � < an D 1. Each ak
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determines a vertical line Ck D fz D xC iyjx D akg in †, which we orient in the
direction of increasing imaginary component (ie upwards).

Definition 2.1 The lines C0; : : : ;Ck are called seams and Q D .†;C0; : : : ;Cn/ is
called a quilted strip.

We denote by ConfCm.Ck/ the set of configurations of m distinct points in Ck whose
order is compatible with the orientation of Ck .

Definition 2.2 Let r D .r0; r1; : : : ; rn/ 2ZnC1
�0

. A quilted strip with r marked points
is a tuple .z0; : : : ; zn/ 2 ConfCr0

.C0/� � � � �ConfCrn
.Cn/.

We write jrj WD r0C� � �C rn for the total number of marked points on the quilted strip.
When jrj � 1, there is a free and proper R action on ConfCr0

.C0/� � � � �ConfCrn
.Cn/,

given by simultaneous vertical translation. Explicitly, let

.z0; : : : ; zn/ 2 ConfCr0
.C0/� � � � �ConfCrn

.Cn/;

with the entries of zi 2 ConfCri
.Ci/ denoted by .zi;1; : : : ; zi;ri

/. For each a 2 R, the
action a � .z0; : : : ; zn/ is the map zk;l 7! zk;l C ia, k D 0; : : : ; n; l D 1; : : : ; rk .

Definition 2.3 Let r D .r0; r1; : : : ; rn/ 2 ZnC1
�0

, with jrj � 1. The moduli space of
quilted strips with r marked points is the quotient space

Q.r/ WD ConfCr0
.C0/� � � � �ConfCrn

.Cn/=R;

which is a smooth, noncompact .jrj � 1/–dimensional manifold. We denote the
equivalence class of .z0; : : : ; zn/ by Œz0; : : : ; zn�.

Alternative definition

An alternative definition of Q.r/ is in terms of the upper half-plane H D fz 2

C
ˇ̌
Im z D y > 0g. The strip † is biholomorphic to H n f0g, for instance by the map

z 7! exp.�i�z/. Under this map the oriented lines Ck � † become oriented rays
emanating from 0 in H , the fixed distances between the vertical lines in the strip †
determine fixed angles between the rays in the half-plane H , and vertical translations
of † become dilations of H , ie multiplication by a positive real scalar. Thus, an
equivalent definition of Q.r/ is as the moduli space of configurations of marked points
on the rays, modulo dilations. See Figure 2 for an illustration.
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Figure 2: Two views of a quilted strip with r D .4; 1; 2/ markings

2.1 Compactification

Let jrj � 1, and consider the space Q.r/ defined in terms of marked points on rays
from the origin, modulo dilations. Then there is a canonical embedding

�W Q.r/ ,!M0;jrjC2;

Œz0; : : : ; zn� 7! Œz0; : : : ; zn; 0;1�;

where M0;jrjC2 is the Grothendieck–Knudsen compactification of the moduli space
of genus zero curves with jrjC 2 marked points.

Definition 2.4 The compactification Q.r/ is the closure of Q.r/ in M0;jrjC2 .

3 Explicit description of Q.r/

Elements of M0;jrjC2 are called stable nodal curves with markings. An explicit
description of the compactified moduli space M0;jrjC2 is given in [6, Appendix D],
whose terminology and notation we will use to give an explicit description of Q.r/.

3.1 Combinatorial types in Q.r/

The combinatorial types of elements in the compactification Q.r/ contain structure
reflecting the prescribed order of marked points along the seams Ci . The prescribed
order of marked points can be represented by ribbon structures in the combinatorial
types. Recall that if T D .V;E/ is a tree, then a ribbon structure ˆ on T is a cyclic
ordering of the edges at each vertex,

ˆD ffvW f1; 2; : : : ; jEvjg !Ev j fv is a bijectiong:
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By embedding each vertex of the tree and its adjacent edges in the plane in the cyclic
order fv.1/; : : : ; fv.jEvj/, the ribbon structure determines, up to planar isotopy, a
planar embedding of T .

Definition 3.1 Let r D .r0; : : : ; rn/ 2 ZnC1
�0

. An r –labeled ribbon tree consists of:

� A tree T D .V;E/ with vertices V and finite edges E .

