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Nonlooseness of nonloose knots

KENNETH L BAKER

SINEM ONARAN

A Legendrian or transverse knot in an overtwisted contact 3–manifold is nonloose if
its complement is tight and loose if its complement is overtwisted. We define three
measures of the extent of nonlooseness of a nonloose knot and show they are distinct.

53D10, 57M27

1 Introduction

A contact 3–manifold .M; �/ is overtwisted if it contains an overtwisted disk and tight
otherwise. A Legendrian or transverse knot K in an overtwisted contact 3–manifold is
called nonloose (or exceptional as in Eliashberg and Fraser [11]) if the restriction of the
contact manifold to its complement is tight. If instead the complement is overtwisted,
then K is called loose. That is, K is nonloose if it intersects every overtwisted disk,
while K is loose if it is disjoint from some overtwisted disk. In this article we develop
and examine notions of the extent of nonlooseness of Legendrian and transverse knots
in overtwisted contact structures. Throughout, our ambient 3–manifolds will be closed,
compact, connected and oriented and our contact structures will be cooriented.

For an unoriented Legendrian knot L in a closed overtwisted contact 3–manifold
.M; �/ we define three invariants, two geometric and one algebraic:

� The depth of L, d.L/, is the minimum of jL\Dj over all overtwisted disks D

in M .

� The tension of L, t.L/, is the minimum number of stabilizations required to
loosen L.

� The order of L, xo.L/, is the sum of the orders of the U–torsion of the LOSS
invariant L (defined by Lisca, Ozsváth, Stipsicz and Szabó in [27]) of the two
orientations on L. Presently this is only defined when L is nullhomologous.

If L is loose, then all three of these are 0. If L is nonloose then both its depth and the
tension are nonzero by definition, though its order may be 0.
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Theorem 1.0.1 If L is a Legendrian knot in an overtwisted contact 3–manifold, then

xo.L/� t.L/� d.L/;

where we only consider xo.L/ if L is nullhomologous.

Proof The second inequality is Lemma 4.1.6. When L is also nullhomologous, the
first inequality is Lemma 4.3.4.

Indeed, these three invariants are all distinct.

Theorem 1.0.2 There exist nonloose Legendrian knots L with

1D t.L/ < d.L/:

Sketch of proof The following two theorems give a surgery characterization of
nonloose Legendrian knots with depth 1 and a surgery construction of nonloose
Legendrian knots with tension 1. In particular, if .C1/–surgery on a nondesta-
bilizable Legendrian knot L in .S3; �std/ satisfying tb.L/ � �2, rot.L/ < 0,
��.L/ < �.rot.L/C tb.L/C 2/ is overtwisted, then the surgery dual is a nonloose
Legendrian knot L� with 1D t.L�/ < d.L�/. Etnyre and Honda [15] show there is a
Legendrian torus knot satisfying these classical constraints that, according to Lisca and
Stipsicz [29], has an overtwisted .C1/–surgery. A more detailed proof is given after
the proof of Theorem 4.1.8.

Theorem 4.1.7 Suppose .C1/–surgery on a Legendrian knot L with tight comple-
ment yields an overtwisted manifold with surgery dual knot L� . Then d.L�/D 1 if
and only if L is a stabilization.

Theorem 4.1.8 Suppose .C1/–surgery on a Legendrian knot L in .S3; �std/ yields
an overtwisted manifold with surgery dual knot L� . If tb.L/ < �1, rot.L/ < 0 and
tb.L/C rot.L/C 2< �.L/, then t.L�/D 1.

Theorem 1.0.3 A nonloose Legendrian unknot L satisfies

xo.L/D 0 while t.L/D d.L/D 1:

Proof Lemma 4.1.9 shows any nonloose Legendrian unknot has depth 1 and hence,
by Theorem 1.0.1 (or just Lemma 4.1.6), also tension 1. Corollary 4.3.8 shows they
all have order 0.
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The proof above relies upon Theorem 3.3.1, the characterization of nonloose unknots
in S3 of Eliashberg and Fraser [11], and Corollary 3.3.3, its implication for other
manifolds. The key step to Lemma 4.1.9 is the application of Theorem 4.1.7 to the
surgery diagrams given by Plamenevskaya [34] of these nonloose unknots in S3 .
Corollary 4.3.8 is a consequence of the following proposition which exploits the
behavior of the LOSS invariant under stabilizations. Here we state it for just xo, but the
actual proposition addresses L and related invariants as well.

Proposition 4.3.7 If a nullhomologous knot type K has a lower bound on the Thurston–
Bennequin invariants of its nonloose Legendrian representatives in a given overtwisted
contact structure, then xo.L/D 0 for each Legendrian representative L.

We also consider refinements of the above invariants for oriented Legendrian knots
and their analogues for transverse knots. The binding of an open book is naturally a
transverse link in the contact structure supported by the open book. If the open book is
a negative Hopf stabilization of another open book, then the binding has depth 1.

Theorem 5.2.3 Assume an open book with connected binding is a negative Hopf
stabilization. Then the binding T , as the nonloose transverse knot in the overtwisted
contact structure the open book supports, has d.T /D t.T /D 1.

Dymara [9] and Eliashberg and Fraser [11] established fundamentals about nonloose
knots with a focus on nonloose unknots. Dymara attributes Świa̧towski with a Ben-
nequin-type inequality for nonloose Legendrian knots which we recall in Theorem 3.2.1.
In his study of the coarse classification of nonloose Legendrian and transverse knots,
Etnyre [14] gives the associated Bennequin inequality for nonloose transverse knots,
Theorem 3.2.2. These two theorems are both for nullhomologous knots; in the vein of
Baker and Etnyre [1], we extend them to rationally nullhomologous knots.

Theorem 5.2.3 For a nonloose rationally nullhomologous Legendrian knot L of
homological order r with rational Seifert surface †,

�j tbQ.L/jC j rotQ.L/j � �
1

r
�.†/:

Theorem 3.2.4 For a rationally nullhomologous nonloose transverse knot T of ho-
mological order r with rational Seifert surface †,

slQ.T /� �
1

r
�.†/:
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1.1 Outline

We recall the basic concepts and tools for dealing with contact structures and the
Legendrian and transverse knots in them in Section 2 while Section 3 covers the basics
of overtwisted manifolds and nonloose knots. Section 4 develops our invariants and
main results for nonloose Legendrian knots; Section 5 addresses nonloose transverse
knots. We conclude with a handful of problems and questions in Section 6.

Acknowledgements We would like to thank Keiko Kawamuro and David Shea Vela-
Vick for helpful conversations and Steven Sivek for his input. Kenneth Baker was
partially supported by grant number 209184 from the Simons Foundation. Sinem Onaran
is supported by the Scientific and Technological Research Council of Turkey (grant
TUBITAK 3501– #112T994) and she thanks the Max Planck Institute for Mathematics,
Bonn for their hospitality.

2 Preliminaries

2.1 Contact structures

A contact structure � on a 3–manifold M is a nowhere integrable 2–plane field,
and the pair .M; �/ forms a contact 3–manifold. Locally, � is orientation-preserving
diffeomorphic to ker˛ for some 1–form ˛ satisfying ˛^d˛¤ 0. We restrict attention
to positive contact structures; those for which ˛^d˛ > 0. By Darboux’s theorem (see
Geiges [19]) every point in a (positive) contact manifold .M; �/ has a neighborhood
admitting an orientation-preserving diffeomorphism to an open subset of .R3; �std/;
the standard contact structure on R3 , where �std D ker.dz�y dx/.

2.2 Legendrian and transverse knots

A particular smooth embedding of an oriented knot K in a contact 3–manifold .M; �/

is Legendrian if its tangent vectors lie in the contact planes: TpK � �p for every
p 2K . On the other hand, the knot K is transverse if its tangent vectors are not in the
contact planes: TpK˚ �p Š TpM for every p 2K . The coorientation of � naturally
orients K , and hence we always regard transverse knots as oriented knots.

An isotopy through Legendrian embeddings is a Legendrian isotopy, and an isotopy
through transverse embeddings is a transverse isotopy. A Legendrian knot is a Legen-
drian isotopy equivalence class, and a transverse knot is a transverse isotopy equivalence
class. A good reference for the fundamentals of Legendrian knots and transverse knots
is Etnyre [13].
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2.2.1 Classical invariants The most basic invariant of a Legendrian or transverse
knot is its topological knot type.

The contact structure endows a Legendrian knot L with a natural framing �� called
its contact framing. Given a surface † embedded in .M; �/ that contains L (or even
just properly embedded in M �N .L/ and radially extended to L in N .L/), the twist
number of † along L relative to � measures how † twists along L relative to � .
That is, tw�.L; †/ is the slope .p=q/ of the curve � D†\ @N .L/, where for some
orientation we have Œ� �D pŒ��C qŒ�� �. Here we view the meridian � of L and the
framing �� in the boundary of a regular neighborhood of L, @N .L/ and orient them
so that if L is oriented to be parallel to �� then L links � once positively.

Caution When † is an orientable surface containing L, it is common to measure
the twisting of � along L relative to † instead (as in the definition of the Thurston–
Bennequin invariant below). This means our twist number has its sign opposite from
what may be more traditional.

