
msp
Algebraic & Geometric Topology 15 (2015) 965–986

Invariance of Pontrjagin classes for Bott manifolds

SUYOUNG CHOI

MIKIYA MASUDA

SATOSHI MURAI

A Bott manifold is the total space of some iterated CP 1 –bundles over a point. We
prove that any graded ring isomorphism between the cohomology rings of two
Bott manifolds preserves their Pontrjagin classes. Moreover, we prove that such
an isomorphism is induced from a diffeomorphism if the Bott manifolds are Z=2–
trivial, where a Bott manifold is called Z=2–trivial if its cohomology ring with
Z=2–coefficients is isomorphic to that of a product of copies of CP 1 .

57R19, 57R20

1 Introduction

One of the fundamental problems in topology is to classify manifolds (up to diffeomor-
phism, homeomorphism etc) by invariants. Cohomology rings are not sufficient for
this task in general. For example, surgery theory tells us that there are infinitely many
diffeomorphism types in the family of closed smooth manifolds homotopy equivalent
to a complex projective space CPn when n� 3. However, surgery theory further tells
us that they are distinguished by their Pontrjagin classes up to finite ambiguity, and
this is true in general for the family of closed smooth manifolds homotopy equivalent
to a fixed closed smooth manifold X when X is simply connected and of dimension
at least 5.

On the other hand, we have a feeling that most closed smooth manifolds do not
admit an effective smooth S1 –action. For example, T Petrie [16] conjectures that
if M is a closed smooth manifold homotopy equivalent to CPn and M admits an
effective smooth S1 –action, then a homotopy equivalence f W M !CPn preserves
their Pontrjagin classes. Note that CPn has an effective smooth action of .S1/n . The
conjecture is not solved but many partial results in this direction are known. Among
them, Petrie [17] showed that the conjecture is true if M admits an effective smooth
action of .S1/n . (See [11] for more details.)

A complete nonsingular toric variety (which we call a toric manifold) of complex
dimension n admits an effective algebraic action of .C�/n , which is, in particular,
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an effective smooth action of .S1/n . The complex projective space CPn is a typical
example of a toric manifold. Motivated by Petrie’s conjecture and his result mentioned
above, the second-named author and D Y Suh [15] posed a problem that asks whether
any cohomology ring isomorphism between toric manifolds preserves their Pontrjagin
classes. (It is known that any cohomology ring isomorphism between toric manifolds
preserves their Stiefel–Whitney classes [4, Appendix].) Little is known about this
problem. One of our main purposes in this paper is to give an affirmative answer
for a nice class of toric manifolds called Bott manifolds. We even show that any
cohomology ring isomorphism is induced by a diffeomorphism for a certain subclass
of Bott manifolds.

A Bott tower of height n is a sequence of CP1 –bundles

(1-1) Bn
�n
�!Bn�1

�n�1
���!� � �

�2
�!B1

�1
�!B0 D fa pointg;

where Bj is the projectivization P .C˚Lj / of a trivial complex line bundle C and
a complex line bundle Lj over Bj�1 , and �j W Bj ! Bj�1 is the projection for
j D 1; 2; : : : ; n. It is known that Bn is a toric manifold and Bn is called an n–stage
Bott manifold or simply a Bott manifold.

If all the fibrations in (1-1) are trivial, then Bn is diffeomorphic to .CP1/n . The
1–stage Bott manifold is CP1 and the 2–stage Bott manifolds are Hirzebruch surfaces.
As is well known, there are only two diffeomorphism types among Hirzebruch surfaces;
.CP1/2 and CP2 # CP2 , where CP2 is CP2 with the opposite orientation. However,
there are infinitely many diffeomorphism types among n–stage Bott manifolds when
n� 3, and it is an interesting open question to classify them up to diffeomorphism or
homeomorphism (Crowley and Kreck [9]).

Our first main result is the following.

Theorem 1.1 Any graded ring isomorphism between the cohomology rings with
integer coefficients of two Bott manifolds preserves their Pontrjagin classes.

Since Bott manifolds are simply connected Kähler manifolds, by combining Theorem 1.1
with a result of Sullivan [18], we obtain the following corollary.

Corollary 1.2 The number of Bott manifolds whose cohomology ring is isomorphic
to a given ring is finite up to diffeomorphism.

If a graded ring isomorphism between the cohomology rings of two smooth manifolds is
induced by a diffeomorphism, then the isomorphism preserves their Pontrjagin classes.
Hence, Theorem 1.1 provides evidence supporting the following conjecture.
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Strong cohomological rigidity conjecture for Bott manifolds Any graded ring iso-
morphism between the cohomology rings with integer coefficients of two Bott manifolds
is induced by a diffeomorphism.

The statement of the conjecture above in particular implies that two Bott manifolds are
diffeomorphic if their cohomology rings with integer coefficients are isomorphic as
graded rings (in particular, if they are homotopy equivalent), and we call this weaker
conjecture cohomological rigidity conjecture for Bott manifolds. No counterexamples
are known to these conjectures and some partial results in this direction are known;
for instance, the strong cohomological rigidity conjecture is true for the case of Q–
trivial Bott manifolds, where a Bott manifold Bn is called Q–trivial if H�.BnIQ/Š
H�..CP1/nIQ/ as graded rings (Choi and Masuda [3]). The strong cohomological
conjecture also holds up to 3–stage Bott manifolds, and the cohomological rigidity
conjecture holds for 4–stage Bott manifolds (Choi [2]).

We say that a Bott manifold Bn is Z=2–trivial if H�.BnIZ=2/ŠH�..CP1/nIZ=2/
as graded rings, where Z=2 WD Z=2Z. We note that a Bott manifold is Z=2–trivial if
and only if all line bundles Lj in (1-1) are spin. Our second main result is this:

Theorem 1.3 The strong cohomological rigidity conjecture holds for Z=2–trivial Bott
manifolds, namely, any graded ring isomorphism between the cohomology rings (with
integer coefficients) of two Z=2–trivial Bott manifolds is induced by a diffeomorphism.

There are infinitely many diffeomorphism types among the Z=2–trivial n–stage Bott
manifolds when n� 3, while there are only finitely many diffeomorphism types among
the Q–trivial n–stage Bott manifolds for any n. Therefore, the family of Z=2–trivial
Bott manifolds is much larger than that of Q–trivial Bott manifolds, but the former
family does not contain the latter. For instance, a 2–stage Bott manifold CP2 # CP2 is
not Z=2–trivial but it is Q–trivial. We remark that, for each n, only .CP1/n is a Bott
manifold that is both Z=2–trivial and Q–trivial.