� A partition of the vertices V D Vspine tV0 t � � � tVn with jVspinej � 1.

� A partition of the edges E DEspine tE0 t � � � tEn .

� A set of semi-infinite edges E1 D feC; e�; fei;j giD0;:::;n;jD1;:::;ri
g and a map

ƒW E1! V such that ƒ.e˙/ 2 Vspine and ƒ.ei;j / 2 Vi [Vspine .

� A ribbon structure ˆi for each subgraph

Ti D .Vspine[Vi ;Espine[Ei [fe
C; e�; fei;j gjD1;:::;ri

g/ for i D 0 to n.

These data satisfy the following conditions:

� Each Ti is a tree; we call it the i th page.

� The subgraph .Vspine;Espine[fe
C; e�g/ is a path between the semi-infinite edges

eC and e� ; we call it the spine of T .

� The planar embedding of each Ti determined by its ribbon structure induces the
ordering e�; ei;1; : : : ; ei;ri

; eC of its semi-infinite edges.

� When i ¤ j there are no edges between Vi and Vj .

An r –labeled ribbon tree .T;E1; ƒ; fˆkgkD0;:::;n/ is stable if every vertex is adjacent
to at least 3 edges (semi-infinite or finite).

3.2 Stable, nodal quilted strips with markings

Consider a stable r –labeled ribbon tree � D .T;E1; ƒ; fˆkgkD0;:::;n/. � is a com-
binatorial type for Q.r/, as follows. Forgetting the extra structure at first, consider
only the underlying stable .jrjC 2/–labeled tree b� WD .T; ƒ/ as a combinatorial type
for M0;jrjC2 . An element of M0;jrjC2 with combinatorial type b� is a stable, nodal,
marked genus-zero curve

.�; fzv;egv2e;e2E ; fzxgx2E1/

up to equivalence. It is in the closure of Q.r/ if and only if the marked points satisfy
the following additional constraints:
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(1) For each v 2Vspine , let eCv (resp. e�v ) 2Espine[fe
C; e�g be the edge containing

v that is closest to the semi-infinite edge eC (resp. e� ). There is a Möbius
transformation �W S2! S2 for which �.zv;e

C
v
/D1; �.zv;e�v /D 0, �.zv;e/ 2

Ci if e 2 Ei ; and �.zi;j / 2 Ci if ƒ.i; j / D v . That is, Zv is equivalent to a
quilted strip with marked points.

(2) For each v 2 Vk , k D 0; : : : ; n, there is a Möbius transformation �W S2! S2

such that �.zv;e/ 2 @D for all zv;e 2 Zv , and the cyclic order of the marked
points f�.zv;e/je 2 Evg is given by the cyclic order of the edges Ev in the
ribbon structure ˆk at v .

z0;1

z0;2

z0;3

z0;4

z1;1

z2;1

z2;2

zC

z�

Figure 3: An element in Q.4; 1; 2/ shown alongside its combinatorial type

Example 3.2 Figure 3 depicts an element in the compactification of Q.4; 1; 2/ with
its combinatorial type, a stable .4; 1; 2/–labeled tree whose three pages are in different
colors, and spine is indicated in black.

Proposition 3.3 Let jrj � 1. Then Q.r/ is a smooth manifold-with-corners of real
dimension jrj � 1, and has a stratification

Q.r/ WD
[
�

Q� ;

where � ranges over all .nC 1/–paged ribbon trees with r leaves, and each stratum
Q� is a smooth submanifold-with-corners of real codimension jEj.

Proof This follows directly from the construction of local charts using cross-ratios,
which in turn is a direct application of the proof of [6, Appendix D, Theorem D.4.5]
which constructs local cross-ratio charts for M0;jrjC2 .
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4 Charts using simple ratios

We now describe an explicit set of coordinate charts on Q.r/ which determine the
same topology on Q.r/ as cross-ratio coordinate charts. The reason for introducing
these new charts is that the coordinates satisfy relations that are algebraically very
simple and in fact toric. This will lead to the direct connection with toric varieties later.