The Thurston–Bennequin invariant tb.L/ of a nullhomologous Legendrian knot L is
the discrepancy between this contact framing and the framing induced by its Seifert
surfaces; if † is a Seifert surface for L then tb.L/ D � tw�.L; †/. The rotation
number rot.L/ of an oriented nullhomologous Legendrian knot is the winding number
of TL after trivializing the contact structure along a Seifert surface. The self-linking
number sl.T / of a nullhomologous transverse knot T is the linking number of T

with a push-off of T in the direction of a nowhere-zero section over T after trivializing
the contact structure along a Seifert surface. These are the “classical” invariants of
Legendrian and transverse knots (for further details, see [13] for example). These
invariants have been generalized to rational versions for rationally nullhomologous
knots (see the first-named author and Etnyre [1] and Öztürk [33]) and to relative versions
for any knot in relation to a chosen homologous knot (see Chernov [4]). We will use
the rational versions tbQ and rotQ in this article.

2.2.2 Stabilizations Let L be an oriented Legendrian knot in a contact 3–manifold.
By Darboux’s theorem (see [19]) for each point on L there is a neighborhood N with
contactomorphism to .R3; �std/ sending L\N to the x–axis. In this manner we
locally represent L with the front diagram (the projection to the xz–plane) as in the
left-hand side of Figure 1. The modification of L to another Legendrian knot LC as
shown in the top right-hand side of Figure 1 is called a positive stabilization of L.
Similarly, L� shown in the lower right-hand side of Figure 1 is a negative stabilization
of L. We will also write LCa;�b to indicate the Legendrian knot L with a positive
stabilizations and b negative stabilizations for a; b � 0. Note it does not matter the
order in which these stabilizations are done and it does not matter where along L these
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stabilizations are done; the results are Legendrian isotopic. However, as demonstrated
by the contactomorphism of �std resulting from the � rotation about the z–axis
reversing the image of L, whether a stabilization is positive or negative depends on
the orientation of L: .�L/˙ D�.L�/.

L

LC

L�

Figure 1

The effect of stabilizations on the classical invariants for Legendrian knots are

tb.L˙/D tb.L/� 1 and rot.L˙/D rot.L/˙ 1:

Note that tb is actually an invariant of unoriented Legendrian knots while rot requires
an orientation. Indeed, if �L denotes L with the opposite orientation, then tb.�L/D

tb.L/ and rot.�L/D� rot.L/. (We also note that tw�.L˙; †/D tw�.L; †/C1.)

2.2.3 Transverse push-offs and Legendrian approximations An oriented Legen-
drian knot L has a positive and negative transverse push-off, TC.L/ and T�.L/,
defined as follows. Choose a vector field X on �jL such that at each point p 2L we
have the positive oriented basis .X.p/;Tp.L// for �p . Then a small push-off of L in
the direction of X gives the transverse knot TC.L/ which is oriented parallel to L

by the coorientation of � . A small push-off of L in the direction of �X gives the
transverse knot T�.L/ which is oriented parallel to �L. We say the positive transverse
push-off TC.L/ is the transverse push-off. Negative stabilizations of Legendrian knots
do not change the transverse push-off, so any invariant of Legendrian knots that is not
altered by negative stabilizations gives an invariant of transverse knots.

Note that, by definition, reversing the orientation of a transverse knot does not produce
another transverse knot since its orientation no longer agrees with the coorientation of
the contact structure.

The contact manifold .R3; �cyl/ with �cyl D ker.dzC r2 d�/ is the cylindrical model
of the standard contact structure on R3 . There is a contactomorphism .R3; �cyl/!

.R3; �std/. A regular �–neighborhood of the z–axis in this cylindrical model, modulo
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z 7! z C 1, gives a standard solid torus neighborhood for a transverse knot T . A
Legendrian curve L on a concentric torus that is topologically isotopic to the core T

of this solid torus is a Legendrian approximation of T . While there are many differ-
ent Legendrian approximations to T , any two have common negative stabilizations.
Furthermore, the (positive) transverse push-off of a Legendrian approximation of T is
again T . See Epstein, Fuchs and Meyer [12] for further details.

2.3 Convex surfaces

An embedded surface † in a contact manifold .M; �/ is convex if there is an embedded
product neighborhood †� .�1; 1/ with †D†�f0g such that � is preserved by flow
in the product direction within this product. This notion is due to Giroux [21]. He also
shows that any surface † embedded in a contact manifold so that each component L

of @† is Legendrian with tw�.L; †/� 0 admits a C 0 –isotopy fixing its boundary to
a convex representative. Such an isotopy may be found in any neighborhood of the
surface.

Given an oriented convex surface † with (possibly empty) Legendrian boundary,
let X be a vector field given by a vertical flow in the product direction of a product
neighborhood of † (for example X D @t where t is the interval parameter). For each
point x 2† the vector X.x/2TxM projects to a positive, zero or negative multiple of
the coorientation of �x . The dividing set � of † is the properly embedded 1–manifold
consisting of points for which this is the zero multiple, that is � Dfx 2† WX.x/2 �xg.
Then †C is the component of †� � where the multiple is positive and †� is the
component where the multiple is negative. If � 0 is smoothly isotopic to � in †, there
is a smooth isotopy of †, fixing its boundary, through convex surfaces realizing � 0 as
a dividing set.

If † is a convex surface with dividing set � and L is a Legendrian knot in † (such as
component of @†) then L is necessarily transverse to � and tw�.L; †/D 1

2
jL\�j.

2.4 Contact surgery

A Legendrian knot L has a standard tight neighborhood N .L/ with convex boundary
having two dividing curves. Contact surgery of slope .p=q/ is a Dehn surgery on L

producing a new contact manifold by replacing N .L/ with another tight contact solid
torus having the same boundary but with a meridian of slope .p=q/ with respect to the
contact framing. (If L is nullhomologous, a .p=q/–contact surgery is topologically
a Dehn surgery of slope p=qC tb.L/.) While generically there are multiple contact
solid tori with the required boundary data, this Dehn surgery is unique when p D˙1.
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See [19] for a more detailed discussion. In this article we primarily concern ourselves
with .˙1/–surgeries.

After .1=n/–surgery on L, the core curve of the attached solid torus is again a Leg-
endrian knot L� called the surgery dual. For such surgeries, both L and L� are
isotopic through their solid tori to a curve L0 in @N .L/. We say L0 is a Legendrian
push-off of L and the annulus they cobound is a push-off annulus. In the surgered
manifold, L0 may also be viewed as a Legendrian push-off of L� . Through this
push-off, an orientation on L confers a natural orientation upon L� .

3 Basics on knots in overtwisted contact structures

3.1 Overtwisted disks, loose and nonloose knots

A smoothly embedded disk D with Legendrian boundary such that tb.@D/ D 0

is an overtwisted disk. We orient D so that it induces the orientation on @D with
rot.@D/ > 0. A contact manifold is overtwisted if it contains an overtwisted disk, and
it is tight otherwise.

For a convex overtwisted disk, since tb.@D/D 0 it follows that the dividing set � is
disjoint from @D and hence is a collection of simple closed curves in the interior of D .

A standard overtwisted disk is one with a neighborhood contactomorphic to that of
DOTDf.r; �; 0/ W r ��g in the contact manifold .R3; �OT/ where �OTD ker.cos r dzC

r sin r d�/. This disk is convex and has one dividing curve: use the vector field
X D @z so that � D f.�=2; �; 0/g. Observe that by orienting DOT so that with the
boundary orientation rot.@DOT/ > 0, the origin is a positive elliptic singularity of the
characteristic foliation.

Proposition 3.1.1 (Proof of [19, Proposition 4.6.28]) Any overtwisted disk D admits
a slight isotopy fixing its boundary to an overtwisted disk D0 that either is a standard
overtwisted disk or properly contains a standard overtwisted disk.

This gives us an immediate corollary.

Corollary 3.1.2 Let K be a Legendrian or transverse knot in an overtwisted contact
3–manifold. Then K intersects every overtwisted disk if and only if K intersects every
standard overtwisted disk.
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As mentioned in the introduction, a Legendrian or transverse knot K in an overtwisted
contact 3–manifold .M; �/ is nonloose if K intersects every overtwisted disk (so
that its complement is tight) and is loose if it is disjoint from some overtwisted disk
(so that its complement is overtwisted). Corollary 3.1.2 lets us rephrase this: K is
nonloose if it intersects every standard overtwisted disk and loose if it is disjoint from
some standard overtwisted disk. Note that while the complement of any knot in a tight
manifold is tight, the term nonloose is used to imply that the ambient contact manifold
is overtwisted. Furthermore, observe that if some contact surgery on a Legendrian knot
is tight then the complement of the knot is tight; this can be a convenient way to detect
nonlooseness.

3.2 Classical invariants and nonloose knots

If L were a nullhomologous Legendrian knot in a tight contact manifold, then the
Bennequin inequality (see Bennequin [3] and Eliashberg [10]) would hold true: tb.L/C
j rot.L/j � ��.L/. In an overtwisted contact manifold, one may find Legendrian
knots that violate this inequality. Loose Legendrian knots of arbitrarily large tb may
be constructed by exploiting the overtwisted disks in their complements. On the other
hand, nonloose Legendrian knots could potentially violate the Bennequin inequality
if tb were positive and sufficiently large.

Theorem 3.2.1 (Świa̧towski [9; 14]) For a nonloose nullhomologous Legendrian
knot L with Seifert surface †,

�j tb.L/jC j rot.L/j � ��.†/:

Theorem 3.2.2 [14] For a nonloose nullhomologous transverse knot T with Seifert
surface †,

sl.T /� ��.†/:

This follows from the relation

sl.T˙.L//D tb.L/� rot.L/;

where T˙.L/ denotes the positive and negative transverse push-offs of L.

