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Group approximation in Cayley topology and
coarse geometry, III: Geometric property (T)

MASATO MIMURA
NARUTAKA OZAWA
HIROKI SAKO
YUHEI SUZUKI

In this series of papers, we study the correspondence between the following: (1)
the large scale structure of the metric space | |, Cay(G ) consisting of Cayley
graphs of finite groups with k generators; (2) the structure of groups that appear in
the boundary of the set {G "} in the space of k—marked groups. In this third part
of the series, we show the correspondence among the metric properties “geometric
property (T)”, “cohomological property (T)” and the group property “Kazhdan’s
property (T)”. Geometric property (T) of Willett—Yu is stronger than being expander
graphs. Cohomological property (T) is stronger than geometric property (T) for
general coarse spaces.

20F65; 46M20

1 Introduction

In 1967, D Kazhdan introduced the concept of property (T) for locally compact groups
in terms of uniform spectral gaps for all unitary representations (in this paper, we regard
Proposition 2.9 as a definition of property (T) for discrete groups), which represents
extreme rigidity of groups. See the book of Bekka, de la Harpe and Valette [1] for
comprehensive treatise on this property. For instance, G Margulis has observed that
for a residually finite and finitely generated group G with property (T), any box
space 1 G forms a family of expanders, namely, a family of uniformly locally finite
and finite connected graphs whose combinatorial Laplacians have the first positive
eigenvalues bounded away from zero. (On expanders, we refer the reader to a book [12]
by A Lubotzky). Here for such G and a sequence of normal subgroups Ny > Ny > -+
of G with finite indices with (1),, Njy = {1}, the box space Oyy,3,, G associated
with {Nm}m is the coarse disjoint union (see Section 2.3) of finite Cayley graphs
Cay(G/ Ny, S), where S is a fixed finite generating set of G (the coarse structure of
the box space does not depend on the choice of S). Expander sequences represent
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strong rigidity, and some expander sequences are known to serve as counterexamples
to the surjective side of the coarse Baum—Connes conjecture for coarse spaces. We
refer the reader to the monographs Nowak and Yu [18] and Roe [23] for the basics of
this subject.

We however may obtain expander sequence from a group far from having property (T).
For instance, A Selberg has showed that for a concrete example of {Ny,}m for F»,
the free group of rank 2, the box space Uy, 3, 2 forms an expander sequence (for
details, see a forthcoming book [13] of Lubotzky and Zuk on property (z)). There has
been a lot of interest in the problem of whether one can distinguish expanders coming
from property (T) groups from ones coming from non-(T) groups in terms of coarse
geometric properties. This problem is related to a question by J Roe [23] to define
“coarse property (T)”.

R Willett and G Yu [29; 30] have studied the maximal coarse Baum—Connes conjecture
and introduced the notion of geometric property (T) for a (coarse) disjoint union of
uniformly locally finite and finite graphs, which is stronger than being an expander
sequence. They have showed that this property is an obstruction to the surjectivity
of the maximal coarse Baum—Connes assembly map, and that a box space [0 G has
geometric property (T) if and only if G possesses property (T). In the later work [31],
they have extended the definition of geometric property (T) for (weakly) monogenic
coarse spaces of bounded geometry, and proved that this property is a coarse invariant.
In this manner, they give a satisfactory answer to the problem mentioned above (on the
other hand, the Selberg expander [y, 1 F> is shown in Chen, Wang and Wang [3] to
admit a fibered coarse embedding into a Hilbert space in the sense of Chen, Wang and
Yu [4], and this ensures the maximal coarse Baum—Connes conjecture for this space;
see also [30]).

It is a well-known theorem of Delorme and Guichardet [1, Theorem 2.12.4] that
property (T) can be characterized in terms of 1—cohomology with coefficients in
unitary representations. In Section 6, we investigate an analogue of this characterization
in the setting of coarse geometry, and introduce cohomological property (T) for coarse
spaces. It will be proved that cohomological property (T) implies geometric property
(T) (but not vice versa).

The goal of this paper is to provide a characterization of the (coarse) disjoint union
X:=_], Cay(G™, ng)’ sg”’), . ,s,(c”’)) of finite Cayley graphs to enjoy geometric
property (T). In the previous works of the first-named and the third-named authors,
we have revealed that the concept of the space of marked groups and Cayley topology
play a key role in studying coarse geometric properties for such X'. More precisely,
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for the Cayley boundary

Cayley

Icay({G™ ) 1= (G, N\ (G,

of a sequence
(G = (G s s s

in the space G(k) of k—marked groups, the following holds (for details, we refer the
reader to the corresponding papers):

(i) [16]: X as above has property A < 8Cay({G(”’)}m) is uniformly amenable
& every member of 8Cay({G(’”)}m) is amenable.

