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The Johnson cokernel and the Enomoto–Satoh invariant

JAMES CONANT

We study the cokernel of the Johnson homomorphism for the mapping class group
of a surface with one boundary component. A graphical trace map simultaneously
generalizing trace maps of Enomoto and Satoh and Conant, Kassabov and Vogtmann
is given, and using technology from the author’s work with Kassabov and Vogtmann,
this is is shown to detect a large family of representations which vastly generalizes
series due to Morita and Enomoto and Satoh. The Enomoto–Satoh trace is the rank-1
part of the new trace, and it is here that the new series of representations is found.
The rank-2 part is also investigated, though a fuller investigation of the higher-rank
case is deferred to another paper.

17B40; 20C15, 20F28

1 Introduction

The Johnson homomorphism is an injective Lie algebra homomorphism � W J! D.H /

(see Johnson [10] and Morita [13]), where J is the associated graded Lie algebra
coming from the Johnson filtration of the mapping class group Mod.g; 1/ and D.H /D

D.H1.†g;1Ik// is a Lie algebra of “symplectic derivations” of the free Lie algebra
L.H /. It is an isomorphism in order 1: J1 Š D1.H /Š

V3
H , and in fact a theorem

of Hain [8] says that �.J/ is generated as a Lie algebra by the order-1 part
V3

H . In
general, � is not surjective and the Johnson cokernel CsDDs.H /=�.Js/ is an interesting
Sp.H /–module. (See Figure 1 for the known decomposition in low degrees.)

Ultimately, one would like to determine the structure of J, which gives information
about the mapping class group. The larger Lie algebra D.H / is in some sense easier
to understand, and for the purposes of this investigation can be considered “known”.
(For example, the dimensions of Ds.H / are easily calculated.) From this perspective,
identifying the unknown J is the same as identifying the cokernel C. Indeed, in
Morita’s 1999 survey article [14], he listed a series of problems indicating future
directions of research in the mapping class group. One of these problems was to
determine exactly how J includes into D.H / as an Sp–module, and in particular, to
characterize the cokernel of the Johnson homomorphism. Besides the direct application
to the structure of the Johnson filtration of the mapping class group, another source
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of interest in this problem comes from number theory. Nakamura [16] showed that
certain obstructions coming from the Galois group Gal.xQ=Q/ appear in the cokernel
in even orders 2k . Deligne’s motivic conjecture would imply that these obstructions
appear with multiplicity given by the degree-k part of the free graded Lie algebra
L.�3; �5; �7; : : :/ with one generator in each odd degree greater than or equal to 3. All
of the representations coming from this so-called “Galois obstruction” appear as the
trivial Sp–representation Œ0�Sp , giving an infinite family of cokernel obstructions. In
addition to these somewhat mysterious Galois obstructions, two other infinite families
of obstructions that are known: Morita [13] showed that representations Œk�Sp appear
in the cokernel for all odd k � 3, and more recently Enomoto and Satoh [6] showed
that representations Œ14mC1�Sp appear in the cokernel as well. (See Enomoto and
Enomoto [5] for even more recent progress.)

In this paper, we introduce a new invariant for detecting the cokernel,

TrC
W Cs!

M
r�1

�sC2�2r;r .H /;

which simultaneously generalizes the construction of Enomoto and Satoh [6] and of
Conant, Kassabov and Vogtmann [4]. (The superscript “C” stands for “cokernel”.) The
space �sC2�2r;r .H / is defined as a quotient of the dimension-1 part of the hairy graph
complex [4] by certain relators, shown on the right of Figure 3. The set of relations is
large enough so that TrC vanishes on iterated brackets of order-1 elements, but not so
large as to project all the way down to the first homology of the hairy graph complex.
The two indices sC 2� 2r and r refer to the number of hairs and rank of the graph,
respectively.

By projecting to the summands �sC2�2r;r .H / for fixed rank r , one gets a series of
invariants, which we now discuss.

1.1 Rank 1

In Section 4, we show that the r D 1 part �s;1.H / is isomorphic to ŒH˝s �D2s
and

that TrC projects to the Enomoto–Satoh trace TrES
W Cs ! ŒH˝s �D2s

(Theorem 4.2).
(Although their trace takes values in ŒH˝s �Zs

, it possesses an extra Z2 symmetry.)

Let H hsi � H˝s be the intersection of the kernels of all the pairwise contractions
H˝s ! H˝.s�2/ . Then there is a projection � W �sC2�2r;r .H /! �sC2�2r;r hH i,
where the latter space is defined by “taking coefficients in H hsC2�2ri”. A theorem
of [3] implies that the composition � ıTrC is onto. Considering the case r D 1 gives
us the following theorem, which is one of the main results of this paper.
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C1 D C2 D 0

C3 D Œ3�Sp

C4 D Œ212�Sp˚ Œ2�Sp

C5 D Œ5�Sp˚ Œ32�Sp˚ Œ2
21�Sp˚ Œ1

5�Sp˚ 2Œ21�Sp˚ 2Œ13�Sp˚ 2Œ1�Sp

C6 D 2Œ412�Sp˚ Œ3
2�Sp˚ Œ321�Sp˚ Œ313�Sp˚ Œ2

212�Sp˚ 2Œ4�Sp˚ 3Œ31�Sp˚ 3Œ22�Sp

˚ 3Œ212�Sp˚ 2Œ14�Sp˚ Œ2�Sp˚ 5Œ12�Sp˚ 3Œ0�Sp

Figure 1: The Johnson cokernel in low orders: C3 is due jointly to Asada
and Nakamura [1] and Hain [8]; C4 is due to Morita [14], and the remaining
are due to Morita, Sakasai and Suzuki [15].

Theorem There is an epimorphism Cs � ŒH hsi�D2s
, where the dihedral group acts

on H˝s in the natural way, twisted by the nontrivial Z2 representation when s is even.

