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Semitopologization in motivic
homotopy theory and applications

AMALENDU KRISHNA

JINHYUN PARK

We study the semitopologization functor of Friedlander and Walker from the per-
spective of motivic homotopy theory. We construct a triangulated endofunctor on
the stable motivic homotopy category SH.C/ , which we call homotopy semitopolo-
gization. As applications, we discuss the representability of several semitopological
cohomology theories in SH.C/ , a construction of a semitopological analogue of
algebraic cobordism and a construction of Atiyah–Hirzebruch type spectral sequences
for this theory.

14F42; 19E08

1 Introduction

The goal of this paper is to study semitopological cohomology theories such as semitopo-
logical K–theory of Friedlander and Walker [9] and morphic cohomology of Friedlander
and Lawson [5] from the perspective of motivic homotopy theory. One feature of the
semitopological theories is that they can be obtained as semitopologizations of other the-
ories, such as motivic cohomology or algebraic K–theory, as pioneered by Friedlander
and Walker [8], but semitopologization does not respect all motivic weak-equivalences,
so that it is not an endofunctor on motivic homotopy categories. Nonetheless, we show
that it induces a derived functor, call it homotopy semitopologization, using the fact that
semitopologization does respect at least objectwise weak-equivalences (see Section 5.1).
So we first ask when a motivic weak-equivalence may become an objectwise one. After
a review of motivic homotopy theory in Section 2, we answer that question in Section 3:

Theorem 1.0.1 A motivic weak-equivalence E!F of A1 –BG presheaves on SmS is
an objectwise weak-equivalence. Let T D .P1;1/. A stable motivic weak-equivalence
E! F of A1 –BG motivic �T –bispectra on SmS is a T–levelwise objectwise weak-
equivalence.
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In Sections 4 and 5, we show that these objects where motivic weak-equivalences
behave well are closed under the semitopologization, and we define in Section 6 the
derived functor on the stable motivic homotopy category SH.C/:

Theorem 1.0.2 There is a triangulated endofunctor hostW SH.C/! SH.C/ that co-
incides with Friedlander–Walker semitopologization on A1 –BG motivic �T –bispectra.

Using host, in Sections 7 and 8 we prove the representability of the semitopological
K–theory and the morphic cohomology in SH.C/. In Section 9 we define a semitopo-
logical analogue of the algebraic cobordism of Voevodsky [41] by simply homotopy
semitopologizing MGL:

Theorem 1.0.3 The semitopological K–theory and the morphic cohomology are rep-
resentable in SH.C/. There is a semitopological cobordism MGLsst as a cohomology
theory on SmC , with a natural transformation MGL ! MGLsst that becomes an
isomorphism with finite coefficients. For X 2 SmC and n� 0, there is a spectral se-
quence E

p;q
2
.n/DLn�qH p�q.X /˝Z Lq)MGLpCq;n

sst .X /. This spectral sequence
degenerates after tensoring with Q.

Conventions and notation When S is a noetherian scheme of finite Krull dimension,
an S –scheme is a separated scheme of finite type over S . The category of S –schemes
is SchS , while its subcategory of smooth schemes is SmS . A variety over k is
a reduced k –scheme, not necessarily quasiprojective. The category of k –varieties
is Vark .

Let Set, Spc and Spc� be the categories of sets, simplicial sets and pointed simplicial
sets. Let Spt be the category of Bousfield–Friedlander spectra [2] (see Section 2.2).
The set of maps K!L in Spc� is Hom�.K;L/.

The symbol � is used for the following, and no confusion should arise. First, � is
the category whose objects are Œn� WD f0; : : : ; ng for n � 0 and the morphisms are
nondecreasing set functions. The notation �Œn� is the simplicial set HomSet.�; Œn�/ by
Yoneda. The notation �n

>
is the topological n–simplex f.t0; : : : ; tn/ 2RnC1 j 0� ti �

1;
P

i ti D 1g, while �n is the algebraic n–simplex Spec.kŒt0; : : : ; tn�=
P

i ti � 1/.

2 Recollection of motivic homotopy theory

We review basics of motivic homotopy theory from Jardine [18], Morel and Voevod-
sky [32] and Morel [30]. Throughout Sections 2 and 3, let S be a fixed noetherian
scheme of finite Krull dimension.
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2.1 Motivic spaces

We regard an object of Spc as a space, that of Spc� as a pointed space. A motivic space
over S is a simplicial presheaf on SmS . A pointed motivic space is a pointed simplicial
presheaf on SmS . Let Spc.S/ and Spc�.S/ be the categories of unpointed and pointed
motivic spaces. A presheaf of sets on SmS is a motivic space of simplicial dimension
zero. Each X 2 SmS is a motivic space by Yoneda embedding. By XC , we mean
XqS 2Spc�.S/. Each (pointed) space K is a (pointed) motivic space, being a constant
presheaf on SmS . For U 2 Spc�.S/, the suspension †U W Spc�.S/! Spc�.S/ sends
E to E^U . For U D S1; .Gm; f1g/ and T D .P1;1/, we write †U as †s; †t and
†T . For E;F in Spc.S/ and in Spc�.S/, let Hom.E;F / and Hom�.E;F / be the
internal hom presheaves of objects in Spc and Spc� . For E 2 Spc�.S/, the functor
Hom�.E;�/ on Spc� is denoted by �E.�/. For E D S1 and .Gm; 1/, we write
�E.�/ as �s.�/ and �t .�/.

2.2 S 1–stable motivic homotopy category

Recall (see [18, Theorem 1.1]) that Spc.S/ is a proper simplicial cellular closed model
category, where a map f W E!F is a Nisnevich local weak-equivalence if all induced
Nisnevich stalk maps Ex ! Fx are weak-equivalences of Spc, while cofibrations
are monomorphisms, and Nisnevich fibrations are defined in terms of the right lifting
property with respect to all trivial cofibrations. A similar model structure on Spc�.S/
exists. Inverting the Nisnevich local weak-equivalences, we get the homotopy categories
HNis.S/ and HNis

� .S/. For E;F 2 Spc�.S/, let ŒE;F �Nis WD HomHNis
� .S/

.E;F /.
See [18; 32] for more details.

A spectrum, or an S1 –spectrum, is a sequence .E0;E1; : : :/, Ei 2 Spc� , with mor-
phisms S1 ^En!EnC1 in Spc� . The category of spectra is Spt, and the category
of presheaves of spectra on SmS is Spt.S/. An object of Spt.S/ is called a motivic
spectrum.

2.2.1 Nisnevich model structure on motivic spectra over S A morphism f W E!

F in Spt.S/ is an objectwise weak-equivalence if for each U 2 SmS the map
f .U /W E.U / ! F.U / is an S1 –stable weak-equivalence in Spt. A morphism
f W E ! F in Spt.S/ is a Nisnevich local weak-equivalence if for each U 2 SmS

and x 2 U the induced map fx W Ex! Fx on the Nisnevich stalks is an S1 –stable
weak-equivalence in Spt. A map f W E ! F in Spt.S/ is a cofibration if f0 is a
monomorphism and EnC1qS1^En

S1^Fn!FnC1 is a monomorphism in Spc.S/ for
each n� 0. Equivalently, the maps En! Fn and S1^ .Fn=En/! FnC1=EnC1 are
monomorphisms in Spc.S/ for each n� 0. A Nisnevich fibration in Spt.S/ is a map
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with the right lifting property with respect to all trivial cofibrations. Giving a cofibration
E!F in Spt.S/ is equal to giving cofibrations E.U /!F.U / in Spt. A morphism
E! F in Spt.S/ is a Nisnevich local weak-equivalence if and only if the induced
map of Nisnevich sheaves associated to the presheaves U 7! �n.E.U //; �n.F.U //,
is an isomorphism for all n 2 Z. Recall:

Theorem 2.2.1 (Jardine [17, Theorem 2.34] and Morel [30, Lemma 2.3.6]) The
above Nisnevich local weak-equivalences, cofibrations and Nisnevich fibrations define
a proper simplicial closed model structure on Spt.S/. An object E is cofibrant if and
only if the maps S1 ^En! EnC1 are monomorphisms. An object E is Nisnevich
fibrant if and only if each En is a Nisnevich fibrant pointed motivic space and the
adjoint maps En!�1

s EnC1 are Nisnevich local weak-equivalences.

For each E2Spc�.S/, the motivic spectrum †1s ED .E; †1
s E; †2

s E; : : :/ is cofibrant.
The homotopy category with respect to the above Nisnevich local injective model
structure is SHNis

S1 .S/. For E;F 2 Spt.S/, let ŒE;F �Nis WD HomSHNis
S1
.S/.E;F /.

2.2.2 Motivic model structure on motivic spectra over S The homotopy category
with respect to the motivic model structure (see [18]) on Spc�.S/ is denoted by H�.S/,
and we let ŒE;F �A1 WD HomH�.S/.E;F /. We recall from [30, Section 4], the motivic
model structure on Spt.S/. We say Z 2Spt.S/ is A1 –local if for any E 2Spt.S/, the
projection E^A1

C!E induces an isomorphism of groups ŒE;Z�Nis' ŒE^A1
C;Z�Nis .

A morphism f W E! F in Spt.S/ is an S1 –stable motivic weak-equivalence if for
each A1 –local Z , the induced map f �W ŒF;Z�Nis! ŒE;Z�Nis is an isomorphism. We
often say that f is a motivic weak-equivalence of motivic spectra, for simplicity. The
motivic weak-equivalences, cofibrations (as in Section 2.2.1) and motivic fibrations
(given by the right lifting property with respect to all trivial cofibrations) define a closed
model structure on Spt.S/, called the S1 –stable motivic model structure. This model
structure is the left localization of the Nisnevich local injective model structure with
respect to the maps E^A1

C!E for E 2Spt.S/. By Hirschhorn [14, Proposition 3.4]
and Theorem 2.2.1, the motivic model structure on Spt.S/ is proper and simplicial. A
motivic spectrum is motivic fibrant if and only if it is Nisnevich fibrant and A1 –local.
Let SHS1.S/ be the homotopy category of Spt.S/ with respect to the S1 –stable
motivic model structure. This model structure is equivalent to the one obtained by
stabilizing the motivic model structure on Spc�.S/ with respect to †s , as described
in [18, Theorem 1.1]. It follows that E 2 Spt.S/ is motivic fibrant if and only if it is
levelwise motivic fibrant in the motivic model structure on Spc�.S/, and each map
En!�sEnC1 is a motivic weak-equivalence. By [30, Proposition 3.1.1], the category
SHS1.S/ is triangulated, where the shift functor E 7!EŒ1� is †s . We let ŒE;F �A1 WD
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HomSH
S1 .S/.E;F /. We have a pair of adjoint functors †1s W Spc�.S/$Spt.S/ WEv0

s

given by †1s .E/D .E; †sE; †2
s E; : : :/ and Ev0

s .F /D F0 . The functor †1s clearly
preserves cofibrations. For E 2 Spc�.S/;F 2 Spt.S/ and p 2 Z, there are natural
isomorphisms (cf [41, Theorem 5.2])

(2.2.1) Œ†1s EŒp�;F �? ' colim
n��p

ŒSnCp
^E;Fn�?; ?D Nis or A1;

so that the functor †1s preserves motivic weak-equivalences. Thus, the pair .†1s ;Ev0
s /

forms a Quillen pair, and one has adjoint functors †1s W H�.S/$ SHS1.S/ WR Ev0
s .

2.3 Stable motivic homotopy category

The stable motivic homotopy category SH.S/ was first constructed in [41]. It has
several models. We review two such models. For F 2 Spt.S/ and E 2 Spc�.S/,
we let †EF denote the motivic spectrum .F0 ^E;F1 ^E; : : :/. For E D S1 , the
spectrum †EF is denoted by †sF . Let T D .P1;1/.