From now on, we view elements of Q.r/ as marked points on fixed rays in H n f0g,
modulo dilations. Let xi;j denote the distance between marked points zi;j and zi;j�1

on the i th ray. For each i we understand zi;0 D 0, which is the point where the rays
meet (see Figure 4 for an illustration). The distances xi;j are only determined on
elements of Q.r/ up to multiplication by positive real scalars, so the xi;j are in fact
real, positive homogeneous coordinates x WD .x0;1 W : : : W xn;rn

/. This identifies Q.r/

with the open subset of RP jrj�1 consisting of x for which all the xi;j are nonzero
with the same sign, however the compactification Q.r/ does not come from its closure
in the compact space RP jrj�1 .

Each ratio xi;j=xk;l is a well-defined function on Q.r/ and we call it a simple ratio
coordinate. We next describe how to extend simple ratio coordinates to the compactified
moduli space Q.r/.

x0;1

x0;2

x0;3

x0;4

x1;1

x2;1

x2;2

Re

Im

Figure 4: Real homogeneous coordinates on Q.4; 1; 2/

Let � be a combinatorial type for an element in the compactification Q.r/, and let
.�; fzv;egv2e;e2E ; fzxgx2E1/ 2Q� .

For each v2V , take any Möbius transformation that sends the marked point zv;C to1.
Note that such transformations differ only by rotations, translations, or dilations in C .
After such a transformation, the remaining marked points in Zv n fzv;Cg either lie on
rays corresponding to the images of C0; : : : ;Cn , or on a straight line corresponding to
the image of @D . If z; z0 2Zv nfzv;Cg are a pair of markings that lie next to each other
on the same ray or straight line, there is a unique pair of labels .k; j / and .k; jC1/ for
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which z D zv;.k;j/ and z0 D zv;.k;jC1/ . We will label the distance between z and z0

by xk;jC1 , noting as before that this distance is only well-defined up to dilations. Let
Xv � fxi;j ji D 0; : : : ; n; j D 1; : : : ; rig denote the subset of homogeneous coordinates
associated to v in this way.

Example 4.1 In Figure 3, let v be the vertex in the spine that has the two semi-infinite
edges labeled by C and .2; 2/ incident to it. In this case a Möbius transformation
sending zv;C to 1 maps the three arcs to three rays C0;C1;C2 with one marked point
on C2 and another marked point where the three rays meet. In this case Xv D fx2;2g.
As another example from Figure 3, let v0 be the vertex on the red page .V0;E0/ with
no semi-infinite edges. Once a Möbius transformation maps zv0;C to 1, the remaining
two marked points lie on a straight line, and Xv0 D fx0;2g.

Lemma 4.2 Let � be a combinatorial type for Q.r/, and consider the open set
U� D

S
� 0�� Q� 0 .

(1) Let v 2 V� . Any pair xi;j and xi0;j 0 of distinct elements in Xv determines a
continuous function �W U� ! .0;1/ given by � WD xi0;j 0=xi;j .

(2) Let e D .vCe ; v
�
e / be an edge in � , where vCe is the vertex closest to the vertex

vC D ƒ.C/. Any pair .xi;j ;xi0;j 0/ 2 XvC � Xv� determines a continuous
function �W U� ! Œ0;1/ given by � WD xi0;j 0=xi;j , and � D 0 if and only if the
combinatorial type e� � � has the edge e .

Proof The proof is immediate once we express each ratio function � as a function
of the cross-ratios in a local cross-ratios chart. Since it is straightforward to do this
explicitly, we omit the details.

We will call the functions defined in Lemma 4.2 simple ratio coordinates. Observe
that relations between simple ratios are generated by relations of the form .xi;j=xk;l/ �

.xk;l=xm;n/D xi;j=xm;n and .xi;j=xk;l/ �.xk;l=xi;j /D 1. As we shall see later, these
algebraically simple relations are what allow the moduli spaces to be identified with
the nonnegative real part of a projective toric variety. Recursion relations between
cross-ratio coordinates, by contrast, are not toric.