This theorem vastly generalizes the known results for size s representations in Cs , which
essentially consist of the two series due to Morita and Enomoto and Satoh described
above, and of low-order calculations. We show in Theorem 7.3 that both infinite series
are contained in ŒH hsi�D2s

. Comparing to computer calculations by Morita, Sakasai
and Suzuki [15] shows that ŒH hsi�D2s

contains all size s representations in Cs for
s � 6, which is as far as calculated. A heuristic argument (see Section 7) shows that
“most” representations Œ��Sp appear in ŒH hsi�D2s

. In Theorems 7.5 and 7.6 explicit
large infinite families of representations are constructed.

1.2 Rank 2

Turning now to r � 2, let T .H / be the tensor algebra generated by H . It is a Hopf
algebra with coproduct �, antipode S and multiplication m. In Section 6 we show
that �s�2;2.H / is a quotient of T .H /˝2 by certain relations tied to the Hopf algebra
structure on T .H /:

Theorem We haveM
s�0

�s;2.H /Š ŒTC.H /˝TC.H /�Z2�Z2
=Rel;

where the Z2 �Z2 acts via x˝ y 7! S.x/˝S.y/ and x˝ y 7! S.y/˝S.x/. The
relations Rel are of the form

(1) Œv;x�˝yCx˝ Œv;y�D 0 where v 2H ,
(2) .S ˝m/.�˝ id/.x˝y/Cx˝yC .m˝S/.id˝�/.x˝y/D 0.
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Using this presentation to do computer calculations, we find �s�2;2hH i for s � 8

(Theorem 6.2).

1.3 Comparison to the abelianization of the Lie algebra of symplectic
derivations

Letting Dab
s .H / be the order s part of the abelianization of DC.H /, Hain’s theorem

implies that Cs � Dab
s .H / for s > 1. So the abelianization detects cokernel elements.

A theorem of [3] implies that �sC2r�2;r hH i projects onto the rank-r part of the
abelianization Dab

s .H /, with the rank defined in the sense of [4; 3]. The rank-1 part
of the abelianization consists of Morita’s Œ2mC 1�Sp for m > 1, which does indeed
appear in �2mC1;1hH i as noted above. The rank-2 part of the abelianization consists
of the following representations [3]: for all k > `� 0,

Œ2k; 2`�Sp˝S2k�2`C2 � Dab
2kC2`C2.H /;

Œ2kC 1; 2`C 1�Sp˝M2k�2`C2 � Dab
2kC2`C4.H /;

where Sw and Mw are the vector spaces of weight w cusp forms and modular forms
respectively. Hence, these are detected by

L
s �s�2;2hH i. However

L
s �s�2;2hH i

contains a lot more, as suggested by the calculations of Theorem 6.2. (See also Conant
and Kassabov [2].)

1.4 Higher rank and future directions

The spaces �sC2�2r;r .H / are unwieldy. In [2], we will show there is an epimor-
phism �sC2�2r;r .H /�H 2r�3.Out.Fr /IMsC2�2r;r /, where MsC2�2r;r is a certain
Out.Fr /–module constructed from the tensor algebra T .H /. For rank r D 2, this
implies the following calculations, generalizing the rank-2 abelianization calculations.

Theorem [2] The space ˚s�s�2;2.H / surjects ontoM
k>`�0

S2k�2`C2˝

�
S.2k;2`/.L/

ad.L/ �S.2k;2`/.L/

�
˚

M
k>`�0

M2k�2`C2˝

�
S.2kC1;2`C1/.L/

ad.L/ �S.2kC1;2`C1/.L/

�
;

where L D L.H / is the free metabelian Lie algebra on H and ad.L/ is the adjoint
action of L on the Schur functor S�.L/.

The appearance of modular forms and the free metabelian Lie algebra L.H / in the
Johnson cokernel provides yet another connection to number theory which is not yet
fully understood.
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2 Basic definitions

Fix a base field k of characteristic 0. Let †g;1 be a surface of genus g with one
boundary component. It has free fundamental group generated by embedded curves
x1; : : : ;xg;y1; : : : ;yg with xi ;yi intersecting in one point, and all other intersections
trivial. Throughout the paper we let H DH1.†g;1Ik/, which is a symplectic vector
space. We let h � ; � i denote the symplectic form, and let p1; : : : ;pg; q1; : : : ; qg be the
symplectic basis which is the image of the generating set of the fundamental group. We
say hv;wi is the contraction of v and w . Let Ss be the symmetric group on s letters
and for the groups G 2 fSp.H /;GL.H /;Ssg, let Œ��G be the irreducible representation
of G corresponding to �.

We begin by defining the relevant Lie algebra which is the target of the Johnson
homomorphism.

Definition 2.1 Let Lk.H / be the degree-k part of the free Lie algebra on H . Define
Ds.H / to be the kernel of the bracketing map H ˝ LsC1.H / ! LsC2.H /. Let
D.H /D

L1
sD0 Ds.H / and DC.H /D

L
s�1 Ds.H /. We refer to s as the order of an

element of D.H /.

The space H˝L.H / is canonically isomorphic via the symplectic form to H�˝L.H /

which is isomorphic to the space of derivations Der.L.H //. Under this identification,
the subspace D.H / is identified with Der!.L.H //D fX 2 Der.H / jX! D 0g, where
! D

P
Œpi ; qi �. Thus D.H / is a Lie algebra with bracket coming from Der!.H /.