2.3.1 .s;p/–bispectra model Recall from Levine [23, Section 8] that an .s; p/–
bispectrum over S is a collection E D fEm;n 2 Spc�.S/ jm; n� 0g with horizontal
maps †sEm;n!EmC1;n and vertical maps †T Em;n!Em;nC1 such that the hori-
zontal and the vertical maps commute. We regard it as a sequence .E0;E1; : : :/, with
the bonding maps †T En!EnC1 , where En 2 Spt.S/ is E�;n WD .E0;n;E1;n; : : :/.
Let Spt.s;p/.S/ be the category of .s; p/–bispectra over S . Given E 2 Spt.s;p/.S/
and p; q 2 Z, define �p;q.E/ to be the presheaf

U 7! .�p;q.E//.U /D colimn HomSH
S1 .S/.†

p�2q
s †

qCn
T

†1s UC;En/:

We call a morphism f W E!F in Spt.s;p/.S/ a stable motivic weak-equivalence if the
induced morphism f�W �p;q.E/! �p;q.F / of presheaves is a stalkwise isomorphism
of groups on .SmS /Nis . We often drop the word stable for simplicity. There is a
closed model structure on Spt.s;p/.S/ (cf Hovey [15, Section 3] and [23, Section 8.2]),
whose weak-equivalences are stable motivic weak-equivalences, called the stable
motivic model structure. By [15, Proposition 1.14], this model structure is obtained
as a Bousfield localization of the levelwise model structure on Spt.s;p/.S/ in which
weak-equivalences (fibrations) are T–levelwise S1 –stable motivic weak-equivalences
(motivic fibrations) in Spt.S/, and E ! F is a cofibration if the maps E0 ! F0

and EnC1q†T En
†T Fn! FnC1 are cofibrations in the S1 –stable motivic model

structure on Spt.S/ for n � 0. This model structure on Spt.s;p/.S/ is proper and
simplicial. By [15, Theorem 3.4], we know E 2 Spt.s;p/.S/ is stable motivic fibrant if
and only if each En is S1 –stable motivic fibrant and the maps En!�T EnC1 are
S1 –stable motivic weak-equivalences for n� 0.
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2.3.2 T–spectra model A T–spectrum E over S is a collection .E0;E1; : : :/,
Ei 2 Spc�.S/, with the maps †T En!EnC1 . They form the category SptT .S/. For
p; q 2 Z, define the presheaf �p;q.E/ on SmS by

U 7! .�p;q.E//.U /D colimn HomH�.S/.†
p�2q
s †

qCn
T

UC;En/:

There is a proper simplicial closed model structure on SptT .S/ in which E ! F

is a weak-equivalence if the induced map f�W �p;q.E/ ! �p;q.F / is a stalkwise
isomorphism of groups on .SmS /Nis . This model structure is obtained as a Bousfield
localization of the model structure on SptT .S/ where weak-equivalences (fibrations)
are levelwise motivic weak-equivalences (motivic fibrations) in Spc�.S/. Given a mo-
tivic spectrum E , we let �1s E WD colimm�

m
s Em . For a T–spectrum E , let �1

T
E WD

colimm�
m
T

Em . A T–spectrum E D .E0;E1; : : :/ defines an .s; p/–bispectrum
E WD .†1s E0; †

1
s E1; : : :/ by taking the levelwise simplicial infinite suspensions.

Conversely, given an .s; p/–bispectrum F D .F0;F1; : : :/, we obtain a T–spectrum
F D .�1s F0; �

1
s F1; : : :/. The correspondence †1s W SptT .S/$ Spt.s;p/.S/ W�1s

induces an equivalence between the homotopy categories of SptT .S/ and Spt.s;p/.S/.
We write SH.S/ for the common homotopy category. For X 2Spc�.S/, one associates
the infinite T–suspension spectrum, defined by †1

T
X WD .X; †T X; †2

T
X; : : :/, with

the identity bonding maps

T ^T ^.n�1/
^X ! T n

^X:

We have suspension operations †T ; †s; †t to Spt.s;p/.S/ and SptT .S/. The cate-
gory SH.S/ is triangulated with the shift functor E 7! EŒ1� given by †s , and all
functors †T ; †s; †t are autoequivalences. For E;F 2 Spt.s;p/.S/, let ŒE;F �A1 WD

HomSH.S/.E;F /. There is a Quillen pair †1
T
W Spt.S/$ Spt.s;p/.S/ W�1T given by

†1s .E/D .E; †T E; †2
T

E; : : :/ and �1
T
.F /D .�1

T
F0;�; �

1
T

F1;�; : : :/. This yields
an adjoint pair of derived functors

†1T W SHS1.S/$ SH.S/ WR�1T :

For F 2 Spt.s;p/.S/, one has R�1
T
.F /D�1

T
. zF /D zF0 , where F ! zF is a stable

motivic fibrant replacement of F , and zF0 2 Spt.S/ is given by . zF0;0; zF1;0; : : :/.

2.3.3 Cohomology theories Given E;F 2 SH.S/, the E–cohomology of F is
defined by Ea;b.F / WD ŒF; †a;bE�A1 , where a; b 2 Z, †a;bE WD †a�b

s †b
t E . For

X 2 SmS , using the object †1
T

XC 2 SH.S/ we define

Ea;b.X / WDEa;b.†1T XC/D Œ†
1
T XC; †

a;bE�A1 D Œ†1T †
1
s XC; †

a�2b
s †b

T E�A1 :
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3 Motivic descent for A1–BG presheaves

Recall that a presheaf E on SmS of objects in Spc, Spc� or Spt has the BG property
if E turns every Nisnevich square (see [32, Definition 3.1.5]) in SmS ,

(3.0.1)

W //

��

U

p

��
V

j // X;

into a homotopy Cartesian square in Spc, Spc� or Spt. Recall the following, which
gives a necessary and sufficient condition for a Nisnevich fibrant replacement to
be an objectwise weak-equivalence; see [32, Proposition 3.1.16; 18, Theorem 1.3,
Corollary 1.4].

Theorem 3.0.1 (Nisnevich descent theorem) A presheaf E on SmS of objects in
Spc, Spc� or Spt is BG if and only if every Nisnevich fibrant replacement E! F is
an objectwise weak-equivalence. A Nisnevich local weak-equivalence E! F of BG
presheaves of objects in Spc, Spc� or Spt is an objectwise weak-equivalence.

3.1 Motivic descent theorem

We establish a necessary and sufficient condition for a motivic fibrant replacement to
be an objectwise weak-equivalence. Recall the following notion from Morel [31, Defi-
nition A.5]:

Definition 3.1.1 Let E be a presheaf on SmS of objects in Spc, Spc� or Spt. We
say E is A1 –weak-invariant if the map E.X /!E.X �A1/ induced by the projection
is a weak-equivalence for all X 2 SmS . We say E is A1 –BG if it is BG and A1 –weak-
invariant. We say E is quasifibrant (resp. motivic quasifibrant) if every Nisnevich
fibrant (resp. motivic fibrant) replacement E ! F of E is an objectwise weak-
equivalence.

Theorem 3.0.1 says E is BG if and only if E is quasifibrant. Let us begin with:

Lemma 3.1.2 Let X 2 SmS .

(1) If F in Spc�.S/ (resp. Spt.S/) is Nisnevich fibrant, then we have a bijection
ŒSp ^XC;F �Nis ' �p.F.X // (resp. Œ†1s XCŒp�;F �Nis ' �p.F.X //).

(2) If F in Spc�.S/ (resp. Spt.S/) is motivic fibrant, then we have a bijection
ŒSp ^XC;F �A1 ' �p.F.X // (resp. Œ†1s XCŒp�;F �A1 ' �p.F.X //).
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Proof For X 2SmS , the functors EvX W Spc�.S/$Spc� WsmX given by .EvX W F 7!

F.X // and .smX W K 7!K ^XC/ form a Quillen pair with respect to the Nisnevich
local injective model structure and motivic model structure on Spc�.S/. In particular,
their derived functors induce an adjoint pair of functors on the homotopy categories. The
first isomorphism of .1/ follows immediately from this if F 2 Spc�.S/ is Nisnevich
fibrant and the first isomorphism of .2/ follows if F 2 Spc�.S/ is motivic fibrant.
The second isomorphisms of .1/ and .2/ follow from the first set of isomorphisms by
applying Theorem 2.2.1 and (2.2.1).

The following result follows immediately from Theorem 3.0.1 and [30, Lemma 4.1.4].

Lemma 3.1.3 Let E be a BG presheaf on SmS of objects in Spc, Spc� or Spt.

(1) Let E!E0 be a Nisnevich fibrant replacement. Then E is A1 –weak-invariant
if and only if so is E0 .

(2) E is A1 –weak-invariant if and only if E is A1 –local.

Lemma 3.1.4 A motivic fibrant replacement of an A1 –BG presheaf on SmS of objects
in Spc, Spc� or Spt is also a Nisnevich fibrant replacement.

Proof We consider the case of presheaves of spectra as the other cases are similar.
Let f W E! F be a motivic fibrant replacement. Since F is Nisnevich fibrant and
since cofibrations in the motivic model structure are Nisnevich cofibrations, it suffices
to show that f is a Nisnevich local weak-equivalence. Factor f as a composition
f 0 ıgW E!E0! F , where g is a Nisnevich trivial cofibration (thus a motivic trivial
cofibration) and f 0 is a Nisnevich fibration. By the two-out-of-three axiom, f 0 is
a motivic weak-equivalence. We need to show that f 0 is a Nisnevich local weak-
equivalence. Since F is Nisnevich fibrant and f 0 is a Nisnevich fibration, it follows
that E0 is Nisnevich fibrant. Thus, g defines a Nisnevich fibrant replacement of E .
Moreover, by Lemma 3.1.3, we see that E0 is A1 –local. Hence E0 is motivic fibrant.
Now by Lemma 3.1.2, f 0W E0!F is an objectwise weak-equivalence, thus a Nisnevich
local weak-equivalence.

Theorem 3.1.5 (Motivic descent theorem) Let E be a presheaf on SmS of objects
in Spc, Spc� or Spt. Then E is A1 –BG if and only if it is motivic quasifibrant. A
motivic weak-equivalence of A1 –BG presheaves is an objectwise weak-equivalence.

Proof Suppose that E is motivic quasifibrant. Let f W E ! E0 be a motivic fi-
brant replacement. Then E0 is Nisnevich fibrant (thus BG) and A1 –local. So, by
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Lemma 3.1.3, E0 is A1 –BG Since E is motivic quasifibrant, f is an objectwise weak-
equivalence, thus a Nisnevich local weak-equivalence. So, by Theorem 3.0.1, E is BG,
and by Lemma 3.1.3, it is A1 –weak-invariant, that is, E is A1 –BG. Conversely, suppose
E is an A1 –BG Let f W E!E0 be a motivic fibrant replacement. By Lemma 3.1.4,
f is also a Nisnevich fibrant replacement. That f is an objectwise weak-equivalence
follows now from Theorem 3.0.1. Thus E is motivic quasifibrant. This proves the first
assertion. To prove the second one, given a motivic weak-equivalence f W E! F of
A1 –BG presheaves, form a commutative diagram

E //

��

F

��
E0

f 0 // F 0;

where the vertical arrows are motivic fibrant replacements, which are objectwise
weak-equivalences by the first part. By the two-out-of-three axiom, f 0 is a motivic
weak-equivalence. In this case, we have shown in the proof of Lemma 3.1.4 that f 0

is an objectwise weak-equivalence. But, we saw that two vertical arrows are also
objectwise weak-equivalences. Thus, f is an objectwise weak-equivalence.

Corollary 3.1.6 The isomorphisms in Lemma 3.1.2(1) hold for all BG pointed motivic
spaces and spectra, while Lemma 3.1.2(2) holds for all A1 –BG ones.

Corollary 3.1.7 The class of motivic quasifibrant presheaves on SmS of objects in
Spc, Spc� or Spt is closed under taking filtered colimits.

Proof This follows by Theorem 3.1.5 and the proof of [30, Corollary 4.2.7].

For ED.E0;E1; : : :/2Spt.S/, let Efng denote the motivic spectrum .En;EnC1; : : :/.
Let m��1. We say that E is an objectwise (resp. motivic) �s –spectrum above level m

if the map En!�sEnC1 is an objectwise (resp. motivic) weak-equivalence for each
n>m. An objectwise (resp. motivic) �s –spectrum above level mD�1 will be called
an objectwise (resp. motivic) �s –spectrum.