Definition 4.3 Let � be a combinatorial type for Q.r/. A simple ratio chart for the
open set U� �Q.r/ is a map

ˆ� W U� �! Œ0;1/jEj � .0;1/jrj�1�jEj

determined by a collection of jrj � 1 simple ratios, as follows.
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(1) For each vertex v , fix one element xi;j 2 Xv to use as denominator, and take
the jXvj � 1 functions fxi0;j 0=xi;j

ˇ̌
xi0;j 0 2Xv;xi0;j 0 ¤ xi;j g;

(2) For each edge e , with e D .vC; v�/, take the simple ratio xk;l=xi;j , where
xi;j 2XvC is the element used as the denominator for vC , and xk;l 2Xv� is
the element used as the denominator for v� .

Example 4.4 For the combinatorial type of Figure 3, the chart consists of the ratios
x0;4=x0;3;x0;2=x0;3;x0;3=x0;1;x2;2=x0;1;x0;1=x2;1;x2;1=x1;1 .

From the relations between simple ratios we see that transition functions between charts
correspond to multiplication by nonzero simple ratios. We also observe that the simple
ratio charts associated to the open sets fU�

ˇ̌
� maximalg (ie the subset of simple ratio

charts associated to maximal combinatorial types) cover Q.r/ and so form an atlas.

Lemma 4.5 The topology defined on Q.r/ by the simple ratio charts is identical to
the Grothendieck–Knudsen topology.

Proof It suffices to express each simple ratio in a simple ratio chart for U� as a
continuous function of the cross-ratios in a cross-ratio chart for U� , and vice-versa.
Again it is extremely straightforward to write concrete expressions down explicitly, so
we omit the details.

5 Connection with graph associahedra

Next we recall the definition of graph associahedra given by Carr and Devadoss [2].
Let GD .V;E/ be a finite graph with vertices V and edges E , with no multiple edges
and no loops.

Definition 5.1 A tube is a proper connected subset of vertices of G . A tubing of G

is a collection of tubes, such that each pair of tubes in the tubing satisfies the following
admissibility conditions:

(1) a pair of tubes may be nested provided that the inner tube is a proper subset of
the outer tube.

(2) a pair of tubes may be disjoint provided that there is no edge connecting a vertex
in one tube with a vertex in the other tube.

Definition 5.2 The graph associahedron KG is a simple polytope whose facets of
codimension k are indexed by tubings containing k tubes. A facet of codimension k

is contained in a facet of codimension k 0 if and only if the set of tubes in the k 0–tubing
contains the set of tubes in the k–tubing.
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5.1 Partial order

The set of tubings of G is partially ordered by inclusion, ie T � T 0 if and only if
all the tubes in the tubing T are also tubes in the tubing T 0 . The maximal tubings
are those which are maximal with respect to this partial order. They correspond to
zero-dimensional facets, and have exactly jV j � 1 tubes.

Definition 5.3 We introduce some terminology.
� Two maximal tubings are called neighbors if they differ by one tube.
� For a given tubing T , a tube T 2 T is called the minimal tube for vertex v if
v 2 T and v is not in any tube contained in T . In this case we also call v a
maximal vertex of T .

In a maximal tubing of G , each tube T determines a unique vertex vT of V – namely,
the unique maximal vertex of T – and there is exactly one vertex which is not contained
in any tube.

Devadoss [4] produced the following algorithm for assigning an integral vector to each
maximal tubing, such that the convex hull of the vectors realizes the graph associahedron
as a polytope.

Definition 5.4 To each maximal tubing of G assign a weight vector, which is a
function wW V ! Z, by induction on the number of vertices in a tube.

(1) If v is the only vertex in a tube, w.v/D 0.
(2) Otherwise, let T be the minimal tube containing v . By maximality, all other

vertices in the tube T are contained in tubes of smaller size than jT j, so by
induction the function w is defined on them already. Then set w.v/D 3jT j�2�P

v02T;v0¤v w.v0/.

In other words, if a tube T has two or more vertices in it, the sum of all weights of its
vertices should be 3jT j�2 . For the purposes of the algorithm, think of the last vertex in
the process (which is not contained in any tube) as belonging to a tube of size jV j.

Returning to our moduli spaces, we will associate a graph G.r/ to each moduli space
Q.r/ as follows.