We give an extension of these bounds to rationally nullhomologous nonloose knots
modeled on the proof of these given in [14]. See [1] for details on the rational classical
invariants and Geiges and Onaran [20] for ways to compute these from contact surgery
diagrams.
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Recall that a rationally nullhomologous knot K in a 3–manifold M has a rational
Seifert surface (or generalized Seifert surface) which may be obtained from a properly
embedded orientable connected surface † in M �N .K/ such that, when oriented, @†
is a collection of coherently oriented essential curves in the torus @N .K/. The
surface † may then be radially extended through N .K/ to a singular surface where K ,
the core of N .K/, is the singular set to obtain the rational Seifert surface. It is
convenient however to regard † as the rational Seifert surface and we say �.†/ is the
Euler characteristic of the rational Seifert surface. Observe that the multiplicity r with
which @† covers K is the order of K in homology, r ŒK�D 0 2H1.M /.

Theorem 3.2.3 For a nonloose rationally nullhomologous Legendrian knot L of
homological order r with rational Seifert surface †,

�j tbQ.L/jC j rotQ.L/j � �
1

r
�.†/:

Proof We follow Etnyre’s proof for integrally nullhomologous knots in [14]. The idea
is to take the “Seifert cable” L0 of L as a set of ruling curves on a convex neighborhood
of L. Then we have a nullhomologous link L0 in the tight exterior of L and may relate
tb.L0/ to r tbQ.L/ and rot.L0/ to r rotQ.L/. An application of the Bennequin
type inequality to L0 will yield the desired result.

Let † be a rational Seifert surface for L, and let N be a standard convex neighborhood
of L such that either L0 D @N \† is a collection of (Legendrian) ruling curves or
a collection of Legendrian divides. In the exterior of L, which is tight, L0 is a
nullhomologous Legendrian link with Seifert surface †0 D†�N .

Let � be the homology class of a dividing curve in @N oriented parallel to L and
let � be the homology class of a meridian in @N linking L positively. Then ŒL0�D
r�C r tbQ.L/� 2 H1.@N /. Assuming that L0 is a collection of ruling curves and
there are just two dividing curves, the twisting of L0 with respect to @N is then
�

1
2
j2� � ŒL0�j D �jr tbQ.L/j. Because the framings on L0 induced by @N and @†0

are equivalent, tb.L0/ D �r j tbQ.L/j. If L0 is a collection of Legendrian divides,
then it follows that tb.L0/D 0D tbQ.L/.

For the rotation number, trivialize the contact planes in a neighborhood of L that is
a slightly larger neighborhood than N by extending the unit tangent vector of L to
a nowhere-zero section of � . Then any Legendrian curve in @N wrapping n times
positively around L has zero winding with respect to this trivialization and thus its
rotation number is n times that of L. Hence rot.L0/D r rotQ.L/.
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Theorem 3.2.4 For a rationally nullhomologous nonloose transverse knot T of ho-
mological order r with rational Seifert surface †,

slQ.T /� �
1

r
�.†/:

Proof Assume that slQ.T / > �
1
r
�.†/. For a Legendrian approximation L of T ,

we have that [1, Lemma 1.2] gives tbQ.L/�rotQ.L/ >�
1
r
�.†/ since the (positive)

transverse push-off of L is T . If tbQ.L/� 0 then the bound of Theorem 3.2.3 fails
implying that L is loose. Hence T is loose by Proposition 5.1.1. If tbQ.L/ > 0 then
we may perform negative stabilizations of L to create L0 with tbQ.L

0/� 0. Since L0

is also a Legendrian approximation of T , we again conclude that T must be loose.

3.3 Nonloose unknots

A knot that bounds an embedded disk is called an unknot or a trivial knot.

Theorem 3.3.1 [11] A Legendrian unknot L in an overtwisted contact manifold is
loose if tb.L/� 0.

Eliashberg and Fraser give a coarse (ie up to contactomorphism) classification of
nonloose Legendrian unknots in overtwisted contact structures on S3 [11]. Etnyre and
Vogel independently had worked out a similar proof presented in [14]. Geiges and
Onaran offer an alternative proof in [20] which extends to a classification of nonloose
Legendrian rational unknots in lens spaces. They explicitly present the classification
for L.p; 1/ and L.5; 2/, but the technique works for any lens space.

Theorem 3.3.2 [11] On S3 , only the overtwisted contact structure ��1 with Hopf
invariant �1 contains a nonloose unknot. For each integer n > 0 there is a nonloose
unknot with classical invariants .tb; rot/ D .n; n � 1/ and one with .tb; rot/ D
.n;�.n� 1//. Up to contactomorphism these are the only ones.

Compare the following with [14, Corollary 2.4].

Corollary 3.3.3 Suppose an overtwisted contact manifold .M; �/ contains a nonloose
Legendrian unknot L. Then there is a nonloose Legendrian unknot L0 in .S3; ��1/

and a tight contact structure � 0 on M such that .M; �/D .M; � 0/# .S3; ��1/, where L

is the image of L0 . In particular, a nonloose unknot has classical invariants .tb; rot/D
.n;˙.n� 1// for some positive integer n.
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Proof We may assume M 6Š S3 since the result follows directly from Theorem 3.3.2.
Thus, since L is an unknot, M � L is reducible and M � L Š M # .S3 � L0/

for an unknot L0 in S3 . Since the restriction of .M; �/ to M � L is tight, by
the prime decomposition of tight contact manifolds (see Colin [5]), there exists a
tight contact structure �0 on M and a tight contact structure � 0 on S3 � L0 so
that .M � L; �jM�L/ D .M; �0/ # .S3 � L0; � 0/. Then .B3 � L0; �jB3�L0/, the
complement of a neighborhood of a point in .S3 � L0; � 0/, is contactomorphic to
a contact submanifold of .M � L; �jM�L/. As such, �jM�L extends across L

to � so that L is Legendrian and thus it pulls back to an extension of �jB3�L0 on
B3 � L0 across L0 to a contact structure on B3 , and hence to an extension of � 0

on S3 � L0 to a contact structure � 00 on S3 , in which L0 is Legendrian. Since
.M; �/D .M; �0/ # .S3; � 00/ is overtwisted, � 00 cannot be tight. Thus L0 in .S3; � 00/

is a nonloose Legendrian unknot. Theorem 3.3.2 implies � 00 D ��1 and describes the
possible classical invariants for L0 . Hence these are the possible classical invariants
for L as well.

Surgery descriptions of the nonloose unknots in .S3; ��1/ are given by Plamenevskaya
in [34, Figure 3]. Corollary 3.3.3 shows that a nonloose unknot in some other overtwisted
manifold may be locally presented by one of these surgery descriptions.

4 Depth, tension, and order for Legendrian knots

We define two geometric invariants and one algebraic invariant of Legendrian knots
in a closed overtwisted contact manifold that give measures of nonlooseness. We first
address the geometric ones for unoriented knots in Section 4.1 and then consider their
refinements for oriented knots in Section 4.2. Thereafter, in Section 4.3 we use the
LOSS invariant of [27] to define an algebraic invariant for nullhomologous Legendrian
knots.

4.1 Depth and tension

Definition 4.1.1 The depth, d.L/, of a Legendrian knot L in an overtwisted contact
3–manifold is the minimum geometric intersection number jL\Dj taken over all
overtwisted disks D transversally intersecting L. The knot L is loose if and only if
d.L/D 0.

Remark 4.1.2 By Proposition 3.1.1, the depth of a nonloose knot is realized with a
standard overtwisted disk.
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Definition 4.1.3 The tension, t.L/, of a Legendrian knot L in an overtwisted contact
3–manifold is the minimum total number of stabilizations required to make L loose.
The knot L is loose if and only if t.L/D 0.

The following theorem shows that tension is well-defined.

Theorem 4.1.4 There is a finite sequence of stabilizations that loosens a Legendrian
knot in a closed, overtwisted manifold.

Proof Let L be a Legendrian knot in the overtwisted manifold .M; �/ and let D be
a standard overtwisted disk transverse to L so that jL\Dj is a finite set. If L is
disjoint from D , then L is already loose. So assume jL\Dj D n > 0. Since D is
a standard overtwisted disk, there exists a contactomorphism f of a neighborhood
of D with a neighborhood of DOT . Let � be a radial arc in DOT from a point of
f .L\D/ to @DOT that is disjoint from the origin and the other points of f .L\D/.
Then there is a contactomorphism g that identifies a neighborhood .N DN .�/; �jN /
with .R3; �std/ such that g.DOT \N / is the half plane fy � 0; z D 0g, g.�/ is the
arc fx D 0;y 2 Œ0; 1�; z D 0g and g.f .L/\N / is the line fx D z;y D 1g. Then,
depending on the orientation of the intersection, the positive or negative stabilization as
shown in the front projection of Figure 2 reduces jL\Dj by one. (View the horizontal
line as the boundary of the overtwisted disk with the disk going into the page.) In
this manner, repeated stabilizations make the stabilized L disjoint from D and thus
loosen it.

L

L

LC

L�

Figure 2

Remark 4.1.5 Figure 2 shows, via the front projection, how stabilizations of ori-
ented Legendrian knots in .R3; �std/ may remove intersections with the half plane
fz D 0;y � 0g. Orienting this half plane so that @=@z is the positive normal and the
boundary orientation is @=@x , one sees that positive stabilizations remove negative
intersections while negative stabilizations remove positive intersections.

The proof of Theorem 4.1.4 offers a relationship between depth and tension.
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Lemma 4.1.6 For a Legendrian knot L in a closed overtwisted contact manifold,
t.L/� d.L/.