(ii) [17]: X as above admits a fibered coarse embedding into a Hilbert space <
BCay({G(m)}m) is uniformly a-T—menable.

For the definition of G(k), and the Cayley topology, see Section 2.2. We note that
the two results above can be regarded as generalization of previously known results
(respectively by E Guentner, and Chen, Wang and Wang [3]) for box spaces. Indeed,
in the box space case, for a fixed finite generating set S = (s1,...,5;) of G, the
sequence {(G/Npy, S)}m converges to (G, S) in the Cayley topology and hence the
singleton {(G, S)} is the Cayley boundary of that sequence.

With the notation above, we shall state our main theorem in this paper, which generalizes
the above-mentioned result of Willett and Yu for the box spaces.

Theorem 1.1 Let {G},,cn = {(G™, ng)’ sém), .. ,s](cm))}meN be a sequence of
finite k—marked groups, and let X = |,,cn Cay(G ™) be their disjoint union. Then
the following are equivalent.

(1) Every member of 8Cay({G(m) Ym) has property (T) of Kazhdan.

(2) The metric space X has geometric property (T).

(3) The metric space X has cohomological property (T).

Theorem 1.1 provides us with the following corollary, which generalizes the result of
Margulis mentioned above:

Corollary 1.2 Let {G™)},, .y = {(G™, s(()m), ng), . vS](Cm))}meN be a sequence

of finite k—marked groups. If every member of BCay({G(m)}m) has property (T), then
the sequence of Cayley graphs {Cay(G )}, forms an expander family.
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In fact, the proof of Corollary 1.2 does not require the notion of geometric property (T)
and follows directly from the intermediate result, Proposition 5.1. See also [15] for
a quantitative version of Corollary 1.2. The proof of Theorem 1.1 is scattered in this
paper: (2) = (1) is proved in Section 3, the converse in Section 4, and (2) < (3) in
Section 6. In these proofs, we have avoided the technical aspects of C*—algebra theory.
Instead, they are organized at the end of this paper (Section 7), where we study the
structure of the maximal uniform Roe algebra in detail.
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2 Preliminaries

2.1 Coarse equivalence

Recall from [23, Definition 1.8] that a map f: X — Y between metric spaces is said
to be uniformly bornologous if sup{d(f(x), f(»)) | d(x,y) < R} < oo for every
R > 0. Two maps f;: X — Y are close if sup, d(fi(x), f2(x)) < co. The two
metric spaces X and Y are coarsely equivalent if there are uniformly bornologous
maps f: X — Y and g: Y — X such that go f and f o g are close to idy and
idy, respectively. Thus, for every n € N, the n—point metric space n = {1,...,n}
(say d(i, j) = |i — j|) is coarsely equivalent to a point, and the metric spaces Y
and Y xn (say, d((y,i),(z,j)) =d(y,z)+|i — j|) are coarsely equivalent, via the
inclusion ¢: Y < Y x {1} and the projection pr: Y xn — Y . Every coarse equivalence
roughly arises in this way.

Lemma 2.1 If f: X — Y is a coarse equivalence between uniformly locally finite
metric spaces X and Y, then there is n € N and an injective and uniformly bornologous
map f: X — Y xn suchthat f =prof.
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Proof Since the {/~!(y)}, are uniformly bounded subsets of a uniformly locally
finite metric space X, a matching theorem yields a finite partition X = | _|7_; X; such
that f is injective on each of the X;. If we define f (x) = (f(x),i) for x € Xj, then
we are done. O

2.2 Cayley topology

The space G(k) of k—marked groups and the Cayley topology on it enable us to regard
a finitely generated group as a point in a topological space.

Let G = (G,s1,82,...,8;) be a (k + 1)—tuple of a group G and its generators
S1,...8;. We call such an object a k—marked group. Throughout this paper, we use
the following terminologies:

* A k-marked group (H,s{,s5,...,s;) is called a quotient of (G, s1,52,...,5)
if there exists a group homomorphism ¢: G — H satisfying that ¢(s;) =
s} for all j = 1,...,k. Note that every member of G(k) is a quotient of
(Fg,ay,as,...,a;), where Fj is the free group generated by ay, ..., ay.

e If the above homomorphism ¢ is isomorphic, then two k-marked groups
(G.s51.52,....5;) and (H,s7.55, ... ’S]/c) are said to be isomorphic.

e A k-marked group (G, s1,52,...,5;) is said to be finitely presented if there
exists a finite subset A C F such that the minimal normal subgroup N C F con-
taining A is the kernel of the quotient map ¢: (Fi,aq,...,ax)—>(G,s1,...,5).