Definition 5.5 Fix an r 2 Zn
�0

with jrj � 1. View the elements of Q.r/ as con-
figurations of rays in H n f0g with markings. Define a graph G.r/ as follows. The
vertices of G.r/ are indexed by the finite open line segments in C0 [ � � � [ Cn n

fzi;j giD0;:::;nIjD1;:::;ri
. Two vertices in G.r/ are connected by an edge if and only if

they correspond to finite open line segments whose closures intersect either at a marked
point zi;j or at 0. In particular, G.r/ is a complete graph with paths adjoined to some
of its vertices.
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Example 5.6 The graph G.4; 1; 3; 1; 3/ is depicted in Figure 5.

Figure 5: The graph G.4; 1; 3; 1; 3/

The following combinatorial dictionary between tubings of G.r/ and the combinatorial
types of Q.r/ is immediate, so we omit its proof:

Lemma 5.7 There is a canonical bijection between tubings of G.r/ and combinatorial
types of Q.r/ which respects their respective poset structures. Under this bijection,
each tube in a tubing determines an edge in the combinatorial type.

x0;1

x0;2

x0;3

x0;4

x1;1

x2;1

x2;2

Figure 6: The tubing of the graph G.4; 1; 2/ that corresponds to the combi-
natorial type depicted in Figure 3

Example 5.8 Figure 6 shows the tubing of G.4; 1; 2/ that corresponds to the combi-
natorial type of Figure 3.

5.2 Simple ratio charts from tubings

The combinatorial dictionary of Lemma 5.7 allows a simple ratios chart to be read off
from a tubing T .
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� Fixing a simple ratio for each edge in the combinatorial type �T is equivalent
to picking a simple ratio for each tube in T . So let T be a tube in T . Pick
a vertex which is maximal in T and let xin.T / denote the variable indexing
it, and pick a vertex that is immediately outside T and let xout.T / denote the
variable indexing it. Assign the simple ratio xin.T /=xout.T / to the tube T .

� Next we pick the simple ratios in the chart that are associated to the vertices of
the combinatorial type �T . Let T D fT1; : : : ;Tkg be the tubing of G.r/. For
each i 2 f1; : : : ; kg let Wi denote the subset of vertices of G.r/ for which the
tube Ti is minimal, and let W� denote the subset of vertices of G.r/ which
are contained in none of the tubes of T . Hence W1; : : : ;Wk ;W� is a partition
of the vertices of the graph G.r/. For each Wi , fix a variable xm;n indexing a
vertex in Wi to serve as denominator, and for every other vertex in Wi , indexed
by the variable xp;q , say, we associate the simple ratio xp;q=xm;n .

Example 5.9 For the tubing in Figure 6, the simple ratios chart is made up of the
ratios x0;4=x0;3;x0;2=x0;3;x0;3=x0;1;x2;2=x0;1;x0;1=x2;1;x2;1=x1;1 , which is the
same chart as in Example 4.4.

6 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on two lemmas about weights.

Lemma 6.1 Let G D .V;E/ be a connected graph with no loops and no multiple
edges. Let T be a maximal tubing of G and v 2 V a vertex.

(1) If v is the maximal vertex for a tube T 2 T with jT j � 3, then w.v/ > 3jT j�3 .

(2) If v is not contained in any tube of T and jV j � 3, then w.v/ > 3jV j�3 .

Proof First observe that any connected subgraph of G is again a connected graph,
and a tube is a connected subgraph of G , so it is enough to prove (b). If we remove
the vertex v from G , as well as all edges incident to v , the resulting graph can have
several connected components. Suppose it has k � 1 connected components. By
maximality of the tubing T , each connected component must be a tube. Call these
tubes T1; : : : ;Tk , each containing n1; : : : ; nk vertices respectively. We first claim
that w.Ti/ � 3jV j�k�2 for each i . To see this, note that 1 � ni for each i , and
n1C � � �C nk D jV j � 1, so ni � jV j � k for each i . If ni � 2, then by the algorithm
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for weights w.Ti/D 3ni�2 � 3jV j�k�2 . If ni D 1, then by the base step of the weights
algorithm w.Ti/D 0< 3jV j�k�2 . Therefore, we can write

w.v/D w.V /�

kX
iD1

w.Ti/� 3jV j�2
� k3jV j�k�2

D 3jV j�3.3� k31�k/ > 3jV j�3

since 0< k31�k � 1 for k � 1.

