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Pin.2/–equivariant KO–theory
and intersection forms of spin 4–manifolds

JIANFENG LIN

Using the Seiberg–Witten Floer spectrum and Pin.2/–equivariant KO–theory, we
prove new Furuta-type inequalities on the intersection forms of spin cobordisms
between homology 3–spheres. We then give explicit constrains on the intersection
forms of spin 4–manifolds bounded by Brieskorn spheres ˙†.2; 3; 6k˙ 1/ . Along
the way, we also give an alternative proof of Furuta’s improvement of 10

8
–theorem

for closed spin 4–manifolds.

57R58; 57R57

1 Introduction

A natural question in 4–dimensional topology is: Which nontrivial symmetric bilinear
forms can be realized as the intersection form of a closed, smooth, spin 4–manifold X ?
Such a form should be even and unimodular. Therefore, it is indefinite by Donaldson’s
diagonalizability theorem [8; 9]. After changing the orientation of X if necessary, we
can assume that the signature �.X / is non-positive. Then the intersection form can be
decomposed as p.�E8/˚q

�
0
1

1
0

�
with p � 0; q > 0. Matsumoto’s 11

8
conjecture [22]

states that b2.X /�
11
8
j�.X /j, which can be rephrased as q � 3

2
p . An important result

is the following 10
8

theorem of Furuta:

Theorem 1.1 [14] Suppose X is an oriented closed spin 4–manifold with intersec-
tion form p.�E8/˚ q

�
0
1

1
0

�
for p � 0; q > 0. Then we have q � pC 1.

Furuta’s proof made use of the finite-dimensional approximation of the Seiberg–Witten
equations on closed 4–manifolds and Pin.2/–equivariant K–theory. By doing destabi-
lization and appealing to a result of Stolz [32], Minami and Schmidt independently
proved the following improvement:

Theorem 1.2 [23; 29] Let X be a smooth, oriented, closed spin 4–manifold with
intersection form p.�E8/˚ q

�
0
1

1
0

�
for p � 0; q > 0. Then we have

(1) q �

8<:
pC 1 p � 0; 2 mod 8;

pC 2 p � 4 mod 8;

pC 3 p � 6 mod 8:
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Remark 1.3 p is always an even integer by Rokhlin’s theorem [27].

An interesting observation is that Schmidt’s calculation in [29] about the Adams
operations actually implies an alternative proof of the following further improvement,
which was first proved by Furuta and Kametani. We will give the proof in Section 3.

Theorem 1.4 [15] Let X be a smooth, oriented, closed spin 4–manifold with inter-
section form p.�E8/˚ q

�
0
1

1
0

�
for p; q > 0. Then q � pC 3 when p � 0 mod 8.

Another direction is to consider the intersection form of a spin 4–manifold with given
boundary. Suppose X is not closed but has boundary components, which are homology
3–spheres. The intersection form of X is still even and unimodular but can be definite
now. For the definite case, various constraints are found in Frøyshov [10; 11; 12],
Ozsváth and Szabó [26], Kronheimer, Mrowka and Ozsváth [17] and Manolescu [18].

For the indefinite case, Furuta and Li and, independently, Manolescu proved the
following theorem.1

Theorem 1.5 [16; 21] To each oriented homology 3–sphere Y , we can associate an
invariant �.Y / 2 Z with the following properties:

(a) Suppose W is a smooth, spin cobordism from Y0 to Y1 , with intersection form
p.�E8/˚ q

�
0
1

1
0

�
. Then

�.Y1/C q � �.Y0/Cp� 1:

(b) Suppose W is a smooth, oriented spin manifold with a single boundary Y , with
intersection form p.�E8/˚ q

�
0
1

1
0

�
and q > 0. Then

�.Y /C q � pC 1:

Furuta and Li, and, independently, Manolescu proved this theorem by considering
Pin.2/–equivariant K–theory on the Seiberg–Witten Floer spectrum. Some new bounds
can be obtained from this theorem. For example, the Brieskorn sphere C†.2;3;12nC1/

does not bound a spin 4–manifold with intersection form p.�E8/˚p
�

0
1

1
0

�
for p > 0.

The main purpose of this paper is to extend Theorem 1.2 to the case of spin cobordisms
and get more constrains on the intersection form of a spin 4–manifold with boundary.
Here is the first result:

1We give Manolescu’s statement here. Furuta and Li’s statement is slightly different.

Algebraic & Geometric Topology, Volume 15 (2015)



Pin.2/–equivariant KO–theory and intersection forms of spin 4–manifolds 865

Theorem 1.6 For any k 2Z=8, we can associate an invariant �ok.Y / to each oriented
homology sphere Y , with the following properties:

(a) 2�ok.Y / is an integer whose reduction modulo 2 is the Rokhlin invariant �.Y /.

(b) Suppose W is an oriented smooth spin cobordism from Y0 to Y1 , with inter-
section form p.�E8/˚ q

�
0
1

1
0

�
for p; q � 0. Let p D 4l Cm for l 2 Z and

mD 0; 1; 2; 3. Then for any k 2 Z=8, we have the following inequalities:
(i) If .�.Y0/;m/D .0; 0/; .0; 3/; .1; 0/; .1; 1/, then

(2) �ok.Y0/C 2l C h.�.Y0/;m/� �okCq.Y1/Cˇ
q

kCq
:

(ii) If .�.Y0/;m/D .0; 1/; .0; 2/; .1; 2/; .1; 3/, then

(3) �okC4.Y0/C 2l C h.�.Y0/;m/� �okCq.Y1/Cˇ
4Cq

kCq
:

Here ˇj

k
D
Pj�1

iD0
˛k�i , where ˛i D 1 for i � 1; 2; 3; 5 mod 8 and ˛i D 0 for

i � 0; 4; 6; 7 mod 8 (ˇ0
k

is defined to be 0). The constants h.�.Y0/;m/ are
listed below.

mD 0 mD 1 mD 2 mD 3

�.Y0/D 0 0 5
2

3 3
2

�.Y0/D 1 0 1
2

3 7
2

Remark 1.7 When m is even, �.Y0/D�.Y1/ and h.�.Y0/;m/ is an integer. When m

is odd, �.Y0/¤ �.Y1/ and h.�.Y0/;m/ is a half-integer.

Setting p D q D 0 in Theorem 1.6(b), we get:

Corollary 1.8 If two homology spheres Y0;Y1 are homology cobordant to each other,
then �ok.Y0/D �ok.Y1/ for any k 2 Z=8.

The definition of �ok is similar to that of � ; see Furuta and Li [16] and Manolescu [21].
Roughly, �ok.Y / is defined as follows. Pick a metric g on Y . By doing finite-
dimensional approximation to the Seiberg–Witten equations on .Y;g/, we get a topo-
logical space I� with an action by G D Pin.2/. After changing I� by a suitable
suspension or desuspension, we consider the following construction: The inclusion of
the S1 –fixed point set IS1

� induces a map between the equivariant KO–groups,

i�W fKOG.I�/! fKOG.I
S1

� /:
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We choose a specific reduction 'W fKOG.I
S1

� /! Z. It can be proved that the image
of ' ı i� is an ideal generated by 2a 2 Z. We define a as �ok.Y /. Different k 2 Z=8
correspond to different suspensions.

In Section 8 we calculate some examples using the results of Manolescu [21] about the
Seiberg–Witten Floer spectrum of ˙†.2; 3; r/.
Theorem 1.9 (a) We have �oi.S

3/D 0 for any i 2 Z=8.

(b) For a positive integer r with gcd.r; 6/ D 1, let †.2; 3; r/ be the Brieskorn
spheres oriented as boundaries of negative plumbings and let �†.2; 3; r/ be the
same Brieskorn spheres with the orientations reversed. The �oi.˙†.2; 3; r//

are listed below:

�o0 �o1 �o2 �o3 �o4 �o5 �o6 �o7

†.2; 3; 12n� 1/ 1 1 1 0 0 0 0 0

�†.2; 3; 12n� 1/ 0 0 �1 �1 0 0 0 0

†.2; 3; 12n� 5/ 1
2

1
2

1
2
�

1
2
�

1
2
�

1
2
�

1
2
�

1
2

�†.2; 3; 12n� 5/ 3
2

3
2

1
2
�

1
2
�

1
2
�

1
2
�

1
2

1
2

†.2; 3; 12nC 1/ 0 0 0 0 0 0 0 0

�†.2; 3; 12nC 1/ 0 0 0 0 0 0 0 0

†.2; 3; 12nC 5/ 3
2

3
2

1
2
�

1
2
�

1
2
�

1
2

1
2

3
2

�†.2; 3; 12nC 5/ �1
2
�

1
2
�

1
2
�

1
2
�

1
2
�

1
2
�

1
2
�

1
2

Remark 1.10 We see that �ok.�Y /¤��ok.Y / in general, while �ok.Y # .�Y // is
always 0 by Corollary 1.8. Therefore, �ok is not additive under connected sum.

If we apply Theorem 1.6(b) to the case Y0 D Y1 D S3 , the result is weaker than
Theorem 1.2. As is the case in K–theory (see Manolescu [21]), we can remedy this by
considering the special property of Y0 Š S3 called the Floer KOG –split condition.

Theorem 1.11 Let W be an oriented, smooth spin cobordism from Y0 to Y1 , with
intersection form p.�E8/˚q

�
0
1

1
0

�
and p� 0; q > 0. Suppose Y0 is Floer KOG –split.

Let p D 4lCm for l 2Z and mD 0; 1; 2; 3. Then we have the following inequalities:
(a) If .�.Y0/;m/D .0; 0/; .0; 3/; .1; 0/; .1; 1/, then

(4) �o4.Y0/C 2l C h.�.Y0/;m/C 1� �o4Cq.Y1/Cˇ
q
4Cq

:

(b) If .�.Y0/;m/D .0; 1/; .0; 2/; .1; 2/; .1; 3/, then

(5) �o4.Y0/C 2l C h.�.Y0/;m/C 1� �oq.Y1/Cˇ
4Cq
q :

Here ˇ�� and h.�.Y0/;m/ are the constants defined in Theorem 1.6.
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In particular, S3 is Floer KOG –split. Applying Y0 D S3 to the previous theorem, we
get the following useful corollary:

Corollary 1.12 Let W be an oriented smooth spin 4–manifold whose boundary is a
homology sphere Y . Suppose the intersection form of W is p.�E8/˚ q

�
0
1

1
0

�
with

p � 0; q > 0. Then we have the following inequalities:

� If p D 4l , then 2l < �o4Cq.Y /Cˇ
q
4Cq

.

� If p D 4l C 1, then 2l C 5
2
< �oq.Y /Cˇ

4Cq
q .

� If p D 4l C 2, then 2l C 3< �oq.Y /Cˇ
4Cq
q .

� If p D 4l C 3, then 2l C 3
2
< �o4Cq.Y /Cˇ

q
4Cq

.

Remark 1.13 If we set Y D S3 in Corollary 1.12, we will recover Theorem 1.2.
However, Corollary 1.12 is not enough to prove Theorem 1.4. In order to get the
relative version of Theorem 1.4, we have to apply similar constructions on the fixed
point set of the Adams operation. This will not be done in the present paper.