The rigidity conjectures mentioned above may be posed more generally for toric
manifolds or some related family of manifolds [15]. It is known that the strong
cohomological rigidity conjecture does not hold for arbitrary toric manifolds, while no
counterexamples are known to the cohomological rigidity problems for toric manifolds.
A real analogue of the rigidity problems has also been studied. See the survey papers
by Choi, Masuda and Suh [5; 15] for details.

This paper is organized as follows. In Section 2 we review some known facts about
the cohomology rings of Bott manifolds. In Section 3 we introduce new bases for the
cohomology rings and restate some facts mentioned in Section 2. In Section 4 we
analyze graded ring isomorphisms between the cohomology rings of two Bott manifolds,
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where the new bases introduced in Section 3 play a role. We prove Theorem 1.1 in
Section 5 and Theorem 1.3 in Section 6. In Section 7, we observe that the invariance of
Pontrjagin classes under cohomology ring isomorphisms hold in a slightly wider class
of manifolds than that of Bott manifolds. Finally, in Section 8 we make some remarks
on automorphisms of the cohomology ring of a Bott manifold, which clarifies the
difficulties for solving the strong cohomological rigidity conjecture for Bott manifolds
completely.

2 Cohomology rings of Bott manifolds

In this section we will recall some known facts on the cohomology rings of Bott
manifolds and the quotient construction of Bott manifolds.

We denote by j̨ the first Chern class of the complex line bundle Lj used to construct
the Bott tower (1-1). It follows from the Borel–Hirzebruch formula [1] that H�.Bj IZ/
is a free module over H�.Bj�1IZ/ through the map ��j W H

�.Bj�1IZ/!H�.Bj IZ/
on two generators 1 and xj , of degrees 0 and 2 respectively, where xj is the first
Chern class of the tautological line bundle 
j over Bj , and that the ring structure is
determined by the single relation

x2
j D �

�
j . j̨ /xj :

Using the formula inductively on j and regarding H�.Bj IZ/ as a subring of H�.BnIZ/
through the projections in (1-1), we see that

(2-1) H�.BnIZ/D ZŒx1; : : : ;xn�=.x
2
j � j̨ xj j j D 1; 2; : : : ; n/;

where ˛1 D 0. The following lemma easily follows from (2-1).

Lemma 2.1 Let k be a positive integer less than or equal to n. Then the set

fxi1
xi2
� � �xik

j 1� i1 < i2 < � � �< ik � ng

is an additive basis of H 2k.BnIZ/.

The Pontrjagin class of a Bott manifold has a simple expression as is shown in the
following lemma.

Lemma 2.2 The Pontrjagin class p.Bn/ of the Bott manifold Bn is given by

p.Bn/D

nY
jD1

.1C .2xj � j̨ /
2/D

nY
jD1

.1C˛2
j / 2H�.BnIZ/;

where .2xj � j̨ /
2 D ˛2

j because x2
j D j̨ xj .
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Proof This lemma is known, but since there seems to be no paper in the literature that
mentions the formula explicitly, we shall give a proof.

Since �j W Bj ! Bj�1 is the projectivization of the Whitney sum of the trivial line
bundle C and the line bundle Lj over Bj�1 , the tangent bundle TBj of Bj splits into

(2-2) TBj D TfBj ˚�
�
j .TBj�1/;

where TfBj denotes the complex line bundle along the fibers of the fiber bundle
�j W Bj ! Bj�1 and ��j .TBj�1/ is the pullback of the tangent bundle TBj�1 of
the base space Bj�1 by the projection �j . Since xj is the first Chern class of the
tautological line bundle 
j over Bj and the total Chern class of C˚Lj is 1C j̨ ,
it follows from [1, (2), page 515] that the total Chern class of the complex line
bundle TfBj is given by 1� 2xj C j̨ and hence its total Pontrjagin class is given by
1C.2xj� j̨ /

2 . This together with (2-2) shows that p.Bj /D .1C.2xj� j̨ /
2/p.Bj�1/

because H�.BnIZ/ has no 2–torsion. Then the lemma follows by applying the above
formula inductively on j .

For uD
Pn

iD1 cixi 2H 2.BnIZ/ with ci 2 Z, we define

ht.u/Dmaxfi 2 Œn�D f1; 2; : : : ; ng j ci 6D 0g

and call it the height of u. Note that ht. j̨ / < ht.xj / D j . We say that a pair of
primitive elements in H 2.BnIZ/ is a primitive vanishing pair if the product of the
elements vanishes. Note that a pair .xj ;xj � j̨ / is a primitive vanishing pair for
any j 2 Œn�.

Lemma 2.3 [3, Lemma 2.2] A primitive vanishing pair is of the form

.axj Cu; a.xj � j̨ /�u/ or .axj Cu;�a.xj � j̨ /Cu/;

where a 2 Znf0g, u 2H 2.BnIZ/, u.uC a j̨ /D 0 and ht.u/ < j .

Corollary 2.4 [3, Corollary 2.1] Primitive square-zero elements in H 2.BnIZ/ are
of the form ˙.xj �

1
2 j̨ / if j̨ � 0 .mod 2/ and ˙.2xj � j̨ / otherwise.

Next we shall review the quotient construction of Bott manifolds [8, Proposition 3.1].
Remember that ˛1 D 0, and write

(2-3) j̨ D

j�1X
iD1

Ai
j xi for j D 2; 3; : : : ; n

with Ai
j 2 Z. Let S2d�1 be the unit sphere of Cd for d D 1; 2. Then the Bott

manifold Bn in (1-1) can be obtained as the quotient of .S3/n by the free action
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of .S1/n defined by

(2-4) .g1;g2; : : : ;gn/ �
�
.z1; w1/; .z2; w2/; : : : ; .zn; wn/

�
D
�
.g1z1;g1w1/; ..g

�A1
2

1
/g2z2;g2w2/; : : : ;

�� n�1Y
kD1

g
�Ak

n

k

�
gnzn;gnwn/

�
;

where gi 2 S1 and .zi ; wi/ 2 S3 for i D 1; 2; : : : ; n. The projections�
.z1; w1/; : : : ; .zn; wn/

�
!
�
.z1; w1/; : : : ; .zn�1; wn�1/

�
! � � � ! .z1; w1/

induce the Bott tower (1-1). The tautological line bundle 
j over Bj can be described
as the quotient of the trivial complex line bundle .S3/n �C! .S3/n by the action of
.S1/n on the total space .S3/n �C defined as

g � ..z; w/;u/D .g � .z; w/;g�1
j u/ .u 2C/;

where gD .g1;g2; : : : ;gn/, .z; w/D
�
.z1; w1/; .z2; w2/; : : : ; .zn; wn/

�
and g �.z; w/

denotes the action defined in (2-4).