Proof Let D be a standard overtwisted disk for which jL\Dj D d.L/ and then
apply the proof of Theorem 4.1.4. Note that a Legendrian isotopy making L transverse
to D may be done without increasing jL\Dj.

The following two theorems allow us to prove Theorem 1.0.2, that the inequality of
Lemma 4.1.6 is sometimes strict.

Theorem 4.1.7 Suppose .C1/–surgery on a Legendrian knot L with tight comple-
ment yields an overtwisted manifold with surgery dual knot L� . Then d.L�/D 1 if
and only if L is a stabilization.

Proof Lemma 3.1 of [29] shows that .C1/–surgery on a destabilizable Legendrian
knot in .S3; �std/ yields an overtwisted manifold. (See also the proof by Ding, Geiges
and Stipsicz of [8, Theorem 1.2] as well as Ozbagci [31].) To prove this they construct
an overtwisted disk that is a meridional disk of the surgery solid torus, one that
the surgery dual intersects once. This proof in fact works for .C1/–surgery on any
destabilizable knot in any contact manifold. Instead of describing framings in terms of
the Thurston–Bennequin invariant, we will use the twist number.

Assume L is a stabilization of a Legendrian push-off of a Legendrian knot L0 in
the contact manifold .M; �/. Then there is an annulus A with @A D L[L0 such
that tw�.L0;A/ D 0 and tw�.L;A/ D C1. (Lisca and Stipsicz show in [29] that
in .S3; �std/ the annulus A meets L0 with framing tb.L0/ and L with framing
tb.L/C1.) Then, in the contact manifold .MC; �C/ obtained by .C1/–surgery on L,
this annulus extends across a meridional disk of a solid torus neighborhood of the
surgery solid torus to complete to a disk D . Observe that @D is the image of L0 .
As such, since tw�.L0;A/D 0D tw�C

.@D;D/D tb.@D/, D is an overtwisted disk
and the resulting manifold is overtwisted. By construction, the surgery dual knot L�

intersects D once. Thus d.L�/D 1 if the complement of L� is tight. The complement
of L� is tight if and only if the complement of L is tight.

Now assume L� is a nonloose knot in an overtwisted manifold .MC; �C/ with
d.L�/ D 1. Then, by Proposition 3.1.1, there is a standard overtwisted disk D

which L� intersects once. Then, in the contact manifold .M; �/ obtained by .�1/–
surgery on L� , D�L� extends to an annulus A whose boundary is the image of @D
and the surgery dual to L� , Legendrian knots L0 and L respectively. Furthermore
tw�.L0;A/ D tw�C

.@D;D/ D tb.@D/ D 0 and, due to performing .�1/–surgery
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on L� , tw�.L;A/ D C1. Hence the contact planes of � have nonpositive twisting
along each component of @A D L [ L0 relative to the framing by A. Therefore
we may realize A as a convex surface with dividing set � consisting of a possibly
empty set of simple closed curves and a single arc with its endpoints in L . Since
this arc of � is boundary parallel in A, it signifies that L is a stabilization (see eg
Etnyre [13, Lemma 2.20]).

Theorem 4.1.8 Suppose .C1/–surgery on a Legendrian knot L in .S3; �std/ yields
an overtwisted manifold with surgery dual knot L� . If tb.L/ < �1, rot.L/ < 0, and
tb.L/C rot.L/C 2< �.L/, then t.L�/D 1.

Proof Assume .MC; �C/ is the overtwisted manifold produced by .C1/–surgery on L.

Let L0 be a Legendrian push-off of L. Then the image of L0 in .MC; �C/ is a
Legendrian push-off of the surgery dual knot L� . Hence the link L[L0 with .C1/–
surgery on L is a surgery diagram for L� in .MC; �C/. Similarly, L [L0C with
.C1/–surgery on L is a surgery diagram for the stabilization L�C of L� in .MC; �C/.

Given that .MC; �C/ is overtwisted by assumption and that L is a Legendrian knot
in S3 , L� is a nonloose knot. Hence t.L�/ > 0. To show that t.L�/ D 1 we will
demonstrate that the rational classical bound for nonloose knots, Theorem 3.2.3, does
not hold for a positive stabilization of L� if ��.L/ < �.rot.L/C tb.L/C 2/. To
do so, we will calculate tbQ.L

�
C/ and rotQ.L

�
C/ using the methods in [20].

Observe that .C1/–surgery on L is a topological tb.L/C 1 – surgery on L; hence
the homological order r of L� is j tb.L/C 1j. Moreover, because tb.L/¤ �1 by
assumption, this means that MC is a rational homology sphere and [20, Lemma 2] will
apply. If † is a rational Seifert surface for L�C of minimal genus, then topologically it
is the image of a minimal genus Seifert surface for L. Hence �.L/D �.†/. Also note
that `k.L;L0C/ D `k.L;L

0/ D tb.L/ since L0 is a Legendrian push-off of L and
L0C is topologically isotopic to L0 in the complement of L. Following [20, Lemma 2],
let M D .tb.L/C 1/ be the linking matrix of L and M0 D

�
0

tb.L/
tb.L/

tb.L/C1

�
be the

extended matrix. Then we may compute that

tbQ.L
�
C/D tb.L0C/C

det M0

det M
D tb.L/� 1C

� tb2.L/

tb.L/C1
D

�1

tb.L/C1
;

rotQ.L
�
C/D rot.L0C/� hrot.L/;M�1.tb.L//i

D rot.L/C 1�
D
rot.L/; 1

tb.L/C1
� tb.L/

E
D rot.L/C 1�

rot.L/ tb.L/
tb.L/C1

D
rot.L/C.tb.L/C1/

tb.L/C1
;
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where tb.L0C/ D tb.L/ � 1 and rot.L0C/ D rot.L/C 1 since L0C is a positive
stabilization of L.

Assume that L�C , a positive stabilization of L� , is nonloose. Then by Theorem 3.2.3
it holds that

�j tbQ.L
�
C/jC j rotQ.L

�
C/j � �

1

r
�.†/;

�

ˇ̌̌
�1

tb.L/C1

ˇ̌̌
C

ˇ̌̌
rot.L/Ctb.L/C1

tb.L/C1

ˇ̌̌
� �

1

j tb.L/C1j
�.L/;

1

tb.L/C1
C

rot.L/Ctb.L/C1

tb.L/C1
�

�.L/

tb.L/C1
;

rot.L/C tb.L/C 2� �.L/;

since rot.L/ < 0 and tb.L/ C 1 < 0. But this contradicts our assumption that
�.rot.L/C tb.L/C 2/ > ��.L/. Hence L�C is loose and thus t.L�/D 1.

In the introduction, we sketched a proof of Theorem 1.0.2 which asserts that there
exists nonloose Legendrian knots L with 1D t.L/ < d.L/. We now provide a more
detailed proof. Observe that the knots constructed are only rationally nullhomologous.

Proof of Theorem 1.0.2 Assume that L is a nondestabilizable Legendrian knot in
.S3; �std/ satisfying tb.L/��2, rot.L/< 0, ��.L/<�.rot.L/Ctb.L/C2/ and
.C1/–surgery on L is overtwisted. Let L� be the Legendrian knot dual to the .C1/–
surgery on L. Since L and L� have contactomorphic complements, L� is a nonloose
knot. Because L is nondestabilizable, Theorem 4.1.7 implies that d.L�/ � 2. Due
to the assumptions on tb.L/, rot.L/ and �.L/, Theorem 4.1.8 implies t.L�/D 1.
Now we simply need to confirm that such Legendrian knots exist in .S3; �std/.

Let p and q be coprime integers satisfying �p > q > 0. By [15, Theorem 4.1] the
maximal Thurston–Bennequin invariant of Legendrian representatives of the negative
torus knot Tp;q is pq . By [15, Theorem 4.4], among these Legendrian representatives
with maximal Thurston–Bennequin invariant is one with rotation number qCp . Take L

to be this torus knot; hence tb.L/ D pq < 0, rot.L/ D q C p < 0 and �.L/ D
jqj�jpjjq�1jD q�pCpq . Since 0> 2.pC1/, it follows that ��.L/<�.rot.L/C
tb.L/C 2/. Finally, .C1/–surgery on L is overtwisted by [29, Corollary 1.2].

For nonloose Legendrian unknots, the depth and tension are always equal to 1.

Lemma 4.1.9 If L is a nonloose Legendrian unknot in an overtwisted manifold, then
t.L/D d.L/D 1.
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Proof Theorem 4.1.7 applies to the surgery descriptions of the nonloose Legendrian
unknots in .S3; ��1/ given in [34] (see also [20]) to show that these knots all have
depth 1. (More explicitly, each nonloose Legendrian unknot is presented in a surgery
description of .S3; ��1/ as a Legendrian push-off of a stabilized Legendrian unknot on
which .C1/–surgery is done; as such, the nonloose Legendrian unknot is Legendrian
isotopic to the surgery dual of that component.) It then follows from Corollary 3.3.3 that
the surgery diagrams of [34] may be used with Theorem 4.1.7 to show that a nonloose
Legendrian unknot in any overtwisted manifold also has depth 1. Lemma 4.1.6 then
implies any nonloose Legendrian unknot also has tension 1.