Combining the results in Theorem 1.9 with Corollary 1.12, we get some new explicit
bounds on the intersection forms of spin 4–manifolds bounded by ˙†.2; 3; r/. We
give two of them here and refer to Section 8.2 for a complete list.

Example 1.14 We have the following conclusions:

� �†.2; 3; 12n� 1/ does not bound a spin 4–manifold with intersection form
p.�E8/˚ .pC 1/

�
0
1

1
0

�
for p > 0.

� �†.2; 3; 12n� 5/ does not bound a spin 4–manifold with intersection form
p.�E8/˚p

�
0
1

1
0

�
for p > 1.

The paper is organized as follows. In Section 2, we discuss some background material
about Pin.2/–equivariant KO–theory. In Section 3, we prove Theorem 1.4 after
recalling some basic facts and properties of the Adams operations. In Section 4, we
review the basic properties of the Seiberg–Witten Floer spectrum. The numerical
invariant �ok is defined in Section 5 and Theorem 1.6 is proved in Section 6. In
Section 7, we introduce the Floer KOG –split condition and prove Theorem 1.11. In
Section 8, we prove Theorem 1.9 and use Corollary 1.12 and Theorem 1.4 to obtain
new constraints on the intersection form of a spin 4–manifold with given boundary.
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2 Equivariant KO–theory

2.1 General theory

In this subsection, we review some general facts about equivariant KO–theory, mostly
from [30] and [4]. See [2; 3] for basic facts about ordinary K–theory and KO–theory.

Let G be a compact topological group and X be a compact G –space. We denote the
Grothendieck group of real G –bundles over X by KOG.X /.

Fact 2.1 KOG.pt/D RO.G/. Here RO.G/ denotes the real representation ring of G .
For a general X , KOG.X / is a RO.G/–algebra (with unit).

Remark 2.2 We do not distinguish a representation of G from its representation space.

Fact 2.3 A continuous G –map f W X!Y induces a map f �W KOG.Y /!KOG.X /.

Fact 2.4 For each subgroup H �G , by restricting the G –action to H , which makes
a G–bundle into an H –bundle, we get a functorial restriction map r W KOG.X /!

KOH .X /.

Fact 2.5 If G acts freely on X , then the pullback map KO.X=G/! KOG.X / is a
ring isomorphism.

Fact 2.6 For a real irreducible representation space V of G , EndG.V / is either
R, C or H . Let Z IrR , Z IrC and Z IrH denote the free abelian groups generated by
irreducible representations of respective types and let KSp.X / be the Grothendieck
group of quaternionic vector bundles over X . Then if G acts trivially on X , we have

(6) KOG.X /D .KO.X /˝Z IrR/˚ .K.X /˝Z IrC/˚ .KSp.X /˝Z IrH/:

Now suppose X has a distinguished base point p which is fixed by G . Then we definefKOG.X / (the reduced KO–group) to be the kernel of the map KOG.X /! KOG.p/.
For a based space X with trivial action, we also have

(7) fKOG.X /D .fKO.X /˝Z IrR/˚ .zK.X /˝Z IrC/˚ .eKSp.X /˝Z IrH/:

Algebraic & Geometric Topology, Volume 15 (2015)
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The following fact is proved in [2, Corollary 3.1.6] (which only proved the complex
K–theory case, but the proof works without modification in the real case).

Fact 2.7 Suppose X is a finite, based G –CW complex and the G –action is free away
from the base point. Then any element in fKOG.X /Š fKO.X=G/ is nilpotent.

Recall that the augmentation ideal a � RO.G/ is the kernel of the forgetful map
RO.G/ŠKOG.pt/!KO.pt/ŠZ. Any element in a defines an element in fKOG.X /.
By the above fact, we get:

Fact 2.8 Suppose X is a finite, based G –CW complex and the G –action is free away
from the base point. Then any element in the augmentation ideal acts on fKO�

G
.X /

nilpotently.

Fact 2.9 For pointed spaces X;Y , there is a natural product map

fKOG.X /˝ fKOG.Y /! fKOG.X ^Y /:

Fact 2.10 For pointed spaces X;Y , we have fKOG.X _Y /Š fKOG.X /˚ fKOG.Y /.

Let V be a real representation space of G . Denote the reduced suspension V C^X by
†V X . The following equivariant version of real Bott periodicity theorem was proved
in [4].

Fact 2.11 Suppose the dimension n of V is divisible by 8 and V is a spin repre-
sentation (which means that the group action G! SO.n/� End.V / factors through
Spin.n/). Then we have the Bott isomorphism

'V W
fKOG.X /Š fKOG.†

V X /;

given by multiplication by the Bott class bV 2
fKOG.V

C/ under the natural map

fKOG.V
C/˝ fKOG.X /! fKOG.†

V X /:

The Bott isomorphism is functorial under the pointed map X !X 0 .

Fact 2.12 Bott classes behave well under the restriction map, which means that
i�bV Dbi�.V / . Here i� is the restriction map (see Fact 2.4) and i�.V / is the restriction
of the representation to the subgroup.
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2.2 Pin(2)–equivariant KO–theory

In this section, we will review some important facts about Pin.2/–equivariant KO–
theory. Detailed discussions can be found in [29]. See [1] and [5] for general facts
about equivariant KO–theory and equivariant stable homotopy theory. From now on,
we assume G Š Pin.2/ unless otherwise noted. Recall that the group Pin.2/ can be
defined as S1˚ jS1 �C˚ j C DH . We have

RO.Pin.2//Š ZŒD;K;H �=.D2
� 1;DK�K;DH �H;H 2

� 4.1CDCK//:

The representation space of D is R, where the identity component S1 � Pin.2/ acts
trivially and j 2 Pin.2/ act as multiplication by �1.

The representation space of K is C Š R ˚ iR, where z 2 S1 � Pin.2/ acts as
multiplication by z2 (in C ) and j acts as reflection along the diagonal.

The representation space of H is H , where the action is given by the left multiplication
of Pin.2/�H .

We will also write R as the trivial one-dimensional representation of G .

Following the notation of [29], we denote fKOG..kDClH /C/ by KOG.kDClH / (we
choose1 as the base point). Then for k; l;m; n2Z�0 we have the multiplication map

(8) KOG.kDC lH /˝KOG.mDC nH /! KOG..kCm/DC .l C n/H /:

In order to define this map, we need to fix the identification between .kD˚ lH /˚

.mD ˚ nH / and .k C m/D ˚ .l C n/H by sending .x1 ˚ y1/ ˚ .x2 ˚ y2/ to

.x1;x2/˚ .y1;y2/. By considering G –equivariant homotopy, it is not hard to see that
the multiplication map is commutative when k or l is even. (We will prove that the
multiplication map is actually commutative for any k; l , after we give the structure of
KOG.kDC lH / in Theorem 2.13.)

It is easy to prove (see [29]) that 8D , H C 4D and 2H are spin representations.
Therefore, we can choose Bott classes b8D 2 KOG.8D/, b2H 2 KOG.2H / and
bHC4D 2 KOG.H C 4D/. Multiplication by these classes induces isomorphisms

KOG.kDC lH /Š KOG..kC 8/DC lH /Š KOG..kC 4/DC .l C 1/H /

Š KOG.kDC .l C 2/H /:

Since the Bott classes are in the center, it doesn’t matter whether we multiply on the
left or on the right. Moreover, we can choose the Bott classes to be compatible with
each other, which means that b8Db2H D b2

HC4D
. We fix this choice of Bott classes

throughout the paper.
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For k; l 2Z, the RO.G/–module KOG.kDClH / is defined to be KOG..kC8a/DC

.lC2b/H / for any a; b 2Z which satisfy kC8a� 0 and lC2b � 0. Since the Bott
classes are chosen to be compatible, the groups defined by different choices of a; b are
canonically identified to each other. Again, because the Bott classes are in the center,
the multiplication map (8) can now be extended to all k; l;m; n 2 Z.

Consider the inclusion i W 7DC! 8DC . There is a unique element  .D/2KOG.�D/

which satisfies  .D/b8D D i�.b8D/. The map

KOG..kC 1/DC lH /
�.D/
����! KOG.kDC lH /

is just the map induced by the inclusion kD˚ lH ! .k C 1/D˚ lH for k; l � 0.
Similarly, we can define  .H /2KOG.�H / and  .HC4D/D .H / .D/4 . Since left
multiplication and right multiplication by  .D/ or  .H / just correspond to different
inclusions of subspaces, which are homotopic to each other, we see that  .D/ and  .H /

are both in the center.

By Bott periodicity, we only have to compute KOG.lD/ for l D�2;�1; 0; : : : ; 5. This
was done by Schmidt, and we list the result here:

Theorem 2.13 [29] We have the following isomorphisms of Z–modules:

(a) Let ADK� .1CD/ and B DH � 2.1CD/. Then

KOG.pt/Š RO.Pin.2//

Š ZŒD;A;B�=.D2
� 1;DA�A;DB �B;B2

� 4.A� 2B//:2

(b) KOG.�lD/ŠZ˚
L

n�1 Z=2 for lD1; 2, generated by  .D/jlj and  .D/jljAn

for n� 1.

(c) KOG.D/Š Z, generated by �.D/.

(d) KOG.lD/ŠZ˚
L

m�0 Z=2 for l D 2; 3. For l D 2, the generators are �.D/2

and  .D/2Amc , m� 0; for l D 3, they are  .D/�.D/ and  .D/Amc , m� 0.

(e) KOG.4D/ is freely generated by �.D/;D�.D/;An�.D/ and Amc for m � 0

and n� 1.

(f) KOG.5D/Š Z, generated by �.D/�.D/.

Corollary 2.14 The multiplication map (8) is commutative.

2There is a typo in [29], where the relation between A and B is B2 � 2.A� 2B/ .
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Proof We just need to check that  .D/, �.D/, �.D/, c commute with each other.
This is easy since �.D/ and c are in KOG.kD/ for even k , while  .D/ is in the
center by our discussion before.

For our purpose, we don’t need to know the explicit constructions of �.D/; �.D/ and c .
We just need to know the following properties:

� �.D/ is the Hurewicz image of an element Q�.D/ 2 �0
G
.D/ (G –equivariant stable

cohomotopy group of DC ). If we forget about the G–action, Q�.D/ is just the Hopf
map in �st

1
.pt/.

� For �.D/ and c 2KOG.4D/, by Bott periodicity and formula (7), we have isomor-
phisms

KOG.4D/Š KOG.8DC 4/

Š KOG.4/

Š .fKO.S4/˝Z IrR/˚ .zK.S4/˝Z IrC/˚ .eKSp.S4/˝Z IrH/:

(Here 4 2 RO.G/ denotes the trivial 4–dimensional real representation.)

� We can choose suitable Bott classes such that, under these isomorphisms, �.D/
corresponds to

.ŒVH �� 4R/˝ 1 2 fKO.S4/˝Z IrR

and c corresponds to

.ŒVH��H/˝H 2 eKSp.S4/˝Z IrH :

Here VH is the quaternion Hopf bundle over S4 ŠHP2 , H and R denote the trivial
bundles, and 1;H are elements in RO.G/.