3 Base change

We set

(3-1) yj D xj �
1
2 j̨ for j D 1; 2; : : : ; n.

Then we have

(3-2) 4y2
j D .2xj � j̨ /

2
D ˛2

j in H�.BnIZ/

and it follows from Lemma 2.2 that

(3-3) p.Bn/D

nY
iD1

.1C 4y2
j /:

If j̨ � 0 .mod 2/, then yj is integral, that is, an element of H 2.BnIZ/.

Lemma 3.1 If ˛i � j̨ � 0 .mod 2/ and yi � yj .mod 2/, then i D j .

Proof Since ht.˛i/ < i and ht. j̨ / < j , the assumption yi � yj .mod 2/ implies
xi � xj .mod 2/ and hence i D j because fx1;x2; : : : ;xng is an additive basis of
H 2.BnIZ/ (cf Lemma 2.1).
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Let Ai
j .i < j / be the integers defined in (2-3). Setting Ai

j D 0 for i � j , we obtain an
integral strictly upper-triangular n� n matrix A with Ai

j as the .i; j /th entry. Then it
follows from (3-1) that .y1; : : : ;yn/D .x1; : : : ;xn/.E�

1
2
A/; where E is the identity

matrix. Here E � 1
2
A is an upper-triangular unipotent matrix and so is its inverse.

Therefore, if we denote the .i; j /th entry of .E � 1
2
A/�1 by ai

j , then

(3-4) xj D

X
i�j

ai
j yi and 1

2 j̨ D xj �yj D

X
i<j

ai
j yi :

By (3-2) and (3-4), we have

(3-5) y2
j D

�
j̨

2

�2
D

�X
i<j

ai
j yi

�2

in H�.BnIQ/:

The following lemma easily follows from (3-5) or Lemma 2.1.

Lemma 3.2 Let k be a positive integer less than or equal to n. Then the set

fyi1
yi2
� � �yik

j 1� i1 < i2 < � � �< ik � ng

is an additive basis of H 2k.BnIQ/ over Q.

4 Cohomology ring isomorphisms

Let Bn be the set of integral strictly upper-triangular n� n matrices. Since the Bott
manifold Bn in (1-1) is determined by a matrix A 2 Bn , we will denote Bn by
M.A/. We remark that it can happen that M.A/ and M.B/ are diffeomorphic even
if A;B 2 Bn are different.

Henceforth the cohomology elements xj ;yj ; j̨ for M.A/ will be denoted by xA
j ;y

A
j ,

˛A
j , respectively, to avoid confusion.

Proposition 4.1 Suppose that  W H�.M.A/IQ/!H�.M.B/IQ/ is a graded ring
isomorphism. Then there are nonzero q1; : : : ; qn 2 Q and a permutation � on Œn�
such that

 .yA
j /D qj yB

�.j/ for j D 1; : : : ; n.

Proof We prove the proposition by induction on j . When j D1, we have  .yA
1
/2D0

because .yA
1
/2 D 0. Therefore  .yA

1
/ is a nonzero scalar multiple of yB

�.1/ for some
�.1/ 2 Œn� by Corollary 2.4.
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Suppose that

(4-1)  .yA
j /D qj yB

�.j/ for j < k :

Then, since

.qj yB
�.j//

2
D  .yA

j /
2
D  

�
.yA

j /
2
�
D  

��X
i<j

ai
j yA

i

�2�
D

�X
i<j

ai
j qiy

B
�.i/

�2

one can see by induction that for j < k ,

(4-2) .yB
�.j//

2 is a linear combination of yB
�.i1/y

B
�.i2/ with i1 < i2 < j .

Set S D f�.1/; : : : ; �.k � 1/g. Since  is an isomorphism, it follows from (4-1)
that  .yA

k
/ is not a linear combination of yB

�.1/; : : : ;y
B
�.k�1/ . Therefore, there is an

m 2 Œn�nS such that

(4-3)  .yA
k /D

X
s�m or s2S

bsyB
s .bs 2Q and bm 6D 0/:

Taking the square of both sides, it follows from (3-5) and (4-1) that

 .yA
k /

2
D  

�
.yA

k /
2
�
D  

��X
i<k

ai
kyA

i

�2�
D

�X
i<k

ai
kqiy

B
�.i/

�2

and hence

(4-4)  .yA
k /

2 is a linear combination of yB
�.i1/y

B
�.i2/ with i1 < i2 < k

by (4-2). On the other hand, we claim that if bt 6D 0 for some t <m or t 2 S in the
right-hand side of (4-3), then a nonzero scalar multiple of yB

myB
t appears in the square

of the right-hand side of (4-3). Indeed, .yB
s /

2 for s � m is a linear combination of
yB

i yB
j with i < j <m by (3-5) and .yB

s /
2 for s 2S is a linear combination of yB

i yB
j

with i 6D j 2 S by (4-2). Therefore the claim holds because fyB
i yB

j j 1� i < j � ng

is an additive basis of H 4.M.B/IQ/ by Lemma 3.2. However the claim contradicts
(4-4) since m 62 S . Therefore,  .yA

k
/D bmyB

m . This completes the induction step and
proves the proposition.

Lemma 4.2 Suppose that the graded ring isomorphism  in Proposition 4.1 is induced
by a graded ring isomorphism from H�.M.A/IZ/ to H�.M.B/IZ/. Then the ratio-
nal number qj in Proposition 4.1 belongs to f˙1

2
;˙1;˙2g for j D 1; 2; : : : ; n, and

(1) qj 2 f˙
1
2
g if and only if ˛A

j 6� 0 .mod 2/ and ˛B
�.j/ � 0 .mod 2/,

(2) qj 2 f˙2g if and only if ˛A
j � 0 .mod 2/ and ˛B

�.j/ 6� 0 .mod 2/.