K

L1

L2

L1

L

L2
P

K

L1

L

L2
P

.C1/

.C1/

K

L1

L2

.�1/

.C1/

.C1/

.a/ .b/ .c/ .d/

Figure 3

Proposition 4.1.10 Let K be a Legendrian knot in .M; �/ with standard Legendrian
meridian L1 and its Legendrian push-off L2 , locally pictured as in the front diagram
of Figure 3(a). The result of .C1/–surgeries on both L1 and L2 is the overtwisted
manifold .M 0; � 0/D .M; �/ # .S3; ��1/. Letting K0 be the image of K in .M 0; � 0/,
then d.K0/ � 1. Furthermore, if either .M; �/ or .C1/–surgery on K is tight then
d.K0/D 1.

Proof Let us first focus locally on the link L1[L2 of Legendrian unknots of tbD�1

with their .C1/–surgeries. Viewed in .S3; �std/, this pair of surgeries yields .S3; ��1/

giving the first claim. We may construct an overtwisted disk in .M 0; � 0/ as follows:
Figure 3(b) adds a third Legendrian unknot L of tbD�2 which cobounds a thrice-
punctured sphere P with L1[L2 . Observe that P meets L1 and L2 with topological
framing 0 and L with the contact framing. Hence, after the pair of .C1/–surgeries, P

caps off to a disk D where the boundary of D is (the image of) L. Since P meets L

with the contact framing, D is an overtwisted disk.

Now including K in our consideration, we see that we may choose L and P so that K

intersects P once as in Figure 3(c). Thus K0 , the image of K in .M 0; � 0/, intersects
the overtwisted disk D once. Hence d.K0/� 1.

If .�1/–surgery on K0 produces a tight manifold, then K0 will be nonloose so that
d.K0/D 1. Locally, a surgery diagram for this manifold is given in Figure 3(d). By
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Ding and Geiges [7, Proposition 2], since L1 is a standard Legendrian meridians of K ,
it is Legendrian isotopic to a Legendrian push-off of K after the .�1/–surgery on K .
Since L2 is a Legendrian push-off of L1 , it has a Legendrian isotopy following that
of L1 as a push-off. Thus, after .�1/–surgery on K , L1[L2 is Legendrian isotopic
to a Legendrian push-off of K with a further push-off. Thus .C1/–surgery on L1 ,
say, cancels the .�1/–surgery on K returning the manifold .M; �/ in which L2 is
now both the only remaining surgery curve and Legendrian isotopic to the original
knot K . Hence the result of .�1/–surgery on K0 in .M 0; � 0/ may also be obtained by
.C1/–surgery on K in .M; �/.

Remark 4.1.11 Observe that the surgery duals to .�1/–surgery on K0 and .C1/–
surgery on K are Legendrian isotopic knots. Therefore from the conclusion of
Proposition 4.1.10, Theorem 4.1.7 implies d.K0/D 1 if and only if the surgery dual to
.C1/–surgery on K is a stabilization.

Lemma 4.1.12 (Proof of [28, Theorem 1.1]) If K is a Legendrian knot in .S3; �std/

with tb.K/D 2gs.K/� 1> 1, then .C1/–surgery on K is tight.

Here gs.K/ denotes the smooth 4–ball genus of a knot K in S3 .

Example 4.1.13 Let p; q be positive coprime integers. Let K be a Legendrian .p; q/–
torus knot in .S3; �std/ with tb.K/D pq�p� q D 2gs.K/� 1. (Such Legendrian
knots do exist; see [15].) Thus by Proposition 4.1.10 and Lemma 4.1.12, .C1/–
surgeries on a standard Legendrian meridian and its push-off send K to a Legendrian
.p; q/–torus knot in .S3; ��1/ with depth 1.

Example 4.1.14 An upper bound on tension may be obtained from a violation of
Theorem 3.2.1 after some number of stabilizations. Here we show that there are
nonloose Legendrian knots K with t.K/D 1 for which Theorem 3.2.1 only offers a
large upper bound.

Continuing with the previous example, Figure 4 gives an explicit surgery diagram for
nonloose Legendrian .2; q/–torus knots L2;q in .S3; ��1/ that have depth and tension
equal to 1. A straightforward computation with the formula from [27, Lemma 6.6]
shows the invariants of these nonloose torus knots are tb.L2;q/Dq and rot.L2;q/D0.
So after q stabilizations this knot will violate the inequality in Theorem 3.2.1 thereby
only implying that t.L2;q/� q .

Theorem 4.1.7 may be generalized to give characterizations of Legendrian knots of
larger depth. Topologically, if a knot K� transversally intersects the interior of a disk D
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. . .

C1

C1

Figure 4: Nonloose .2; q/–torus knots in .S3; ��1/

a total of n times, then each of these intersections may be tubed to a meridian m�

of K� creating a “folded surface” † where the “boundary” of † is @D together with n

copies of m� . (The terminology “folded” comes from Turaev [37]. When the algebraic
intersection number of K� with D is ˙n, then this folded surface is a rational Seifert
surface for the link @D[m� .) Being disjoint from K� , this folded surface † persists
through surgery on K� . Moreover, after integral surgery on K� , the surgery dual
knot K is isotopic to m� and hence † is a folded surface for the link @D[K with
multiplicity 1 on @D and multiplicity n on K .

In Theorem 4.1.15 below, we examine the above construction in the contact setting
for nD 2 where the folded surface † is an honest surface, a once-punctured torus or
Klein bottle.

Theorem 4.1.15 Suppose .C1/–surgery on a Legendrian knot L in .M; �/ with
tight complement yields an overtwisted manifold with surgery dual knot L� . Then
d.L�/D 2 if and only if:

(1) L is not a stabilization.

(2) There is a once-punctured torus or once-punctured Klein bottle † with @†
Legendrian and tw�.@†;†/D 0 that contains L as an essential, nonseparating,
orientation-preserving curve in † with tw�.L; †/DC1.

Note that while every isotopy class of essential, simple closed curves in a once-punctured
torus is nonseparating and orientation preserving, there is a unique such class in a
once-punctured Klein bottle.
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Proof This proceeds in the same manner as the proof Theorem 4.1.7.

Assume L is a curve in a surface † as in part (2) of the hypotheses so that †�L is a
thrice-punctured sphere. Then .C1/–contact surgery on L topologically compresses †
to a disk D that L� intersects twice, that is, .C1/–contact surgery fills the exterior
of L to cap off two boundary components of †�N .L/. Since @D D @†, D is an
overtwisted disk. Hence d.L�/� 2. Because L is not a stabilization by (1) but has
tight complement, d.L�/� 2 by Theorem 4.1.7. Thus d.L�/D 2.

Now L� is a Legendrian knot in the overtwisted manifold .MC; �C/ and assume
d.L�/D 2. Let D be a standard overtwisted disk that L� intersects twice transver-
sally. Take a tbD �1 Legendrian meridian m� of L� so that L0 is isotopic to the
Legendrian knot dual to .�1/–surgery on L� . Then tube D along an arc of L�

through m� to form †, a once-punctured torus or once-punctured Klein bottle (de-
pending whether or not L� has trivial algebraic intersection number with D ). Observe
that tw�C

.m�; †/ D C1 by construction. If L is the surgery dual knot and .M; �/

is the resulting contact manifold, then since � and �C agree on the complements of
neighborhoods of L and L� , we may Legendrian isotope L into the position of m� so
that tw�.L; †/DC1. By construction tw�.@†;†/D 0 and L is not a stabilization
by Theorem 4.1.7.

Remark 4.1.16 As of this writing, we have yet to use Theorem 4.1.15 to construct
any explicit examples of Legendrian knots L� of depth 2 arising as surgery duals to
knots in .S3; �std/. Presumably such knots exist. The knots we were able to construct
satisfying (2) of Theorem 4.1.15 ended up being stabilizations.

One approach is to begin with a genus-1 Legendrian knot K in a tight .M; �/ with
tb.K/D 0. Then K has a once-punctured torus Seifert surface † which may be made
convex with dividing set � disjoint from K D @†. Assuming � has just two (parallel)
components, let L be an essential curve in † that intersects each component of �
once. We may assume L is Legendrian by the Legendrian realization principle (see
Kanda [26] and Honda [23]) and thus conclude that tw�.L; †/DC1. The only thing
left to check is whether or not L is a stabilized knot.

Another approach is to begin with a nonstabilized Legendrian knot L in a tight .M; �/

(or just with tight complement) for which .C1/–contact surgery is overtwisted and
attempt to construct the surface † of Theorem 4.1.15. Take a pair of Legendrian
push-offs and insert an extra twist to form an annulus A that contains L with @A
Legendrian and each of these three curves having tw�.�;A/DC1. Then the trick is
to find a Legendrian banding of the components of @A that results in a surface † with
tw�.@†;†/D 0.
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4.2 Orientation refinements

As defined, depth and tension do not depend upon the orientation of a Legendrian knot.
Nevertheless, if a nonloose knot is oriented, one may care to keep track of the oriented
intersections with an overtwisted disk and the signs of stabilizations that loosen it.
Recall from Section 3.1 that an overtwisted disk D is oriented so that rot.@D/> 0 and
from Remark 4.1.5 that a positive stabilization removes a negative intersection of an
oriented Legendrian knot with a standard overtwisted disk while a negative stabilization
removes a positive intersection.

Definition 4.2.1 Let L be an oriented Legendrian knot in an overtwisted contact
structure.

Define do.L/, the oriented depth of L, to be the set of pairs .p; n/ such that L

transversally intersects some overtwisted disk D positively p times and negatively n

times with pC nD d.L/.

Define to.L/, the oriented tension of L, to be the set of pairs .a; b/ such that the
stabilization LCa;�b is loose and aC b D t.L/.