� Let �.H / and c.H / be the images of �.D/ and c under the Bott isomorphism
KOG.4D/ŠKOG.8DCH /ŠKOG.H /. Then KOG.H / is generated as an RO.G/–
algebra by �.H / and c.H /.

Remark 2.15 Notice that the element ŒVH �˝H 2 KSp S4˝ZIrH is represented
by the bundle VH ˝H H . Hence it is a real bundle of dimension 4 (not 16).

For further discussions, we need to know the multiplicative structures of KOG.lD/,
which are also given by Schmidt. We list some of them that are useful for us:

Algebraic & Geometric Topology, Volume 15 (2015)
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Theorem 2.16 [29] The following relations hold:

(a) H�.D/D 4c , Hc D .AC 2C 2D/�.D/, Dc D c .

(b) .DC 1/ .D/D 2A .D/D B .D/D 0.

(c) .DC 1/�.D/DA�.D/D B�.D/D 0.

(d)  .D/�.D/D 1�D ,  .D/�.D/D �.D/3 .

(e)  .D/8b8D D 8.1�D/;  .H /2b2H DK� 2H CDC 5.

(f)  .H C 4D/bHC4D D 4.1�D/.

(g) �.D/�.D/D  .D/3b8D , �.D/c D 0.

(h)  .H /�.H /D 4�H and  .H /c.H /DH � 1�D�K .

3 The Adams operations

3.1 Basic properties

In this subsection we give a quick review about the basic properties of the Adams
operations. See [2] and [6] for more detailed discussions. Some of the calculations
can be found in [29], but we give them here for completeness. For simplicity and
concreteness, we only deal with  k W KOG.X /! KOG.X / for an actual G –space X

and we don’t do localizations (like [29]).

Let KOG.X /ŒŒt �� be the formal power series with coefficients in KOG.X /. For a
bundle E over X , we define �t .E/2KOG.X /ŒŒt �� to be

P
iD0 t i Œ�i.E/�. Here �i.E/

is the i th exterior power of E . We let  0.E/D rank.E/, and define

 t .E/D
X
iD0

t i i.E/ 2 KOG.X /ŒŒt ��

by

(9)  t .E/D  
0.E/� t

d

dt
log��t .x/:

It turns out that, for any k 2Z�0 ,  k extends to a well-defined operation on KOG.X /,
which satisfies the following nice properties:

(a)  k is functorial with respect to continuous maps f W X !X 0 .

(b)  k maps fKOG.X / to fKOG.X /.

(c) For all x;y 2 KOG.X /,

 k.xCy/D  k.x/C k.y/ and  k.xy/D  k.x/ k.y/:

(d) If x is a line bundle, then  k.x/D xk .
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The effect of the Adams operations on the Bott classes can be described by the Bott
cannibalistic class. Given a spin G–bundle E over X with rank n � 0 mod 8, the
Bott cannibalistic class �or

k
.E/ 2 RO.G/ is defined by the equation

(10)  k.bE/D �
or
k .E/ � bE for k > 1:

When k is odd, this can be explicitly written as (see [6])3

(11) �or
k .E/D kn=2

Y
u2J

��u.E/.1�u/�n:

Here J is a set of k th roots of unity u¤ 1 such that J contains exactly one element
from each pair fu;u�1g. Notice that we can define �or

k
.E/ for any real bundle E of

even dimension using formula (11). It can be shown that

�or
k .ECF /D �or

k .E/�
or
k .F /:

Now let’s specialize to the case k D 3. By formula (9), it is easy to check that
 3.x/D x3� 3�2.x/xC 3�3.x/. We want to calculate the action of  3 on RO.G/.
Since the G–action on H preserves the orientation, we have �3.H /D �1.H /DH .
Using complexification, it is easy to show �2.H / D K CD C 3. Also, we have
�2.K/DD . Therefore, we get4

 3.D/DD;  3.H /DHK�H;  3.K/DK3
� 3K;

 3.A/DA3
C 6A2

C 9A;  3.B/DABCBC 4A:

Also, applying formula (11), we get

�or
3 .2/D 3; �or

3 .2D/D 1C 2D; �or
3 .H /DACBC 4DC 5:

3.2 Proof of Theorem 1.4

The central part of the proof is the following proposition:

Proposition 3.1 For any integers r; a; b � 0 and l > 0, there does not exist a G–
equivariant map

f W .rRC aDC .4l C b/H /C! .rRC .aC 8l C 2/DC bH /C

that induces a homotopy equivalence on the G –fixed point set.

3There is a typo in [6, Equation 3.10.4].
4There is a typo in [29], where  3.H /DHK�K .
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Proof Suppose there exists such a map f . After suspension by copies of R;D and H ,
we can assume aD 8l 0C 6, r D 8d and b D 2k . Let

V1 D 8dRC 2kH C 8.l C l 0C 1/D;

V2 D 8dRC .4l C 2k/H C .8l 0C 8/D:

Let bV1
and bV2

be the Bott classes of V1 and V2 , respectively. Consider the element
x D f �.bV1

/. By the Bott isomorphism and Theorem 2.13(b), we can write x as
bV2

 .D/2˛ for some ˛ 2 RO.G/. Moreover, we can assume ˛ D pCAh.A/ for
some integer p and some polynomial h.A/ whose coefficients are either 0 or 1.

Claim p is even and hD 0.

This is essentially a special case of [29, Proposition 5.21] for KO.4l; 8l C 2/.5

By formula (10), we have:  3.bV1
/D �or

3
.V1/ � bV1

, which implies that

(12)  3.x/D f �. 3.bV1
//D �or

3 .V1/ �x:

Notice that x D i�.bV2
�˛/, where i W .8dRC .4l C 2k/H C .8l 0C 6/D/C! V C

2
is

the standard inclusion. By formula (10), we have

(13)  3.x/D i�. 3.bV2
�˛//D �or

3 .V2/bV2
 3.˛/ �  .D/2:

Comparing (12) and (13), we get

(14)
�
�or

3 .V2/ 
3.˛/� �or

3 .V1/˛
�
 .D/2 D 0:

We can calculate

�or
3 .V1/D 34d .1C 2D/4lC4l 0C4.ACBC 4DC 5/2k ;

�or
3 .V2/D 34d .1C 2D/4l 0C4.ACBC 4DC 5/2kC4l :

Notice that 2A .D/D B .D/D .1CD/ .D/D 0, so we can simplify (14) as

(15) 34d ..AC 1/2k˛� .AC 1/4lC2k 3.˛// �  .D/2 D 0:

Since ˛ D pCAh.A/, we have  3.˛/D pC .A3C 6A2C 9A/h.A3C 6A2C 9A/.
Using the relation 2A .D/D 0, we can further simplify (15) and get

(16) 34d
�g.A/ �  .D/2 D 0:

Here g.A/D .AC 1/2k.pCAh.A//� .AC 1/2kC4l.pC .A3CA/h.A3CA//.

By Theorem 2.13(b), we see that if we expand g.A/ as a polynomial in A, the degree-0
coefficient should be 0 and all other coefficients should be even. By our assumption,

5 There is an error in [29] for KO.c; d/ when 4c � d ��3 mod 8 , but we won’t consider this case.
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the coefficients of h are either 0 or 1. Checking the leading coefficient of g.A/, it is
easy to see that hD 0 and g.A/D p

�
.AC1/2k � .AC1/2kC4l

�
. This implies that p

is even. The claim is proved.

Now consider the following commutative diagram:

(17)

fKOG.V
C

1
/

�.H /2k.D/8lC8l 0C8

��

f �

// fKOG..8dRC .8l 0C 6/DC .4l C 2k/H /C/

�.H /4lC2k.D/8l 0C6

��fKOG..8dR/C/
Š

// fKOG..8dR/C/

The vertical maps are given by the inclusions of subspaces. The bottom map is an
isomorphism because f induces a homotopy equivalence on the G –fixed point set. Any
automorphism on fKOG..8dR/C/ is given by the multiplication of a unit Qu 2 RO.G/.
Therefore, we obtain

(18) Qu � bV1
�  .H /2k .D/8lC8l 0C8

D x �  .H /4lC2k .D/8l 0C6

D bV2
�  .D/8l 0C8 .H /4lC2k

�p:

Applying the relations in Theorem 2.16, we simplify this to

(19) .K� 2H CDC 5/2lCk.8.1�D//l
0C1
�p

D .K� 2H CDC 5/k.8.1�D//lCl 0C1
� Qu:

Now consider the ring homomorphism '0W RO.G/ ! Z defined by '0.D/ D �1,
'0.A/ D '0.B/ D 0. Notice that '0. Qu/ D ˙1 since Qu is a unit. We get p D ˙1,
which is a contradiction. This finishes the proof of Proposition 3.1.

Now suppose X is a closed, oriented, smooth spin 4–manifold with intersection form
p.�E8/˚ q

�
0
1

1
0

�
for p D 8l > 0 and q < pC 3. After doing surgery on loops and

taking connect sum with copies of S2�S2 , we can assume b1.W /D 0 and qD 8lC2.
As shown in [14], by doing finite-dimensional approximation of the Seiberg–Witten
equations on W , we get a G –equivariant map

f W .aDC .4l C b/H /C! ..aC 8l C 2/DC bH /C for some a; b > 0:

Moreover, f induces a homotopy equivalence on the G–fixed point set. This is a
contradiction to Proposition 3.1. Therefore, Theorem 1.4 is proved.
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4 Pin(2)–equivariant Seiberg–Witten Floer theory

Manolescu constructed a Pin.2/–equivariant spectrum class S.Y; s/ for each rational
homology sphere Y with a spin structure s. We will not repeat the constructions here
but just collect some useful properties. See [18; 19; 21] for the explicit constructions.

Definition 4.1 Let s 2 Z�0 . A space of type SWF (at level s ) is a pointed, finite
G –CW complex X with the following properties:

(a) The S1 –fixed point set X S1

is G–homotopy equivalent to the sphere .sD/C .
We define lev.X / to be s .

(b) The action of G is free on the complement X �X S1

.

Definition 4.2 Let X;X 0 be two spaces of type SWF at level k and k 0 respectively.
A pointed G –map f W X !X 0 is called admissible if f preserves the base point and
satisfies one of the following two conditions:

(a) k < k 0 and the induced map on the G–fixed point set f G W X G ! X 0G is a
homotopy equivalence.

(b) k D k 0 and the induced map on the S1 –fixed point set f S1

W X S1

!X 0S
1

is a
homotopy equivalence.

Now consider the set of triples .X; a; b/ where X is a space of type SWF and a 2 Z,
b 2Q.

Definition 4.3 We say that .X; a; b/ is stably equivalent to .X 0; a0; b0/ if b� b0 2 Z
and for some M;N; r > 0, there exists a G –homotopy equivalence

†rR†.M�a/D†.N�b/H X Š†rR†.M�a0/D†.N�b0/H X 0:

(Here R denotes the trivial representation of G .)

Remark 4.4 In [21], Manolescu worked with stable even equivalence, which re-
quires X to be a space of type SWF at even level.

This triple can be thought of the “formal desuspension” of X with a copies of D

and b copies of H . We denote C to be the set of stable equivalence classes of triples
.X; a; b/. Informally, we call an element in C a spectrum class.