Moreover, if qj D˙1 for all j , then  .p.M.A///D p.M.B//.
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Proof Since  .xA
j �

1
2
˛A

j / D qj .x
B
�.j/
�

1
2
˛B
�.j// by Proposition 4.1, the former

statement in the lemma follows from the fact that  restricted to the cohomology rings
with integer coefficients sends primitive elements to primitive elements and the latter
follows from (3-3) and Proposition 4.1.

We fix a graded ring isomorphism  W H�.M.A/IZ/!H�.M.B/IZ/ until the end
of Lemma 4.4. Since . .xA

j /;  .x
A
j �˛

A
j // is a primitive vanishing pair, it follows

from Lemma 2.3 that there are a 2 Znf0g, u 2H 2.M.B/IZ/ and k 2 Œn� such that

(4-5) . .xA
j /;  .x

A
j �˛

A
j //D

�
.axB

k
Cu; a.xB

k
�˛B

k
/�u/ or

.axB
k
Cu;�a.xB

k
�˛B

k
/Cu/;

where u.uC a˛B
k
/D 0 and ht.u/ < k . Remember that ai

j is the .i; j /th entry of the
matrix .E � 1

2
A/�1 ; in other words, ai

j is the rational number determined by (3-4).

With this understood, we have:

Lemma 4.3 In the former case of (4-5), qj D a (hence qj is an integer), kD�.j / and
ai

j D 0 for �.i/ > �.j /. In the latter case of (4-5), ˛A
j D 2aq�1

i yA
i for some i < j .

Proof Since 2yA
j DxA

j C.x
A
j �˛

A
j / and ˛A

j DxA
j �.x

A
j �˛

A
j /, a simple computation

using (4-5) shows that

(4-6) . .2yA
j /;  .˛

A
j //D

�
.2ayB

k
; 2uC a˛B

k
/ in the former case of (4-5),

.2uC a˛B
k
; 2ayB

k
/ in the latter case of (4-5).

In the former case of (4-5), we have  .yA
j / D ayB

k by (4-6). This together with
Proposition 4.1 shows that qj D a and kD �.j /. Moreover, since  .˛A

j /D 2uCa˛B
k

by (4-6) and ht.u/ < k , we have

ht. .˛A
j // < k D �.j /

while since ˛A
j D 2

P
i<j ai

j yA
i by (3-4), we have

 .˛A
j /D 2

X
i<j

ai
j qiy

B
�.i/

by Proposition 4.1. These show that ai
j D 0 for �.i/ > �.j /.

In the latter case of (4-5),  .˛A
j /D 2ayB

k
by (4-6). Therefore ˛A

j D 2aq�1
i yA

i for
some i 2 Œn� by Proposition 4.1 and j > ht.˛A

j /D ht.yA
i /D i .
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Note that 2aq�1
i in Lemma 4.3 is a nonzero integer because a 2 Znf0g and qi 2

f˙
1
2
;˙1;˙2g by Lemma 4.2. We say that j̨ is of exceptional type if j̨ D cyi for

some nonzero integer c and i < j and is of even exceptional type if the nonzero
integer c is even.

Lemma 4.4 Suppose qj D˙
1
2

. Then there are i < j , c 2Znf0g, such that ˛A
j D cyA

i .
If ˛A

j is not of even exceptional type, then c is odd and qi D˙2. If neither ˛A
j nor

˛B
�.i/ are of even exceptional type, then ˛B

�.i/ D dyB
�.j/ with some odd integer d .

Proof Since qj D˙
1
2

by assumption, it is not an integer. Lemma 4.3 then says that
the latter case of (4-5) must occur and ˛A

j D 2aq�1
i yA

i . Setting c D 2aq�1
i , we have

(4-7) ˛A
j D cyA

i

where c is a nonzero integer. If ˛A
j is not of even exceptional type, then c D 2aq�1

i is
odd and hence qi must be ˙2 (and a is odd).

It remains to prove the last assertion in the lemma. Suppose that neither ˛A
j nor

˛B
�.i/ are of even exceptional type. Then qi D ˙2 as observed above, and since
 .yA

i /D qiy
B
�.i/ by Proposition 4.1, we have  �1.yB

�.i//D˙
1
2
yA

i . Then the same
argument above applied to  �1.yB

�.i// D ˙
1
2
yA

i tells us that there are ` 2 Œn� and
d 2 Znf0g such that

(4-8) ˛B
�.i/ D dyB

` :

Here d is odd because ˛B
�.i/ is not of even exceptional type by assumption. In the

sequel, it suffices to prove `D �.j /.

Since d is odd, it follows from (4-8) that ˛B
`
� 0 .mod 2/ while ˛B

�.j/ � 0 .mod 2/

by Lemma 4.2 since qj D ˙
1
2

. Thus it suffices to show yB
`
� yB

�.j/ .mod 2/

by Lemma 3.1, which we shall now prove. Since

˙yB
�.j/ D  .2yA

j /D  .2xA
j �˛

A
j /D 2 .xA

j /� .˛
A
j /;

we have

(4-9) yB
�.j/ �  .˛

A
j / .mod 2/:

Similarly, since ˙ .yA
i /D 2yB

�.i/ D 2xB
�.i/
�˛B

�.i/ , we have

(4-10)  .yA
i /� ˛

B
�.i/ .mod 2/:

Thus, since c and d are both odd integers, it follows from (4-9), (4-7), (4-10) and (4-8)
that

yB
�.j/ �  .˛

A
j /�  .y

A
i /� ˛

B
�.i/ � yB

` .mod 2/;

proving the desired congruence relation.
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Lemma 4.5 For A 2 Bn , there is B 2 Bn such that none of ˛B
1
; : : : ; ˛B

n are of
even exceptional type and there is a graded ring isomorphism  W H�.M.A/IZ/!
H�.M.B/IZ/ such that  .p.M.A///D p.M.B//.

Proof Suppose that ˛A
j is of even exceptional type but ˛A

k
for k < j is not. In the

following we will find B 2 Bn such that ˛B
k

for k < j is not of even exceptional
type but ht.˛B

j / < ht.˛A
j / and that H�.M.A/IZ/ and H�.M.B/IZ/ are isomorphic

as graded rings. If ˛B
j is still of even exceptional type, then we repeat the argument until

we reach B such that ˛B
k

for k � j is not of even exceptional type. Note that this can
be achieved because if ht.˛B

j /D 0, then ˛B
j D 0, which is not of even exceptional type.