Corollary 3.1.8 Suppose E 2 Spt.S/ is A1 –BG Let E ! F be a motivic fibrant
replacement.

(1) For each m; n;p � 0, the map �m
s Fn! �

mCp
s FnCp is an objectwise weak-

equivalence.

(2) For each m; n� 0, the motivic spectrum �m
s Ffng is S1 –stable motivic fibrant.

(3) For each n>m, the map En! Fn is an objectwise weak-equivalence if E is
an objectwise �s –spectrum above level m.
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Proof A motivic spectrum is S1 –stable motivic fibrant if and only if it is levelwise
motivic fibrant and a motivic �s –spectrum. Thus, each Fn2Spc�.S/ is motivic fibrant.
Since S1 is cofibrant, each �m

s Fn is also motivic fibrant and the map Fn!�sFnC1

is a motivic weak-equivalence. In particular, the map R�m
s Fn!R�

mCp
s FnCp is

a motivic isomorphism. Since each �m
s Fn is motivic fibrant, each map �m

s Fn !

�
mCp
s FnCp is a motivic weak-equivalence for m; n;p � 0. By Lemma 3.1.2, this

map is an objectwise weak-equivalence, proving (1). Since each �m
s Fn is motivic

fibrant and the map �m
s FnCp ! �mC1

s FnCpC1 is a motivic weak-equivalence, it
follows that �m

s Ffng is S1 –stable motivic fibrant, proving (2). For (3), we first apply
Theorem 3.1.5 to deduce that E! F is an objectwise stable weak-equivalence. For
n>m;p � 0 and X 2 SmS , we get isomorphisms

�p.En.X //'
1 colimq �pCq.EnCq.X //' �p�n.E.X //' �p�n.F.X //

'
2 �p.Fn.X //;

where '1 holds because E is an objectwise �s –spectrum above level m, and '2

holds because F is an objectwise �s –spectrum.

3.2 A1–BG property of motivic spaces and motivic spectra

We study the A1 –BG property of E 2 Spt.C/ in terms of the property of its lev-
els. Given any E 2 Spc�.S/, K 2 Spc� and U 2 SmS , there is an isomorphism
Hom�.K;E/.U / ' Hom�.K;E.U // in Spc� . Thus, we have the isomorphism
.�sE/.U / ' �s.E.U //. Since Hom�.S1;�/ preserves weak-equivalences and
fibration sequences in Spc� , we deduce:

Corollary 3.2.1 The functor �s.�/ preserves objectwise weak-equivalences, BG
property and A1 –weak-invariance of Spc�.S/. It preserves motivic weak-equivalences
of A1 –BG pointed motivic spaces. If E 2 Spc�.C/ is A1 –BG, the natural map
�sE!R�sE is an isomorphism in H�.S/.

Proof The first statement is obvious. The second one follows from the first and
Theorem 3.1.5. To see the last one, take a motivic fibrant replacement E!E0 , apply
the second one, and use the isomorphism �sE0 'R�sE0 .

We say E 2 Spt.S/ is levelwise A1 –BG if each En is A1 –BG.

Corollary 3.2.2 Let E! F be a levelwise motivic weak-equivalence of levelwise
A1 –BG motivic spectra. If E is a motivic �s –spectrum, then so is F .

Proof This is an immediate consequence of Theorem 3.1.5 and Corollary 3.2.1.
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Lemma 3.2.3 Let f W E ! F be a morphism of levelwise A1 –BG motivic �s –
spectra on SmS . Then f is an S1 –stable motivic weak-equivalence if and only if each
fnW En! Fn is an objectwise weak-equivalence.

Proof Suppose that f W E ! F is an S1 –stable motivic weak-equivalence. Let
n;p � 0 and U 2 SmS . Since E and F are levelwise A1 –BG, by Corollary 3.1.6,

�p.En.U //' ŒS
p
^UC;En�A1 '

1 ŒSp
^UC; �

m�n
s Em�A1

'
2 ŒSp

^UC;R�
m�n
s Em�A1

'
3 ŒSmCp�n

^UC;Em�A1 ;

where '1 holds because E is a motivic �s –spectrum, '2 holds by Corollary 3.2.1
and '3 holds by the adjointness. But m� 0 is arbitrary so ŒSmCp�n^UC;Em�A1 D

colimmŒS
mCp�n ^ UC;Em�A1 , which is Œ†1s UCŒp � n�;E�A1 by (2.2.1). Simi-

larly, �p.Fn.U // ' Œ†
1
s UCŒp � n�;F �A1 . Since f is an S1 –stable motivic weak-

equivalence, we deduce that the map fnW En! Fn is an objectwise weak-equivalence.
The other direction is obvious.

Corollary 3.2.4 Every levelwise A1 –BG motivic �s –spectrum is motivic quasifi-
brant.

Proof Consider an S1 –stable motivic fibrant replacement of the given one. Since an
S1 –stable motivic fibrant motivic spectrum is a levelwise motivic fibrant (thus A1 –BG)
motivic �s –spectrum, this corollary holds by Lemma 3.2.3 and Theorem 3.1.5.

3.3 Motivic descent for .s;p/–bispectra

Given an open or a closed immersion of schemes A � B in SmS , let �B=A.�/ be
the functor E 7!�B=AE D .�B=AE0; �B=AE1; : : :/ on Spt.S/, where �B=AF D

Hom�.B=A;F / is the objectwise fiber of the map Hom.B;F / ! Hom.A;F / for
F 2 Spc�.S/; see [18, Corollary 1.10]. There is an objectwise fiber sequence of
presheaves �B=AE! EB ! EA , where EB.X / WD E.B �X /D Hom.B;E/.X /.
Recall (see [18, Corollary 3.2]) that given an objectwise fiber sequence as above, the
map EB=.�B=AE/!EA is an objectwise S1 –stable weak-equivalence. The natural
isomorphism S1 ^ EX ! .S1 ^ E/X , for E 2 Spc�.S/ and X 2 SmS , and the
above cofiber sequence, give a natural map S1 ^�B=AEn ! �B=A.S

1 ^En/ for
E 2 Spt.S/. Composed with the bonding map �B=A.S

1 ^En/! �B=A.EnC1/,
we see that E ! �B=AE is an endofunctor on Spt.S/. There is a natural bijec-
tion HomSpt.S/.†B=AE;F / ' HomSpt.S/.E; �B=AF /. The following analogue of
Corollary 3.2.1 for motivic spectra is immediate from Theorem 3.1.5 and the above
objectwise cofiber sequence.
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Lemma 3.3.1 The functor �B=A.�/ preserves objectwise weak-equivalences, BG
property and A1 –weak-invariance of motivic spectra. It preserves motivic weak-
equivalences of A1 –BG motivic spectra. If E 2 Spt.S/ is A1 –BG, then the natural
map �B=AE!R�B=AE is an isomorphism in SHS1.S/. If f W E! F is an S1 –
stable motivic weak-equivalence of A1 –BG motivic spectra, then �B=Af W �B=AE!

�B=AF is also an S1 –stable motivic weak-equivalence.

Recall from Sections 2.3.1 and 2.3.2 that an .s; p/–bispectrum E D .Em;n/m;n�0

gives a sequence .E0;E1; : : :/ of motivic spectra with bonding maps †T En D

T ^En!EnC1 .

Definition 3.3.2 For E 2 Spt.s;p/.S/, we say that E is a motivic �T –bispectrum if
the adjoint maps En!�T EnC1 are motivic weak-equivalences in Spt.S/ for n� 0.
We say that E is A1 –BG if each En is an A1 –BG motivic spectrum for n� 0.

Theorem 3.3.3 Let f W E ! F be a stable motivic weak-equivalence of A1 –BG
motivic �T –bispectra on SmS . Then f is a T–levelwise objectwise weak-equivalence,
ie each fnW En! Fn is an objectwise weak-equivalence.

Proof Let n � 0, p 2 Z and U 2 SmS . Since E is (T–levelwise) A1 –BG, apply
Corollary 3.1.6 to get

�p.En/.U /' Œ†
1
s UCŒp�;En�A1'

1Œ†1s UCŒp�; �
m�n
T Em�A1 ;

where '1 holds for E is a motivic �T –bispectrum. By Lemma 3.3.1, this equals
Œ†1s UCŒp�;R�

m�n
T

Em�A1 . By adjointness it equals Œ†m�n
T

†
p
s †
1
s UC;Em�A1 . Since

m� 0 is arbitrary,

Œ†m�n
T †p

s †
1
s UC;Em�A1 D colimmŒ†

m�n
T †p

s †
1
s UC;Em�A1 ;

which is �p�n;�n.E/.U / by definition in Section 2.3. Similarly, �p.Fn.U // '

�p�n;�n.F /.U /. Now, by our assumptions, the map �p.En/! �p.Fn/ induces an
isomorphism of the associated Nisnevich sheaves so that fnW En! Fn is a Nisnevich
local weak-equivalence, and hence an S1 –stable motivic weak-equivalence. Since
these are A1 –BG motivic spectra, by Theorem 3.1.5 each fn is an objectwise weak-
equivalence.

Corollary 3.3.4 For E 2 Spt.s;p/.S/, let f W E ! E0 be a stable motivic fibrant
replacement. Then E is an A1 –BG motivic �T –bispectrum if and only if f is a
T–levelwise objectwise weak-equivalence.
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Proof The forward direction is obvious by Theorem 3.3.3. For the backward direction,
note that each level En!E0n is an objectwise weak-equivalence, with E0n is motivic
fibrant, so that each En is A1 –BG by Theorem 3.1.5. It only remains to see that E is
a motivic �T –bispectrum. This follows from Lemma 3.3.1.

4 Singular semitopologization

4.1 Definition and basic properties

From now, we take S D Spec.C/. For a complex algebraic variety U , let U an be its
associated complex analytic space. We recall the semitopologization of Friedlander
and Walker from [11, Definition 10].

4.1.1 Realization and diagonal of a simplicial spectrum We briefly review the
diagonal and the realization of a simplicial spectrum. For a bisimplicial set A�� ,
the realization jAj is the simplicial set obtained by taking the coequalizer of the
diagram

`
.˛W Œn�!Œk�/2�op An ��Œk��

`
n�0 An ��Œn�, where the two morphisms

are .˛;x; t/ 7! .x; ˛�.t// and .˛;x; t/ 7! .˛�.x/; t/. If A�� is a simplicial object in
Spc� , then jAj is obtained by replacing An ��Œk� by An ^ .�Œk�/C in the above.
The diagonal diag A is the composite A�� ı ıW �

op ! �op ��op ! Set. There is
a natural isomorphism diag A! jAj; see [2, Proposition B.1]. If EW �op! Spt is
a simplicial spectrum, its realization jEj is defined as above, where An ��Œk� is
replaced by E.�Œn�/^ .�Œk�/C . A simplicial spectrum E can be seen as a sequence
.E0
��;E

1
��; : : :/, where each En

�� is a pointed bisimplicial set, with the bonding maps
S1 ^ En

�� ! EnC1
�� . So the spectrum jEj has jEjn D jEn

��j in Spc� , with the
bonding maps S1^jEn

��j ! jE
nC1
�� j. The diagonal diag E of E is the spectrum with

.diag E/n D diag.En
��/. We have S1 ^En

p ! EnC1
p , where En

p D .E.�Œp�//n or
the map of pointed sets .S1/i ^En

p;i ! EnC1
p;i . The maps .S1/p ^En

p;p ! EnC1
p;p

give the bonding maps S1^ .diag E/n! .diag E/nC1 of the spectrum diag E . From
the case of bisimplicial sets, one gets diag E ' jEj. If E is a presheaf of simplicial
spectra on SchS or SmS , we define jEj and diag E objectwise. Thus, for a simplicial
presheaf of spectra E on SchS or SmS , we have diag E ' jEj.