Definition 4.5 For a spectrum class S D Œ.X; a; b/� 2 C, we let

lev.S/D lev.X /� a:
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Remark 4.6 By considering the S1 –fixed point set, we see that two spaces of type
SWF at different levels are not G –homotopic to each other. Using this fact, it is easy
to prove that lev.S/ is a well-defined quantity.

For r 2 Z and s 2 Q, we can define the formal suspension †rDCsH W C ! C by
sending Œ.X; a; b/� to Œ.X; a� r; b� s/�. It’s easy to check that this is a well-defined
operation on the set C.

Now suppose Y is an oriented rational homology 3–sphere with a metric g and a
spin structure s. Let S be the associated spinor bundle. We consider the global
Coulomb splice

V D i ker d�˚�.S/� i�1.Y /˚�.S/:

Using the quaternionic structure on S , we can define a natural action of G on V :
ei� 2G takes .˛; �/ to .ei�˛; �/ and j 2G takes .˛; �/ to .�˛; j�/.

Now we consider the self-adjoint first-order elliptic operator l W V ! V defined by
l.˛; �/D .�d˛; =D�/, where =D is the Dirac operator.6 For any � <� , let V �

� be the sub-
space spanned by the eigenvectors of l with eigenvalues in the interval .�; ��. Then V �

�

is a finite-dimensional G –representation space which is isomorphic to kD˚ lH . We
denote dimR V .D/�� by k and dimH V .H /�� by m.

We pick ��� 0� � . By considering the equivariant Conley index of the gradient flow
of CSDjV ��� (see [19; 21]), we get a G –space I� of type SWF at level dimR V .D/0�� .

Next, we need to recall the definition of n.Y; s;g/. Choose a compact smooth spin
4–manifold N with @N D Y . Let indC =D.N / be the index of the Dirac operator
on N (with Atiyah–Patodi–Singer boundary conditions). We can define

(20) n.Y; s;g/ WD indC =D.N /C 1
8
�.N /:

Remark 4.7 It can be proved that this definition does not depend on the choice of N .
For a rational homology sphere Y , we have n.Y; s;g/ 2 1

8
Z. When Y is an integral

homology sphere, n.Y; s;g/ is an integer and has the same parity as the Rokhlin
invariant �.Y /.

We can consider the following element in C:7

(21) S.Y; s/ WD
�
.I� ; dimR V .D/0�� ; dimH V .H /0�� C

1
2
n.Y; s;g//

�
:

Notice that the level of S.Y; s/ is always 0.

6Since Y is a rational homology sphere, there is a unique flat spin connection on S ; we choose it as
the base connection and use it to define =D .

7Our convention is different from [19] and [21] , where the second component in the triple denotes the
complex dimension of the G –representation.
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Theorem 4.8 (Manolescu [19; 21]) The element S.Y; s/ 2 C is independent of the
metric g , the cut-off � and the other choices in the construction. Thus S.Y; s/ is an
invariant of the pair .Y; s/.

Remark 4.9 In this paper, since we only use the numerical invariants, we don’t need
to make C a category and S.Y; s/ a functor. Therefore, we don’t define S.Y; s/ as a
natural spectrum invariant. See Section 3.4 of [18] for a discussion about naturality.

Suppose W is a smooth spin cobordism between rational homology 3–spheres Y0

and Y1 with b1.W /D 0. Further, we assume that W is equipped with a metric g and
a spin structure t such that gjYi

D gi and tjYi
D si .

The following theorem is important for our constructions:

Theorem 4.10 (Manolescu [19; 21]) By doing finite-dimensional approximation for
the Seiberg–Witten equations on W , we obtain an admissible map

(22) f W †a0D†b0H .I0/�!†a1D†b1H .I1/� :

Here .I0/� and .I1/� are the Conley indices for the approximated Seiberg–Witten flow.
Let Vi denotes the Coulomb slice on Yi , for i D 0; 1. The differences in the suspension
indices are

(23) a0� a1 D dimR V1.D/
0
�� � dimR V0.D/

0
�� � bC

2
.W /;

(24) b0� b1 D dimH V1.H /0�� � dimH V0.H /0��

C
1
2
n.Y1; s1;g1/�

1
2
n.Y0; s0;g0/�

1
16
�.W /:

5 Numerical invariants

Let Y be a rational homology sphere and s be a spin structure on Y . In the previous
section, we defined an invariant S.Y; s/ 2 C. In this section, we will extract a set of
numerical invariants �oi.Y; s/ from S.Y; s/ for i 2 Z=8.

Definition 5.1 For l D�2;�1; 0; : : : ; 5, we define the group homomorphisms

'l W KO.lD/! Z

as follows (see Theorem 2.13):

(a) For l D 0, 'l.D/ D �1 and 'l.A/ D 'l.B/ D 0, then extend 'l by the
multiplicative structure on RO.G/.
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(b) For l D�1;�2, 'l. .D/
jlj/D 1 and 'l. .D/

jljAn/D 0 for n� 1.

(c) For l D 1, 'l.�.D//D 1.

(d) For l D 2, 'l.�.D/
2/D 1 and 'l. .D/

2Amc/D 0.

(e) For l D 3, 'l. .D/�.D//D 1 and 'l. .D/A
mc/D 0.

(f) For l D 4, 'l.�.D//D 1, 'l.D�.D//D�1, and 'l.A
n�.D//D 'l.A

mc/D 0.

(g) For l D 5, 'l.�.D/�.D//D 1.

For other values of l 2 Z, we use the Bott isomorphism to identify KO.lD/ with
KO..l � 8k/D/ for �2� l � 8k � 5 and apply the above definition.

Lemma 5.2 For any a 2 KOG.pt/ and b 2 KOG.kD/, we have '0.a/'k.b/ D

'k.a � b/.

Proof This is a straightforward calculation using Theorem 2.13 and Theorem 2.16.

Remark 5.3 The map '0 just takes the trace of j 2 Pin.2/; the other 'l are defined
such that the torsion elements are killed and Lemma 5.2 holds.

We consider the map � W DC!DC which maps x to �x . By suspension with copies
of D , we get an admissible involution � W .kD/C! .kD/C for k > 0.

The following lemma is a straightforward corollary of the equivariant Hopf theorem
(see [7]).

Lemma 5.4 When 0 � k < l , any admissible map f W .kD/C ! .lD/C is G–
homotopic to the standard inclusion. For 0� k D l , any admissible map f W .kD/C!

.kD/C is either homotopic to � or to the identity map, depending on deg.f /.

The map � induces the involution ��W KOG.kD/! KOG.kD/. For k; l > 0 and
any a 2 KOG.kD/, b 2 KOG.lD/, the following equalities are easy to check by
Lemma 5.4:

(25) ��.a/ � b D a � ��.b/D ��.a � b/ and ��.a/ � ��.b/D a � b:

Using this fact, we can define ��W KOG.kD/!KOG.kD/ for any k 2Z by identifying
KOG.kD/ with KOG.k

0D/ for any 0<k 0�k mod 8 using Bott periodicity. Moreover,
formula (25) now holds for all k; l 2 Z.

Now consider the element u 2 RO.G/ defined by ��.b8D/D u � b8D . Then for l 2 Z
and any element ˛ 2 KOG.lD/, we have ��.˛/ � b8D D ˛ � �

�.b8D/ D .u˛/ � b8D ,
which implies ��.˛/D u˛ .
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Lemma 5.5 We have the following properties about �� and u:

(a) �� acts as identity on KOG.lD/ for l ¤ 0; 4 mod 8.

(b) u is a unit with '0.u/D 1.

(c) 'l ı �
� D 'l for any l 2 Z.

Proof (a) We have  .D/b8DD i�.b8D/, where i� is the inclusion .7D/C! .8D/C .
Therefore, we get ��. .D/b8D/ D .� ı i/�.b8D/. By Lemma 5.4, � ı i is G–
homotopic to i , thus ��. .D/b8D/ D i�.b8D/ D  .D/b8D , which implies that
��. .D//D  .D/.

Since �� induces an involution on KOG.D/ Š Z, we have ��.�.D// D ˙�.D/.
But since

��.�.D// �  .D/D �.D/ � ��. .D//D �.D/ .D/D 1�D ¤��.D/ .D/;

we get ��.�.D//D �.D/.

By formula (25), ��.a/D a implies ��.ab/D ab for any b . Therefore, we see that ��

acts as the identity map on KOG.kD/ for k ¤ 0; 4 mod 8.

(b) We have u2 D 1 because �2 D id. Since

u � .1�D/D ��.1�D/D ��. .D/ � �.D//D  .D/ � �.D/D 1�D;

we see that .u� 1/.1�D/D 0. We get '0.u/D 1 by Lemma 5.2.

(c) This is straightforward from (b) and Lemma 5.2.

Now suppose X is a space of type SWF at level l . A choice of G –homotopy equiv-
alence X S1

Š .lD/C gives us an inclusion map i W .lD/C ! X , which we call a
trivialization; this induces the map i�W fKOG.X / ! KOG.lD/. Consider the map
'l ı i�W fKOG.X /! Z.

Proposition 5.6 The submodule Im.i�/ and the map 'l ı i� are both independent
of the choice of the trivialization. Moreover, we have Im.'l ı i�/ D .2k/ for some
k 2 Z�0 .

Proof By Lemma 5.4, there are two possible trivializations, i and i ı � . We have
Im.i ı�/�D ��.Im i�/D u �Im.i�/. Since u is a unit, the multiplication by u does not
change the submodule Im.i�/. Moreover, we have 'l ı .i ı�/

�D 'l ı�
� ı i�D 'l ı i�

by Lemma 5.5(c).
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For the second statement, we consider the exact sequence

� � � ! fKOG.X /
i�

�! KOG.lD/
ı
�! fKO1

G.X=X
S1

/! � � �

Since the G–action is free away from the basepoint and .1�D/ 2 RO.G/ is in the
augmentation ideal, .1�D/ acts on fKO1

G
.X=X S1

/ nilpotently by Fact 2.8. Therefore,
we can find m� 0 such that .1�D/m KOG.lD/� ker.ı/D Im.i�/. It follows that
2m 2 Im.'l ı i�/ and Im.'l ı i�/D .2k/ for some 0� k �m.

Proposition 5.6 justifies the following definition:

Definition 5.7 For a G–space X of type SWF at level l , we define J .X / to be
the image of i� for any trivialization i , and let �o.X / be the integer k such that
'l.J .X //D .2k/.

Let’s study the properties of J .X / and �o.X /. First, recall that we defined the constants
ˇ0

k
D 0 and ˇj

k
D
Pj�1

iD0
˛k�i for j � 1, where ˛i D 1 for i � 1; 2; 3; 5 mod 8 and

˛i D 0 for i � 0; 4; 6; 7 mod 8. It’s easy to see that ˇk
j D ˇ

k
j 0 for j � j 0 .mod 8/.

The integers ˇk
j are important because of the following proposition:

Proposition 5.8 For integers 0 � j � k and an admissible map i W ..k � j /D/C!