There is another beautiful interpretation of this Lie algebra in terms of trees:

Definition 2.2 Let T .H / be the vector space of unitrivalent trees where the univalent
vertices are labeled by elements of H and the trivalent vertices each have a specified
cyclic order of incident half-edges, modulo the standard AS, IHX and multilinearity
relations.(See Figure 2 for the multilinearity relation.) Let Tk.H / be the part with k

trivalent vertices. Define a Lie bracket on T .H / as follows. Given two labeled
trees t1; t2 , the bracket Œt1; t2� is defined by summing over joining a univalent vertex
from t1 to one from t2 , multiplying by the contraction of the labels.
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The two spaces Ds.H / and Ts.H / are connected by a map �sW Ts.H /!H˝LsC1.H /

defined by �s.t/ D
P

x `.x/ ˝ tx where the sum runs over univalent vertices x ,
`.x/ 2 H is the label of x , and tx is the element of LsC1.H / represented by the
labeled rooted tree formed by removing the label from x and regarding x as the root.
The image of �s is contained in Ds.H / and gives an isomorphism Ts.H /! Ds.H /

in this characteristic 0 case; see Levine [12].

avC bw v

D a Cb

w

Figure 2: Multilinearity relation in T .H /: here a; b 2 k , v;w 2 V

Now that we understand the target of the Johnson homomorphism, we review the
construction of the homomorphism itself. Let F D �1.†g;1/ be a free group on 2g

generators and given a group G , let Gk denote the k th term of the lower central series
G1 DG and GkC1 D ŒG;Gk �. The Johnson filtration

Mod.g; 1/D J0 � J1 � J2 � � �

of the mapping class group Mod.g; 1/ is defined by letting Js be the kernel of the
homomorphism Mod.g; 1/! Aut.F=FsC1/. The associated graded Js is defined by
Js D Js=JsC1˝k. (The Johnson filtration is a central series, so that the groups Jk are
abelian.) Let JD

L
s�1 Js , where we refer to s as the order of the element.

The group commutator on Mod.g; 1/ induces a Lie algebra structure on J.

It is well known that Mod.g; 1/Š Aut0.F /, where

Aut0.F /D
�
' 2 Aut.F /

ˇ̌̌̌
'

� gY
iD1

Œxi ;yi �

�
D

gY
iD1

Œxi ;yi �

�
:

Definition 2.3 The (generalized) Johnson homomorphism � W J! DC.H / is defined
as follows. Let ' 2 Js . Then ' induces the identity on Aut.F=FsC1/. Hence for
every z 2 F , z�1'.z/ 2 FsC1 , and we can project to get an element Œz�1'.z/� 2

FsC1=FsC2˝kŠ LsC1.H /. Define a map �.'/W H ! LsC1.H / via z 7! Œz�1'.z/�,
where z runs over the standard symplectic basis of H . By the various identifications,
we can regard �.'/ as being in L˝ LsC1.H /. The fact that ' preserves

Qg
iD1

Œxi ;yi �

ensures that �.'/ 2 Ds.H /� L˝ LsC1.H /.

Algebraic & Geometric Topology, Volume 15 (2015)



The Johnson cokernel and the Enomoto–Satoh invariant 807

Proposition 2.4 (Morita) The Johnson homomorphism � W J!DC.H / is an injective
homomorphism of Lie algebras.

The main object of study of this paper is the Johnson cokernel:

Cs D Ds.H /=�.Js/:

More precisely, we are interested in the stable part of the cokernel and we always
assume that 2g D dim.H /� s .

3 The construction

We recall from [3; 4] the definition of the hairy Lie graph complex and the trace map.
The hairy graph complex CkH.H / is defined as the vector space with basis given by
certain types of decorated graphs modulo certain relations.

We begin by describing the generators. Start with a union of k unitrivalent trees with
specified cyclic orders at each trivalent vertex. Then join several pairs of univalent
vertices by edges, called external edges. The univalent vertices of the trees that were
not paired by edges are each labeled by an element of the vector space H . These
labeled vertices correspond to what are called hairs in [4] and such a graph is called
a hairy graph. Note that what we are now calling external edges are called internal
edges in [4] to distinguish them from hairs. In the present context, “external” seems
more appropriate as these edges are “external” to the trees. In what follows, we will
use the graphical convention that external edges are dashed.

Hairy graphs have an orientation, which is defined as a bijection of the trees with the
numbers 1 to k and a direction on each external edge.

The relations are

(1) IHX within trees,

(2) AS within trees,

(3) multilinearity on labels of univalent vertices,

(4) switching an edge’s direction gives a minus sign,

(5) renumbering the trees gives the sign of the permutation.

These last two types of relations explain how changing the decorations of the graph
switches the orientation. Informally CkH.H / is the space you get by joining k elements
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of T .H / by several external edges and giving the resulting object an orientation in the
above sense.

The boundary operator @W CkH.H / ! Ck�1H.H / is defined on hairy graphs by
summing over joining pairs of distinct trees along external edges. The sign and induced
orientation are fixed by the convention that contracting a directed edge from tree 1 to
tree 2 induces the orientation where all edge directions are unchanged, the tree formed
by joining tree 1 and 2, is numbered 1 and all other tree numbers are reduced by 1.

In [4], we showed that the abelianization Dab.H / embeds in H1.H.H // via a map
which we now define. First, define an operator T W CkH.H /! CkH.H / by summing
over adding an external edge to all pairs of univalent vertices of a hairy graph, fixing the
direction arbitrarily and multiplying by the contraction of the two labels. Also define
a natural inclusion �W

Vk T .H /! CkH.H / by regarding t1 ^ � � � ^ tk as a union of
trees with no external edges. The ordering from the wedge converts to a numbering of
the trees as required for the orientation in CkH.H /. Now we can define the trace map
from [4].

Definition 3.1 The trace map TrCKV
W
Vk T .H /! CkH.H / is defined as TrCKV

D

exp.T / ı �.

Unpacking the definition, the trace map TrCKV adds several external edges to a hairy
graph in all possible unordered ways. In [4], TrCKV is shown to be a chain map, which
is injective on homology, so induces an injection from the abelianization to H1.H.H //.