We note that the finite presentability of a group is independent of the choices of markings
(see [10, V.2]). We denote by G(k) the set of the isomorphism classes of k—marked
groups and call it the space of k—marked groups or the Cayley topological space. A
natural topology on G(k) was introduced by Grigorchuk in [7]. We call it the Cayley
topology. For details, see the book [10, Section V.10] of de la Harpe. We also recall
the notation used in the paper that is part I of this series, [16] by the first-named and
the third-named authors. The topology is generated by relations. More precisely, it is
generated by closed and open subsets

€(1) €(2) e(n)y _ €(1) €(2) e(n) _
O(sj(l)sj(z) --~sj(n)) = {(G,sl,sz, oL Sk) €Gk) | S5 i) = lg}.

Here s;(;) is one of the generators {s1,s5,...,5;} and €(/) is either 1 or —1. The
resulting topology is known to be Hausdorff (in fact metrizable) and compact. Two
k—marked groups are close if the balls with large radius of their Cayley graphs are
identical. We may regard the following as a definition.
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Lemma 2.2 [16, Lemma 2.6] Let G = (G, sy,...,S;) be a k—marked group and
R be a constant greater than 1. Let N(G, R) be the subset of G(k) consisting
of k-marked groups H = (H,s/,... ,s;c) satisfying that there exists a bijection
¢: B(1g,2R) — B(1g,2R) from the ball of H to that of G with radius 2 R such that

o ¢(s;)=sj forevery j =1,... .k,

© ¢(g7")=¢(g)7" forevery g € B(1y,2R),
* ¢(gh) =¢(g)¢(h) forevery g.h € B(1g. R).

The subsets {N (G, R)}g form a neighborhood system of G € G(k).
We call any ¢ satisfying the three conditions in the lemma a partial isomorphism.

Lemma 2.3 Let P = (P,01,...,0%) € G(k) be a k—-marked group. Assume that P
is finitely presented. The set of all the quotient groups of P

— there exists a surjective homomorphism
Qp = {(G,S1, - 5k) € G(k) ¢: P — G such that ¢ (0}) = s }

is a closed and open subset of G(k).

. e(1) €(2) e(n)
Proof For each relation S:0%52) S

€(1) €(2) e(n)
05155y Sjtm) € GK)

is open and closed. So is the finite intersection of such subsets corresponding to the

relations in P. The intersection is nothing other than Op. O

defining PP, the subset

Finally, we record the following fact. For the proof, take Pg to be the marked group
quotient of 'y (Fj with the standard generators) by all the relations of G that have
length at most R. Note that when G is finitely presented, Pg eventually coincides
with G.

Lemma 2.4 Forevery G = (G, s1,...,S;) € G(k), there exists a sequence of finitely
presented groups {Pr = (Pg, ng), e 7S](CR))}R€N converging to G such that

e G is aquotient of Pg forevery R,

e Ppr4q is aquotient of Pg forevery R.
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2.3 Marked groups as metric spaces

Let (X,d) be a metric space (for which we allow d to take the value oo). The
space X is said to be uniformly locally finite (or to have bounded geometry) if
sup,.c x 1(B(x, R)) < oo for every R > 0. Throughout this paper, B(x, R) denotes
the closed ball with radius R whose center is x.

Marked groups have provided interesting examples in metric geometry. For a k—marked
group G = (G, 51, ..., Sk), the word metric d: G x G — [0, 00) is defined as

n,3j(1),.... j(n),Fe(1),... . e(n) e {l, -1}, }
-1 _ (1) €(2) €(n)
gh" = 5;1)%i@) " Siw
(or zero if g = h). Note that we are using the right-invariant word metric. In this
way, the group G becomes a uniformly locally finite metric space. (It is the vertex
set of the Cayley graph equipped with the edge metric.) We denote this metric space
by Cay(G) = Cay(G, sy, ..., k). The coarse equivalence class of the metric on G is
independent of the choice of generating subset {sq,...,S¢}.