.kD/C , we have the following commutative diagram, where the map m
j

k
W Z! Z is

multiplication by 2ˇ
j

k :

(26)

KOG.kD/

'k

��

i�
// KOG..k � j /D/

'k�j

��
Z

m
j

k
// Z

Proof The case j D 0 follows from Lemma 5.5. When j > 0, by Lemma 5.4, the
map i is G–homotopic to the standard inclusion. Because of the associativity of i�

and mk
l

, we only need to prove the case j D 1. In this case, the map i� is just the
multiplication by  .D/ and m1

k
is the multiplication by 2˛k . Since both 'k and i� are

compatible with the Bott isomorphism, we only need to check the cases kD 1; 2; : : : ; 8.
This can be proved by straightforward calculations using Definition 5.1, Theorem 2.16
and Theorem 2.13.

The following proposition studies the behavior of J .X / and �o.X / under the Bott
isomorphism:
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Proposition 5.9 Let X be a space of type SWF at level k . We have the following:

(a) J .X / � b8D D J .†8DX / and �o.†8DX /D �o.X /.

(b) J .X / � .K� 2H CDC 5/D J .†2H X / and �o.†2H X /D �o.X /C 2.

(c) �o.†HC4DX /D �o.X /C 3�ˇ4
kC4

.

Proof (a) Since .†8DX /S
1

D†8D.X S1

/, statement (a) follows from the functori-
ality of the Bott isomorphism.

(b) We have the commutative diagram induced by the inclusions of subspaces:

(27)

fKOG.†
2H X /

��

// fKOG.X /

��fKOG..†
2H X /S

1

/
Š
// fKOG.X

S1

/

Since .†2H X /S
1

D †2H .X S1

/, the map in the bottom row is the identity. If
we identify fKOG.†

2H X / with fKOG.X / using the Bott isomorphism, then the
top horizontal map is the multiplication by  .H /2b2H D K � 2H C D C 5 (by
Theorem 2.16). This implies that J .†2H X /D .K � 2H CDC 5/J .X /. We also
have �o.†2H X /D �o.X /C 2 since '0.K� 2H CDC 5/D 4.

(c) Again, by inclusions of subspaces, we have

fKOG.†
HC4DX /

��

// fKOG.X /

��
KOG..†

HC4DX /S
1

/
�.D/4

// KOG.X
S1

/

Since .†HC4DX /S
1

Š†4D.X S1

/, the bottom horizontal map is the multiplication by
 .D/4 . If we identify fKOG.†

HC4DX / with fKOG.X / using the Bott isomorphism,
the top horizontal map is the multiplication by  .H C 4D/bHC4D D 4.1�D/ (by
Theorem 2.16). Therefore, under appropriate trivializations, we see that the maps

i�1 W
fKOG.X /Š fKOG.†

HC4DX /! KOG..kC 4/D/

and
i�2 W

fKOG.X /! KOG.kD/

are related by  .D/4 � i�
1
.x/D 4.1�D/ � i�

2
.x/. Since '0.4.1�D//D 8, statement (c)

follows from Proposition 5.8 (for j D 4) and Lemma 5.2.
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We have the following proposition, which is the analogue of [21, Lemma 3.8].

Proposition 5.10 Let X1 and X2 be spaces of type SWF. Suppose there is a based
G–equivariant homotopy equivalence f from †rRX1 to †rRX2 for some r � 0.
Then we have J .X1/D J .X2/ and �o.X1/D �o.X2/.

Proof The proof in [21] works with some modifications. Suppose X1 , X2 are both at
level k . By Proposition 5.9(a), we can replace Xi by †8DXi and assume k > 1. Also,
we can suspend some more copies of R and assume that 8 j r . Choose trivializations
i1 and i2 of X1 and X2 , respectively. They give homotopy equivalences

.rRC kD/C Š .†rRX1/
S1

and .rRC kD/C Š .†rRX2/
S1

:

Composing them with f S1

W .†rRX1/
S1

! .†rRX2/
S1

, we get the equivariant ho-
motopy equivalence hW .rRCkD/C! .rRCkD/C . Since k > 1, by the equivariant
Hopf theorem, h is based-homotopic to �1^�2 . The map �1W .rR/C! .rR/C is either
the identity or a map with degree �1. Therefore, ��

1
.brR/D a �brR , where brR is the

Bott class and a 2 RO.G/ is a unit. Also, �2W .kD/C! .kD/C is either the identity
or the map � we defined before. Therefore, ��

2
.x/ is either x or ux (see Lemma 5.5).

We have shown that the map h�W fKOG..rRC kD/C/! fKOG..rRC kD/C/ is just
multiplication by some unit in RO.G/, which does not change any submodule.

Now consider the following commutative diagram:

fKOG.X2/

i�
2

��

Š
// fKOG.†

rRX2/

.†r Ri2/
�

��

f �

// fKOG.†
rRX1/

.†r Ri1/
�

��

Š
// fKOG.X1/

i�
1

��

KOG.kD/
Š
// fKOG..rRCkD/C/

h�

// fKOG..rRCkD/C/
Š
// KOG.kD/

In each row, the first map is a Bott isomorphism and the third map is the inverse to
a Bott isomorphism. We see that brR � Im.i�2 / D h�.brR � Im.i�2 // D brR � Im.i�1 /.
Therefore, we have Im.i�

1
/D Im.i�

2
/, which implies �o.X1/D �o.X2/.

Definition 5.11 For a spectrum class S D Œ.X; a; b/� 2 C, we let

(28) �o.S/D �o.†.8M�a/D†.2N�b0/H X /� 2N � s

for any M;N; b0 2Z and s 2 Œ0; 1/ making 8M �a� 0, 2N �b0 � 0 and bD b0C s .

Proposition 5.12 �o.S/ is well-defined.
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Proof By Proposition 5.9(a)–(b), it’s easy to prove that the right-hand side of formula
(28) is independent of the choice of M;N . By choosing M;N � 0, we see that
changing the representative of S from .X; a; b/ to .†DX; aC1; b/ or .†H X; a; bC1/

does not change the value of �o.S/. By Definition 4.3 and Proposition 5.10, we proved
that �o.S/ does not change when we change the representative of the spectrum class.

By definition of the suspension of a spectrum class and Proposition 5.9, it is easy to
prove:

Proposition 5.13 For any spectrum class S 2 C at level k , we have:
� �o.†8DS/D �o.S/.
� �o.†2H S/D �o.S/C 2.
� �o.†HC4DS/D �o.S/C 3�ˇ4

kC4
.

With these discussions, we can now define the invariants for 3–manifolds.

Definition 5.14 For an oriented rational homology sphere Y and a spin structure s

on Y , we define �oi.Y; s/ D �o.†iDS.Y; s// for any i 2 Z�0 . Then �oi.Y; s/ D

�oiC8.Y; s/, which allow us to define �oi.Y; s/ for i 2 Z=8.

6 Proof of Theorem 1.6

In this section, we will prove Theorem 1.6.

Let X0;X1 be two spaces of type SWF at level k0 and k1 , respectively. Suppose
there is an admissible map f W X0!X1 (which implies k0 � k1 ). By Proposition 5.8,
we can choose suitable trivializations such that the following diagram commutes:

fKOG.X1/

i�
1

��

f �

// fKOG.X0/

i�
0

��
KOG.k1D/

.f S1
/�

//

'k1

��

KOG.k0D/

'k0

��
Z

m
k1�k0
k1

// Z

Therefore, we get m
k1�k0

k1
.Im.'k1

ı i�
1
//� Im.'k0

ı i�
0
/. This implies that

.2
�o.X1/Cˇ

k1�k0
k1 /� .2�o.X0//� Z:

Therefore, we get the following proposition:
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Proposition 6.1 Let X0;X1 be two spaces of type SWF at levels k0 and k1 , respec-
tively. Suppose there is an admissible map f W X0!X1 . Then we have

(29) �o.X0/� �o.X1/Cˇ
k1�k0

k1
:

Next we generalize this inequality to the spectrum classes:

Definition 6.2 Let S0;S1 2C be two spectrum classes. We say that S0 dominates S1

if we can find representatives Si D Œ.Xi ; a; b/� for i D 1; 2 and an admissible map f
from X0 to X1 .

Proposition 6.3 Let S0;S1 2 C be two spectrum classes at levels k0 and k1 , respec-
tively. Suppose S0 dominates S1 . Then we have

(30) �o.S0/� �o.S1/Cˇ
k1�k0

k1
:

Proof Since an admissible map f W X0!X1 gives an admissible map

†aHCbDf W †aHCbDX0!†aHCbDX1

for any a; b 2 Z�0 , this proposition is a straightforward corollary of Proposition 6.1
and Definition 5.11.

By considering the natural inclusion X ! †DX , it is easy to see that S always
dominates †DS . Therefore, we get the following corollary, which will be useful in
Section 8.

Corollary 6.4 For any spectrum class S 2 C at level k , we have

�o.S/� �o.†DS/C˛kC1:

Now let Y0;Y1 be two rational homology 3–spheres and si be spin structures on
them, respectively. Suppose .W; s/ is a smooth oriented spin cobordism from .Y0; s0/

to .Y1; s1/. After doing surgery along loops in W , we can assume that b1.W /D 0

without loss of generality. Then by Theorem 4.10, we see that

†�
�.W /

16
H S.Y0; s0/ dominates †b

C

2
.W /DS.Y1; s1/:

We can do suspensions and prove that

†�
�.W /

16
H .†kDS.Y0; s0// dominates †.b

C

2
.W /Ck/DS.Y1; s1/

for any k 2 Z. Applying Proposition 6.3, we get:
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Theorem 6.5 Suppose .W; s/ is a smooth, oriented spin cobordism from .Y0; s0/ to
.Y1; s1/. Then for any k 2 Z, we have the inequality

(31) �o
kCb

C

2
.W /

.Y1; s1/Cˇ
b
C

2
.W /

kCb
C

2
.W /
� �o

�
†�

�.W /
16

H .†kDS.Y0; s0//
�
:

In general, �o.†�
�.W /

16
H .†kDS.Y0; s0/// can be expressed in terms of �ok.Y0; s0/

or �okC4.Y0; s0/, but the explicit formula is messy. For simplicity, we now focus on
the integral homology sphere case.

Remark 6.6 Suppose Y is an oriented integral homology 3–sphere. There is a unique
spin structure s on Y , and we simply write S.Y; s/ and �oi.Y; s/ as S.Y / and �oi.Y /,
respectively.

Suppose both Yi are integral homology spheres, then the intersection form of W is a
unimodular, even form. Let’s assume that the intersection from can be decomposed as

p.�E8/˚ q

�
0 1

1 0

�
for p; q � 0:

In this case, we have 1
16
�.W / D �1

2
p and bC

2
.W / D q . Recall that the spectrum

class invariant S.Y0/ is defined by�
.I� ; dimR V .D/0�� ; dimH V .H /0�� C

1
2
n.Y0; s;g//

�
:

The third component of this triple may be an integer or a half-integer, depending on
the Rokhlin invariant �.Y0/.