Now to define TrC , consider the subspace S2 � C2H.H / consisting of an order-1 tree
(tripod) which is connected by two or three of its hairs to the other tree, or has two of
its hairs joined by an edge, and the third edge is connected to the other tree. The other
tree may have edges connecting it to itself.

Definition 3.2 The target of TrC is defined as �.H /DC1H.H /=.@.S2/C �.T .H ///.

The �.T .H // term is to eliminate graphs without any edges. Notice that by defini-
tion �.H / surjects onto the part of H1.HH / with at least one edge. See Figure 3 for a
depiction of the three types of relations coming from @.S2/. The first kind says that an
isolated loop is zero. The second kind says that one can slide a hair along an external
edge. The third kind is more complicated, but does not appear until there are at least
two external edges attached.

Now we have all the necessary definitions to define the new trace map:
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(1) @ D

(2)
v

@

v

D

v

�

(3) @ D C C

Figure 3: Relations in �.H /

Definition 3.3 Define TrC
W T .H /!�.H / by the composition:

T .H /

TrC
77

TrCKV
// C1H.H / // // �.H /

Next we show that TrC is well defined on the cokernel of the Johnson homomorphism.

Theorem 3.4 The map TrC vanishes on the image of the Johnson homomorphism in
orders greater than or equal to 2.

Proof By Hain’s theorem, it suffices to show that TrC.Œt;X �/D 0 if t is of order 1

and TrC.X /D 0. Indeed, we claim the formula

TrCŒt;X �D Œt;TrC.X /�C ŒTrC.t/;X �

holds. Assume t and X are single trees. The terms of TrCŒt;X � come in two types.
Those where the added external edges do not join t and X and those where 1 or 2
edges join t and X . In the former case, we get the Œt;TrC.X /�C ŒTrC.t/;X � part
we are interested in. If one edge joins t and X , we have the situation depicted in
Figure 4(1). After applying the trace map, the two indicated terms differ by sliding a
hair over an edge, so cancel in �.H /. If two hairs join, we have the situation depicted
in Figure 4(2), which yields the third @.S2/ relation.

So we have shown that TrCŒt;X � D Œt;TrC.X /�C ŒTrC.t/;X �. Now TrC.t/ is equal
to t plus terms where one edge is added. The t is in �.T .H // and therefore is
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.1/

264v p

q0

;

q
p0

375D v

q0
p0
� q

p v

C � � �

TrC

�!

v

�
v

C � � �

D @.S2/C � � �

.2/ TrC

2664
p00 p

q0

;

q00

q p0

3775D� �

� C � � �

D @.S2/C � � �

Figure 4: Parts of TrCŒt;X � in @.S2/

zero. The second type of term is the first kind of @.S2/ relation, so is zero. Thus
TrCŒt;X �D Œt;TrC X �, which inductively shows that TrC vanishes on iterated brackets
of order-1 elements.

4 Comparison to the ES-trace

The space of connected hairy graphs is graded by the first Betti number (rank) and
also by number of hairs. Let C1;r;sH.H /� C1H.H / and S2;r;s � S2 be the respec-
tive subspaces generated by graphs with b1 D r and s hairs. Define �s;r .H / D

C1;r;sH.H /=@S2;r;s . Then

�.H /D
M

s�0;r�1

�s;r .H /:

In the next theorem we identify �s;1.H / with the target of the Enomoto–Satoh trace.
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Theorem 4.1 There is an isomorphism �s;1.H /Š ŒH˝s �D2s
for s > 1.

Proof Notice that C1;1;sH.H / is spanned by trees with two univalent vertices joined
by an external edge. Using IHX relations, one gets a loop with s labeled hairs attached.
Thus C1;1;sH.H /Š ŒH˝s �Z2

where the Z2 acts by reflecting the loop, and has sign
.�1/sC1 . So it gives v1˝ � � �˝ vs 7! .�1/sC1vs˝ � � �˝ v1 . The slide relations have
the effect v1˝� � �˝vs D vs˝v1˝� � �˝vs�1 , giving us ŒH˝s �D2s

. The loop relation
is a consequence of IHX and slide relations if s > 1:

v

D

v
�

v

Here any tree can, by IHX, be converted into one of the form Œv;X �, where v 2H , so
the picture is sufficiently general. Then the last two terms cancel by a slide relation.

Next we show that TrC projected to �s;1.H / coincides with the ES-trace. First we
show that it possesses an additional Z2 –symmetry.

Theorem 4.2 (1) Define bW H˝s ! H˝s by b.v1 ˝ � � � ˝ vs/ D .�1/sC1vs ˝

� � � ˝ v1 . Then TrES
W Ds.H /! ŒH˝s �Zs

satisfies b TrES
D TrES . Therefore,

without loss of information, TrES takes values in ŒH˝s �D2s
.

(2) The following diagram commutes:

Ts.H /
TrC

//
��

�
��
��

�.H /

��
��

Ds.H /

1
2

TrES

// ŒH˝s �D2s

Proof We use the isomorphism �W Ts.H /! Ds.H /. Let t 2 Ts.H / be a labeled tree,
and consider �.t/D

P
x `.x/˝ tx . We think of this as a sum of choosing a root for

the tree and remembering the label of the root. Satoh’s trace map [18] is defined by the
embeddings Ds.H / ,! H˝ LsC1.H / ,!H ˝H˝sC1 and then contracting the first
two terms to end up in H˝s . Fix a univalent vertex x . Consider what happens if we
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focus on contracting `.x/ with a label on a fixed univalent vertex of tx , say v . We
can rearrange tx so that v is leftmost, as in the following picture:

`.x/˝

v v1

v2

v3

v4

v5 v6

v7

Since we are concentrating on contracting with v , we collect all terms in H˝.sC1/

where v is first. That means that using the relation

X Y

DX ˝Y �Y ˝X;

the trees growing off of the arc joining v and the root are expanded in the same order
they appear. So for example in the picture above we get `.x/˝vv1Œv2; v3�v4Œv5Œv6; v7� �

which contracts to h`.x/; wiv1Œv2; v3�v4Œv5Œv6; v7� �. This is the same element of H˝s

you would get by adding an edge joining x and the vertex labeled w and read off the
word around the cycle running along the direction of the added edge, using the fact that
IHX relations near the cycle translate to ŒX;Y �DXY �YX . Thus TrES �.t/ can be
regarded as summing over adding a directed edge between two leaves of the tree, and
reading off the resulting word as you run around the cycle. The extra Z2 symmetry
comes from the fact that you join two vertices once by an edge running in one direction
and once with an edge running in the opposite direction. This reverses the word, and
yields a sign of .�1/sC1 . (One sign for flipping the order of contraction, and s signs
for the s trivalent vertices of the tree.) This discussion also shows that TrES �.t/ is the
same as the 1–edge part of TrC . The factor of two arises because we only add one
edge for every pair of vertices instead of 2.

5 Surjectivity onto a large submodule of �.H /

We begin by defining an analogue of the hairy graph complex and target space �.H /

where there is a given bijection from the hairs to f1; : : : ; sg as opposed to a labeling of
the hairs by vectors.

Definition 5.1 (1) Let CkHŒs� be the space defined analogously to CkH.H /, but
instead of labeling the hairs by vectors in H , there are s hairs and a fixed
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bijection from these hairs to 1; : : : ; s . The relations are all the same, except
there is no multilinearity. Then CkHŒs� is an Ss –module.

(2) Similarly define S2Œs�� C2HŒs� to be spanned by tripods connected to another
tree, by two or three hairs, as well as tripod with a self-loop connected to a tree.

(3) �Œs� is defined to be C1HŒs�=.@S2Œs�C .trees with no external edges//.

Notice that we have CkHŒs� ˝Ss
H˝s D

L
r Ck;r;sH.H /, and �Œs� ˝Ss

H˝s DL
r �s;r .H /.

Recall that H hsi �H˝s is the intersection of the kernels of all pairwise contractions
H˝s!H˝.s�2/ . Given any partition � of s we recall the following.

Remark 5.2 We have

(1) Œ��Ss
˝Ss

H˝s Š Œ��GL ,

(2) Œ��Ss
˝Ss

H hsi Š Œ��Sp ,

for dim.H / large enough compared to s . (See the textbook of Fulton and Harris [7]
for proofs of these facts.)

Definition 5.3 Define a new complex

CkHhH i D
M

s

CkHŒs�˝Ss
H hsi;

and a new space
�hH i D

M
s

�Œs�˝Ss
H hsi:

By [7], H˝s decomposes as a direct sum of Sp–modules, including H hsi , in a natural
way, so there is a projection H˝s ! H hsi . This gives projections � W CkH.H / �
CkHhhi and � W �.H /��hH i.

The following theorem is a consequence of a more general theorem of [3].

Theorem 5.4 (Conant, Kassabov and Vogtmann) For dim H large enough compared
to s ,

� ıTrCKV
W Ts.H /!

M
r

C1;r;sHhH i

is an isomorphism.

Corollary 5.5 The composition � ıTrC
W Ts.H /!�shH i is an epimorphism.
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Proof Consult the commutative diagram

Ts.H /

99

Š.Theorem 5.4/

%% %%
TrCKV

//
L

r C1;r;sH.H /

��
��

�
// //
L

r C1;r;sHhH i

��
��L

r �s;r .H /
�

// // �hH i

to complete the proof.

Corollary 5.6 In particular TrES surjects onto �s;1hV i Š ŒH
hsi�D2s

.

Also note that by the above remark if �s;r .H / D
L
�m�Œ��GL , then �s;r hH i DL

�m�Œ��Sp , so the GL.H /–representation theory for �.H / determines the Sp.H /

representation theory for �hH i.

6 Presentation for �s;2.H /

To set up the main theorem of this section let T .H / be the tensor (free associative)
algebra and TC.H / the positive degree part of it. T .H / is a Hopf algebra with antipode
S W T .H /!T .H / defined by S.v1 � � � vk/D .�1/kvk � � � v1 for vi 2H . For an index
set I D fi1; : : : ; ikg, let vI D vi1

� � � vik
. The coproduct �W T .H /! T .H /˝T .H /

is defined by
�.vK /D

X
KDI[J

vI ˝ vJ ;

where the sum is over all partitions of K into two disjoint sets I and J . Let mW T .H /˝

T .H /! T .H / be the multiplication operator.

In this section we prove the following theorem:

Theorem 6.1 We haveM
s�0

�s;2.H /Š ŒTC.H /˝TC.H /�Z2�Z2
=Rel;

where the Z2�Z2 acts via vI˝wJ 7!S.vI /˝S.wJ / and vI˝wJ 7!S.wJ /˝S.vI /.
The relations Rel are of the form

(1) Œv0; vI �˝wJ C vI ˝ Œv0; wJ �D 0 where v0 2H ,

(2) .S ˝m/.�˝ id/.vI ˝wJ /C vI ˝wJ C .m˝S/.id˝�/.vI ˝wJ /D 0.
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Proof As in the case of �s;1 we can apply IHX relations so that we have a trivalent
core graph with hair attached. So we have a unitrivalent tree with all of its univalent
vertices joined by external edges in pairs, and to which s hairs are attached. By IHX
relations we can move the hair to the edges of the tree that attach to the external edges,
and by slide relations we can assume that the hairs are all attached on one side of the
external edge. Thus we have two types of generators as depicted in Figure 5. The
subscript e stands for “eyeglasses” and the subscript t stands for “theta.”