4.1.2 Semitopologization For T 2Top, let .T jVarC/ be the category whose objects
are .f;U /, where U 2VarC , and f W T !U an is a continuous map. A morphism from
.f;U / to .g;V / is a morphism hW U !V in VarC such that the map hanW U an!V an

satisfies han ıf D g . Recall that ��
>
D f�n

>
gn�0 is a cosimplicial topological space

with the natural cofaces @i and the codegeneracies si . For n> 0 and 0� i � n, define
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@i W .�
n
>
jVarC/

op! .�n�1
>
jVarC/

op by

.f W �n
>! U an/ 7! .f ı @i

W �n�1
> !�n

>! U an/:

For n� 0 and 0� i � n, define si W .�
n
>
jVarC/

op! .�nC1
>
jVarC/

op by

.f W �n
>! U an/ 7! .f ı si

W �nC1
>
!�n

>! U an/:

Recall the following from [11]:

Definition 4.1.1 Let E be a presheaf on SchC of objects in Spc, Spc� or Spt. Let
X 2 SchC and let T 2 Top. Define E.T �X / D colim.f;U /2.T jVarC/op E.U �X /.
Consider E.��

>
�X /D fE.�n

>
�X /gn�0 , which is a simplicial object in Spc, Spc�

or Spt. Let Esst.X / WD jE.��
>
�X /j. This Esst is a presheaf on SchC of objects in

Spc, Spc� or Spt, called the semitopologization of E .

There is a natural morphism of presheaves E!Esst on SchC , which gives a natural
transformation Id! .�/sst of functors on presheaves on SchC .

Lemma 4.1.2 Let E be a presheaf on SchC of objects in Spc, Spc� or Spt. Let
X 2 SchC . Define a presheaf on SchC by EX .U / WDE.U �X /. Then

.EX /
sst
D .Esst/X :

Proof For U 2SchC , we have .Esst/X .U /DEsst.X�U /DjfE.�n
top �X �U /g

n
jD

jfcolim.f;C /E.C �X �U /g
n
j D jfcolim.f;C /EX .C �U /g

n
j D jfEX .�

n
top �U /g

n
j.

This is by definition .EX /
sst.U /.

When E is a presheaf on SmC , it is well known that the realization of E.�� ��/ is
A1 –weak-invariant (see Friedlander and Suslin [6, Proposition 7.2] and Friedlander and
Voevodsky [7, page 150]). Its semitopological analogue also holds by [8, Lemma 1.2]:

Theorem 4.1.3 Let E be a presheaf on SchC of objects in Spc, Spc� or Spt.
Then Esst is A1 –weak-invariant.

4.2 Semitopologization and ^–product

Recall that for A;B 2 Spc� (all base points are denoted by ?), we have A^B D

.A�B/=.A_B/, where A_B D .A�?/[ .?�B/ in A�B . For two presheaves E

and F on a category C of objects in Spc� , define the presheaf E^F on C objectwise
by .E^F /.U /DE.U /^F.U /, so one still has E^F D .E�F /=.E_F /. When F

is a presheaf of spectra on SchC while E is as above, we define E ^F levelwise,
namely, E ^F D .E ^F0;E ^F1; : : :/.
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Proposition 4.2.1 Let E;F;F 0 be presheaves on SchC of objects in Spc� . Then we
have the following identities:

(1) .E �F /sst DEsst �F sst .

(2) .E _F /sst DEsst _F sst .

(3) If F � F 0 , then .F 0=F /sst D F 0
sst
=F sst .

(4) .E ^F /sst DEsst ^F sst .

(5) When E is as above and F is a presheaf of spectra on SchC , .E ^ F /sst D

Esst ^F sst .

Proof Let X 2SchC be a fixed scheme. For (1), let U 2SchC . Note that .E�F /.U�

X /DE.U �X /�F.U �X /. Over the objects .f W �n
>
!U an/ of the filtered category

.�n
>
jVarC/

op , take the filtered colimit. By Mac Lane [26, Section IX.2 Theorem 1]
finite limits (eg products) commute with filtered colimits, so that .E�F /.�n

>
�X /D

E.�n
>
�X /� F.�n

>
�X /. Taking the diagonals, we obtain (1). For (2), for each

U 2SchC , note that .E_F /.U�X /D colimfE.U�X /�? ?�?!?�F.U�X /g.
Take the filtered colimits over the objects .f W �n

>
!U an/ of .�n

>
jVarC/

op . Colimits
commute among themselves (see [26, Section IX.8]) so that .E _ F /.�n

>
�X / D

E.�n
>
�X /_F.�n

>
�X /. This implies (2), by taking the diagonals. For (3), similarly

we consider instead F 0.U �X /=F.U �X /D colimf? F.U �X /! F 0.U �X /g,
and repeat the same procedure. This proves (3). Now, (4) follows from (1)–(3). For
(5), since the limits and colimits of spectra are all defined levelwise, this part follows
from (4).

5 Semitopologization of presheaves on smooth schemes

5.1 Artificial extension

We discuss how to define semitopologization on presheaves on SmC . For a presheaf E

on SchC of objects in Spc, Spc� or Spt, we used the categories .�n
>
jVarC/

op to
define Esst in Section 4. If E is defined only on SmC a priori, then one may
either extend the functor F to all of SchC or shrink the indexing categories to, say,
.�n
>
jSmC/

op . Both raise some issues. Extension of F from SmC to SchC is not
unique. On the other hand, the inclusion .�n

>
jSmC/

op/ ,! .�n
>
jVarC/

op is not cofinal.
Furthermore, the indexing categories .�n

>
jSmC/

op are not filtered, over which the
colimits have poor properties. To avoid these, we use a fixed functorial extension
process to obtain a presheaf on SchC , and then apply the sst–functor of Section 4.
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Let W 2 SchC . Consider the objects .f;X /, where X 2 SmC and f W W !X is a
morphism in SchC . Given .f;X / and .g;Y /, with X;Y 2 SmC , a morphism  from
.f;X / to .g;Y / is defined to be a morphism  W X!Y in SchC such that  ıf Dg .
Let .W jSmC/

op be the category of the pairs .f;X / with the above morphisms.

Definition 5.1.1 Let E be a presheaf on SmC of objects in a cocomplete category
M. For W 2 SchC , define the artificial extension xE of E by

xE.W / WD colim.f;X /2.W jSmC/op E.X /:

If W 2 SmC , then .W jSmC/
op has the terminal object .IdW ;W / so xE.W /DE.W /.

One checks that given �W W ! W 0 in SchC , the assignment .f W W 0 ! X / 7!

.f ı �W W ! X / makes xE a presheaf on SchC . One checks it defines a func-
tor extW Funct.Smop

C ;M/ ! Funct.Schop
C ;M/. In the opposite direction, we have

restW Funct.Schop
C ;M/! Funct.Smop

C ;M/ and clearly rest ı extD Id. The transfor-
mation ext ı rest! Id is not an isomorphism in general.

Definition 5.1.2 Let E be a presheaf on SmC of objects in Spc, Spc� or Spt. We
define its semitopologization as the presheaf .ext.E//sstjSmC D

xEsstjSmC D rest ısstı
ext.E/ on SmC . The resulting presheaf is denoted by Esst .

The semitopologization defines a natural transformation of functors Id! .�/sst on
presheaves on SmC . Immediately from Theorem 4.1.3, we get the following:

Proposition 5.1.3 Let E 2 Spt.C/. Then Esst is A1 –weak-invariant.

Recall the following important tool from [11, Theorem 11], which is used in the form
of Theorem 5.1.5.

Theorem 5.1.4 (Friedlander–Walker recognition principle) Let E;F be presheaves
of spectra on SchC and let f W E!F be a morphism of presheaves, which is an object-
wise weak-equivalence on SmC . Then jE.��

>
/j ! jF.��top/j is a weak-equivalence.

Theorem 5.1.5 (1) If f W E! F is a morphism of presheaves of spectra on SchC ,
which is an objectwise weak-equivalence on SmC , then f sstW Esst! F sst is an
objectwise weak-equivalence on SmC .

(2) If f W E ! F is a morphism of presheaves of spectra on SmC , which is an
objectwise weak-equivalence, then f sstW Esst ! F sst is an objectwise weak-
equivalence on SmC .
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Proof We first prove (1). By the given assumption, for X 2 SmC , the map EX !FX

is an objectwise weak-equivalence on SmC . By Theorem 5.1.4, we have that the map
.EX /

sst.Spec.C//! .FX /
sst.Spec.C// is a weak-equivalence. Now by Lemma 4.1.2,

the map Esst.X /! F sst.X / is a weak-equivalence. To prove (2), note that the map
xE! xF is an objectwise weak-equivalence on SmC . So by (1) the map xEsst.X /!
xF sst.X / is a weak-equivalence for X 2 SmC . Equivalently, the map Esst.X / !

F sst.X / is a weak-equivalence.

5.2 The loop space and the sst–functor

For a map f W E! F of presheaves on SmC or SchC of objects in Spc� , the fiber
fib.f / is by definition limf? ! F Eg, and fib.f / ! E ! F is called a fiber
sequence. This is not same as a homotopy fiber sequence unless f is a fibration. Given
an open or a closed immersion of schemes A� B in SmC , the functor �B=A.�/ on
Spt.C/ is E 7!�B=AED .�B=AE0; �B=AE1; : : :/ (Section 3.3), where �B=AEnD

Hom�.B=A;En/ D fib.Hom.B;En/ ! Hom.A;En//. So we have an objectwise
fiber sequence �B=AE!EB!EA of presheaves, where EB.X /DE.B �X /D

Hom.B;E/.X /. For B 2 SmC , the map Hom.B;E/ ! Hom.B;Esst/ induces
Hom.B;E/sst!Hom.B;Esst/. By the universal property of �B=A , there is a natural
transformation .�B=A.�//

sst!�B=A..�/
sst/.

Proposition 5.2.1 For E 2 Spt.C/, the map .�B=AE/sst!�B=A.E
sst/ in Spt.C/

is an objectwise weak-equivalence on SmC .

Proof For E 2 Spt.C/, let xE D ext.E/, and xEB.X / WD xE.B �X / for X 2 SchC .
Let �B=A

xE be the objectwise fiber of xEB!
xEA . This sequence on SchC restricts to

�B=AE!EB!EA on SmC . Note that there is a morphism EB!
xEB of presheaves

on SchC , which restricts to IdW EB!EB on SmC . By the universal property of fiber,
we get a morphism of presheaves �0

B=A
E WD fib.EB ! EA/! �B=A

xE on SchC ,
which is an isomorphism on SmC , which gives the commutative diagram of presheaves
on SchC

(5.2.1)

�B=AE //

��
u

��

EB
// EA

�0
B=A

E //

��

EB
//

��

EA

��
�B=A

xE // xEB
// xEA;
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where the bottom two rows are objectwise fiber sequences and all vertical arrows are
isomorphisms on SmC . Let u be the composition. Since filtered colimits commute
with fiber products (see [26, Section IX.2 Theorem 1]), from the above we deduce the
diagram

�0
B=A

E.�n
top ��/

//

��

EB.�
n
top ��/

//

��

EA.�
n
top ��/

��
�B=A

xE.�n
top ��/

// xEB.�
n
top ��/

// xEA.�
n
top ��/

of presheaves of spectra on SchC , where the rows are objectwise fiber sequences.
Since the fiber of a map of spectra is defined levelwise, taking the diagonals of maps
of simplicial spectra as in Section 4.1.1, we get a commutative diagram

(5.2.2)

.�0
B=A

E/sst //

��

.EB/
sst //

��

.EA/
sst

��
.�B=A

xE/sst // . xEB/
sst // . xEA/

sst

of presheaves of spectra on SchC , where the rows are objectwise fiber sequences.
Since each vertical arrow in (5.2.1) is a morphism of presheaves of spectra on SchC

which is an isomorphism on SmC , by Theorem 5.1.5 each vertical arrow in (5.2.2)
is an objectwise weak-equivalence on SmC . By definition and Lemma 4.1.2, the
map . xEB/

sst! . xEsst/B D .E
sst/B is an isomorphism on SmC , and the same is true

for EA . Composing these with the vertical maps in (5.2.2), and using the identification
.EB/

sst D .EB/
sst , we get a commutative diagram

(5.2.3)

.�0
B=A

E/sst //

��

.EB/
sst //

��

.EA/
sst

��
.�B=A

xE/sst // .Esst/B // .Esst/A

of presheaves of spectra on SmC , where the rows are objectwise fiber sequences and
the vertical arrows are objectwise weak-equivalences in SmC . Consider the sequence
of maps � ıusstW .�B=AE/sst! .�B=A

xE/sst!�B=A. xE
sst/. The map � is given by

the universal property, and it is an isomorphism since the bottom row of (5.2.3) is an
objectwise fiber sequence. The composite � ıusst is an objectwise weak-equivalence
on SmC because the map �B=AE ! �B=A

xE is an isomorphism on SmC as in
(5.2.1) so Theorem 5.1.5 applies. Thus, by the two-out-of-three axiom, the map usst
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is an objectwise weak-equivalence on SmC . Since .�B=AE/sst D .�B=AE/sst and
�B=A. xE

sst/D�B=A.E
sst/, we are done.