Doing this procedure inductively on j , we finally reach the desired B in the lemma.

Since ˛A
j is of even exceptional type by assumption, we have

(4-11) ˛A
j D c.xA

i �
1
2
˛A

i /

with some nonzero even integer c and i < j . We define a matrix B of size n by

B`k D

8̂<̂
:

A`
k

if k 6D j and ` 6D i ;

Ai
k
C

c
2
A

j

k
if k 6D j and `D i ;

�
c
2
A`i if k D j :

Since A 2 Bn and i < j , the matrix B is indeed in Bn (ie, B`
k
D 0 for `� k ), and

(4-12) ˛B
k D

(Pn
`D1 A`

k
xB
`
C

c
2
A

j

k
xB

i if k 6D j ;

�
c
2

Pn
`D1 A`i xB

`
if k D j .

Note that since i < j , A
j
i D 0 and hence it follows from (4-12) that

(4-13) ˛B
j D�

c

2
˛B

i :

We define

(4-14)  .xA
` /D

(
xB
`

if ` 6D j ;

xB
j C

c
2
xB

i if `D j :

This clearly induces an isomorphism  W ZŒxA
1
; : : : ;xA

n �! ZŒxB
1
; : : : ;xB

n � between
polynomial rings. We claim that  induces a graded isomorphism from H�.M.A/IZ/
to H�.M.B/IZ/. Indeed, when k 6D j , it follows from (4-14) and (4-12) that

(4-15)  .˛A
k /D  

� nX
`D1

A`kxA
`

�
D

nX
`D1

A`kxB
` C

c

2
A

j

k
xB

i D ˛
B
k

and hence

(4-16)  
�
xA

k .x
A
k �˛

A
k /
�
D xB

k .x
B
k �˛

B
k / when k 6D j .
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When k D j , we have

(4-17)  
�
xA

j .x
A
j �˛

A
j /
�
D  

�
xA

j .x
A
j � c.xA

i �
1
2
˛A

i //
�

by (4-11)

D .xB
j C

c
2
xB

i /.x
B
j �

c
2
xB

i C
c
2
˛B

i / by (4-14), (4-15)

D xB
j .x

B
j C

c
2
˛B

i /�
c2

4
xB

i .x
B
i �˛

B
i /

D xB
j .x

B
j �˛

B
j /�

c2

4
xB

i .x
B
i �˛

B
i / by (4-13):

(4-16) and (4-17) together with (2-1) show that  induces a graded ring isomorphism
from H�.M.A/IZ/ to H�.M.B/IZ/.

Since ht.˛A
j /D i by (4-11) and ht.˛B

j /D ht.˛B
i / < i by (4-13), we have ht.˛B

j / <

ht.˛A
j /. Moreover, the isomorphism  defined in (4-14) is represented as a unipotent

upper-triangular matrix with respect to the basis xA
1
; : : : ;xA

n of H 2.M.A/IZ/ and
xB

1
; : : : ;xB

n of H 2.M.B/IZ/, so qj D 1 for any j and hence  .p.M.A/// D

p.M.B// by Lemma 4.2.

Remark 4.6 The graded ring isomorphism  in the proof above is actually induced
by a diffeomorphism. This follows from Theorem 6.2 mentioned in Section 6. One
can also see it when using the quotient construction of Bott manifolds.

5 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1 in the introduction.

Let  W H�.M.A/IZ/! H�.M.B/IZ/ be a graded ring isomorphism. By (3-3),
what we must prove is

 

� nY
jD1

.1C 4.yA
j /

2/

�
D

nY
jD1

.1C 4.yB
j /

2/ 2H�.M.B/IZ/:

We may assume that none of ˛A
1
; : : : ; ˛A

n and ˛B
1
; : : : ; ˛B

n are of even exceptional
type by Lemma 4.5. Since

 .yA
j /D qj yB

�.j/

by Proposition 4.1,  .1C 4.yA
j /

2/D 1C 4.yB
�.j//

2 if qj D˙1. Therefore, we shall
treat the case where qj D˙

1
2

or ˙2 by Lemma 4.2.

Suppose qj D˙
1
2

. Then there is i < j such that

(5-1) ˛A
j D cyA

i and ˛B
�.i/ D dyB

�.j/
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with some odd integers c , d and qi D˙2 by Lemma 4.4. We shall show that

(5-2)  
�
.1C 4.yA

j /
2/.1C 4.yA

i /
2/
�
D .1C 4.yB

�.j//
2/.1C 4.yB

�.i//
2/:

It follows from (3-2) and (5-1) that

(5-3) 4.yA
j /

2
D .˛A

j /
2
D c2.yA

i /
2

and applying  to the first and last elements in the identity above, we obtain

(5-4) .yB
�.j//

2
D 4c2.yB

�.i//
2

since qj D ˙
1
2

and qi D ˙2. Here 4.yB
�.i//

2 D .˛B
�.i//

2 by (3-2) and .˛B
�.i//

2 D

d2.yB
�.j//

2 by (5-1). Therefore, (5-4) turns into

(5-5) .yB
�.j//

2
D c2d2.yB

�.j//
2:

When .yB
�.i//

2 6D 0, (5-5) implies c2d2 D 1 and hence c2 D d2 D 1 because c; d are
integers. It follows from (5-3) and (5-4) that

4.yA
j /

2
D .yA

i /
2 and .yB

�.j//
2
D 4.yB

�.i//
2:

Therefore:

the left-hand side of (5-2) D  
�
.1C .yA

i /
2/.1C 16.yA

j /
2
�

D .1C q2
i .y

B
�.i//

2/.1C 16q2
j .y

B
�.j//

2/

D the right-hand side of (5-2)

because qj D˙
1
2

and qi D˙2. When .yB
�.i//

2 D 0, we have .yB
�.j//

2 D 0 by (5-4)
and .yA

j /
2 D .yA

i /
2 D 0 because

 .yA
j /D yB

�.j/ and  .yA
i /D yB

�.i/

and  is an isomorphism. Therefore, (5-2) holds even when .yB
�.i//

2 D 0.

When qj D˙2,  �1.yB
�.j//D˙

1
2
yA

j . Therefore, the same argument as above applied
for  �1 shows that (5-2) also holds when qj D ˙2. This completes the proof of
the theorem.