(1) Œv1 � � � vmjw1 � � �wn�e D

v1v2
� � �vm w1w2

� � �wn

(2) Œv1 � � � vmjw1 � � �wn�t D

v1v2� � �vm w1w2� � �wn

Figure 5: Generators of �s;2 where mC nD s

By multilinearity, we may extend the symbols Œxjy�e;t to any x;y in the tensor
algebra T .H /. Symmetries of the graphs give rise to the following relations, using
the sliding relations to move hairs back to the bottom of the picture (for notational
convenience, let xvI D S.vI /):

(S1) ŒvI jwJ �e D ŒxvI jwJ �e .
(S2) ŒvI jwJ �e D Œ xwJ jxvI �e .
(S3) ŒvI jwJ �t D ŒxvI j xwJ �t .
(S4) ŒvI jwJ �t D Œ xwJ jxvI �t .

The loop relation gives us (using IHX)

(L) Œ jwJ �t D Œ jwJ �e D 0.

The IHX relation has two effects. (IHX1) relates the theta graph and eyeglass graph.
However, we also used IHX to push hairs to be near the external edge, and the ambiguity
of where to push a hair labeled v0 gives (IHX1) below:

(IHX1) ŒvIv0jwJ �� ŒvI jv0wJ �� Œv0vI jwJ �C ŒvI jwJ v0�D 0 (e or t) deg.v0/D 1.
(IHX2) ŒvI jwJ �e D ŒvI jwJ �t C ŒxvI jwJ �t .
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Finally the boundary of a tripod with three incident edges yields

(TRI) then
P

I[JDK Œ xvI jvJwL�t C ŒvK jwL�t C
P

I[JDLŒvK xwI jwJ �t D 0.

To see this consider Figure 6. A boundary is shown in (1). To move the hair off of the
left edge of the first summand, we repeatedly use the IHX relation shown in (2), to
iteratively build up the terms described in (3).

Using (IHX2) we can express everything in terms of the t generators. (S1) and (S2)
are consistent with (S3) and (S4), so we are left with relations (S3), (S4), (L), (IHX1)
and (TRI). Interpreting ŒvI jwJ � 2 T .H /˝T .H / gives the theorem.

Computer calculations using this presentation yield the following results:

Theorem 6.2 For s � 5, �s�2;2.H /D�s�2;2hH i D 0, we have:

(1) �4;2hH i Š Œ1
4�Sp˚ Œ31�Sp , yielding representations in C6 .

(2) �5;2hH i Š 2Œ311�Sp˚ Œ2
21�Sp˚ Œ213�Sp , yielding representations in C7 .

(3) �6;2hH i Š Œ1
6�˚2Œ51�˚3Œ42�˚ Œ32�˚3Œ321�˚2Œ23�˚2Œ2212�˚2Œ215�˚ Œ16�,

yielding representations in C8 .

7 Representation theory of ŒH hsi�D2s

In this section we analyze the Sp–representation theory of ŒH hsi�D2s
, which is the same

as the GL–representation theory of ŒH˝s �D2s
, which can be analyzed via classical

Schur–Weyl duality and character theory. Hand calculations with characters yield the
following results for low s .

Theorem 7.1 (1) We have ŒH h4i�D8
Š Œ212�Sp , which picks up the Œ212�Sp 2 C4

found by Morita.

(2) We have ŒH h5i�D10
Š Œ5�Sp˚ Œ32�Sp˚ Œ2

21�Sp˚ Œ1
5�Sp . This picks up all of the

size 5 Sp–representations in C5 .

(3) We have ŒH h6i�D12
Š Œ32�Sp˚2Œ412�Sp˚Œ321�Sp˚Œ313�Sp˚Œ2

212�Sp . Comparing
this to computer calculations of C6 due to Morita, Sakasai and Suzuki [15], this
picks up all size 6 representations in C6 .

These calculations are suggestive of the following (somewhat optimistic) conjecture:

Conjecture 7.2 All representations of size s in Cs are contained in ŒH hsi�D2s
.
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.1/ @

v1v2
� � �vm w1w2� � �wn

D

v1v2
� � �vm w1w2 � � �wn

C

v1v2
� � �vm w1w2� � �wn

C

v1v2
� � �vm w1w2� � �wn

.2/

v

D

v

�

v

.3/

v1v2
� � �vm w1w2 � � �wn

D�

X
I[JDf1;:::;mg

xv1
:
:
:

vj

� � �

w1 � � �wn

D�

X
I[JDf1;:::;mg

ŒxvI jvJw1 � � �wn�

v1v2
� � �vm w1w2� � �wn

D�Œv1 � � � vmjw1 � � �wn�

v1v2
� � �vm w1w2� � �wn

�

X
I[JDf1;:::;ng

v1
� � �
vm

� � �

wj

:
:
: xw1

D�

X
I[JDf1;:::;ng

Œv1 � � � vmwI j xwJ �

Figure 6: Deriving the TRI relation
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In the next theorem we analyze the 4 representations of lowest complexity, showing
that we pick up the Enomoto and Satoh and Morita representations.

Theorem 7.3 (1) The representations Œ1s �Sp only occur when s D 4mC 1, and in
that case with multiplicity one. These are the Enomoto–Satoh terms contained in
ŒH h4mC1i�D2.4mC1/

.

(2) The representations Œs�Sp only occur when s D 2mC 1, and in that case with
multiplicity one. These are the Morita terms contained in ŒH h2mC1i�D2.2mC1/

.

(3) The representations Œs� 1; 1�Sp and Œ2; 1s�2�Sp do not occur in ŒH hsi�D2s
.