d(g,h) = min{n

The subject of this paper is a metric space of the form

X = || Cay(G™ s, s,

meN

where {(G™, ng)’ ey s,(cm))}m is a sequence of finite k—marked groups. Note that the
coarse structure of X does depend on the choice of a family {sgm), . ,s,(cm)}m of gen-
erating subsets. For a disjoint union X = |, X M) of metric spaces, it is customary in
coarse geometry to put a metric ¢ on X in such a way that it coincides with the original
metric on each of the X and that (X ™, X)) — oo as |m —n|(m + n) — oco.
Such a metric is unique up to coarse equivalence. We call this metric space the coarse
disjoint union of {X ™}, and denote it by [, X (m) . However, it is more convenient
to allow our metric d to take the value oo, and define the distance between two points
of distinct components to be co. We call this (generalized) metric space the disjoint
union of {X, and denote it simply by L1, X (m) " as we deal with it most of
the time throughout this paper. These two notions of a disjoint union do not make
much difference and the precise relation between these will be described in the end of
Section 7.

2.4 Algebraic uniform Roe algebra and group algebra

For a uniformly locally finite metric space (X, d), the algebraic uniform Roe algebra
Cy[X] is defined to be the collection of all matrices indexed by X whose propagation
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is finite. More precisely,
CyX]= {[ax,y]x,yex ‘ sup |ax,y| < oo and prop(a) < oo},
x,y

where prop(a) =sup{d(x, y)|ax,y # 0} is the propagation of amatrix a =[ax,y]x,yex -
The usual multiplication between two matrices defines the product on C,[X]. The
conjugate transpose a — a* = [@y x|x,yex defines the involution * on the algebra.
The diagonal algebra of C,[X] is canonically isomorphic to the algebra £, (X) of
bounded functions and hence simply denoted by {0 (X).

Recall that ¢ = [ty y]x,y € Cy[X] is called a partial translation if there is a bijection ¢,
from a subset 4 = dom(¢;) C X onto a subset B =ran(¢;) C X such that 7, , =1
if ye€ A and x = ¢;(y); orelse tx , = 0. We will identify the partial translation ¢
with the partially defined bijection ¢;. A partial translation that is a bijection on X is
called a full translation. We record the following well-known fact as a lemma.

Lemma 2.5 If Cay(G) is the Cayley metric space of a finitely generated group G,
then C,[Cay(G)] is isomorphic to the algebraic crossed product £~ (G) x G. In
general, if X is a uniformly locally finite metric space and I'y denotes the group of
full translations in Cy[X], then Cy[X] = span({oo(X)T'y).

Proof We sketch the proof of the second assertion for the reader’s convenience. It
suffices to show that every partial translation ¢ belongs to the latter set. For the bijection
t: A — B as above, there is a partition 4 = |_|?:0 A; such that 7|4, = id4, and
t(A;))NA; =@ fori =1,2,3 (take a maximal A; as such). Then, (t|Al.)I_|(t_1 lrc4;))
extends to a full translation by setting it equal to the identity outside of A; L#(A4;). O

The maximal C*-norm on C,[X] is defined as
| llmax = sup{|lz(a)|| | w: Cu[X]— B(H)*—representation on a Hilbert space}.

Denote by Cy ..[X] the completion of Cy[X] with respect to || - [|max, and call it the
maximal uniform Roe algebra. Note that when X has property A, the norm || - ||max

coincides with the norm ||-|[g(¢, (x)) as an operator on £, (X) (see [26, Proposition 1.3]).

For a group G, we denote by C*_ [G] the completion of the group algebra C[G] with
respect to the maximal C*—norm || - || max. This C*—algebra is called the maximal (or
full) group C*—algebra. We have an natural embedding of the group algebra C[G]
into C,[Cay(G)], given by £ > [E(gh™!)] ¢,k > but the corresponding homomorphism
Crx[G]— CF - [X] is not faithful unless G is amenable.

u,max
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2.5 Sum of squares in x-algebras

For a x—algebra, a notion of positivity is defined as follows.

Definition 2.6 For a x—algebra A, the cone of sums of squares is defined to be

- {fsg“a

i=1

l’lEN, El,...,gnEA}.

In case A= Cy[Cay(G)] or A= C[G], we say an element x € A is a sum of squares of
n elements with propagation at most R if there are n elements {&;}7_, in A such that
prop(§) < Rand x =) ;_, £*&;. We denote by Zi’RA the set of sums of squares
of n elements with propagation at most R.

Lemma 2.7 Let G be an amenable k—marked group. Let x be an element in the
group algebra C[G]. Suppose that x =) 7_; £'&; is a sum of squares of n elements
{&i}7_, in Cy[Cay(G)] with propagation at most R. Then x is also a sum of squares
as an element of C[G]. More precisely, x is a sum of squares of (n x {(B(1g, R)))
elements in C[G] with propagation at most R.