Definition 4.2.2 Let L be an oriented Legendrian knot in an overtwisted contact
structure. Define tC.L/, the positive tension of L, to be the minimum number of
positive stabilizations required to loosen L if possible, and 1 otherwise. Similarly
define t�.L/, the negative tension of L. Observe that t˙.�L/D t�.L/ where �L

is L with its orientation reversed.

Due to their relationship to the LOSS invariant and relevance for transverse knots, we
choose to focus upon positive and negative tensions instead of the oriented depth and
tension.

L
L0

L0

isotopy neg. stab.

Figure 5

We may partially extend Theorem 4.1.7 for these signed tensions.

Proposition 4.2.3 Assume the oriented Legendrian knot L in the contact manifold
.M; �/ is a positive stabilization of the Legendrian knot L0 and has tight complement.
Let L� be the oriented knot surgery dual to .C1/–surgery on L.

Then t�.L
�/ D 1. Furthermore, if the Heegaard Floer contact invariant for .C1/–

surgery on L0 in .M; �/ is nonzero, then tC.L
�/ > 1.
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Ozsváth and Szabó’s Heegaard Floer contact invariant is defined in [32]; its behavior
under connected sums and .�1/–contact surgery follows from this.

Proof Let L be a positive stabilization of a Legendrian push-off of a Legendrian
knot L0 and let A be the annulus between them. Let L0 be a further Legendrian
push-off of L. This situation is illustrated in Figure 5 on the left. It further indicates
how a negative stabilization of L0 can remove the intersection with A.

As in Theorem 4.1.7 and [29, Lemma 3.1], after .C1/–surgery on L, L0 is Legendrian
isotopic to the surgery dual knot L� and A caps off to an overtwisted disk D with
@D D L0 . Thus a negative stabilization on L� can remove the intersection with D ,
and so t�.L

�/D 1.

We will now show that .�1/–surgery on a positive stabilization L�C of L� has nonzero
contact invariant if .M; �/ does too in order to conclude that L�C is nonloose and hence
tC.L

�/ > 1. To do so, we will first construct an open book supporting the contact
manifold obtained by .�1/–surgery on L�C and relate it to open books supporting
.M; �/ and .C1/–surgery on L0 .

Let .†; �/ be an (abstract) open book supporting .M; �/ in which the page † contains
the Legendrian knot L0 as a nonseparating curve so that the page framing agrees
with the contact framing. Giroux shows how to do this in [22]. We may assume
� acts trivially in a collar neighborhood of @†. Let a be an embedded arc in †

with one endpoint on @†, the other endpoint on L0 and interior disjoint from L0 . A
neighborhood of a is shown in Figure 6(a). Let A be a regular annular neighborhood
of L0[ a. We will be modifying .†; �/ within this neighborhood.

A single stabilization of this open book near a\ @† allows the Legendrian knot L (a
positive stabilization of L0 ) to embed in this stabilized page with page framing equal
to its contact framing. This is shown in Figure 6(b) along with a parallel copy L0

of L. A further stabilization of the open book then lets L0
C , a positive stabilization

of L0 , embed in the page with page framing equal to its contact framing as shown in
Figure 6(c). Figure 7(a) shows this again in the entirety of A with the two stabilizations.
Let .†00; @2 ı @1 ı �

00/ denote this resulting twice-stabilized open book for .M; �/.
Since the stabilizations occur in a neighborhood of a point in @†, we may view †00

as a subsurface of † whose complement is two open disks in a neighborhood of a

(as opposed to viewing †00 as the result of attaching two 1–handles to †) and �00 is
the restriction of � to †00 . The maps @1 and @2 indicate positive Dehn twists along a
curve parallel to each of the two new boundary components.

Let �� D ��1
L
ı @2 ı @1 and ��C D �L0

C
ı�� . It now follows that .†00; �� ı�00/ is an

open book for .MC; �C/ and .†00; ��C ı�
00/ is an open book for .�1/–surgery on L�C .
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Let A00 D A \†00 , a four-punctured sphere. (Notice that L0 and L0
C are isotopic

in A00 to two of the components of @A00 . The other two boundary components come
from the stabilizations.) Observe that ��C is the identity outside of A00 and within A00

may be represented as in Figure 7(b). By the lantern relation, we may express ��C as
�
 ı �ˇ ı �

�1
L0 as shown in Figure 7(c) where 
 and ˇ are the two curves in the middle.

(Only one choice of which is which is correct for the order of composition of Dehn
twists, but our proof does not require this detail.) Thus .†00; �
 ı �ˇ ı ��1

L0 ı�
00/ is an

open book for .�1/–surgery on L�C .

Let .M 0; � 0/ denote the result of .C1/–surgery on L0 in .M; �/, and observe that
.†; ��1

L0 ı �/ is an open book for this manifold. Hence .†00; ��1
L0 ı �

00/ is an open
book for .M 0; � 0/ # .S1 � S2; �std/ # .S1 � S2; �std/. Since .M 0; � 0/ has nonzero
Heegaard Floer contact invariant by assumption, so does .M 0; � 0/ # .S1 �S2; �std/ #
.S1 �S2; �std/. Then adding positive Dehn twists along ˇ and 
 to the monodromy
of the open book .†00; ��1

L0 ı �
00/ supporting this manifold results in an open book

supporting a contact structure that also has nonzero Heegaard Floer contact invariant
by Baldwin [2]. Therefore, since .�1/–surgery on L�C is supported by the open book
.†00; �
 ı �ˇ ı �

�1
L0 ı�

00/, the contact manifold is tight. Consequently L�C is a nonloose
knot in .MC; �C/ and tC.L

�/ > 1.

+ ++

L0

a

L0

L

L0

L0

L

L0
C

.a/ .b/ .c/

Figure 6

Example 4.2.4 Using Proposition 4.2.3 one may construct many examples of nonloose
Legendrian knots with t� D 1 and tC > 1.

Let .M; �/ be a contact manifold resulting from .�1/–surgeries on each component of
an oriented Legendrian link L0[L1[ � � � [Lk in .S3; �std/, and let L0 the surgery
dual knot to L0 . Then .C1/–surgery on L0 is the result of .�1/–surgeries on the
sublink L1[ � � � [Lk , a Stein fillable contact manifold which therefore has a nonzero
Heegaard Floer contact invariant [32]. Now let L be a positive stabilization of L0 in
.M; �/. Then let .MC; �C/ be the overtwisted manifold resulting from .C1/–surgery
on L and let L� be the surgery dual. According to Proposition 4.2.3, t�.L

�/D 1 and
tC.L

�/ > 1.
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+

- ++

++

-
+
+

L0

L

L0
C

.a/

.b/ .c/

Figure 7

Example 4.2.5 By Corollary 3.3.3, a nonloose unknot has .tb; rot/D .n;˙.n� 1//

for some positive integer n. Therefore if L is a nonloose unknot oriented so that
rot.L/ D 1 � n with n > 0, t�.L/ D 1 and tC.L/ � n. If n � 2, then applying
Proposition 4.2.3 as described in Example 4.2.4 to the (local) surgery descriptions
of [34, Figure 3] shows that tC.L/ � 2. Thus to.L/ D f.1; 0/; .0; 1/g if n D 1 and
to.L/D f.0; 1/g if n� 2.

Example 4.2.6 In [20], Geiges and Onaran extend Plamenevskaya’s surgery descrip-
tions of nonloose Legendrian unknots in .S3; ��1/ to nonloose Legendrian rational
unknots (ie knots with solid torus exterior) in overtwisted lens spaces. They explicitly
give surgery diagrams for such rational unknots in the lens spaces L.p; 1/ for p 2N
and in L.5; 2/. Following Example 4.2.4, we may apply Proposition 4.2.3 to show
the nonloose knots described in [20, Figures 6(b)(c), 7(b)(c) and 8(a)(b)(c)] may be
oriented to have t� D 1 and tC � 2.

4.3 Order and the LOSS invariant

Lisca, Ozsváth, Stipsicz and Szabó define an invariant L which is a U–torsion element
in HFK�.�M;L/ of an oriented, nullhomologous Legendrian knot L in an overtwisted
contact manifold .M; �/. As is common, we often refer to L as the LOSS invariant.
Lemmas 1.4 and 1.6 of [27] show that L enjoys the following properties:

� If L is loose, then L.L/D 0.

� If L� is a negative stabilization of L, then L.L�/D L.L/.

� If LC is a positive stabilization of L, then L.LC/D U �L.L/.
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The following definition is suggested by [27, Corollary 1.3].

Definition 4.3.1 Let L be an oriented, nullhomologous Legendrian knot in an over-
twisted manifold. Define o.L/ to be the order of the U–torsion of L.L/, that is

o.L/Dminfk 2N W U k
�L.L/D 0g:

Definition 4.3.2 Let L be an unoriented, nullhomologous Legendrian knot in an
overtwisted contact structure. Then the order of L is xo.L/D o.L/C o.�L/, the sum
of the orders of its two orientations (where an arbitrary orientation on L is chosen for
the calculation).

Lemma 4.3.3 Let L be an oriented nullhomologous Legendrian knot in an overtwisted
contact structure. Given a set of a positive stabilizations and b negative stabilizations
such that LCa;�b is loose, then

o.L/� a and o.�L/� b:

Proof The result of b negative stabilizations of L is L�b and L.L�b/ D L.L/.
Then LCa;�b is the result of a positive stabilizations of L�b . Hence L.LCa;�b/D

U a�L.L�b/DU a�L.L/. Since LCa;�b is loose, L.LCa;�b/D0. Therefore o.L/�a.
Reversing the orientation on L, the other result follows similarly.