Lemma 6.2 Let T D fT1; : : : ;Tjrj�1g and eT be two maximal tubings of G.r/, with
weight vectors w and zw respectively. Then there are integers m1; : : : ;mjrj�1 � 0 such
that

x zw�w
D �

m1

1
�

m2

2
� � � �

mjrj�1

jrj�1
;

where each simple ratio �i is the simple ratio chart coordinate corresponding to the
tube Ti . Moreover if eT and T are neighboring maximal tubings, then x zw�w D �m

for some m� 1, where � is the simple ratio chart coordinate corresponding to the one
tube T in T that is not also a tube in eT .

Proof We will use the tubing T D fT1;T2; : : : ;Tjrj�1g as a reference tubing. Each
tube Ti determines a pair of vertices in G.r/, the vertex immediately inside Ti and the
vertex immediately outside Ti , so we will write xin.Ti/ and xout.Ti/ respectively for the
corresponding homogeneous variables of type xi;j . The simple ratio chart coordinate
for the tube Ti is � D xin.Ti/=xout.Ti/. Let x� denote the variable corresponding to
the one vertex not contained in any tube; thus the jrj vertices of G.r/ are indexed by

(1) V D fxin.T1/; : : : ;xin.Tjrj�1/;x�g:

Let wD .w1; : : : ; wjrj�1; w�/ be the weight vector for the tubing T with respect to
the indexing (1). Let w.Ti/ denote the sum of all the weights in the tube Ti , and let
w.V / denote the sum of all weights in the graph. Then

xw
WD xin.T1/

w1xin.T2/
w2 � � �xin.Tjrj�1/

wjrj�1x
w�
�

D

�
xin.T1/

xout.T1/

�w.T1/�
xin.T2/

xout.T2/

�w.T2/

� � �

�
xin.Tjrj�1/

xout.Tjrj�1/

�w.Tjrj�1/

x
w.V /
�

DW �
w.T1/
1

� � � �
w.Tjrj�1/

jrj�1
x

w.V /
� :

Now consider the other maximal tubing eT . Let us denote its weight vector by zwD
. zw1; : : : ; zwjrj�1; zw�/, where the entries in this vector are still with respect to the
indexing of the vertices in (1). Let zw.Ti/ denote the sum of the zw weights of the
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vertices in Ti , noting that Ti is not necessarily a tube in eT . Then again we can write

x zw WD xin.T1/
zw1xin.T2/

zw2 � � �xin.Tjrj�1/
zwjrj�1x

zw�
�

D

�
xin.T1/

xout.T1/

� zw.Ti /�
xin.T2/

xout.T2/

� zw.T2/

� � �

�
xin.Tjrj�1/

xout.Tjrj�1/

� zw.Tjrj�1/

x
zw.V /
�

DW �
zw.T1/

1
� � � �

zw.Tjrj�1/

jrj�1
x
zw.V /
�

and therefore, since w.V /D zw.V /, we get

x zw�w
D �

zw.T1/�w.T1/
1

� � � �
zw.Tk/�w.Tk/

k
:

We will show that zw.Ti/�w.Ti/� 0 for all i D 1; : : : ; k . If Ti is a tube in the tubingeT as well, then zw.Ti/�w.Ti/D 0. So suppose that Ti is not a tube in eT . In this
case, there is at least one vertex v in Ti that, in the tubing eT , is the maximal vertex
for a tube T which contains all of Ti (or, if v is not contained in any tube, simply
replace T with V in the next calculation).

Case (i) jTi j � 2. Then jT j � 3, and by Lemma 6.1,

zw.Ti/� zw.v/ > 3jT j�3
� 3jTi j�2

D w.Ti/:

Case (ii) jTi j D 1, so w.Ti/D 0 but zw.Ti/ > 0 as Ti is not a tube in eT .

Example 6.3 Figure 7 shows the maximal tubing T of Figure 6 on the left, with its
weights w, and to its right a neighboring maximal tubing eT , with weights zw. Then
x zw�w D x71

1;1
x�71

0;1
, and x1;1=x0;1 is the simple ratio in the chart for T associated to

the tube in T that is not in T 0 .

0

3

0

77

1

0

162

0

3

0

6

72

0

162

Figure 7: The weights for neighboring maximal tubings, exactly two of which
are different (in red).