Proof Fix a mean W on {,(G) that is invariant under the left translation action
{lg: Loo(G) = Loo(G)}geg - Note that every element x in Cy[Cay(G)] is uniquely
written as x = Zg £.8, where &g € £oo(G) C Cu[Cay(G)] (all but finitely many are
zero) and g € G C C[G]. We extend the mean ¥ to W: Cy[Cay(G)] — C[G] by
‘II(Z £¢8) =2 4 V(Eg)g. Since x = ZI_IE S, € C[G] N X2C,[Cay(G)] implies
x= Zl_l \II(%‘ 5,) it suffices to show \If(§ &e E (C[G] for every £ € Cy[Cay(G)]
such that prop(§) < R. Here N =#(B(1g, R)).

Let § =) ,cp(1,.r) 28 be given. Then,
EE) =) Wl Enkh™'8) =) WEnt)h™ g
g:h gh
Since W: £oo(G) — C is a positive linear functional, the matrix [¥(&,& ¢))e.heB(1:,R)
is positive semi-definite. Considering the square root of the matrix, we obtain vectors
{dg}eeB(16,R) C CN satisfying that W(&pEe) = (g, o). Write arg = (oe(l)) eCN.
Then, one sees

FEs) = 3 lag onh g = z(za<'>h)*(zag>g)
g

g.h

i=1

and so lff(é *E) e E%V gCIG]. This completes the proof. (In effect, we have shown that
W is completely positive in the sense of [21, Section 12].) |
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2.6 Positive elements in maximal algebras

As a simple application of theory of semi-pre-C*—algebras, we obtain the following.
For details, see [24, Proposition 15] or [21, Theorem 1].

Proposition 2.8 Let A be either the group algebra C[G] of a group G or the algebraic
uniform Roe algebra C,[X] of a uniformly locally finite metric space X . Let a € A
be a self-adjoint element. Then the element a is positive in respectively C . .[G] or
Cl x| X1 if and only if a + €1 € £2 A for every € > 0.

2.7 On property (T)

For a k—marked group (G, s1,...,8), let A denote the (nonnormalized) Laplacian

k
2k = (s +5;1) € C[G).
j=1
Property (T) of Kazhdan can be formulated as follows.

Proposition 2.9 (See [2, Lemma 12.1.8]) The following are equivalent:

e The group G has property (T).

*

e The spectrum of A in the C*—algebra C.[G] has a gap. More precisely, there
exists v > 0 such that the spectrum of A is included in {0} U [v, 00).

2.8 Geometric property (T)

Let {X)}, be a sequence of finite connected graphs whose degree is uniformly
bounded. A notion called geometric property (T) is defined for the disjoint union
X = |_|,°n°=1 X or more generally for (weakly) monogenic coarse spaces having
bounded geometry in [31]. If X has geometric property (T) and the cardinality f(X @)
of components tends to oo, then it is a sequence of expander graphs. The converse
need not hold; see the introduction. Geometric property (T) was originally introduced
by Willett and Yu in their study of the maximal coarse Baum—Connes conjecture [30].

In this paper, we take the second condition in the following proposition as a defini-
tion of geometric property (T). Let Ay, be the (nonnormalized) discrete Laplacian
on £, (X™):
-1 ifd(x,y)=1,
(Am)x,y := ydeg(x) ifx =y,
0 otherwise.

Algebraic € Geometric Topology, Volume 15 (2015)
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The sequence A = (Ay)menN is an element of Cy[X] whose propagation is 1. It is
called Laplacian. The Laplacian A € C[X] is also defined for a general uniformly
locally finite metric space X . See [31, Section 5].

Proposition 2.10 (See [31, Proposition 5.7]) The following are equivalent:
(1) The space X has geometric property (T).

(2) The Laplacian A in the maximal uniform Roe algebra Cy . .[X] has a spectral

gap. More precisely, there exists a positive number v such that the spectrum of
A in Cj . [X] is included in {0} U [v, c0).
In this paper, we will study when the disjoint union X =| |,,cny X m) of a sequence
{X ™} of (finite Cayley) metric spaces has geometric property (T). The answer is
quite simple when X is a finite disjoint union.

Corollary 2.11 The disjoint union X = | |!_; X @) of finitely many spaces (X7
has geometric property (T) if and only if each X ¥) has geometric property (T).