Proof For the first statement, it suffices to examine the multiplicity of Œ1s �GL contained
in ŒH˝.s/�D2s

. Let a; b be generators of D2s . Then

a � .x1 ^ � � � ^xs/D x2 ^ � � � ^xs ^x1 D .�1/s�1x1 ^ � � � ^xs;

b � .x1 ^ � � � ^xs/D .�1/sC1xs ^ � � � ^x1 D .�1/sC1Cbs=2cx1 ^ � � � ^xs:

So we need s�1 and sC1Cbs=2c both even, which occurs if and only if sD 4mC1.

The second statement is proven similarly.

For the third statement, one considers the exact sequences

0! Œs� 1; 1�GL! S s�1.H /˝H ! S s.H /! 0;

0! Œ2; 1s�2�GL!
ŝ�1

.H /˝H !
ŝ
.H /! 0;

checking that the D2s coinvariants of S s�1.H /˝H and
Vs�1

.H /˝H coincide
with those of S s.H / and

Vs
.H / respectively.

Next we prove a convenient proposition which is instrumental in calculating the D2s

coinvariants of a representation Œ��D2s
.

Proposition 7.4 In the untwisted case, the coinvariants .Œ��Ss
/D2s

have dimension

1

2s

X
g2D2s

��.g/;

where �� is the character for Œ��Ss
. In the case where D2s acts with the Z2 twist, the

dimension is
1

2s

X
g2D2s

�.g/��.g/;

where � W D2s! f˙1g maps a 7! 1; b 7! �1.
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Proof Given a character � for the dihedral group, define
R
� D 1

2s

P
g2D2s

�.g/.
Consulting the character tables for the dihedral group (see James and Liebeck [9, Sec-
tion 18.3]), for each irreducible character �, we haveZ

�D

�
1 if � is the character for the trivial representation,
0 otherwise.

So decomposing Œ��Ss
as a direct sum of irreducible D2s –modules, and writing the

character �� as a sum of the corresponding dihedral characters, the result follows. The
twisted case follows by a similar analysis.

It is a remarkable fact that for symmetric group elements � with large support,
��.�/ � ��.1/ (see eg Roichman [17] and Larsen and Shalev [11]). Since ele-
ments of the dihedral group fix at most two points, this implies that the multiplicities
of the D2n coinvariants appearing in the previous proposition are approximately
1

2n
��.1/ D

1
2n

dim.Œ��Sn
/. For “most” �, we have dimŒ��Sn

� 2n, and so for such
representations Œ��Sn

appears in ŒH hni�D2n
and thus in Cn . This heuristic argument

can be made precise by examining the actual constants involved in the estimates,
constructing infinite families of nonzero representations.

As an exercise we work out the exact multiplicities in a couple of different cases.
Similar calculations appear in [5].

Theorem 7.5 Let p � 3 be prime. Let ˛k D
�p

k

�
�
� p
k�1

�
. If k > 1 is odd, then

Œk;p�k�Sp appears with multiplicity ˛k=.2p/ in Cp . If kD 2m, let ˇmD
�
.p�1/=2

m

�
��

.p�1/=2
m�1

�
. Then Œk;p� k�Sp appears with multiplicity .˛2mCˇm/=2 in Cp .

Proof Given the partition �D .k;p�k/, it is easy to calculate
R
� using the Frobenius

character formula. The values of the character on the conjugacy classes 1; ar ; b are

��.1/D

�
p

k

�
�

�
p

k � 1

�
;

��.a
r /D

�
�1 k D 1;

0 k � 2;

��.b/D

�
0 k odd,�
.p�1/=2

m

�
�
�
.p�1/=2

m�1

�
k D 2m:

Then
R
�� D

1
2p
.��.1/C .p� 1/��.a

r /Cp��.b//, which yields the multiplicities
stated in the theorem.

In the next theorem, we consider order 2p where p is prime in order to pick up some
even-order representations. Again, for simplicity we restrict to 2 rows.
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Theorem 7.6 Let p � 3 be prime. For 1 < k � p , the representation Œ2p � k; k�Sp

appears in C2p with multiplicity

1

4p

��
2p

k

�
�

�
2p

k � 1

�
C.�1/k.pC1/

�
p

m

�
�p

�
p� 2

m

�
Cp

�
p� 2

m� 1

�
C2.p�1/ıp;k

�
;

where mD b.k=2/c, and ıp;k is equal to 0 unless p D k , in which case it is 1.

Proof As in the proof of Theorem 7.5, we calculate 1
2.2p/

P
g2D2.2p/

�.g/��.g/. The
conjugacy classes for D2p and their sizes are written down in Table 1. The dimensions
of the D2.2p/ coinvariants are then

1
4p
.��.1/C��.a

p/C .p� 1/��.a
2rC1/C .p� 1/��.a

2r /�p��.b/�p��.ab//:

On the symmetric group side, we need to compute �� for conjugacy classes of
1; a; a2; ap; b; ab where 1 has 2p fixed points, a has 1 2p–cycle, a2 has 2 p–
cycles, ap has p 2–cycles, b has p 2–cycles and ab has p�2 2–cycles and 2 fixed
points. Using the Frobenius character formula, we get the values in the chart.

element of 1 ap ar , ar , b ab
D2.2p/ r odd r even

size of 1 1 p�1 p�1 p p
conjugacy class
�Œ2p�1;1� 2p�1 �1 �1 �1 �1 1

�Œ2p�2m;2m�

�
2p
2m

�
�
�

2p
2m�1

� �
p
m

�
0 0

�
p
m

� �
p�2

m

�
�
�

p�2
m�1

�
�Œ2p�2m�1;2mC1�

�
2p

2mC1

�
�
�

2p
2m

�
�
�

p
m

�
0 0 �

�
p
m

� �
p�2

m

�
�
�

p�2
m�1

�
�Œp;p�

�
2p
p

�
�
�

2p
p�1

�
�
�

p
m

�
0 2 �

�
p
m

� �
p�2

m

�
�
�

p�2
m�1

�
Table 1: Characters for Œ2p � k; k�Sp evaluated on conjugacy classes
of D2.2p/ : in the last row, suppose p D 2mC 1 .