Lemma 4.3.4 If L is a nullhomologous Legendrian knot in an overtwisted contact
structure then

xo.L/� t.L/:

Proof Apply Lemma 4.3.3 to any partition aC b of t.L/ so LCa;�b is loose.

Lemma 4.3.5 Let L be a nonloose, nullhomologous, oriented Legendrian knot. If
L.L/¤ 0, then all its negative stabilizations are nonloose. That is, o.L/ > 0 implies
t�.L/D1. Moreover, L must intersect every overtwisted disk negatively.

Proof Since negative stabilizations do not change L, the first statement holds. Since
positive intersections of an oriented Legendrian knot with an overtwisted disk may be
removed by negative stabilizations (Remark 4.1.5) and such a knot L with L.L/¤ 0

cannot be loosened by only negative stabilizations, there must be a negative intersection
of L with any overtwisted disk.
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Example 4.3.6 Let �n be the overtwisted contact structure on S3 with Hopf invariant
h.�n/D1�2n. For each n2N , [27, Lemma 6.1] gives a family of nonloose Legendrian
representatives L.n/ of the .2; 2nC 1/–torus knots in .S3; �n/. Together [27, Propo-
sition 6.2 and Remark 6.3] show that L.L.n// ¤ 0; hence o.L.n// > 0 and, as in
Lemma 4.3.5, t�.L.n//D1.

Since stabilizations decrease tb, it follows that for each n 2N the values of tb of the
nonloose Legendrian representatives of the .2; 2nC1/–torus knots in .S3; �n/ are not
bounded below.

Proposition 4.3.7 If a nullhomologous knot type K has a lower bound on the Thurston–
Bennequin invariants of its nonloose Legendrian representatives in a given overtwisted
manifold, then L.L/ D 0, o.L/ D 0, xo.L/ D 0 and t˙.L/ <1 for each (oriented)
Legendrian representative L.

Proof Given any oriented Legendrian representative L of K , sufficiently many nega-
tive stabilizations will produce a representative L0 with tb.L0/ less than the assumed
lower bound. Hence L0 must be loose. Thus t�.L/ <1, L.L/D L.L0/D 0 and so
o.L/D 0. A similar argument shows tC.L/ <1, o.�L/D 0, and thus xo.L/D 0.

Corollary 4.3.8 Any Legendrian unknot L in an overtwisted contact structure has
xo.L/D 0.

Proof By Theorem 3.3.1, any nonloose Legendrian unknot has tb> 0.

Remark 4.3.9 For any Legendrian knot L in a contact manifold .M; �/, Sivek [35]
defines a monopole Floer invariant `g.L/ 2 KHM.�M;L/ for each integer g � 2

which one may care to compare with the Heegaard Floer LOSS invariant L.L/ 2

HFK�.M;L/. These invariants `g are all 0 if either the complement of L is over-
twisted or LDL0

C1;�1
for some other Legendrian knot L0 with any orientation. As

such, while these `g may be able to detect nonlooseness, they appear to be less suited
for bounding tension.

We caution the reader that [35, Proposition 5.6] contains an error in the penultimate
sentence of its proof. This also impacts [35, Corollary 5.7]. Furthermore the knots
constructed in the example following Corollary 5.7 and illustrated in Figure 7 of that
article are in fact all loose since their surgery descriptions involve .C1/–surgery on a
stabilized trefoil. Consequently, examples of nonloose Legendrian knots in overtwisted
manifolds with nonzero `g have yet to be produced.
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5 Depth, tension, and order for transverse knots

5.1 Transverse knots and their Legendrian approximations

Recall the following key facts from Section 2.2.3. Throughout, all knots are oriented.

� Any two Legendrian approximations of a transverse knot are related by negative
stabilizations.

� The transverse push-off of a Legendrian approximation is equivalent to the
original transverse knot.

� Any invariant of Legendrian knots that is unaltered by negative stabilization is
an invariant of transverse knots.

Indeed, a transverse knot has only one kind of stabilization. It may be viewed as the
transverse push-off of a positive stabilization of a Legendrian approximation of the
original transverse knot.

We define the invariants depth, tension and order for transverse knots in the obvious
manner. Corollary 5.1.5(1) below shows that tension is well defined. Since the LOSS
invariant L of a nullhomologous Legendrian knot is unaltered by negative stabiliza-
tion, the order of a nullhomologous transverse knot is defined to be the order of any
Legendrian approximation.

Proposition 5.1.1 Let L be a Legendrian knot in an overtwisted contact structure.
Then L is a Legendrian approximation of a nonloose transverse knot if and only if
t�.L/D1. Also t�.L/ <1 if and only if the transverse push-off of L is loose.

Remark 5.1.2 This sharpens [14, Proposition 1.2] by clarifying when a transverse
push-off of a nonloose Legendrian knot is loose.

Proof Since transverse push-offs and Legendrian approximations are inverse opera-
tions up to negative stabilizations, the two statements of the proposition are equivalent.
We will prove the second. First assume L is a Legendrian knot with t�.L/ <1.
Then t�.L/ negative stabilizations to L produces a loose Legendrian knot L0 . Since L

and L0 have the same transverse push-off, it must be loose.

Now assume the transverse push-off T of L is loose. Then there is an overtwisted
disk disjoint from a neighborhood of T . Hence some Legendrian approximation L0

of T (taken within this neighborhood of T ) must be loose. But since L and L0 must
have common negative stabilizations, some negative stabilization of L is loose. Thus
t�.L/ <1.
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Example 5.1.3 Example 4.2.4 gives a procedure to create examples of Legendrian
knots with t� D 1. Proposition 5.1.1 implies each of these knots has a loose transverse
push-off.

Remark 5.1.4 Lemma 4.3.5 shows a nonloose, nullhomologous oriented Legendrian
knot L with L.L/¤0 (and hence o.L/>0) implies t�.L/D1. Proposition 5.1.1 then
implies the transverse push-off of L is nonloose. That L.L/¤ 0 implies t�.L/D1

and the transverse push-off of L is nonloose is effectively the content of the end of the
proof of [27, Corollary 7.3].

Proposition 5.1.1 has several corollaries.

Corollary 5.1.5 (1) There is a finite sequence of stabilizations that loosens a non-
loose transverse knot.

(2) Positive stabilizations are required to loosen any Legendrian approximation of a
nonloose transverse knot.

(3) If the transverse push-off of a (rationally) nullhomologous Legendrian knot is
nonloose, then there is no lower bound on the (rational) Thurston–Bennequin
invariant for nonloose Legendrian representatives of this knot type.

(4) A transverse unknot in an overtwisted contact structure is loose [14, Corol-
lary 2.3].

Proof (1) By Theorem 4.1.4 a Legendrian approximation of a transverse knot may
be loosened by a finite sequence of stabilizations. Then the transverse push-off of this
loosened Legendrian approximation is loose by Proposition 5.1.1. The positive stabi-
lizations used in loosening the Legendrian approximation correspond to the loosening
stabilizations of the original transverse knot.

(2) This is immediate.

(3) Negative stabilizations must remain nonloose, but each such stabilization decreases
the (rational) Thurston–Bennequin invariant. Indeed, by Proposition 4.3.7, if there
were a lower bound then t� <1 for any Legendrian approximation.

(4) If not, then by (3) there would be no lower bound on tb for nonloose Legendrian
unknot, contrary to Theorem 3.3.1.

Lemma 5.1.6 If T is a nonloose transverse knot and L is a Legendrian approximation,
then t.T /� t.L/.
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Proof Every stabilization of a transverse knot corresponds to a positive stabilization
of its Legendrian approximations. If L is loosened by p positive stabilizations and n

negative stabilizations so that t.L/D pC n, then t.T /� p � t.L/.

Lemma 5.1.7 Assume a Legendrian approximation L of a nonloose transverse knot T

requires at least one positive stabilization and at least one negative stabilization to loosen.
Then 0< t.T / < t.L/.

Proof As T is transversally isotopic to the transverse push-off of all negative stabi-
lizations of L, it is loosened by only the positive stabilizations.

5.2 Bindings of overtwisted open books

An open book induces a contact structure in which the binding is naturally a transverse
link.

Lemma 5.2.1 If a knot T is the connected binding of an open book decomposition
that supports an overtwisted contact structure, then T is a nonloose transverse knot in
that contact structure.

Proof More is actually true. The complement of the binding (connected or not) of an
open book for any contact manifold is universally tight. A proof of this fact appears in
the proof of [17, Lemma 3.1] by Etnyre and Vela-Vick.

Let HC and H� respectively denote the positive and negative Hopf bands in S3 .
The open book .S3;HC/ whose page is HC supports the tight contact structure
on S3 . The open book .S3;H�/ whose page is H� supports the overtwisted contact
structure ��1 (with Hopf invariant �1) on S3 . An open book is a positive or negative
Hopf stabilization if it may be obtained by plumbing such a Hopf band onto another
open book.

Recall that if an open book .M; †/ supports the contact structure � , then .M; †]˛HC/,
the positive Hopf stabilization obtained by plumbing a positive Hopf band onto the
page † of .M; †/ along an arc ˛ � † also supports � [22]. In particular, if ˛ is a
boundary-parallel arc in †, †]˛HC is the boundary connected sum of the page † and
the band HC . Indeed, this plumbing may be positioned so that the supported contact
structure is identical rather than merely isotopic to the original. Consequently, the
binding of the resulting open book in � is the same transverse link @† with the addition
of a transverse unknot encircling as a meridional curve the component of @† along
which the Hopf band was summed. A local picture of this is illustrated in Figure 8.
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† †]HC

Figure 8

Lemma 5.2.2 Let H� ]HC denote the boundary connected sum of a negative and
a positive Hopf band. The open book .S3;H� ]HC/ supports a contact structure
containing an overtwisted disk D such that @D is a 0–framed loop in H� ]HC that is
parallel to one component of @.H� ]HC/ and the interior of D intersects each of the
other two components just once.