1

Proof Let A; denote the Laplacian for X @ It is not difficult to see that A = (A )iy

under the canonical isomorphism C* _ [X]=}_, C¥ (X ®]. O

u,max u,max

3 From geometric property (T) to property (T)

Let us start the proof of Theorem 1.1: (2) = (1); assuming that the disjoint union
Llnen Cay(G™, ng)’ e, s,((m)) has geometric property (T), we shall prove that every
member (G, sy, ...,s;) of the Cayley boundary {G(’")}Cayley \ {GU™} has property
(T) of Kazhdan. By replacing it with a subsequence, we may assume that the sequence
Gm™ converges to G with respect to the Cayley topology. See also Corollary 2.11.

Let A,, denote the discrete (nonnormalized) Laplacian in the group algebra C[G ],
which is given by

k
-1
Am=2k =Y (s +5 ).
j=1
We view A, also as an element in C,[Cay(G )] and consider the direct product
A = (Ap)m € Cy[L,, Cay(G (m))]. By assumption, the spectrum of A in the maximal
uniform Roe algebra C7 . [l |, Cay(G )] is included in {0} U [v, 00) for some

v > 0 (Proposition 2.10). Thus the element A2 —vA € Cy[|_|,, Cay(G )] is positive
in the C*—algebra C* . [| ],, Cay(G )], by the spectral mapping theorem. By

u,max
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Proposition 2.8, for every positive number €, one has A2 —VA + € = >y nini €
22Cy[L,, Cay(G)]. Let R = max; prop(n;) and choose a large natural number m
such that there exists a partial isomorphism ¢: B(1gtm,2R) — B(1g,2R) between
balls of G and G . Here, ¢ satisfies conditions in Lemma 2.2. Taking the m™ entries
of A and n;, we see that A,,> — VA, +€ € E,zl’R(Cu[Cay(G(’”))]. By Lemma 2.7,
Am? = VA, + € € C[G™] is a sum of squares of operators & in the group algebra
C[G™] with propagation at most R. Extending the partial isomorphism ¢ to the
linear map ¢: C[B(15zum,2R)] — C[B(1g,2R)] and applying it to

Am2 — VA, +e= Zngkgi,
i
we see that the Laplacian Ag in the group algebra C[G] satisfies

Ag?—vAg +e= ) ¢EN D).

This implies that Ag% — vAg + € is positive in the maximal group algebra C*_ [G].

Since € > 0 was arbitrary, the spectrum of Ag is included in {0} U [v, c0), by the
spectral mapping theorem. This means that G has property (T). |

The key step in the above proof is to show that Aé —vAg + € is a sum of squares for
every € > 0. To check whether a finitely generated group G has property (T), we in
fact do not need the extra €.

Theorem 3.1 [20] A marked group G has property (T) if and only if there exists a
positive number v and &1, ..., &, € R[G] such that

n
AL —vAG =) &%

i=1
4 From property (T) to geometric property (T)

Shalom [25, Theorem 6.7] has showed that every property (T) group is a quotient of
finitely presented property (T) group, and more generally that property (T) is an open
property in the space of marked groups, namely, the set of all k—marked property (T)
groups is open in G(k). (This fact also follows from Theorem 3.1 above.) See a survey
of Y Stalder [27] for a more general result. Recall that Qp stands for the set of marked
group quotients of P.

Proposition 4.1 Every k-marked group G with property (T) is a quotient of a
finitely presented k—marked group P with property (T). Moreover, for every sequence
{G,,, in G(k) that converges to G and for every such finitely presented P, there
exists N € N such that {G(m) :m>N}CQp.
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Proof The first assertion is proved in [25] and the second follows from Lemma 2.3.
See also Lemma 2.4. O

Lemma 4.2 Let K be a nonempty closed subset of G(k). If every element of K has
property (T), then there exist finitely many finitely presented property (T) marked
groups Py, ..., P, € G(k) such that K C | J; Op, .

Proof By Proposition 4.1, {Qp | P is a finitely presented group with property (T)}
is an open covering of K. Since the subset K is compact, there exist finitely many
groups Py, ..., P, such that K C | J; Qp; . O

We begin the proof of Theorem 1.1: (1) = (2). Suppose that every k—marked group
G in the boundary

Cayley

(G (G

has property (T). Then every group in the Cayley closure {G(m)}cayley has property
(T). By Lemma 4.2, there exists a decomposition of indices N = I; U I, U--- L I
such that G is a quotient of IP; for every m € I;. By Corollary 2.11, it suffices to
show that each X® = Lle I; Cay(G ) has geometric property (T). The group
homomorphisms ¢™: P; — G m e I;, induce the *—homomorphism

¢i: C[P]— [] ClG™] c Cf X ]

u,max
mel;

which sends the Laplacian A; € C[P;] of the marked group P; to the Laplacian of
X®_ Thus Proposition 2.10 implies that X @ has geometric property (T). O

5 Remarks

Uniformity of spectral gaps

Let v(G, S) be the infimum of strictly positive spectra of the discrete Laplacian Ag
in C:l:'laX[G] *
Proposition 5.1 Let K be a nonempty closed subset of G(k) consisting of groups
with Kazhdan’s property (T). Then there exists a strictly positive number v such that
v <v(G,S) forevery (G,S) € K.