Proposition 6.7 Let Y0 be an integral homology 3–sphere and p 2 Z�0 . Then we
have the following relations:

(a) Suppose �.Y0/D 0 2 Z2 . We have

�o
�
†

p
2

H .†kDS.Y0//
�
D �ok.Y0/C 2l for p D 4l ,

�o
�
†

p
2

H .†kDS.Y0//
�
D �okC4.Y0/C

5
2
C 2l �ˇ4

k for p D 4l C 1,

�o
�
†

p
2

H .†kDS.Y0//
�
D �okC4.Y0/C 3C 2l �ˇ4

k for p D 4l C 2,

�o
�
†

p
2

H .†kDS.Y0//
�
D �ok.Y0/C 2l C 3

2
for p D 4l C 3.

(b) Suppose �.Y0/D 1 2 Z2 . We have

�o
�
†

p
2

H .†kDS.Y0//
�
D �ok.Y0/C 2l for p D 4l ,

�o
�
†

p
2

H .†kDS.Y0//
�
D �ok.Y0/C 2l C 1

2
for p D 4l C 1,

�o
�
†

p
2

H .†kDS.Y0//
�
D �okC4.Y0/C 3C 2l �ˇ4

k for p D 4l C 2,

�o
�
†

p
2

H .†kDS.Y0//
�
D �okC4.Y0/C

7
2
C 2l �ˇ4

k for p D 4l C 3.
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Proof Let’s denote .I� ; dimR V .D/0�� ; dimH V .H /0�� C
1
2
n.Y0; s;g// by .X; a; b/.

For �.Y0/D 0 and p D 4l , we have b 2 Z. Take M;N � 0 and let N 0 D N C l .
Then by Definition 5.11 we have

(32) �o.†
p
2

H .†kDS.Y0///D �o.†
.8MCk�a/D†.2NC2l�b/H X /� 2N

D �o.†.8MCk�a/D†.2N 0�b/H X /� 2N 0C 2l

D �ok.Y /C 2l:

For p D 4l C 1, take M;N � 0 and let N 0 DN C l . Then we have

(33) �o.†
p
2

H .†kDS.Y0///D �o.†
.8MCk�a/D†.2NC2lC1�b/H X /� 2N � 1

2

D �o.†H .†kD.X; a; b///C 2l � 1
2

D �okC4.Y0/C
5
2
C 2l �ˇ4

k :

The other cases can be proved similarly.

Now, combining the above proposition and Theorem 6.5, we obtain Theorem 1.6.

7 The KOG –split condition

Now consider the space X D .8kDC .2l C 1/H /C for k; l 2 Z�0 . We have the map

i�W fKOG.X /! KOG.8kD/

induced by the inclusion. By Theorem 2.13, we see that KOG.8kD C .2l C 1/H /

is generated by .b2H /
l.b8D/

k�.H / and .b2H /
l.b8D/

kc.H / as an RO.G/–module,
and the map i� is multiplication by  .H /2lC1 . Using Theorem 2.16, we get

(34)
i�..b2H /

l.b8D/
k�.H //D .2CA� 2D� 2B/l.2� 2D�B/ � .b8D/

k ;

i�..b2H /
l.b8D/

kc.H //D .A� 2B/l.B �A/ � .b8D/
k :

This discussion motivates the following definition:

Definition 7.1 Let X be a space of type SWF at level 8k . X is called even KOG –
split if J .X / is the submodule generated by .2CA�2D�2B/l.2�2D�B/ �.b8D/

k

and .A� 2B/l.B �A/ � .b8D/
k for some l 2 Z�0 .

Next, we consider the space X D ..8kC 4/DC 2lH /C . The map

i�W fKOG.X /! KOG..8kC 4/D/
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is just multiplication by  .H /2l . We know fKOG.X / D KOG..8k C 4/D/ � .b2H /
l

by the Bott isomorphism. Since

 .H /2l.b2H /
l
D .K� 2H CDC 5/l D .AC 2DC 6� 2H /l

(see Theorem 2.16), we have

Im.i�/D .AC 2DC 6� 2H /l �KOG..8kC 4/D/� KOG..8kC 4/D/:

This motivates the following definition:

Definition 7.2 Let X be a space of type SWF at level 8k C 4. X is called odd
KOG –split if J .X /D .AC 2DC 6� 2H /l �KOG..8kC 4/D/ for some l 2 Z�0 .

KOG –split spaces are special because of the following proposition (cf Proposition 6.1).

Proposition 7.3 Let X0;X1 be two spaces of type SWF at levels k0; k1 , respectively,
and let f be an admissible map from X0 to X1 . Suppose that k0 < k1 and X0 is odd
or even KOG –split (which implies that k0 � 0 or 4 mod 8). Then we have

(35) �o.X0/ < �o.X1/Cˇ
k1�k0

k1
:

Before proving this proposition, we need to make a digression into the general properties
of KOG.4D/ and RO.G/.

Lemma 7.4 The following properties hold:

(a) Any element in RO.G/ can be uniquely written as bDC f .A/CBg.A/ for
some polynomials f;g and integer b .

(b) Any element in RO.G/ can be uniquely written as bDC f .A/CHg.A/ for
some polynomials f;g and integer b .

(c) Any element in KOG.4D/ can be uniquely written as bD�.D/Cf .A/�.D/C

g.A/c for some polynomials f;g and integer b .

(d) The map RO.G/! KOG.4D/ defined by multiplication by �.D/ is injective.

(e) An element ! D bD�.D/Cf .A/�.D/Cg.A/c belongs to RO.G/�.D/ if and
only if 4 jg.A/. Moreover, if .AC2DC6�2H /l! 2RO.G/ ��.D/ for some l ,
then ! 2 RO.G/ ��.D/.

(f) Suppose .A� 2B/lh.A;B/D 0 2 RO.G/ for some two-variable polynomial h

in A;B . Then we have h.A;B/D 0 in RO.G/.

(g) Suppose f .D/D h.A;B/ for some 2–variable polynomial h without degree-0
term and some polynomial f . Then h.A;B/D 0.
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Proof (a)–(d) can be proved by straightforward calculation using Theorem 2.13.
The first statement of (e) is a corollary of (b), (c) and the relation H�.D/ D 4c .
Let’s prove the second statement of (e). We have Hc D .1 C D C K/�.D/ and
.2DC6/cD 8cD 2H�.D/. Therefore, .AC2DC6�2H /l! 2RO.G/�.D/ implies
Al! 2 RO.G/�.D/. It follows that 4 j Alg.A/, which implies that 4 j g.A/ and
! 2 RO.G/�.D/.

For (f), we can assume that h.A;B/ D f .A/CBg.A/ for some polynomials f;g .
Consider the map  W RO.G/!QŒx� defined by  .D/D 1;  .B/D x and  .A/D
x2=4C 2x . Then

0D  ..A� 2B/l.f .A/CBg.A///D
�

x2

4

�l�
f
�

x2

4
C 2x

�
Cxg

�
x2

4
C 2x

��
;

which implies that 0D f .x2=4C2x/Cxg.x2=4C2x/. Considering the leading term
in x , we see that f .x/D g.x/D 0.

For (g), we can simplify h.A;B/ as Ag1.A/CBg2.A/ for some polynomials g1;g2

by the relation B2� 4.A� 2B/D 0. Then the conclusion follows from (a).

Lemma 7.5 Suppose a.1�D/�.D/2 .AC2DC6�2H /l KOG.4D/ for some a2Z
and l 2 Z�0 . Then we have 22lC1 j '4.a.1�D/�.D//.

Proof Since '4.a.1�D/�.D// D 2a, the conclusion is trivial when l D 0. Now
suppose l>0. Let a.1�D/�.D/D .AC2DC6�2H /l �! for some !2KOG.4D/. By
Lemma 7.4(e), we see that ! 2RO.G/�.D/. Write ! as .bDCf .A/CBg.A//�.D/.
By Lemma 7.4(d), we get a.1�D/D .A� 2B � 2DC 2/l.bDC f .A/CBg.A//.
Using the relation .1 � D/A D .1 � D/B D 0, we can simplify this equality as
a.1�D/�.f .0/CbD/.2�2D/l D .A�2B/l.bCf .A/CBg.A//. By Lemma 7.4(g),
we get that .A�2B/l.bCf .A/CBg.A//D 0 2 RO.G/. By Lemma 7.4(f), we have
bCf .A/CBg.A/D0. This implies that !Db.D�1/�.D/ and '4.a.1�D/�.D//D

�22lC1b for some b 2 Z.

Lemma 7.6 Suppose a.1�D/ is in the ideal of RO.G/ generated by

.2CA� 2D� 2B/l.2� 2D�B/ and .A� 2B/l.B �A/

for some l 2 Z�0 . Then we have 22lC3 j '0.a.1�D//.

Proof We assume l > 0 first. By Lemma 7.4(a) and the relation A.1 � D/ D

B.1�D/D 0, we can express a.1�D/ as

(36) .2� 2D�B/.2� 2DCA� 2B/l.b.1�D/Cf1.A/CBg1.A//

C .A� 2B/l.B �A/.f2.A/CBg2.A//
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for some integer b and polynomials f1; f2;g1;g2 .

As in the proof of Lemma 7.5, we can simplify this formula and use Lemma 7.4(g)
to get

(37) �B.A� 2B/l.f1.A/CBg1.A//

C .A� 2B/l.B �A/.f2.A/CBg2.A//D 0 2 RO.G/:

We have �B.f1.A/CBg1.A//C .B �A/.f2.A/CBg2.A//D 0 by Lemma 7.4(f).
Simplifying this, we obtain

(38) �4Ag1.A/�Af2.A/C 4Ag2.A/

CB
�
�f1.A/Cf2.A/C 8g1.A/�Ag2.A/� 8g2.A/

�
D 0:

This implies that

�4Ag1.A/�Af2.A/C 4Ag2.A/D 0;

�f1.A/C 8g1.A/Cf2.A/�Ag2.A/� 8g2.A/D 0:

Considering the degree-1 term of the first identity, we get 4 j f2.0/. Also, we have
8 j �f1.0/Cf2.0/ by checking the degree-0 term of the second identity. Therefore, we
have 4 j f1.0/, which implies that '0.a.1�D//D 22lC2.2bCf1.0// can be divided
by 22lC3 .

The case l D 0 is similar. We also get the identity (38).

Proof of Proposition 7.3 Consider the commutative diagram

fKOG.X1/

i�
1

��

f �

// fKOG.X0/

i�
0

��
KOG.k1D/

.f S1
/�

//

'k1

��

KOG.k0D/

'k0

��
Z

m
k1�k0
k1

// Z

(a) Suppose X0 is odd KOG –split. Then k0 D 8k C 4 for some integer k and
KOG.k0D/D KOG.4D/ � .b8D/

k by the Bott isomorphism. Moreover,

Im.i�0 /D .AC 2DC 6� 2H /l �KOG.4D/ � .b8D/
k
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for some l 2Z�0 . A simple calculation shows that �o.X0/D 2l . Suppose �o.X1/D r .
Then we can find an element z 2 fKOG.X1/ such that 'k1

i�
1
.z/D 2r . Therefore

'k0
.!/D 2

rCˇ
k1�k0
k1 ; where ! D .f S1

/�.i�1 .z//:

Since k1 > k0 , the map .f S1

/� factors through KOG..k0 C 1/D/! KOG.k0D/.
Therefore, we see that ! D  .D/ � .a�.D/�.D// � .b8D/

k D a.1�D/�.D/ � .b8D/
k

for some a 2 Z. Because of the commutative diagram, we have ! 2 Im.i�
0
/. By

Lemma 7.5, we get 22lC1 j 'k0
.!/. This implies that

2l C 1� r Cˇ
k1�k0

k1
:

(b) Suppose X0 is even KOG –split with k0 D 8k . Notice that �o.X / D 2l C 2 if
J .X / is the submodule generated by .2CA� 2D� 2B/l.2� 2D�B/.b8D/

k and
.A� 2B/l.B �A/.b8D/

k . Using Lemma 7.6, the proof is almost the same as the
previous case.