Proof of Theorem 1.1 Let x D .x0;1 W : : : W x0;r0
W : : : W xn;1 W : : : W xn;rn

/ denote the
real homogeneous coordinates on Q.r/, and write z for the complexification of these
homogeneous coordinates. Let T1; : : : ; TN be all the maximal tubings of G.r/, with

Algebraic & Geometric Topology, Volume 15 (2015)



Quilted strips, graph associahedra, and A1 n–modules 797

weight vectors w1; : : : ;wN respectively. Define a projective toric variety X �CPN�1

by taking the closure in CPN�1 of the image of the map

z 7! .zw1 W : : : W zwN /:(2)

Let us denote the nonnegative real part of X by X� . Let A1; : : : ;AN denote the affine
charts on CPN�1 , ie Ai consists of all elements of CPN�1 whose i th coordinate is
nonzero. The sets fX� \AigiD1;:::;N cover X� , and we will show that X� has the
structure of a manifold-with-corners, with charts

 i W X�\Ai
Š
�! Œ0;1/jrj�1:

Indeed, X�\Ai is the closure in Ai of the set of all points

.xw1�wi W : : : W 1„ƒ‚…
i

W : : : W xwN�wi /;

where the entries of x are real and positive. By Lemma 6.2, each xwj�wi is a product
of the simple ratios in the simple ratios chart for the maximal tubing Ti , and if a
maximal tubing Tj is a neighbor of Ti , then xwj�wi D �m for some m� 1, where �
is the simple ratio corresponding to the tube in Ti that is no longer a tube in Tj . There
are jrj � 1 maximal tubings which are neighbors of Ti , so if we write �1; : : : ; �jrj�1

for the simple ratios in the chart for Ti , then (up to rearranging the order of the entries)
we can write

X�\Ai D f.�
m1

1
W �

m2

2
W : : : W �

mjrj�1

jrj�1
W � W : : : W � W 1/ 2CPN�1

j �i 2 Œ0;1/g

where mj � 1, and each � is some product of the form �
n1

1
�

n2

2
� � � �

njrj�1

jrj�1
for nk � 0.

The map � 7! �m for m� 1 is an automorphism of the domain Œ0;1/, giving a direct
identification

X�\Ai Š .�1; : : : ; �jrj�1/Š Œ0;1/
jrj�1

of the affine chart on X�\Ai with the simple ratio chart on U�i
, showing that X� and

Q.r/ are homeomorphic as manifolds-with-corners. By the theory of toric varieties
(see [5; 8]) we also know that X� and the moment polytope for X are homeomorphic
as manifolds-with-corners. In this case the moment polytope is the convex hull of the
weight vectors, which by [4] realizes the graph associahedron for G.r/.

Remark As a closing remark, we mention that the combinatorics of these polytopes
govern the algebraic structure of nonunital left A1 n–modules, whose counterparts
in ordinary algebra are left modules over a tensor product of algebras. A left A1
n–module over an n–tuple of A1 algebras .A1; : : : ;An/ consists of a graded vector
space M , and a collection of multilinear maps �rj1W A˝r1

1
˝ � � �˝A˝rn

n ˝M !M
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of degree 1� jrj for each r D .r1; : : : ; rn/ 2 Zn
�0

, where A˝0
i WD F , the underlying

field. Like any A1 algebraic structure, the maps �rj1 are then required to satisfy a
collection of quadratic A1 relations.

In terms of the moduli spaces, the maps �rj1 can be represented by quilted strips with
r markings; see Figure 8.

m

�.2;1;0;2/j1.a1; a2; 1; a4Im/

A1 A2 A3 A4

a1
1

a2
1

a1
2 a1

4

a2
4

Figure 8: A labeled quilted strip in Q.2; 1; 0; 3/ represents an operation �.2;1;0;3/j1

Each seam of the quilted strip is labeled by an A1 algebra, and the marked points
on that seam by elements of that A1 algebra. The two infinite ends of the strip are
labeled by the module M , one end represents the input m 2M , and the other by the
output �rj1.a1; a2; : : : ; anIm/. In the A1 n–module equations, each quadratic term
either contains �0j1 or �1

Aj
, or it corresponds to a codimension-one facet of Q.r/.
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