Proof By Lemma 4.2, there exist finitely many marked groups Py, P, ..., P, with

property (T) such that every member G of K is a quotient of one of IP;. Since every
representation of G' provides a representation of P;, we have 0 < min; v(IP;) <v(G). O
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Proposition 5.1 roughly states that for a (nonempty) compact set K in G(k), uniformity
concerning property (T) is automatic once all of the members of K have property (T).
In [16], two of the authors have showed that, concerning amenability, a similar phe-
nomenon occurs; see [16, proof of Theorem 5.1]. On the other hand, two of the authors
have revealed that concerning a-T—menability, the uniformity is not automatically
guaranteed. For details, see the paper that is part II of this series [17]. In [15], we
further study the spectral gap and Kazhdan constant. These constants define functions
on the space of marked groups. We will prove that these are lower semi-continuous
functions on G (k). (Note that for spectral gaps, it can be also derived from the main
result of [20]. See Theorem 3.1.) We also study spectral gaps and Kazhdan-type
constants for isometric actions on certain metric spaces, including uniformly convex
Banach spaces and complete CAT(0) spaces.

Uniformity on amenability

Proposition 5.2 Let {(G, 1 s(Miyy be a sequence of amenable k—
marked groups. Suppose that the sequence converges to a k—marked group G,
Then the following conditions are equivalent:

(1) The metric space | |, Cay(G ) has property A of Yu.
(2) The limit group G (> is amenable.

(3) There exists an amenable k—marked group P such that for every m, the group
G js a quotient of P.

Proof By [16, Theorem 5.1], conditions (1) and (2) are equivalent. Suppose condition
(3) holds. The set Op forms a closed subset in the space of k—marked groups and
consists of amenable groups. It follows that the closure {(G(m)}mcay]ey is contained
in Qp. In particular, condition (2) holds. Conversely, suppose condition (2) holds.
Define a k—-marked group (P, y1,...,yx) by the subgroup of [, G™ generated
by y; = (sgm))m, Vi = (s,(cm))m. Each G is a quotient of P. Note that the
limit group G s also a quotient of P. Let H be the kernel of the quotient map

P — G The group H is equal to
{(g™),, € P | there exists M € N such that for all m > M , g™ = lgum }
The subgroup Hjps defined by
{(g(m))m € P |forall m > M,g(m) =1lgum}

is amenable, since P, _; G is amenable. Since H is an increasing union of

amenable groups Hjy, it is amenable. Since P is in the middle of the short exact
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sequence
1> H—>P—>G™ 1,

P is also amenable. Therefore condition (3) holds. O

6 Cohomological property (T)

By the well-known Delorme—Guichardet theorem [1, Theorem 2.12.4], property (T)
for a (locally compact o —compact) group G can be characterized by the vanishing of
the first cohomology group H'(G,?#) of every unitary G—module #. In this section,
we study this phenomenon for coarse spaces. Namely, we will introduce cohomolog-
ical property (T) for uniformly locally finite metric spaces and prove that it implies
geometric property (T). For this purpose, we develop a cohomology theory for such
spaces, in analogy with the cohomology theory for group actions. See [6; 8, Chapter 8;
19; 22; 23, Chapter 5] for relevant results. We first work purely algebraically. So we
consider a unital algebra A (over C) together with an “augmentation” map « from A
onto a unital subalgebra D C A that satisfies w|p = idp and w(ab) = w(aw(b)) for
a,b € A. (Although we are content with the unital setting, one may also want to look
at a non-unital algebra A and a unital subalgebra D in the multiplier of .4.) It follows
that £ := kerw is a left ideal of .A. Prototypical examples are group algebras C[G]
and the unit character w: C[G] — C C C[G]; and the algebraic uniform Roe algebras
Cy[X] of a uniformly locally finite metric space X and w: Cy[X]— £oo(X) C Cy[X],
given by w(a)(x) = Zy ax,y for a =lax y]x,yex € Cy[X] (this augmentation map
o is denoted by @ in [31]).