Corollary 5.2.2 For E 2 Spt.C/, the maps .�tE/
sst!�t .E

sst/ and .�T E/sst!

�T .E
sst/ in Spt.C/ are objectwise weak-equivalences on SmC .

The above follows by applying Proposition 5.2.1 to t D .Gm; 1/ and T D .P1;1/.
Using that �S1E.X /D�S1.E.X // for a presheaf of spectra E on SchC and that
�S1

xF Š�S1F for a presheaf of spectra F on SmC , one checks that for a presheaf E

of spectra on SmC , the map .�S1E/sst!�S1.Esst/ is an isomorphism.

6 Homotopy semitopologization

We prove that the classes of BG and A1 –BG presheaves of spectra are closed under
semitopologization. We prove similar results for .s; p/–bispectra. Using these we
define homotopy semitopologization on motivic homotopy categories.

6.1 On SHS 1.C/

For a simplicial spectrum E , let Ep WDE.�Œp�/ for p � 0.

Lemma 6.1.1 If each Ep of a simplicial spectrum E is cofibrant, then so is diag E .

Proof By Theorem 2.2.1, we need to show each map S1^ .diag E/n! .diag E/nC1

in Spc� is a monomorphism. For a monomorphism A!B in Spc, one has .B=A/nD
Bn=An . For A;B 2 Spc� , one has .A�B/n D An �Bn and .A^B/n D An ^Bn .
So it suffices to show .S1/p ^ .diag E/n;p! .diag E/nC1;p is a monomorphism. But
.diag E/n;p D En

p;p (Section 4.1.1) and .S1/i ^En
p;i ! EnC1

p;i is a monomorphism
because each Ep is cofibrant. Thus, the assertion follows.

Lemma 6.1.2 If each fpW Ep! Fp of a morphism f W E! F of simplicial spectra
is a cofibration of spectra, then the map diag E! diag F ie jEj ! jF j is a cofibration.

Proof A cofibration of spectra is also a levelwise monomorphism in Spc� . So f
is a levelwise monomorphism of bisimplicial sets, and the map diag E! diag F is
a levelwise monomorphism in Spc. By Section 2.2.1 and Theorem 2.2.1, we need
to show that the spectrum diag F=diag E is cofibrant, where .diag F=diag E/n D

.diag F /n=.diag E/n . Let G D F=E , where Gn
p;q D Fn

p;q=E
n
p:q . Since

.S1
^Fn

p /=.S
1
^En

p/' S1
^ .Fn

p =E
n
p/;
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we see that G is a simplicial spectrum. Furthermore,

.diag G/n;p DGn
p;p DFn

p;p=E
n
p;p D .diag F /n;p=.diag E/n;p D .diag F=diag E/n;p:

Hence diag G D diag F=diag E . Hence by Lemma 6.1.1, it suffices to show that Gp

is a cofibrant spectrum. But, Gp DFp=Ep , and that Ep!Fp is a cofibration implies
that Fp=Ep is cofibrant.

Since Nisnevich or motivic cofibrations between presheaves of spectra on SmS are
exactly objectwise cofibrations, we deduce the following from Lemma 6.1.2.

Corollary 6.1.3 If each fpW Ep ! Fp of a morphism f W E ! F of presheaves
of simplicial spectra on SchC is an objectwise (Nisnevich, motivic) cofibration of
presheaves of spectra, then the map diag E! diag F ie jEj ! jF j is an objectwise
(Nisnevich, motivic) cofibration.

Proposition 6.1.4 Let g ı f W E ! F ! G be an objectwise homotopy cofiber
sequence of presheaves of spectra on SchC . Then gsst ı f sstW Esst! F sst! Gsst is
an objectwise homotopy cofiber sequence on SmC .

Proof Recall from [2, Section A2] that gıf W E!F!G is an objectwise homotopy
cofiber sequence if and only if we have a sequence g0 ı f 0W E ! H ! H=E of
presheaves of spectra on SchC , hW H!F , pW H=E!G , where f 0 is an objectwise
cofibration, h;p are objectwise weak-equivalences, such that hıf 0D f and p ıg0D

g ı h. By Theorem 5.1.5, hsst and psst are objectwise weak-equivalences on SmC .
Using Proposition 4.2.1(3), it remains to show that the map f 0sst

W Esst!H sst is an
objectwise cofibration, equivalently, that the map diag. zE/! diag. zH / is a cofibration,
where zE is the presheaf of simplicial spectra on SchC defined by zE.�Œp�/.�/ D
E.�

p
top ��/ (Definition 4.1.1) and similarly for zH . Since zE.�Œp�/! zH .�Œp�/ is a

filtered colimit of objectwise cofibrations, by Mitchell [29, Proposition 3.2] this map is
an objectwise cofibration. Hence, by Corollary 6.1.3, the map diag. zE/! diag. zH / is
an objectwise cofibration. This finishes the proof.

Theorem 6.1.5 Let E be a presheaf of spectra (or complexes of abelian groups) on
SmC . If E is BG, then so is Esst . If E is A1 –BG, then so is Esst .

Proof We prove it for presheaves of spectra since the other is a special case via
Dold–Kan correspondence. We prove the first statement. Via the artificial extension
in Definition 5.1.1, regard E as a presheaf on SchC . Given X 2 SmC , we have
that the presheaf EX on SchC is EX .Y / WD E.X � Y / for Y 2 SchC . Given a
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Nisnevich square as in (3.0.1), where X;U;V;W 2SmC with WDU�X V , we have a
commutative diagram

(6.1.1)

EX

j1 //

j2

��

EU

h1

��
EV

h2 // EW

of presheaves of spectra on SchC , which is objectwise homotopy Cartesian on SmC .
Equivalently, it is objectwise homotopy co-Cartesian on SmC . Let G1 and G2 be
the objectwise homotopy cofibers of j1 and h2 . Then (6.1.1) is objectwise homotopy
co-Cartesian on SmC if and only if the map hW G1 ! G2 is an objectwise weak-
equivalence on SmC . So, by Theorem 5.1.5, we have that the map hsstW Gsst

1
!Gsst

2

is an objectwise weak-equivalence on SmC . Using Proposition 6.1.4, we obtain a
commutative diagram

(6.1.2)

Esst
X

j sst
1 //

j sst
2

��

Esst
U

hsst
1

��

// Gsst
1

hsst

��
Esst

V

hsst
2 // Esst

W
// Gsst

2
;

where the rows are objectwise homotopy cofiber sequences of presheaves on SmC .
Since hsst is an objectwise weak-equivalence on SmC , the left square in (6.1.2) is
objectwise homotopy co-Cartesian on SmC . Equivalently, it is objectwise homotopy
Cartesian on SmC . Evaluating at Spec.C/ and applying Lemma 4.1.2, we obtain

Esst.X /
j sst

1 //

j sst
2
��

Esst.U /

hsst
1
��

Esst.V /
hsst

2 // Esst.W /;

a homotopy Cartesian square of spectra. This shows that Esst is BG as desired. The
second statement follows from the first and Proposition 5.1.3.

Applying Theorems 3.1.5, 5.1.5 and 6.1.5, we conclude:

Corollary 6.1.6 The sst of an S1 –stable motivic weak-equivalence of A1 –BG mo-
tivic spectra is an objectwise weak-equivalence of A1 –BG motivic spectra.

Corollary 6.1.7 There exists an endofunctor hostW SHS1.C/! SHS1.C/, which
coincides with the sst–functor on A1 –BG motivic spectra up to isomorphism.
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Proof We know from Theorem 6.1.5 that sstW Spt.C/! Spt.C/ preserves A1 –BG
motivic spectra. Since an S1 –stable motivic fibrant motivic spectrum is Nisnevich
fibrant and A1 –local, it is A1 –BG by Lemma 3.1.3. By Corollary 6.1.6, we know sst
takes a trivial motivic fibration between S1 –stable motivic fibrant motivic spectra into
an S1 –stable motivic weak-equivalence. Thus, by [14, Proposition 8.4.8] we obtain a
right derived endofunctor hostW SHS1.C/! SHS1.C/, with desired properties.

6.2 On SH.C/

Let E D .E0;E1; : : :/ 2 Spt.s;p/.C/ (Sections 2.3.1 and 2.3.2) with the bonding maps
T ^En!EnC1 . It yields .T ^En/

sst D T sst ^Esst
n !Esst

nC1
, by Proposition 4.2.1.

Composed with T ^Esst
n ! T sst^Esst

n , we get T ^Esst
n !Esst

nC1
. This gives Esst WD

.Esst
0
;Esst

1
; : : :/ 2 Spt.s;p/.C/. One checks Id! .�/sst is natural on Spt.s;p/.C/.

Theorem 6.2.1 (1) The class of A1 –BG .s; p/–bispectra is closed under the sst–
functor.

(2) The class of A1 –BG motivic �T –bispectra (Definition 3.3.2) is closed under
the sst–functor.

(3) If f is a stable motivic weak-equivalence of A1 –BG motivic �T –bispectra,
then f sst is a T–levelwise objectwise weak-equivalence of A1 –BG motivic
�T –bispectra.

Proof Part (1) holds by Theorem 6.1.5. For (2), let E be an A1 –BG motivic �T –
bispectrum. Using Lemma 3.3.1 we deduce that each �T En is an A1 –BG motivic
S1 –spectrum. So by Theorem 3.1.5 and Corollary 6.1.6, the map Esst

n ! .�T EnC1/
sst

is an objectwise weak-equivalence. Now by Corollary 5.2.2, the map .Esst/n !

�T ..E
sst/nC1/ is an objectwise weak-equivalence, thus an S1 –stable motivic weak-

equivalence. Part (3) follows from (1), (2) and Theorems 3.3.3 and 5.1.5.

Recall that for a morphism f W E! F in Spt.s;p/.C/, the cone C.f / is the pushout

(6.2.1)

E
Id^0

//

f

��

E ^�Œ1�

xf
��

F
zf
// C.f /;

where �Œ1� is pointed by one. Collapsing F to the base point of †sE DE ^S1 and
using the quotient map E ^�Œ1�!E ^S1 , we get ıf W C.f /!†sE , which gives
ıf ı zf ıf W E! F ! C.f /!†sE .
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Lemma 6.2.2 Let f W E! F be a morphism in Spt.s;p/.C/. Then the following is a
pushout square:

(6.2.2)

Esst Id^0
//

f sst

��

Esst ^�Œ1�

xf sst

��

F sst
zf sst

// .C.f //sst

Proof For a presheaf G on SmC of objects in Spc� or Spt. Let xG be its artificial
extension on SchC as in Definition 5.1.1. This extends .s; p/–bispectra over SmC to
.s; p/–bispectra over SchC . Note the pushout of a diagram of presheaves of .s; p/–
bispectra is defined objectwise, and one has E ^�Œ1�' xE ^�Œ1�. Since the artificial
extension is defined as a colimit and since the colimits commute among themselves (cf
[26, Section IX.8]), the pushout (6.2.1) (a colimit) remains a pushout square if we replace
the presheaves by their artificial extensions. So we may assume the presheaves E

and F are defined on SchC . The commutativity of two colimits also implies that the
diagram

(6.2.3)

E.�n
top ��/

Id^0
//

f

��

E.�n
top ��/^�Œ1�

xf

��
F.�n

top ��/
zf
// C.f /.�n

top ��/

is a pushout square. Since HomC.X ^ �Œk�C;Y / ' HomC.X;Hom�.�Œk�C;Y //
where C is the category of .s; p/–bispectra on SchC , we deduce that (6.2.3) remains a
pushout square after smashing with �Œk�C for k � 0. Since a coequalizer (a colimit)
commutes with colimits, by Section 4.1.1 we obtain a pushout square (6.2.2) except
Esst ^ �Œ1� is replaced with .E ^ �Œ1�/sst . But, by Proposition 4.2.1(4) and the
isomorphism �Œ1�' .�Œ1�/sst , we do have Esst ^�Œ1�' .E ^�Œ1�/sst .