6 Proof of Theorem 1.3

The purpose of this section is to prove Theorem 1.3 in the introduction. We begin with
the following lemma.
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Lemma 6.1 Let A 2 Bn , � a permutation on Œn� and let P be the permutation matrix
of ��1 , that is, the .i; j /th entry of P is 1 if iD�.j / and 0 otherwise. If PAP�12Bn ,
then there is a graded ring isomorphism  � W H

�.M.A/IZ/!H�.M.PAP�1/IZ/
sending xA

j to xPAP�1

�.j/
for j D 1; 2; : : : ; n and it is induced by a diffeomorphism.

Proof Remember the quotient construction of Bott manifolds explained in Section 2.
Let '� W .S3/n! .S3/n be the coordinate change defined by

'�
�
.z1; w1/; .z2; w2/; : : : ; .zn; wn/

�
D
�
.z�.1/; w�.1//; .z�.2/; w�.2//; : : : ; .z�.n/; w�.n//

�
where we consider the .S1/n –action associated to the matrix PAP�1 on the source
space and the one associated to A on the target space, and let �� be the group
automorphism of .S1/n defined by �� .g1;g2; : : : ;gn/ D .g�.1/;g�.2/; : : : ;g�.n//.
Then '� is �� –equivariant, ie

(6-1) '� .g � .z; w//D �� .g/ �'� ..z; w//;

where g D .g1; : : : ;gn/ and .z; w/D ..z1; w1/; .z2; w2/; : : : ; .zn; wn//. Indeed, the
j th component of the left-hand side of (6-1) is

(6-2)
���.j/�1Y

kD1

g
�.PAP�1/k

�.j/

k

�
g�.j/z�.j/;g�.j/w�.j/

�
while that of the right-hand side of (6-1) is

(6-3)
��j�1Y

iD1

g
�Ai

j

�.i/

�
g�.j/z�.j/;g�.j/w�.j/

�
:

Here, since P is the permutation matrix of ��1 , .PAP�1/
�.i/

�.j/
D Ai

j and it is zero
for �.i/� �.j / or i � j since both PAP�1 and A belong to Bn ; so we have

�.j/�1Y
kD1

g
�.PAP�1/k

�.j/

k
D

nY
kD1

g
�.PAP�1/k

�.j/

k
D

nY
iD1

g
�.PAP�1/

�.i/

�.j/

�.i/

D

nY
iD1

g
�Ai

j

�.i/
D

j�1Y
iD1

g
�Ai

j

�.i/
:

This shows that (6-2) and (6-3) agree, which means that '� is �� –equivariant and
hence '� induces a diffeomorphism from M.PAP�1/ to M.A/.
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It remains to prove that the cohomology ring isomorphism induced by '� maps xA
j to

xPAP�1

�.j/
. Remember that xA

j and xPAP�1

�.j/
are the first Chern classes of the complex

line bundles

A

j and 
PAP�1

�.j/

mentioned in Section 2, where the matrices A and PAP�1 are specified to avoid con-
fusion. Therefore, it suffices to find a bundle isomorphism from 
PAP�1

�.j/
to 
A

j , which
covers '� . The map f� from .S3/n �C to itself defined by

f� ..z; w/;u/D .'� .z; w/;u/

satisfies f� .g � .z; w/;g�1
�.j/u/ D .�� .g/ � .z; w/;g

�1
�.j/u/. Since g�.j/ is the j th

component of �� .g/, f� induces the desired bundle isomorphism from 
PAP�1

�.j/

to 
A
j .

The following theorem due to H Ishida plays a role in our argument.

Theorem 6.2 [10] Let A;B 2 Bn and  W H�.M.A/IZ/! H�.M.B/IZ/ be a
graded ring isomorphism. If  restricted to the degree-two cohomology groups is
represented as an upper-triangular matrix with respect to the bases xA

1
; : : : ;xA

n of
H 2.M.A/IZ/ and xB

1
; : : : ;xB

n of H 2.M.B/IZ/ defined in Section 2, then  is
induced by a diffeomorphism.

Let  W H�.M.A/IZ/!H�.M.B/IZ/ be a graded ring isomorphism. By Proposition
4.1, there is a permutation � on Œn� such that  .yA

j /D qj yB
�.j/

with some nonzero
qj 2Q for any j .

Proposition 6.3 If qj 2 f˙1g for all j , then the isomorphism  above is induced by
a diffeomorphism.

Proof We may assume that none of ˛A
1
; : : : ; ˛A

n are of even exceptional type by
Lemma 4.5 and Remark 4.6 (replacing A with the matrix given in Lemma 4.5 if
necessary). Let ai

j be the .i; j /th entry of .E� 1
2
A/�1 . Because none of ˛A

1
; : : : ; ˛A

n

are of even exceptional type and qk 2 f˙1g for all k , we have ai
j D 0 for �.i/ >

�.j / by Lemma 4.3. This means that if P is the permutation matrix of ��1 , then
P .E � 1

2
A/�1P�1 is a unipotent upper-triangular matrix because the .�.i/; �.j //th

entry of P .E � 1
2
A/�1P�1 is equal to the .i; j /th entry ai

j of .E � 1
2
A/�1 . Then,

since P .E� 1
2
A/P�1D .P .E� 1

2
A/�1P�1/�1 is a unipotent upper-triangular matrix,

PAP�1 is a strictly upper-triangular matrix and hence PAP�1 2 Bn .
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Let  � W H�.M.A/IZ/! H�.M.PAP�1/IZ/ be the graded ring isomorphism in
Lemma 6.1. Then the graded ring isomorphism arising from the composition

 ı �1
� W H

�.M.PAP�1/IZ/!H�.M.A/IZ/!H�.M.B/IZ/

satisfies . ı �1
� /.yPAP�1

j /D q��1.j/y
B
j for any j since  � .xA

i /D xPAP�1

�.i/
for

any i . This means that  ı �1
� satisfies the assumption in Theorem 6.2 and hence

is induced by a diffeomorphism. Moreover,  � is induced by a diffeomorphism by
Lemma 6.1. This shows that  is induced by a diffeomorphism.

Remember that M.O/ D .CP1/n for the zero matrix O 2 Bn . We say that a Bott
manifold M.A/ for A 2 Bn is Z=2–trivial if H�.M.A/IZ=2/ŠH�.M.O/IZ=2/
as graded rings.