References
[1] M Asada, H Nakamura, On graded quotient modules of mapping class groups of

surfaces, Israel J. Math. 90 (1995) 93–113 MR1336318
[2] J Conant, M Kassabov, Hopf algebras and invariants of the Johnson cokernel, in

preparation
[3] J Conant, M Kassabov, K Vogtmann, Higher hairy graph homology, to appear in

Geom. Dedicata
[4] J Conant, M Kassabov, K Vogtmann, Hairy graphs and the unstable homology of

Mod.g; s/ , Out.Fn/ and Aut.Fn/ , J. Topol. 6 (2013) 119–153 MR3029423

Algebraic & Geometric Topology, Volume 15 (2015)

http://dx.doi.org/10.1007/BF02783208
http://dx.doi.org/10.1007/BF02783208
http://www.ams.org/mathscinet-getitem?mr=1336318
http://dx.doi.org/10.1112/jtopol/jts031
http://dx.doi.org/10.1112/jtopol/jts031
http://www.ams.org/mathscinet-getitem?mr=3029423


The Johnson cokernel and the Enomoto–Satoh invariant 821

[5] H Enomoto, N Enomoto, Sp–irreducible components in the Johnson cokernels of the
mapping class groups of surfaces, I, Journal of Lie Theory 24 (2014) 687–704

[6] N Enomoto, T Satoh, New series in the Johnson cokernels of the mapping class groups
of surfaces, Algebr. Geom. Topol. 14 (2014) 627–669 MR3159965

[7] W Fulton, J Harris, Representation theory, Graduate Texts in Math. 129, Springer,
New York (1991) MR1153249

[8] R Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997)
597–651 MR1431828

[9] G James, M Liebeck, Representations and characters of groups, Cambridge Univ.
Press (1993) MR1237401

[10] D Johnson, A survey of the Torelli group, from: “Low-dimensional topology”,
(S J Lomonaco, Jr, editor), Contemp. Math. 20, Amer. Math. Soc. (1983) 165–179
MR718141

[11] M Larsen, A Shalev, Characters of symmetric groups: Sharp bounds and applications,
Invent. Math. 174 (2008) 645–687 MR2453603

[12] J Levine, Addendum and correction to: “Homology cylinders: An enlargement of the
mapping class group” [Algebr. Geom. Topol. 1 (2001), 243–270], Algebr. Geom. Topol.
2 (2002) 1197–1204 MR1943338

[13] S Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke
Math. J. 70 (1993) 699–726 MR1224104

[14] S Morita, Structure of the mapping class groups of surfaces: A survey and a prospect,
from: “Proceedings of the Kirbyfest”, (J Hass, M Scharlemann, editors), Geom. Topol.
Monogr. 2 (1999) 349–406 MR1734418

[15] S Morita, T Sakasai, M Suzuki, Slides from presentation at Univ. Tokyo (2013)
[16] H Nakamura, Coupling of universal monodromy representations of Galois–Teich-

müller modular groups, Math. Ann. 304 (1996) 99–119 MR1367885
[17] Y Roichman, Upper bound on the characters of the symmetric groups, Invent. Math.

125 (1996) 451–485 MR1400314
[18] T Satoh, On the lower central series of the IA–automorphism group of a free group, J.

Pure Appl. Algebra 216 (2012) 709–717 MR2864772

Department of Mathematics, University of Tennessee
227 Ayres Hall, 1403 Circle Drive, Knoxville, TN 37996, USA

jconant@utk.edu

http://www.math.utk.edu/~jconant/

Received: 23 December 2013 Revised: 5 July 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/agt.2014.14.627
http://dx.doi.org/10.2140/agt.2014.14.627
http://www.ams.org/mathscinet-getitem?mr=3159965
http://dx.doi.org/10.1007/978-1-4612-0979-9
http://www.ams.org/mathscinet-getitem?mr=1153249
http://dx.doi.org/10.1090/S0894-0347-97-00235-X
http://www.ams.org/mathscinet-getitem?mr=1431828
http://www.ams.org/mathscinet-getitem?mr=1237401
http://dx.doi.org/10.1090/conm/020/718141
http://www.ams.org/mathscinet-getitem?mr=718141
http://dx.doi.org/10.1007/s00222-008-0145-7
http://www.ams.org/mathscinet-getitem?mr=2453603
http://dx.doi.org/10.2140/agt.2002.2.1197
http://dx.doi.org/10.2140/agt.2002.2.1197
http://www.ams.org/mathscinet-getitem?mr=1943338
http://dx.doi.org/10.1215/S0012-7094-93-07017-2
http://www.ams.org/mathscinet-getitem?mr=1224104
http://dx.doi.org/10.2140/gtm.1999.2.349
http://www.ams.org/mathscinet-getitem?mr=1734418
http://dx.doi.org/10.1007/BF01446287
http://dx.doi.org/10.1007/BF01446287
http://www.ams.org/mathscinet-getitem?mr=1367885
http://dx.doi.org/10.1007/s002220050083
http://www.ams.org/mathscinet-getitem?mr=1400314
http://dx.doi.org/10.1016/j.jpaa.2011.08.006
http://www.ams.org/mathscinet-getitem?mr=2864772
mailto:jconant@utk.edu
http://www.math.utk.edu/~jconant/
http://msp.org
http://msp.org



	1. Introduction
	1.1. Rank 1
	1.2. Rank 2
	1.3. Comparison to the abelianization of the Lie algebra of symplectic derivations
	1.4. Higher rank and future directions

	2. Basic definitions
	3. The construction
	4. Comparison to the ES-trace
	5. Surjectivity onto a large submodule of (H)
	6. Presentation for Omega_s,2(H)
	7. Representation theory
	References