Theorem 6.2.3 There exists a triangulated endofunctor hostW SH.C/ ! SH.C/,
which coincides with the sst–functor on A1 –BG motivic �T –bispectra up to isomor-
phism.

Proof By Theorem 6.2.1, we know A1 –BG motivic �T –bispectra are closed under
sst. By [30, Lemma 2.3.8], the functor †T W Spt.C/!Spt.C/ preserves stable motivic
weak-equivalences and cofibrations. Hence, †T is a left Quillen endofunctor with
the right adjoint �T W Spt.C/! Spt.C/. An .s; p/–bispectrum E D .E0;E1; : : :/ is
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stable motivic fibrant if and only if it is a motivic �T –bispectrum and it is T–levelwise
S1 –stable motivic fibrant (cf [15, Definition 3.1, Theorem 3.4]). So a stable motivic
fibrant .s; p/–bispectrum is an A1 –BG motivic �T –bispectrum. By Theorem 6.2.1,
we know sst takes a trivial stable motivic fibration between stable motivic fibrant .s; p/–
bispectra to a stable motivic weak-equivalence. Thus, by [14, Proposition 8.4.8] we
obtain a right derived endofunctor hostW SH.C/!SH.C/ with desired properties. We
now check that hostW SH.C/!SH.C/ is a triangulated functor. Since host preserves
finite coproducts and products in SH.C/, it is an additive functor. The shift E 7!EŒ1�

on SH.C/ is given by the functor E 7!†sE . One sees that host commutes with †s

by Proposition 4.2.1 and the isomorphism S1 ' .S1/sst . For a distinguished triangle
in SH.C/ of the form E!F!C.f /!†sE for a map f W E!F in Spt.s;p/.C/
(cf Østvær, Röndigs and Voevodsky [34, Section 2.3]), by Lemma 6.2.2 and the
isomorphism .†sE/sst'†sEsst , we deduce that Esst!F sst! .C.f //sst!†sEsst

is also a distinguished triangle in SH.C/.

Definition 6.2.4 For the rest of this paper, we call the functor host of Corollary 6.1.7
and Theorem 6.2.3 by the name homotopy semitopologization functor. For any E in
SHS1.C/ or SH.C/, we denote host.E/ by Ehost .

7 Representing semitopological K–theory in SH.C/

We prove that the semitopological K–theory of [8] is representable in motivic homotopy
categories. For SHS1.C/, it is easy by semitopologizing an A1 –BG presheaf of spectra
representing the algebraic K–theory. For SH.C/, an essential thing is to find an A1 –BG
motivic �T –bispectrum that represents algebraic K–theory; see Proposition 7.2.3.

The semitopological K–theory of a complex variety X is a bridge between the algebraic
and the topological K–theories of X . This theory was defined in [9] as the stable
homotopy groups of an infinite loop space, constructed out of the stabilization of the
analytic space of algebraic morphisms of complex varieties. In [8], another definition
of the semitopological K–theory is given by Ksst

p .X / WD�p.jK.��top�X /j/ for p 2Z,
where K.�/ is the presheaf of connective spectra on SchC that represents Quillen
algebraic K–theory. By [8, Theorem 1.4], this definition coincides with the original
one in [9] for projective weakly normal varieties.

7.1 Representability in SHS 1.C/

Recall that Jardine [19] (see also Kim [20]) constructed a presheaf of spectra on
SmC that represents the algebraic K–theory. This construction and some properties
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are summarized as follows, taken from Jardine [19, Theorem 5, Proposition 9], and
Thomason and Trobaugh [40, Proposition 6.8, Theorem 10.8]:

Theorem 7.1.1 There is a presheaf K of spectra on SmC such that for X 2 SmC ,
K.X / represents the algebraic K–theory of X . This is a presheaf of �s –spectra above
level zero, equipped with smash product Ki ^Kj ! KiCj which commutes with the
bonding maps of K . Furthermore, K is an A1 –BG presheaf of spectra on SmC .

For representability of semitopological K–theory in SHS1.C/ (and H�.C/), we have
a quick answer. Let K be presheaf of spectra on SmC as in Theorem 7.1.1.

Proposition 7.1.2 Let X 2 SmC and p 2 Z. Then Ksst
p .X / ' Œ†1s XCŒp�;Ksst�A1 .

That is, the semitopological K–theory is representable in SHS1.C/.

Proof It holds by Corollary 3.1.6, Theorems 6.1.5, 7.1.1 and the definition of Ksst
p .

Corollary 7.1.3 For X 2SmC and p�0, we have Ksst
p .X /' Œ†

p
s XC;R Ev0 Ksst�A1 .

That is, the semitopological K–theory is representable in H�.C/.

7.2 Representability in SH.C/

For a presheaf of spectra E D .E0;E1; : : :/ on SmC , let Efng be the presheaf of
spectra .En;EnC1; : : :/. We use K of Section 7.1 in what follows. Let f W K!Kfib 

Kcf Wg be two morphisms in Spt.C/, where f is an S1 –stable motivic fibrant replace-
ment of K and g is an S1 –stable motivic cofibrant replacement of Kfib . Since Kfib is
motivic fibrant and g is a motivic fibration, it follows that Kcf is motivic cofibrant–
fibrant. Moreover, by Theorem 2.2.1 and Corollary 3.1.8, each Kcffng is motivic
cofibrant–fibrant. By Theorem 7.1.1 and Corollary 3.1.8, the maps Kn! Kfib

n  Kcf
n

are objectwise weak-equivalences for each n� 1. Using the product structure on K
in Theorem 7.1.1, we obtain a morphism of motivic spectra Kcf ^Kcf

1
! Kcff1g in

SHS1.C/. This is equivalent to a morphism Kcf ! R�Kcf
1
Kcff1g ' �Kcf

1
Kcff1g in

SHS1.C/. Since Kcf is cofibrant and �Kcf
1
Kcff1g is fibrant, this map lifts to a map

in Spt.C/. Taking the adjoint of this map, we conclude that there is a morphism
�W Kcf ^ Kcf

1
! Kcff1g in Spt.C/. Thus, we obtained a cofibrant–fibrant motivic

spectrum model Kcf for the algebraic K–theory, with a product that yields a ring
structure on K�.X / for X 2 SmC . The above product structure on the presheaf Kcf

of spectra allows one to construct a T–spectrum that represents the algebraic K–
theory in SH.C/. For details, we refer to [20]. To prove the representability of the
semitopological K–theory in SH.C/, we lift this T–spectrum to an .s; p/–bispectrum,
for which we recycle the construction in [41, Section 6.2].
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Lemma 7.2.1 Let X 2 SmC .

(1) For p�m� 0, we have Œ†p
s XC;Kcf

m�A1 'Kp�m.X / and a split exact sequence

0! Œ†p
s †T XC;Kcf

m�A1 !Kp�m.P
1
X /!Kp�m.X /! 0:

(2) For 0 � p < m, Œ†p
s XC;Kcf

m�A1 D Œ†
p
s †T XC;Kcf

m�A1 D 0 and there is a split
exact sequence

0! Œ†p
s †T XC;Kcf

m�A1 !Kp�m.P
1
X /!Kp�m.X /! 0:

Proof For p�0, the cofiber sequence †1s †
p
s XC!†1s †

p
s .P

1
X
/C!†1s †

p
s †T XC

in SHS1.C/ (cf [34, Lemma 2.16]) and Lemma 3.1.2 give us a long exact sequence

! Œ†1s †
p
s †T XC;Kcf�A1 !Kp.P

1
X /!Kp.X /!;

where the map i�
0
W Kp.P1

X
/!Kp.X / splits by the pullback via the projection X �

P1!X . Part (1) follows easily from this and the adjoint isomorphisms

Œ†1s A;Kcf�A1 ' ŒA;Kcf
0 �A1 ' ŒA; �m

s Kcf
m�A1 ' Œ†m

s A;Kcf
m�A1

for A 2 Spc�.C/. Notice here that Kcf and Kcf
m are all motivic (hence objectwise)

fibrant and Kcf is a motivic �s –spectrum. To prove the first part of .2/, first use
Lemma 3.1.2 and Corollary 3.1.8 to obtain isomorphisms

Œ†p
s XC;Kcf

m�A1 ' �p.Kcf
m.X //' �p�m.Kcf.X //;

where the last term is zero if p�m< 0 since Kcf.X / is a connective spectrum. For
the second part of .2/, from the cofiber sequence †1s †

p
s XC ! †1s †

p
s .P

1
X
/C !

†1s †
p
s †T XC , we get an exact sequence

Œ†1s †
pC1
s .P1

X /C;K
cf
fmg�A1 ! Œ†1s †

pC1
s XC;Kcf

fmg�A1

! Œ†1s †
p
s †T XC;Kcf

fmg�A1 ! Œ†1s †
p
s .P

1
X /C;K

cf
fmg�A1 :

By Corollary 3.1.8 and the adjointness, this exact sequence is equivalent to

Œ†pC1
s .P1

X /C;K
cf
m�A1 ! Œ†pC1

s XC;Kcf
m�A1

! Œ†p
s †T ^XC;Kcf

m�A1 ! Œ†p
s .P

1
X /C;K

cf
m�A1 :

It follows from .1/ and the first part of .2/ that the first map in this exact sequence is
surjective and the last term is zero if 0� p <m. Hence the third term must be zero.

Recall the ring isomorphism K0.C/Œt �=.t � 1/2 ' K0.P
1
C/. By Lemma 7.2.1, the

element .t � 1/D .ŒO.1/�� ŒO�/ defines a unique element th 2 ŒS1^T;Kcf
1
�A1 , called

the Thom class. Since S1 ^ T is cofibrant and Kcf
1

is motivic fibrant, this yields a
morphism S1^T !Kcf

1
in Spc�.C/, thus a morphism � W T !�sKcf

1
in Spc�.C/.
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Definition 7.2.2 Define KalgDfKalg
m;ng2Spt.s;p/.C/ as .Kcf; �1

sKcff1g; �2
sKcff2g; : : :/

with the following bonding maps: for A 2 Spt.C/;B 2 Spc�.C/, apply the map
�sA^B!�s.A^B/ repeatedly to get the morphisms

�n
sK

cf
fng ^T !�n

s .K
cf
fng ^T /

�n
s .Id^�/
�������!�n

s .K
cf
fng ^�sKcf

1 /

!�nC1
s .Kcf

fng ^Kcf
1 /

�
nC1
s .Id^�/
���������!�nC1

s Kcf
fnC 1g:

Proposition 7.2.3 The .s; p/–bispectrum Kalg on SmC is an A1 –BG motivic �T –
bispectrum, and it represents the algebraic K–theory in SH.C/.