Lemma 6.4 Let A 2 Bn . Then the following three statements are equivalent.

(1) M.A/ is Z=2–trivial.

(2) ˛A
j � 0 .mod 2/ for j D 1; 2; : : : ; n.

(3) A�O .mod 2/, ie every entry of A is an even integer.

Proof The equivalence .2/, .3/ and the implication .2/) .1/ are obvious, so it
suffices to prove the implication .1/) .2/. Suppose that M.A/ is Z=2–trivial. Then
the square of any element in H 2.M.A/IZ=2/ vanishes. Therefore ˛A

j xA
j .DxA

j

2
/ van-

ishes in H 4.M.A/IZ=2/ for any j . On the other hand, the set fxA
i xA

j j 1� i < j �ng

is an additive basis of H 4.M.A/IZ=2/ because it is an additive basis of H 4.M.A/IZ/
by Lemma 2.1. Since ˛A

j is a linear combination of xA
i for 1 � i < j , this implies

that ˛A
j D 0 in H 2.M.A/IZ=2/ for any j , proving (2).

We remark that ˛A
j D c1.Lj / where Lj is the complex line bundle used to construct

M.A/. Hence, the statement (2) in the above lemma is equivalent to the vanishing
of the second Stiefel–Whitney class of Lj for all j D 1; 2; : : : ; n. Therefore, a Bott
manifold M.A/ is Z=2–trivial if and only if all complex line bundles Lj used to
construct M.A/ are spin.

Now we are in a position to prove our second main result stated in the introduction.

Proof of Theorem 1.3 Let M.A/ and M.B/ be Z=2–trivial Bott manifolds and let
 W H�.M.A/IZ/!H�.M.B/IZ/ be any graded ring isomorphism. Since M.A/

and M.B/ are Z=2–trivial, ˛A
j � 0 .mod 2/ and ˛B

j � 0 .mod 2/ for any j by
Lemma 6.4. This together with Lemma 4.2 shows that the assumption of Proposition 6.3
is satisfied for the  , so the theorem follows from Proposition 6.3.
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7 Cohomology Bott manifolds

In this section we observe that the invariance of Pontrjagin classes under cohomology
ring isomorphisms holds for a slightly wider class of manifolds than the class of Bott
manifolds.

As mentioned in the introduction, Bott manifolds are examples of toric manifolds,
where a toric manifold of complex dimension n is a smooth compact algebraic variety
of complex dimension n with an algebraic action of .C�/n having an open dense orbit.
Several topological analogs of toric manifolds has been studied and the widest class
among them is the class of torus manifolds. A torus manifold is a 2n–dimensional
closed smooth manifold M with an effective smooth action of an n–dimensional torus
T D .S1/n having a fixed point. A toric manifold with the restricted action of T is a
torus manifold. We remark that a torus manifold is not necessarily simply connected
while any toric manifold is simply connected.

We review some general facts on torus manifolds from [12; 13]. Suppose that the
cohomology ring of a torus manifold M of real dimension 2n is generated by degree-
two elements. Then the orbit space Q WDM=T is a nice manifold with corners, any
face is acyclic and any multiple intersection of faces in Q is connected unless the
intersection is empty, so Q looks like a simple polytope. Let pW M!Q be the quotient
map and Qi .i D 1; 2; : : : ;m/ be the facets of Q. Then Mi WD p�1.Qi/ is a closed
smooth codimension-two submanifold of M and fixed pointwise under some circle
subgroup of T . We choose orientations on M and the Mi and let xi 2H 2.M IZ/ be
the Poincaré dual to the cycle Mi for i D 1; 2; : : : ;m. Then

(7-1) p.M /D

mY
iD1

.1Cx2
i /:

A primitive element vi 2 H2.BT IZ/ is uniquely associated to each Mi . In fact,
through a natural identification of H2.BT IZ/ and the group of homomorphisms from
S1 to T , vi.S

1/ is the circle subgroup which fixes Mi pointwise. There are two such
primitive elements and the orientations on M and Mi determine vi uniquely. These
vi appear in the presentation of the cohomology ring of M as

(7-2) H�.M IZ/D ZŒx1; : : : ;xm�=K;

where K is the ideal generated by the two types of elements

(1)
Q

i2I xi for I � f1; 2; : : : ;mg such that
T

i2I Qi D∅,

(2)
Pm

iD1hu; viixi for u 2H 2.BT IZ/,
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where h � ; � i denotes the natural pairing between H 2.BT IZ/ and H2.BT IZ/. The
vectors vi satisfy the following nonsingularity condition .�/:

.�/

For any subset I of f1; 2; : : : ;mg with cardinality n such thatT
i2I Qi 6D ∅ (in fact,

T
i2I Qi is a vertex), the set fvi j i 2 Ig

forms a basis of H2.BT IZ/.

We say that a closed smooth manifold is a cohomology Bott manifold if its integral
cohomology ring is isomorphic to that of some Bott manifold Bn as graded rings.
Assume that a torus manifold M is a cohomology Bott manifold. The following
proposition shows that the Pontrjagin class of M is also of the same form as that of
Bn , so the invariance of Pontrjagin classes under cohomology ring isomorphisms holds
for the class of cohomology Bott manifolds.

Proposition 7.1 Suppose that a torus manifold M of real dimension 2n is a cohomol-
ogy Bott manifold. Then there are elements x1;x2; : : : ;xn 2H 2.M IZ/ such that

(7-3) H�.M IZ/D ZŒx1;x2; : : : ;xn�=.x
2
j � j̨ xj j j D 1; 2; : : : ; n/;

where ˛1 D 0 and j̨ for j D 2; : : : ; n is a linear combination of x1; : : : ;xj�1 over
Z and that p.M /D

Qn
iD1.1C˛

2
j /.