By Proposition 5.9, we see that †2H X and †8DX are even (odd) KOG –split if X is
even (odd) KOG –split. Therefore, Proposition 5.10 justifies the following definition:

Definition 7.7 A spectrum class S D Œ.X; a; bC r/� with a; b 2Z; r 2 Œ0; 1/ is called
even (odd) KOG –split if, for integers M;N � 0, †.8M�a/D†.2N�b/H X is even
(odd) KOG –split.

Example 7.8 For any a; b2Z and r 2 Œ0; 1/, Œ.S0; 8a; 2bC1Cr/� is even KOG –split
and Œ.S0; 8aC 4; 2bC r/� is odd KOG –split.

The following proposition is easy to prove using Proposition 7.3

Proposition 7.9 Let S0;S1 2 C be two spectrum classes at levels k0; k1 respectively,
with k0 < k1 . Suppose S0 is even or odd KOG –split and S0 dominates S1 . Then
we have

(39) �o.S0/ < �o.S1/Cˇ
k1�k0

k1
:

Now let Y be a homology sphere. Recall that we have a spectrum class invariant S.Y /

at level 0.

Definition 7.10 Y is called Floer KOG –split if †H S.Y / is even KOG –split and
†4DS.Y / is odd KOG –split.
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Remark 7.11 For simple examples like Y D˙†.2; 3; 12nC1/ or ˙†.2; 3; 12nC5/,
the two conditions in the above definition are either both true or both false. We expect
that this fails in more complicated examples. If we only assume one of these two
conditions, only half of the cases in Theorem 1.11 are still true.

Remark 7.12 We will see in Section 8 below that S3 , ˙†.2; 3; 12n C 1/ and
�†.2; 3; 12nC 5/ are Floer KOG –split, while C†.2; 3; 12nC 5/ is not.

Proof of Theorem 1.11 When �.Y0/ D 0, S.Y0/ D Œ.X; a; b/� for some space X

and some integers a; b . For large integers M;N , we have the following:

(i) The space †.8M�a/D†.2N�bC1/H X is even KOG –split.

(ii) The space †.8M�aC4/D†.2N�b/H X is odd KOG –split.

Now consider p D 4l Cm for mD 0; 1; 2; 3:

� For p D 4l , †
p
2

H†4DS.Y0/D Œ.†
4DX; a; b� 2l/� is odd KOG –split by (ii).

� For pD 4lC1, †
p
2

H S.Y0/D Œ.†
H X; a; b�2lC 1

2
/� is even KOG –split by (i).

� For p D 4l C 2, †
p
2

H S.Y0/D Œ.†
H X; a; b� 2l/� is even KOG –split by (i).

� For pD4lC3, †
p
2

H†4DS.Y0/D Œ.†
4DX; a; b�2l�2C 1

2
/� is odd KOG –split

by (ii).

Similarly, we can prove that, when �.Y0/ D 1, †
p
2

H S.Y0/ is even KOG –split for
p D 4l C 2 and 4l C 3 while †

p
2

H†4DS.Y0/ is odd KOG –split for p D 4l and
4l C 1.

Now repeat the proof of Theorem 1.6 for k D 0 or 4, using Proposition 7.9 instead
of Proposition 6.3. Notice that the two sides of the same inequalities are either both
integers or both half-integers. The inequalities are proved.

8 Examples and explicit bounds

In this section, we will prove Theorem 1.9 describing the values of �oi.S
3/ and

�oi.˙†.2; 3; r// with gcd.r; 6/ D 1. We will also use Corollary 1.12 to give some
new bounds for the intersection forms of spin 4–manifolds with given boundaries.
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8.1 Basic examples

If Y is a rational homology sphere admitting a metric g with positive scalar curvature,
then by the arguments in [19], we obtain

S.Y; s/D Œ.S0; 0; n.Y; s/=2/�:

In particular, S3 is Floer KOG –split and �oi.S
3/D 0 for any i 2 Z=8.

Manolescu [21] gave two examples of spaces of type SWF that are related to the spec-
trum class invariants of the Brieskorn spheres ˙†.2; 3; r/. We recall the construction
here.

Suppose that G acts freely on a finite G–CW complex Z , with the quotient space
QDZ=G . Let zZ D .Œ0; 1��Z/=�, where

.0; z/� .0; z0/ and .1; z/� .1; z0/ for all z; z0 2Z;

denote the unreduced suspension of Z , where G acts trivially on the Œ0; 1� factor. We
can take one of the two cone points (say .0; z/ 2 zZ ) as the base point and view zZ as a
pointed G –space. It’s easy to see that zZ is of type SWF at level 0.

We want to compute �o.†kD zZ/ for k D 0; 1; : : : ; 7. It turns out that the method in
[21] also works here. Namely, the inclusion i W .†kD zZ/S

1

D†kDS0!†kD zZ gives
the long exact sequence

(40) � � � ! fKOG.†
kD zZ/

i�

�! KOG.kD/
p�

�! KO1
G.†

kD zZ; .kD/C/! � � � :

By exactness of the sequence, we have Im.i�/D ker.p�/. By definition, we have

KO1
G.†

kD zZ; .kD/C/Š fKO1
G.†

kD†ZC/Š fKOG.†
kDZC/:

By abuse of notation, we still use p� to represent the map between KOG.kD/ andfKOG.†
kDZC/. Checking the maps in the exact sequence, one can see that p�

is induced by the natural projection pW †kDZC! .kD/C . Since G acts freely on
†kDZC away from the base point, we see that fKOG.†

kDZC/Š fKO..†kDZC/=G/.
Notice that .Z � kD/=G is a vector bundle over Q and .†kDZC/=G is the Thom
space of this bundle. We are interested in two cases:

� Z ŠG , acting on itself via left multiplication.

� Z Š T Š S1�jS1 �C�j C �H , with G acting on T by left multiplication
in H .

The first case is easy since the isomorphismfKOG.†
kDZC/Š fKO.Sk/
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is given by i�
1
ı r0 , where i1W S

k !†kRZC is the standard inclusion and

r0W
fKOG.†

kDZC/! fKO.†kRZC/

is the restriction map (see Fact 2.4 in Section 2). It follows that Im.i�/D ker.p�/D
ker.i�

1
ı r0 ıp�/D ker.r/, where r W KOG.kD/! fKO.Sk/ is the restriction map.

We know the structure of fKO.Sk/:

� fKO.S0/Š KO.pt/Š Z.
� fKO.S1/Š Z2 , generated by the Hurewicz image of the Hopf map in �3.S

2/.
� fKO.S2/ŠZ2 , generated by the Hurewicz image of the square of the Hopf map.
� fKO.S4/Š Z, generated by VH � 4, where VH is the quaternion Hopf bundle.
� fKO.Sk/Š 0 for k D 3; 5; 6; 7.

Therefore, by the explicit description of �.D/, �.D/, c after Theorem 2.13, we get
the following results about the kernel of r W KOG.kD/! fKO.Sk/:

� For k D 0, ker.r/ is the submodule generated by 1�D;A;B .
� For k D 1, ker.r/ is generated by 2�.D/.
� For k D 2, ker.r/ is generated by 2�.D/2 and  .D/2c .
� For k D 4, ker.r/ is generated by �.D/� c; .1�D/�.D/;A�.D/ and Ac .
� For k D 3; 5; 6; 7, ker.r/Š KOG.kD/.

From this, we get:

Proposition 8.1 We have �o.†kD zG/ D 0 for k D 3; 4; 5; 6; 7 and �o.†kD zG/ D 1

for k D 0; 1; 2.

Now let’s consider the case Z Š T . We want to find ker.p�/ for p�W KOG.kD/!

KOG.†
kDTC/. Notice that S1 � G acts trivially on .kD/C and freely on T ,

with T=S1 D S1 . We have fKOG.†
kDTC/ D fKO..†kDS1

C/=Z2/. The space
.†kDS1

C/=Z2 can be identified with Œ0; 1�� .kD/C=�, where

.0;x/� .1;�x/ and .t1;1/� .t2;1/ for any x 2 .kD/C and t1; t2 2 Œ0; 1�:

Consider the inclusion i2W f0g � .kD/C! .†kDS1
C/=Z2 . Notice that

..†kDS1
C/=Z2/=.kD/C Š SkC1:

We get the long exact sequence

(41) � � �! fKO.SkC1/
ı
�! fKO.SkC1/! fKO..†kDS1

C/=Z2/
i�
2
�! fKO.Sk/!� � � :
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By checking the iterated mapping cone construction, which gives us this long exact
sequence, it is not hard to prove that ı is induced by the map f W SkC1! SkC1 with
deg.f /D 0 for even k and deg.f /D 2 for odd k .

When k D 2; 4; 5; 6, we have fKO.SkC1/ D 0. Therefore, i�
2

is injective, which
implies that i�

1
ır0W

fKOG.†
kDTC/! fKO..kD/C/ is injective (i�

1
and r0 are defined

as in the case Z ŠG ). We see that when k D 2; 4; 5; 6, just like the case Z ŠG , the
kernel of p� is the kernel of the restriction map r W KOG.kD/! fKO.Sk/. Thus, we
get �o.†kD zT /D �o.†kD zG/ for these values of k .

For k D 0, consider Œ0; 1� as the subset f1C jei� j � 2 Œ0; ��g � T . The left endpoint
is mapped to the right endpoint under the action of �j 2G . This embedding of Œ0; 1�
gives us the following explicit description of the map

p�W RO.G/Š fKOG.S
0/! fKOG.TC/Š KOG.T /Š KO.T=G/D KO.S1/:

Starting from a representation space V of G , we get an trivial bundle V � Œ0; 1�

over Œ0; 1�. Identifying .x; 0/ with ..�j / ı x; 1/ for any x 2 V , we get a bundle E

over S1 . Then ŒE� 2 KO.S1/ is the image of ŒV � 2 RO.G/ under p� .

We know that KO.S1/ is generated by the one-dimensional trivial bundle Œ1� and
the one-dimensional nontrivial bundle Œm�, subject to the relation 2.Œ1�� Œm�/ D 0.
Using the explicit description of p� , we see that p�.1/ D Œ1�, p�.D/ D Œm� and
p�.A/D p�.B/D 0. Therefore, we get �o. zT /D 2.

Applying Corollary 6.4 for S D †2D zT , we get �o.†3D zT /C 1 � �o.†2D zT / D 1.
Applying Corollary 6.4 for S D †3D zT , we get 0 D �o.†4D zT /C 0 � �o.†3D zT /.
Therefore, we see that �o.†3D zT /D 0.