Proof Since Kalg
�;nD�

n
sKcffng for each n� 0, by Corollary 3.1.8 we see Kalg satisfies

the A1 –BG property. To show that Kalg is a motivic �T –bispectrum, it suffices to
show that each map Kalg

m;n ! �T Kalg
m;nC1 between motivic fibrant pointed motivic

spaces is a motivic weak-equivalence. For this, it suffices to show using Corollary 3.1.8
and Lemma 3.1.2 that for X 2 SmC and p � 0, the induced map

Œ†p
s XC; �

n
sK

cf
mCn�A1 ! Œ†p

s XC; �T�
nC1
s Kcf

mCnC1�A1

is an isomorphism, or that the map

Œ†p
s XC; �

n
sK

cf
mCn�A1 ! Œ†p

s †T XC; �
nC1
s Kcf

mCnC1�A1

is an isomorphism. By Corollary 3.1.8, this is equivalent to the fact that

Œ†p
s XC;Kcf

m�A1 ! Œ†p
s †T XC;Kcf

m�A1

is an isomorphism. But, by Lemma 7.2.1 and the definition of the Thom class, for
0� p <m both terms are zero, while for p �m� 0 this map is just the multiplication
by the Thom class on the groups Kp�m.X / ! Kp�m.P1

X
; f1g � X /. This is an

isomorphism by the projective bundle formula. The representability now follows using
Theorems 3.3.3, 7.1.1 and Corollary 3.1.6.

Theorem 7.2.4 Let X 2 SmC and p 2 Z. We have an isomorphism

Ksst
p .X /' Œ†1T †

1
s XCŒp�; .Kalg/host�A1 ;

ie the semitopological K–theory is representable in SH.C/.
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Proof By Theorems 6.2.1, 6.2.3 and Proposition 7.2.3, we may replace .Kalg/host in
the above by .Kalg/sst . Let f W .Kalg/sst! F be a stable motivic fibrant replacement
of .Kalg/sst . This F D .F0;F1; : : :/ is a T–levelwise motivic fibrant motivic �T –
bispectrum. We have isomorphisms

Œ†1T †
1
s XCŒp�; .Kalg/sst�A1 ' Œ†1T †

1
s XCŒp�;F �A1

' Œ†1s XCŒp�; �
1
T F �A1 D Œ†1s XCŒp�;F0�A1 :

By Theorems 3.3.3 and 6.2.1 and Proposition 7.2.3, the map f is a T–levelwise
objectwise weak-equivalence. In particular, the map .Kalg

�;0
/sst D .Kalg/sst

�;0
! F0 is an

objectwise weak-equivalence, so

Œ†1s XCŒp�;F0�A1 ' Œ†1s XCŒp�; .Kalg
�;0/

sst�A1 ' Œ†1s XCŒp�; .Kcf/sst�A1 :

By Theorems 3.1.5, 5.1.5 and 7.1.1, we have that the maps Ksst! .Kfib/sst .Kcf/sst

are objectwise weak-equivalences, so the last group is Œ†1s XCŒp�;Ksst�A1 . But, by
Proposition 7.1.2, this is Ksst

p .X /.

8 Representing morphic cohomology in SH.C/

The morphic cohomology LpH q.X / for smooth quasiprojective schemes X over C
was introduced in [5], as the homotopy groups of a function space. Later it was identified
in Friedlander and Walker [10] as the homotopy group of the semitopologization
of the complex of Friedlander and Suslin. We show that the morphic cohomology
is representable in SH.C/ by homotopy semitopologizing the motivic Eilenberg–
Mac Lane spectrum of Voevodsky.

8.1 Motivic Eilenberg–Mac Lane spectrum

Recall (see [7, page 141] and Mazza, Voevodsky and Weibel [27, page 126]) the
following. Let r � 0 and let f W Z ! U be a morphism, where each irreducible
component of Z dominates a component of U . We say Z is equidimensional of relative
dimension r over U if for every s 2 U , the scheme-theoretic fiber Zs is either ∅ or
an equidimensional of dimension r . For X 2 SchC and U 2 SmC , let zequi.X; r/.U /

be the group of cycles on Z of X � U that are dominant and equidimensional of
relative dimension r over a component of U . This zequi.X; r/ is a presheaf (in
fact an étale sheaf) on SmC . Let �� be the cosimplicial scheme, where �n D

Spec.CŒt0; : : : ; tn�/=.
Pn

iD0 ti � 1/ and @n
i (0� i � n) are the cofaces. For U 2 SmC ,

and a presheaf F of abelian groups on SmC , the simplicial abelian group F.�� �U /

has its associated chain complex C�F.U /, namely, CnF.U /D F.�n �U / with the
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differential
Pn

iD0.�1/iF.@n
i � IdU /. This C�F is a presheaf of chain complexes of

abelian groups on SmC . For n� 0, the Friedlander–Suslin motivic complex ZFS.n/

on SmC is C�zequi.An; 0/. (This definition of ZFS.n/ differs slightly from the one in
[27], where ZFS.n/ is defined as C�zequi.An; 0/Œ�2n�.) In what follows, we identify
the presheaf ZFS.n/ with an object of Spc�.C/ via the Dold–Kan correspondence.
Recall (see [41, Section 6.1]) that the motivic Eilenberg–Mac Lane spectrum HZ is a
sequence of pointed simplicial presheaves, whose nth level is K.Z.n/; 2n/DC�L.T

n/

for some functor L, with motivic weak-equivalences

K.Z.n/; 2n/!�T K.Z.nC 1/; 2nC 2/:

For X 2 SmC and U 2 SmC , L.X /.U / is the group of cycles on U � X , fi-
nite over U and surjective over a connected component of U . This L.X / is a
presheaf on SmC . This L even extends to Spc�.C/. Using the isomorphisms
T n ' Pn=Pn�1 and C�L.A=B/ ' C�L.A/=C�L.B/, we see that K.Z.n/; 2n/ '

C�L.Pn/=C�L.Pn�1/, which is isomorphic (via localization and Dold and Kan) to
the presheaf C�zequi.An; 0/ D ZFS.n/ of complexes seen as an object in Spc�.C/.
Thus, HZ can be regarded as the motivic T–spectrum .ZFS.0/;ZFS.1/; : : :/.

8.2 A1–BG property HZ

For ZFS.n/, the A1 –weak-invariance holds by [27, Corollary 2.19], while the BG
property follows from Suslin and Voevodsky [39, Proposition 4.3.9] combined with the
proof of the Zariski Mayer–Vietoris property in [7, Theorem 5.11]. Thus:

Proposition 8.2.1 The sheaves ZFS.n/ satisfy the A1 –BG property on SmC .

Recall from Section 2.3.2 that for a T–spectrum E , the associated .s; p/–bispectrum E

is given by †1s E D .†1s E0; †
1
s E1; : : :/.

Proposition 8.2.2 The .s; p/–bispectrum †1s HZ satisfies the following properties.

(1) It is a T–levelwise objectwise �s –spectrum, ie †1s ZFS.n/ is an objectwise
�s –spectrum for each n� 0.

(2) It is an S1 –levelwise motivic �T –spectrum, ie †n
s HZ is a motivic �T –

spectrum for each n� 0.

(3) It satisfies the A1 –BG property.

(4) The properties .1/–.3/ also hold for .†1s HZ/sst .
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Proof For a simplicial abelian group A and K2Spc, there is a simplicial abelian group
K˝A, given by ZŒKn�˝ZAn at level n, where ZŒKn� is the free abelian group on Kn .
The pointed motivic space S1 ^ZFS.n/ corresponds to the presheaf S1˝ZFS.n/ of
simplicial abelian groups under Dold–Kan correspondence. It follows from Goerss and
Jardine [12, Lemma 4.53] that †1s ZFS.n/ is an objectwise �s –spectrum. This proves
(1). Part (2) follows from [41, Theorem 6.2] and the facts that †s preserves motivic
weak-equivalences and that the map †s.�T E/!�T .†sE/ is an objectwise weak-
equivalence for E2Spc�.C/. Part (3) is equivalent to the fact that †1s ZFS.n/ is an A1 –
BG presheaf of spectra. This follows from Proposition 8.2.1, part (1), Corollary 3.2.4
and Theorem 3.1.5. For (4), the A1 –BG property of .†1s HZ/sst follows from part (3)
and Theorem 6.1.5. Furthermore, Proposition 8.2.1 and Theorem 6.1.5 show that each
.ZFS.n//sst is A1 –BG. We deduce from [12, Lemma 4.53] that †1s .Z

FS.n//sst is an
objectwise �s –spectrum. The isomorphism .†s.�//

sst '†s.�/
sst now implies that

.†1s HZ/sst is a T–levelwise objectwise �s –spectrum. That it is an �T –bispectrum
follows from part (2) and Theorem 6.2.1(2).

For E D .E0;E1; : : :/ 2 Spt.s;p/.C/, with Ei 2 Spt.C/, Efmg 2 Spt.s;p/.C/ is
.Em;EmC1; : : :/. By [15, Lemma 3.8, Theorem 3.9], s�W E 7!Ef1g is a right Quillen
endofunctor on Spt.s;p/.C/ and we have isomorphisms of functors †T 'L†T 'Rs�
on SH.C/. Recall (Section 2.3.2) that there are adjoint functors †1

T
W SHS1.C/$

SH.C/ WR�1
T

.

Corollary 8.2.3 In SHS1.C/, we have †1s .Z
FS.n//sst 'R�1

T
†n

T
.†1s HZ/host .

Proof Let f W .†1s HZ/sst ! F be a stable motivic fibrant replacement. We have,
by Proposition 8.2.2 and Theorem 6.2.1, that f is T–levelwise objectwise weak-
equivalence of A1 –BG .s; p/–bispectra. This implies

†n
T .†

1
s HZ/host

'Rns�.†
1
s HZ/host

' Ffng ' .†1s HZ/sst
fng ' .†1s HZfng/sst:

Applying Proposition 8.2.2 and Theorem 6.2.1 once again,

R�1T †
n
T .†

1
s HZ/host

'�1T ..†
1
s HZfng/sst/' Ev0..†

1
s HZfng/sst/

' .†1s ZFS.n//sst:

Since .†s.�//
sst '†s.�/

sst , the corollary follows.

Corollary 8.2.4 In SH.C/, we have .†n
T
†1s HZ/host '†n

T
.†1s HZ/host .

Proof Under the notation of the proof of Corollary 8.2.3, we get .†n
T
†1s HZ/host '

.Rns�†
1
s HZ/host . Here, this is isomorphic to .†1s HZfng/host by Proposition 8.2.2

and Theorem 3.3.3. This equals .†1s HZfng/sst by Proposition 8.2.2. But, in the proof
of Corollary 8.2.3, we saw this is †n

T
.†1s HZ/host .
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Theorem 8.2.5 Let X be a smooth quasiprojective scheme over C and let n � 0

and p 2 Z. Then LnH 2n�p.X /' Œ†1
T
†1s XCŒp�; †

n
T
.†1s HZ/host�A1 : That is, the

morphic cohomology of smooth quasiprojective schemes is representable in SH.C/.

Proof We have

Œ†1T †
1
s XCŒp�; †

n
T .†

1
s HZ/host�A1 ' Œ†1s XCŒp�;R�

1
T †

n
T .†

1
s HZ/host�A1

' Œ†1s XCŒp�; †
1
s .Z

FS.n//sst�A1

by adjointness and Corollary 8.2.3. This is isomorphic to �p.†
1
s .Z

FS.n//sst.X // by
Proposition 8.2.2 and Corollary 3.1.6, which in turn is equal to �p..ZFS.n//sst.X //

by Proposition 8.2.2. This last group is LnH 2n�p.X / by [10, Corollary 3.5]. This
proves the result.

Remark 8.2.6 Chu [3] proves that the morphic cohomology is representable in the
Voevodsky DM.C/ of motives. Using motivic symmetric spectra (MSS) of Jardine [18]
as a model for SH.C/, Röndigs and Østvær [36] identified H.MSStr/ (MSS with
trace) with DM.C/, and constructed a Dold–Kan map  W H.MSStr/!H.MSS/ to
give adjoint functors �W SH.C/• DM.C/ W . By construction, one can check that
�..†n

T
†1s HZ/host/ is Chu’s }mor.n/ and our result is compatible with Chu’s.

8.3 Excision and localization for morphic cohomology

As a consequence of Theorems 7.2.4 and 8.2.5, we obtain the following:

Theorem 8.3.1 The morphic cohomology of smooth schemes over C satisfies Nis-
nevich descent and localization.