Proof We will freely use the notation introduced above. If M is a genuine Bott
manifold, then it is known and easy to see that the orbit space Q is an n–cube. As
for a cohomology Bott manifold M , the orbit space Q is not necessarily an n–cube
but the argument in [6, Theorem 5.3] or [14, Theorem 5.5] shows that the face poset
of Q is isomorphic to that of an n–cube. Therefore, Q has 2n facets (ie, mD 2n)
and one can order the facets Qi of Q in such a way that Qj \ QjCn D ∅ for
j D 1; 2; : : : ; n. Then (1) after (7-2) is nothing but xj xnCj for j D 1; 2; : : : ; n. SinceTn

jD1 QnCj is a vertex, the set fvnC1; vnC2; : : : ; v2ng forms a basis of H2.BT IZ/ by
the nonsingularity condition .�/ above. Let fu1; : : : ;ung be the basis of H 2.BT IZ/
such that hui ; vnCj i D ıij , where ıij denotes Kronecker delta. Taking uD uj in (2)
after (7-2), one has xnCj D�

Pn
iD1huj ; viixi in H�.M IZ/; so (7-2) reduces to

(7-4) H�.M IZ/D ZŒx1;x2; : : : ;xn�
.�

xj

� nX
iD1

huj ; viixi

� ˇ̌̌
j D 1; 2; : : : ; n

�
:

The nonsingularity condition .�/ above implies that every principal minor of an n� n

matrix ƒ with huj ; vii as .i; j /th entry is ˙1. We may assume that all the diagonal
entries of the matrix ƒ are �1, by changing the orientations on Mi for i D 1; : : : ; n if
necessary. Then it is shown in [7] that the matrix ƒ is conjugate to an upper-triangular
matrix by a permutation matrix, where we again use the assumption that M is a
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cohomology Bott manifold. Since conjugation by a permutation matrix is nothing but a
re-ordering of facets, we may assume that ƒ is upper-triangular and its diagonal entries
are all �1. This shows that xnCj D xj � j̨ , where ˛1 D 0 and j̨ for j D 2; : : : ; n

is a linear combination of x1; : : : ;xj�1 over Z and (7-4) reduces to (7-3).

Finally, since xnCj D xj � j̨ and xj .xj � j̨ /D 0 in H�.M IZ/ for j D 1; 2; : : : ; n,
it follows from (7-1) that

p.M /D

nY
jD1

.1Cx2
j /.1Cx2

nCj /D

nY
jD1

.1Cx2
j /.1C .xj � j̨ /

2/

D

nY
jD1

.1Cx2
j C .xj � j̨ /

2//D

nY
jD1

.1C 2xj .xj � j̨ /C˛
2
j /D

nY
jD1

.1C˛2
j /:

This completes the proof of the proposition.

Corollary 7.2 Let M be a torus manifold and Bn a Bott manifold. Then, any graded
ring isomorphism 'W H�.M IZ/!H�.BnIZ/ preserves their Pontrjagin classes.

Remark 7.3 We remark that if a torus manifold M in Proposition 7.1 is simply
connected, then M is indeed homeomorphic to a Bott manifold. This follows from the
proof of Proposition 7.1 together with [19, Theorem 3.4].

8 Concluding remarks

We conclude this paper with some remarks on the automorphisms of the cohomol-
ogy ring of a Bott manifold Bn . Proposition 4.1 and Lemma 4.2 say that, given a
graded ring automorphism  of H�.BnIZ/, there is a permutation � on Œn� and a
qj 2 f˙

1
2
;˙1;˙2g such that  .yj /D qj y�.j/ for each j D 1; 2; : : : ; n. Therefore,

assigning .qj=jqj j/
n
jD1

, together with � , to  , we obtain a monomorphism

(8-1) Aut.H�.BnIZ// ,! f˙1gn ÌSn:

Here Aut.H�.BnIZ// denotes the group of graded ring automorphisms of H�.BnIZ/
and f˙1gn ÌSn is the signed permutation group on Œn�, that is, the semidirect product
of the n–fold product f˙1gn of the order-two group f˙1g and the permutation group
Sn on Œn�, where the action of Sn on f˙1gn is the natural permutation of factors of
f˙1gn . Lemma 4.2 in [10] implies that any automorphism in the subgroup f˙1gn of
f˙1gnÌSn can be realized by a diffeomorphism of Bn and our Lemma 6.1 implies that
some elements of Sn can also be realized by diffeomorphisms of Bn . However, any qj

is equal to ˙1 for the cohomology automorphisms induced by those diffeomorphisms,
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so if some qj is not ˙1 then our results do not prove that the cohomology automorphism
is induced by a diffeomorphism. This is the reason why we needed to assume the
Z=2–triviality in Theorem 1.3.

As remarked in the introduction, the Hirzebruch surface CP2 # CP2 is not Z=2–trivial
(although it is Q–trivial). If we put B2 DCP2 # CP2 , then

H�.B2IZ/D ZŒx1;x2�=.x
2
1 ;x

2
2 �x1x2/;

so y1Dx1 and y2Dx2�
1
2
x1 . The map (8-1) above is an isomorphism in this case. In

fact, Aut.H�.B2IZ// is generated as a group by the following three automorphisms:

(1) .x1;x2/! .�x1;�x1Cx2/, so .y1;y2/! .�y1;y2/,

(2) .x1;x2/! .x1;x1�x2/, so .y1;y2/! .y1;�y2/,

(3) .x1;x2/! .�x1C 2x2;x2/, so .y1;y2/! .2y2;
1
2
y1/.

The automorphisms (1) and (2) generate the subgroup f˙1g2 while the automorphism
(3) generates the subgroup S2 . As remarked above, the automorphisms (1) and (2)
are induced by diffeomorphisms of B2 . One can see that the automorphism (3) is also
induced by a diffeomorphism of B2 . In fact, the diffeomorphism of type 2 in the proof
of [3, Lemma 5.2] induces the automorphism (3) up to sign. For the convenience of the
reader, we shall review the construction of this diffeomorphism. We take involutions

sW Œz1; z2; z3�! Œxz1;xz2;xz3� on CP2 , t W Œz1; z2; z3�! Œz1; z2;�z3� on CP2

where Œz1; z2; z3� denotes the homogeneous coordinate of CP2 and xz denotes the
conjugate of a complex number z . The fixed point set of s is RP2 while that of t

consists of a point and CP1 . Choose a point from each of RP2 and CP1 respectively
and take the equivariant connected sum of CP2 and CP2 around the chosen fixed points.
Then the resulting involution on B2 DCP2 # CP2 is the desired one (see the proof of
[3, Lemma 5.2] for more details). This construction heavily depends on the explicit
description of CP2 # CP2 and we do not know how to find such a diffeomorphism for
a non-Z=2–trivial Bott manifold Bn , although such a diffeomorphism can be found
when Bn is Q–trivial [3]. If we overcome this difficulty, then we could solve the
strong cohomological rigidity conjecture for Bott manifolds completely.
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