Applying Corollary 6.4 for S D†2D zT and S D†D zT , we get �o.†D zT /D 1 or 2.

For kD7, the map ıW fKO.S8/! fKO.S8/ is multiplication by 2. Since fKO.S7/D0,
we get fKO..†kDS1

C/=Z2/D Z2 . This implies that

p�.2b8D �  .D//D 2p�.b8D �  .D//D 0:

Therefore, 2b8D �  .D/ 2 ker.p�/ and �o.†7D zT /D 0 or 1.

Lemma 8.2 We have �o.†D zT /D 2 and �o.†7D zT /D 1.

Proof This can be proved directly using the Gysin sequence, but here we use a differ-
ent approach. Manolescu [21; 20] proved that S.�†.2; 3; 11//D Œ. zT ; 0; 1/�, where
�†.2; 3; 11/ is a negatively oriented Brieskorn sphere. Therefore, by Definition 5.11
and Proposition 5.13, we get

�oi.�†.2; 3; 11//D �o.†.iC4/D zT /C 1�ˇ4
i :
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In particular,

�o3.�†.2; 3; 11//D �o.†7D zT /� 2 and �o5.�†.2; 3; 11//D �o.†D zT /� 2:

Since �†.2; 3; 11/ bounds a smooth spin 4–manifold with intersection form
�

0
1

1
0

�
(see [21]), we can apply Corollary 1.12 for pD0, qD1 and get �o5.�†.2; 3; 11//�0,
which implies �o.†D zT / � 2. We get �o.†D zT / D 2 by our discussion before the
lemma.

We can also apply Theorem 1.6 for Y0 D S3 , Y1 D �†.2; 3; 11/, p D 0, q D 1

and k D 2. We have �o3.�†.2; 3; 11// � �1 and �o.†7D zT / � 1. Therefore,
�o.†7D zT /D 1 by our discussions before.

We summarize our results in the following proposition.

Proposition 8.3 We have �o.†kD zT /D 2 for k D 0; 1, �o.†kD zT /D 1 for k D 2; 7

and �o.†kD zT /D 0 for k D 3; 4; 5; 6.

Now we calculate �oi.˙†.2; 3; r// with gcd.6; r/D 1. The spectrum class invariants
S.˙†.2; 3; r// are given in [21].

Proposition 8.4 (Manolescu) We have the following results for S.˙†.2; 3; r//:

S.†.2; 3; 12n� 1//D
h�
zG _

n�1W
1

†GC; 0; 0
�i
:

S.�†.2; 3; 12n� 1//D
h�
zT _

n�1W
1

†2GC; 0; 1
�i
:

S.†.2; 3; 12n� 5//D
h�
zG _

n�1W
1

†GC; 0;
1
2

�i
:

S.�†.2; 3; 12n� 5//D
h�
zT _

n�1W
1

†2GC; 0;
1
2

�i
:

S.†.2; 3; 12nC 1//D
h�

S0
_

nW
1

†�1GC; 0; 0
�i
:8

S.�†.2; 3; 12nC 1//D
h�

S0
_

nW
1

GC; 0; 0
�i
:

S.†.2; 3; 12nC 5//D
h�

S0
_

nW
1

†�1GC; 0;�
1
2

�i
:

S.�†.2; 3; 12nC 5//D
h�

S0
_

nW
1

GC; 0;
1
2

�i
:
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As we mentioned in Remark 7.12, ˙†.2; 3; 12nC1/ and �†.2; 3; 12nC5/ are KOG –
split because of Example 7.8. Using the relations in Theorem 2.13 and Theorem 2.16,
it is not hard to prove that the space .8MD˚ .2N C 2/H /C is not even KOG –split
for integers M;N � 0. This implies that C†.2; 3; 12nC 5/ is not KOG –split.

Since it’s easy to see that wedging with a free G –space does not change the �o invariants,
we don’t need to consider those †lGC factors. By Definition 5.11 and Proposition 5.13,
we can use Propositions 8.1 and 8.3 to prove the results in Theorem 1.9 easily.

8.2 Explicit bounds

Now we use Corollary 1.12 and Proposition 3.1 to get explicit bounds on the intersection
forms of spin 4–manifolds with boundary ˙†.2; 3; r/.

Theorem 8.5 Let W be an oriented, smooth spin 4–manifold with @W D˙†.2; 3; r/.
Assume that the intersection form of W is p.�E8/˚ q

�
0
1

1
0

�
for p > 1; q > 0.9 If

the reduction of p modulo 8 is m, then we have q �p � cm , where the cm are the
constants listed below. (Recall that the reduction of p modulo 2 is the Rokhlin invariant
of the boundary.)

mD 0 mD 2 mD 4 mD 6

†.2; 3; 12n� 1/ 2 0 1 2

�†.2; 3; 12n� 1/ 3 .2/ .3/ 3

†.2; 3; 12nC 1/ .3/ 1 .2/ .3/

�†.2; 3; 12nC 1/ 3 1 2 3

mD 1 mD 3 mD 5 mD 7

†.2; 3; 12n� 5/ 1 2 3 3

�†.2; 3; 12n� 5/ 2 .1/ .2/ 2

†.2; 3; 12nC 5/ .2/ 0 .1/ .2/

�†.2; 3; 12nC 5/ 2 3 4 4

Remark 8.6 Some of the bounds in Theorem 8.5 can also be obtained by other methods.
For example, the case mD2 for †.2; 3; 12nC1/ can be obtained using the �–invariant
(see [21]). Also, some bounds can be obtained by the filling method for small n. For

8Strictly speaking, by this we mean the spectrum class of .HC _
Wn

1†
3GC; 0; 1/ .

9It is easy to see that the conclusions are not true for p D 0; 1 . For example, ˙†.2; 3; 12n � 1/

bounds a spin manifold with intersection form
�0

1
1
0

�
.
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example, the case mD 2; 4 for �†.2; 3; 11/ can be deduced from Theorem 1.2, using
the fact that †.2; 3; 11/ bounds a spin 4–manifold with intersection form 2.�E8/˚

2
�

0
1

1
0

�
. However, the bounds that we put in the parentheses in Theorem 8.5 appear to

be new for general n.

Proof Since we can do surgeries on loops without changing intersection forms, we
will always assume b1.W /D 0.

(a) Suppose †.2; 3; 12nC 1/ bounds a spin 4–manifold with intersection form

8l.�E8/˚ .8l C 2/

�
0 1

1 0

�
for l > 0. Then we get a spin cobordism from �†.2; 3; 12nC 1/ to S3 with the
same intersection form. By Theorem 4.10, †4lH S.�†.2; 3; 12nC 1// dominates
†8lC2S.S3/. Since S.�†.2; 3; 12nC1//D Œ.S0_GC_� � �_GC; 0; 0/� and S.S3/D

Œ.S0; 0; 0/�, by Definition 4.3, we get a map

f W †rRC.4lCM /HCND.S0
_GC _ � � � _GC/!†rRCMHC.8lC2CN /DS0

for some M;N 2 Z. Restricting to the first factor of S0 _GC _ � � � _GC , we obtain

gW †rRC.4lCM /HCNDS0
!†rRCMHC.8lC2CN /DS0;

which induces a homotopy equivalence between the G –fixed point sets. This a contra-
diction with Proposition 3.1. The case mD 0 for †.2; 3; 12nC 1/ is proved.

(b) Suppose †.2; 3; 12nC 5/ bounds a smooth spin manifold with intersection form

.8l C 1/.�E8/˚ .8l C 2/

�
0 1

1 0

�
for l>0. Then we get a spin cobordism from �†.2; 3; 12nC5/ to S3 . As the previous
case, this implies that †.4lC1=2/H S.�†.2; 3; 12nC 5// dominates †.8lC2/DS.S3/.
Since †.4lC1=2/H S.�†.2; 3; 12nC5//D Œ.†4lH S0; 0; 0/�, we get the contradiction
as before. This proves the case mD 1 for †.2; 3; 12nC 5/.

(c) Suppose �†.2; 3; 12n� 1/ bounds a spin 4–manifold with intersection form

.8l C 2/.�E8/˚ .8l C 3/

�
0 1

1 0

�
for l � 0. By Corollary 1.12, we get

4l C 3< �o3C8l.�†.2; 3; 12n� 1//Cˇ8lC7
8lC3

D�1C 4C 4l;

which is a contradiction. This proves the case mD 2 for �†.2; 3; 12n� 1/.
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Using similar methods as in (c), we can prove all the other cases except

� mD 0 for ˙†.2; 3; 12n� 1/ and �†.2; 3; 12nC 1/,

� mD 7 for †.2; 3; 12n� 5/ and �†.2; 3; 12nC 5/,

� mD 1 for �†.2; 3; 12n� 5/.

(d) We need to introduce another approach in order to prove the rest of the cases.
Consider the orbifold D2 –bundle over S2.2; 3; r/. This gives us an orbifold X 0 with
boundary C†.2; 3; r/. We have bC

2
.X 0/D 0, b�

2
.X /D 1 and X 0 has a unique spin

structure t. Now suppose �†.2; 3; r/ bounds a spin manifold X with intersection
form p.�E8/˚ q

�
0
1

1
0

�
. Then we can glue X and X 0 together to get an oriented

closed spin 4–orbifold. We have

indC =D.X [X 0/D pC!.†.2; 3; r/;X 0; t/:

Here !.†.2; 3; r/;X 0; t/ is the Fukumoto–Furuta invariant defined in [13]. Saveliev
[28] proved that !.†.2; 3; r/;X 0; t/D��.†.2; 3; r//D �.�†.2; 3; r//, where � is
the Neumann–Siebenmann invariant [24; 25]. In [13], Fukumoto and Furuta considered
the finite-dimensional approximation of the Seiberg–Witten equations on the orbifold
X [X 0 and constructed a stable Pin.2/–equivariant map

.1
2

indC =D.X [X 0/H /C! .bC
2
.X [X 0/D/C

which induces a homotopy equivalence on the Pin.2/–fixed point set. (Recall that H

and D are Pin.2/–representations defined in Section 2). Since bC
2
.X [X 0/D q and

indC =D.X [X 0/D pC�.�†.2; 3; r//, we can apply Proposition 3.1 to get

q�p � 3C�.�†.2; 3; r// if 0< pC�.�†.2; 3; r// can be divided by 8:

Similarly, suppose †.2; 3; r/ bounds a spin 4–manifold X 0 with intersection form
p.�E8/˚q

�
0
1

1
0

�
. We can consider X 0[.�X / and repeat the argument above. We get

q�p � 2C�.†.2; 3; r// if 0< pC�.†.2; 3; r// can be divided by 8:

The invariants �.˙†.2; 3; r// were computed in [24; 25; 31]:

�.˙†.2; 3; 12n� 1//D �.˙†.2; 3; 12nC 1//D 0;

�.†.2; 3; 12n� 5//D �.�†.2; 3; 12nC 5/D 1;

�.�†.2; 3; 12n� 5//D �.†.2; 3; 12nC 5//D�1:

Therefore, simple calculations prove the rest of the cases.
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