H� ]HC

@D

Figure 9

Proof Figure 9 shows the surface H� ]HC with the curve @D on the left and an
isotopic presentation of this surface together with the disk D on the right. Let †
be the union of H� ]HC with another page of the open book which we may then
assume is convex such that the binding is the dividing set; see Torisu [36]. Since @D
is not the sole boundary component of a subsurface of H� ]HC it may be realized
as a Legendrian curve for which tw.@D; †/ equals its page-framing in the supported
contact structure [26; 23]. Since the page framing is the Seifert framing for @D and @D
is disjoint from the dividing set, tb.@D/D 0. Hence D is an overtwisted disk with
the properties claimed.

Theorem 5.2.3 Assume an open book with connected binding is a negative Hopf
stabilization. Then the binding T , as the nonloose transverse knot in the overtwisted
contact structure the open book supports, has d.T /D t.T /D 1.

Proof Let .M; †/ be a negatively Hopf stabilized open book for M with page † and
connected binding T D @† that supports the contact structure � . By Lemma 5.2.1, T
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is a nonloose transverse knot and thus d.T / > 0. By assumption we have .M; †/D

.M; †0 ]ˇ H�/, the plumbing of the negative Hopf band onto the open book .M; †0/

along an arc ˇ �†0 . Plumb the positive Hopf band onto .M; †/ along a boundary
parallel arc ˛ �† to form the open book .M; † ]˛ HC/; that is, take the boundary
connected sum of † with HC . Since this is a positive stabilization of the original
open book .M; †/, it supports the same contact structure � . As discussed above, the
binding of .M; † ]˛ HC/ is the link T [� consisting of the transverse knot T and a
transverse meridian (as pictured in Figure 8).

We now find an overtwisted disk whose interior is intersected twice by T [�, once
by each. This will exhibit a depth 1 overtwisted disk for T . The boundary connect
sum of HC with † may be done at a point on @H� disjoint form †0 . Then we
may view .M; † ]˛ HC/ as the plumbing of .S3;H� ]HC/ onto .M; †0/ along
a rectangle in H� ]HC disjoint from HC . With this plumbing, the overtwisted
disk D of Lemma 5.2.2 carries over to an overtwisted disk in .M; † ]˛ HC/ where
its boundary is a 0–framed curve in the page and its interior intersects each T and �
just once. Hence d.T /D 1.

Remark 5.2.4 Depth (and tension) can be defined for links. We can extend the proof
of Theorem 5.2.3 easily to negatively Hopf stabilized open books with bindings of
multiple components, showing that there is an overtwisted disk intersected just once by
the binding. As such, Theorem 5.2.3 may be viewed as offering an obstruction to an
open book being a negative Hopf stabilization.

Example 5.2.5 Let T1 [ T2 D @H� be the transverse link arising as the binding
of the open book .S3;H�/ in the supported overtwisted contact structure ��1 . By
Lemma 5.2.1 the link is nonloose. However since T1 and T2 are both unknots,
individually they are loose transverse knots according to Corollary 5.1.5(4). This
implies that T1 intersects every overtwisted disk that is disjoint from T2 and T2

intersects every overtwisted disk that is disjoint from T1 . Theorem 5.2.3, extended for
disconnected binding, implies d.T1[T2/D 1.

Remark 5.2.6 Ito and Kawamuro use their theory of open book foliations to view
overtwistedness of a contact structure through a “transverse overtwisted disk” with
respect to an open book supporting the contact structure [24; 25]. Such disks give an
upper bound on the depth of the binding of the open book; see [24, Proposition 4.2].

6 Problems and questions

Problem 6.1 Develop constructions of knots of large depth or tension.
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Topological operations on knots and links often have Legendrian analogues. It is natural
to ask how our invariants of depth and tension behave under these operations. Two
fundamental operations are Legendrian Whitehead doubles (see Fuchs [18], Ng and
Traynor [30] and Etnyre [13]) and Legendrian cables (see Etnyre and Honda [16] and
Ding and Geiges [6]). While some sources only explicitly define these operations
for Legendrian knots in .R3; �std/, their definitions of other contact manifolds are
straightforward.

Cp;q

p

q

Cp;�q

p

q

Wn

n

W�n

n

Figure 10: Legendrian cables and twisted Whitehead doubles for the x–axis
in the front projection, modulo translation

For coprime integers p; q with p > 0, let Cp;q.L/ denote the Legendrian .p; q/–
cable of the Legendrian knot L. For an integer n, let Wn.L/ denote the n–twisted
Legendrian Whitehead double of the Legendrian knot L. These satellites, taken in a
standard contact solid torus neighborhood of L, are illustrated in Figure 10.

Question 6.2 For a nonloose Legendrian knot L, how are the depth, tension and order
of L and Cp;q.L/ related? In particular, given coprime positive integers p and q ,
does d.Cp;q.L//D p � d.L/? When is Cp;q.L/ loose?

Question 6.3 For a nonloose Legendrian knot L, how are the depth, tension and order
of L and Wn.L/ related? In particular, if n � 0 does d.Wn.L//D 2 � d.L/? When
is Wn.L/ loose?

Problem 6.4 Construct explicit examples of Legendrian knots L with d.L/D 2.

Of course Theorems 4.1.7 and 4.1.15 as well as Remark 4.1.16 should be kept in mind.
The previous two questions suggest investigating the cables C2;q.L

�/ and Whitehead
doubles Wn.L

�/ of the .C1/–surgery duals to a stabilized knot.
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Question 6.5 Do the .C1/–surgery duals to the Legendrian knots in .S3; �std/ having
a local configuration as in [29, Figure 1] all have depth at most 2? In particular, do
the surgery duals to .C1/–surgery on negative torus knots with maximal Thurston–
Bennequin invariant all have depth 2?

Lisca and Stipcisz show that .C1/–contact surgery on these knots produce an over-
twisted contact structure by constructing a once-punctured torus with Legendrian
boundary in the surgered manifold that violates the Bennequin-type inequality for
tight contact structures. Being duals to knots in a tight manifold, they are necessarily
nonloose. At the very least one should be able to determine an upper bound on depth
for all such knots (such as in the discussion preceding Theorem 4.1.15).

Problem 6.6 Study the discrepancy between depth and tension.

(1) How big can d � t be among Legendrian knots?

(2) Does every knot type have an upper bound on d � t for its Legendrian represen-
tatives in each overtwisted contact structure?

(3) Is there a nullhomologous Legendrian knot with d � t > 0?

While the proof of Theorem 1.0.2 only exhibits rationally nullhomologous Legendrian
knots with d � t > 0, there should be nullhomologous examples. Indeed, we expect
that every overtwisted manifold contains nonloose Legendrian knots for which this
difference can be arbitrarily large, though not within a single knot type.

Question 6.7 Can both the positive and negative tension of a nonloose Legendrian
knot be large?

(1) Is there a nonloose Legendrian knot L for which tC.L/ and t�.L/ are both
bigger than t.L/? That is, is there a nonloose Legendrian knot which requires
both a positive and a negative stabilization to realize its tension?

(2) Are there nonloose Legendrian knots with both tC D 1 and t� D 1? A
Legendrian Whitehead double of a knot with t� D 1 seems like a likely
candidate.

Problem 6.8 Determine the overtwisted contact structures and knot types for which
there is a lower bound on the Thurston–Bennequin invariant of the nonloose Legendrian
representatives.

If such a knot type is rationally nullhomologous, then Corollary 5.1.5(3) together with
Proposition 5.1.1 implies every transverse representative is loose and t� <1 for each
Legendrian representative. If it is actually nullhomologous, then by Proposition 4.3.7
LD 0 and oD 0 as well.
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Question 6.9 If an open book with connected binding K supports an overtwisted
contact structure, must t.K/D 1?

We expect the answer to be no. For comparison, Theorem 5.2.3 says that t.K/ D

d.K/D 1 whenever the open book admits a negative stabilization.

Problem 6.10 Extend the LOSS invariant to rationally nullhomologous knots, and
study the order of rationally nullhomologous nonloose knots.

Question 6.11 Are there nonloose transverse knots for which every Legendrian ap-
proximation has LD 0?

Problem 6.12 Find a nonloose Legendrian knot with nonzero `g ; see Remark 4.3.9.
The nonloose unknots in .S3; ��1/ are reasonable candidates.

Recall that we have been working under the assumption that our overtwisted manifolds
are closed. The definitions of depth and tension clearly extend to overtwisted manifolds
with boundary where some overtwisted disk is contained in the interior of the manifold.

However, if every overtwisted disk in an overtwisted contact manifold with boundary
were properly embedded, then stabilizations could not loosen a nonloose knot. Indeed
Vela-Vick pointed out that Theorem 4.1.4 fails if .V; �/ is the contact solid torus
V Df.r; �; z/ W r ��g=.z 7! zC1/ with �Dker.cos r dzCr sin r d�/. Any Legendrian
knot in V not contained in a ball is necessarily nonloose.

Problem 6.13 Characterize overtwisted manifolds with boundary in which every
overtwisted disk is properly embedded.
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