Proof The arguments are standard, so we sketch the ideas. Given a Nisnevich square
as in (3.0.1), by [34, Corollary 2.20] there is a distinguished triangle in SH.C/ of
the form †1

T
†1s WC!†1

T
†1s UC _†

1
T
†1s VC!†1

T
†1s XC!†1

T
†1s WCŒ1�.

By applying Œ�; .†1s HZ/host�A1 and Œ�; .Kalg/host�A1 , we obtain Nisnevich descent
property. For localization, given a smooth closed immersion Z ,! X and the open
complement U � X , by [34, Lemma 2.16, Theorem 2.26] we have a distinguished
triangle in SH.C/ of the form †1

T
†1s UC!†1

T
†1s XC!†1

T
†1s Th.NZ=X /!

†1
T
†1s UCŒ1�, where Th.NZ=X / is the Thom space of the normal bundle. Applying

Œ�; .†1s HZ/host�A1 and Œ�; .Kalg/host�A1 again, we obtain localization sequences, pro-
vided Thom isomorphisms of cohomologies of Z and Th.NZ=X /, up to a shift. Then
the projective bundle formula gives Chern classes (see Panin [35, Section 3.6]), and
Thom isomorphism by [35, Theorem 3.35].
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Remark 8.3.2 The definitions of LpH q in [5; 10] assume quasiprojectivity of the
underlying scheme, but we can redefine the morphic cohomology for all X 2SmC using
host, as LnH 2n�p.X / WD Œ†1

T
†1s XCŒp�; †

n
T
.†1s HZ/host�A1 . By Theorem 8.2.5,

this coincides with the previous one.

9 Semitopological cobordism

The motivic Thom spectrum MGL (see [41, Section 6.3]) is a T–spectrum

.MGL0;MGL1; : : :/;

where MGLn is the motivic Thom space of the universal rank-n vector bundle En on the
Grassmann ind-scheme Gr.n;1/. The associated cohomology theory (Section 2.3.3)
MGLp;q.�/ on SmC is called the (Voevodsky) algebraic cobordism.

As an application of Theorem 6.2.3, we can define the semitopological Thom spectrum
MGLsst to be MGLhost in SH.C/. We call its associated bigraded cohomology theory
MGLp;q

sst .�/ on SmC , the semitopological cobordism. The natural map MGL !
MGLsst in SH.C/ defines a natural transformation of bigraded cohomology theories
MGLp;q.�/!MGLp;q

sst .�/ on SmC . Using the morphism MGL!H Z, it follows
from Theorem 8.2.5 that there is a commutative diagram

MGLp;q.�/ //

��

MGLp;q
sst .�/

��

H
p
M.�;Z.q//

// LpH q.�/

of cohomology theories on SmC . (The referee had kindly informed that J Heller [13]
had earlier defined this semitopological cobordism by taking a fibrant replacement
of MGL and applying the sst–functor. By motivic descent theorems in Section 3
and Theorem 6.1.5, this is objectwise weak-equivalent to ours, so that the resulting
cohomology theories are equal.) A result of Hopkins and Morel says that, for X 2SmC

and n� 0, there is an Atiyah–Hirzebruch-type spectral sequence

Ep;q.n/DH
p�q
M .X;Z.n� q//˝Z Lq

)MGLpCq;n.X /;

where LD
L

q�0 Lq is the Lazard ring. This result is in an unpublished form to the
best of our knowledge, but based on the lecture notes in Lawson [22], a proof of an
essential part is done in Hoyois [16]. Our last goal is to apply host and the ideas of [16],
Spitzweck [37; 38] and Voevodsky [42] to produce an analogous spectral sequence for
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MGLsst . We remark that a similar spectral sequence that relates the motivic cohomology
to the algebraic K–theory was constructed in Bloch and Lichtenbaum [1] and [6], while
for the semitopological K–theory in Friedlander, Haesemeyer and Walker [4].

Recall from [38, Section 3] an analogue of the Postnikov tower for E 2 SH.C/.
Let SH.C/eff � SH.C/ be the full localizing triangulated subcategory generated by
†i

s†
j
t†
1
T

XC for i; j 2 Z, j � 0 and X 2 SmC . For p 2 Z, the inclusion

�pW †
p
T
SH.C/eff

! SH.C/

has a right adjoint rp such that rpı�p' Id (cf [34, Section 4]). Set fp WD �pırp . There is
a natural transformation �pC1W fpC1! fp . We define the slices spE WD cofib.�pC1/.
Thus, we have a sequence of maps!fpE!� � �!f1E!f0E!f�1E!� � �!E .
We also have a distinguished triangle fpC1E!fpE! spE! .fpC1E/Œ1� in SH.C/.

We say that E is effective if the map fpE ! E is an isomorphism for p � 0.
By [34, Remark 4.2; 37, Corollary 3.2] we have fp MGL'MGL for all p � 0 and
sp MGLD 0 for all p < 0. In particular, MGL is effective. For s0 MGL, the natural
map MGL!HZ induces an isomorphism s0 MGL'HZ, by combining [37, Corol-
lary 3.3; 42]. Recall there is a morphism of ring spectra L!MGL and the natural map
MGL! s0 MGLDHZ factors as MGL!MGL˝L.L=L

<0/DMGL˝LZ!HZ.
The last map is an isomorphism in SH.C/ by [16]. This implies sp MGL

�

�!†
p
T

HLp

by [37, Theorem 4.7], which we use below.

Fix X 2 SmC and n � 0. We write †1
T

XC as just X and the hom sets Œ�;��A1 in
SH.C/ as just Œ�;��. Applying host to the sequence

! f2 MGL! f1 MGL! f0 MGLDMGL

and the distinguished triangle

fpC1 MGL!fp MGL!sp MGL! .fpC1 MGL/Œ1�;

we get the sequences of maps

(9.0.1) � � � ! .fp MGL/host
! � � � ! .f1 MGL/host

! .f0 MGL/host
DMGLsst;

and by Theorem 6.2.3 a distinguished triangle

.fpC1 MGL/host
! .fp MGL/host

! .sp MGL/host
! .fpC1 MGL/hostŒ1�

in SH.C/. Applying ŒX;�� to the triangle, we obtain an exact sequence

(9.0.2) ŒX; .fpC1 MGL/host�! ŒX; .fp MGL/host�! ŒX; .sp MGL/host�

!
�
X; .fpC1 MGL/hostŒ1�

�
:
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We now construct some exact couples. See McCleary [28, Section 2, Theorem 2.8] for
related formalisms. For p; q 2 Z and n� 0, define

Ap;q.X; n/ WD ŒX; †pCq�n
s †n

t .fp MGL/host�:

The map �host
p W .fp MGL/host! .fp�1 MGL/host induces a map

�p�1;qC1W A
p;q.X; n/!Ap�1;qC1.X; n/:

For the slices, we let Ep;q.X; n/ WD ŒX; †
pCq�n
s †n

t .sp MGL/host�: From (9.0.2), we
get an exact sequence

Ap;q.X; n/!Ap�1;qC1.X; n/!Ep�1;qC1.X; n/!ApC1;q.X; n/;

where �p�1;qC1 , 
p�1;qC1 and ıp�1;qC1 are the arrows. We set

D1.X; n/ WD
M
p;q

Ap;q.X; n/ and E1.X; n/ WD
M
p;q

Ep;q.X; n/:

Write a1 WD
L
ıp�1;qC1 , b1 WD

L
�p�1;qC1 and c1 WD

L

p�1;qC1 . This gives

an exact couple fD1;E1; b1; c1; a1g. We let d1 WD c1 ı a1W E1! E1 . That (9.0.2)
is exact implies that d2

1
D 0, and .E1; d1/ is a complex. Repeatedly taking ho-

mology, we obtain a spectral sequence. For the target of the spectral sequence, let
Am.X; n/ WD colimq!1Am�q;q.X; n/. Since X is a compact object of SH.C/ (cf
[41, Proposition 5.5]), the colimit enters into Œ�;�� thus

Am.X; n/D ŒX; †m�n
s †n

t MGLhost�DMGLm;n
sst .X /

by (9.0.1). The formalism of exact couples yields a spectral sequence

E
p;q
1
.X; n/DEp;q.X; n/)ApCq.X; n/:

We have

E
p;q
1
.X; n/' ŒX; †pCq�n

s †n
t .sp MGL/host�' ŒX; †pCq�n

s †n
t .†

p
T

HLp/host�

because sp MGL
�

�!†
p
T

HLp by [37, Theorem 4.7]. By Corollary 8.2.4 and adjointness,
this is

ŒX; †pCq�n
s †n

t†
p
T
.HLp/host�' ŒX; †pCq�2n

s †
pCn
T

.HLp/host�

' Œ†2n�p�q
s X; †

pCn
T

.HLp/host�:

This is equal to

LpCnH 2.pCn/�.2n�p�q/.X /˝Z Lp
DLpCnH 3pCq.X /˝Z Lp
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by Theorem 8.2.5 and Section 2.3.3. This E1 –spectral sequence is actually identical
to an E2 –spectral sequence after reindexing. Indeed, let

zEp0;q0

2 .X; n/DLn�q0H p0�q0.X /˝Z Lq0 :

For r 0 WD r C 1, a simple calculation shows that the equality E
p;q
r D zEp0;q0

r 0 gives the
equalities pC nD n� q0; 3pC q D p0� q0;p D�q0 so that

EpCr;q�rC1
r DLpCrCnH 3pCqC2rC1.X /˝Z L�p�r

DLn�q0Cr H p0�q0C2rC1.X /˝Z Lq0�r
D zEp0;q0

r 0

as desired. In summary we get an analogue of Hopkins–Morel spectral sequence:

Theorem 9.0.3 For X 2 SmC and n� 0, there is a spectral sequence

E
p;q
2
.n/DLn�qH p�q.X /˝Z Lq

)MGLpCq;n
sst .X /:

There is a natural morphism of spectral sequences:

(9.0.3)

H
p�q
M .X;Z.n� q//˝Z Lq +3

��

MGLpCq;n.X /

��

Ln�qH p�q.X /˝Z Lq +3 MGLpCq;n
sst .X /

Repeating the argument for MGL smashed with mod l –Moore spectrum, and using
that the left vertical arrow in (9.0.3) mod l is an isomorphism (cf [11, Theorem 30]), we
deduce that MGLp;q and MGLp;q

sst are identical with finite coefficients. On the other
hand, applying Naumann, Spitzweck and Østvær [33, Corollary 10.6], we note the
spectral sequence of Theorem 9.0.3 degenerates tensoring with Q. Here is a summary:

Corollary 9.0.4 Let X 2 SmC and p; q 2 Z. For l � 1, we have

MGLp;q.X;Z= l/'MGLp;q
sst .X;Z= l/:

We also have
MGL�;�sst .X /˝Z Q'L�H�Q.X /˝Z L

as graded LQ –modules.

Let ��alg be the algebraic cobordism modulo algebraic equivalence given by the authors
in [21]. By the universal property of ��alg.�/, there is a natural functor ��alg.�/!

MGL2�;�
sst .�/.

Corollary 9.0.5 The maps L!��alg.pt/!MGL2�;�
sst .pt/ are isomorphisms.
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Proof The first map is an isomorphism by [21, Theorem 1.2(2)]. The spectral sequence
in Theorem 9.0.3 shows that ��alg.pt/!MGL2�;�

sst .pt/ is surjective. Composing with
MGL2�;�

sst .pt/!MU2�.pt/ gives an isomorphism ��alg.pt/'MU2�.pt/' L by [21].
In particular, the map ��alg.pt/!MGL2�;�

sst .pt/ is injective.

For the algebraic cobordism ��.�/ of Levine and Morel [25], the map ��.X /!
MGL2�;�.X / is an isomorphism for X 2 SmC by Levine [24]. By combining
Theorem 9.0.3, Corollary 9.0.5 and the methods of [24], it is probably possible to
prove that ��alg.X /!MGL2�;�

sst .X / is an isomorphism for X 2 SmC . But we do not
attempt this in this paper.
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