For a given left A-module M, we define the cohomology groups H" (A, M) to be the
relative Ext—groups of the D—algebra A with coefficients in M relative to £. Namely,
H"(A, M) =kerd,+1/rand, for the cochain complex

d d
ML Homp (L, M) REN Homp(A ®p L, M)

d dy ——— dy
—3>---—>H0mD(A®D"'®D.A®D£,M) ar ,

n—1

where Homyp is the space of D—-module maps and

(dnb)(a1 ®---®an) )
n—

=a10(a; ® - Qap) + Z(_l)ie(al R ®aj—1 ®aAjaj+1 VUit ® - ®ay).
i=1

For example, 1—cocycles are .A-module maps 6: £L — M and 1-coboundaries are

those given by £ 3 a > av € M for some v € M. In the case where A = C[G] and
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w: C[G] — C c C[G] is the unit character, it is not difficult to check that H" (A, M)
is nothing but the group cohomology H"(G, M). In the case where A = C,[X], we
will denote H" (A, M) by H"(X, M).

Proposition 6.1 Let D be a unital algebra on which a group G acts and A=DxG be
the algebraic crossed product, together with the augmentation map w: A — D given by

geG geG
Then for every left A—module M, the homomorphisms t«: H"(A, M) — H"(G, M)
induced by the inclusion t: C[G] — A are isomorphisms.

Proof We note that G (resp. {g—1g : g € G\{lg}}) is a basis for the left D—module
A (resp. L := kerw). Also note that L[G] := kerw N C[G] = spanc{g — 1g}. It
follows that the linear map

n—1 n—1

———
DRc ClG]®c - ®c ClG]®cL[G] > AQp - Rp ARpL

givenby a®&; ®---®&, — (a€1) ®E,®---Q &, is a D-module isomorphism. Hence,
every n—cocycle 6 for C[G] uniquely extends to an n—cocycle for A. This gives rise
to the inverse of ¢, and so (4 is an isomorphism. O

Corollary 6.2 Let G be a group and X = Cay(G). Then, for every left C,[X]-
module M, there are canonical isomorphisms H" (X, M) =~ H"(G, M).

Proof Apply Proposition 6.1 to Cy[X] = {eo(X) % G. m|

Here we recover a result of Pansu [22] that vanishing of L2 -Betti numbers is a coarse
invariant.

Corollary 6.3 Let Gy and G, be groups that are coarsely equivalent. Then, for
every n one has B,(G1) =0 < B,(G,) = 0. Here B,(G) denotes the n™ L2 —Betti
number of G .

Proof If one of G and G, is amenable, then both are amenable [23, Proposition 3.3.5]
and have zero L?-Betti numbers by the Cheeger—Gromov theorem [14, Theorem 6.3.7].
So we assume that G; and G, are not amenable. By [28], there is a bijective coarse
equivalence between G and G, . (This may not be true when the groups are amenable
[S]; still their algebraic uniform Roe algebras are Morita equivalent.) Thus, for X :=
Cay(G1) = Cay(G,), Corollary 6.2 yields a canonical isomorphism H” (G, {,(X)) =
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H"(G,,£,(X)) that preserves the topologies also. Here for a topological G —module
M, the topology on H"(G, M) is induced from the pointwise convergence topology
on the space of cochains. Since B,(G) = 0 if and only if H"(G,{»(G)) = {0}, we
are done. i

Definition 6.4 Let X be a uniformly locally finite metric space. We say X has
cohomological property (T) if H'(X,H) = 0 for every s—representation of the
algebraic uniform Roe algebra C,[X] on a Hilbert space #.

We denote the augmentation left ideal ker(w: Cy[X] — £oo(X)) by Ly[X]. Suppose
that a 1—cocycle 8: L,[X]— H is given. Then b(z) := 0(t —w(t)) is a 1—cocycle for
the pseudo-group of partial translations ¢ in Cy[X]. Namely, it satisfies the cocycle
identity b(st) = b(S|ran(r)) + 7 (S|ran(r))b(¢) for s and . The following criterion of
1 —coboundaries is handy, as in the case of group 1-cocycles.

Lemma 6.5 A 1-—cocycle 0: L,[X]— H is a 1 —coboundary if and only if

sup 10 — (1))l < oo,
where the supremum is taken all over the partial (resp. full) translations ¢ .

Proof We only have to prove the “if” part. Let I'y be the group of full translations in
Cyu[X]. Since the cocycle 6 is bounded, there is v € H such that 6(r—1) = 7z (¢)v—v for
all ¢ € Ty, by [1, Proposition 2.2.9]. But since £y[X] = span({oo(X){t —1:2 € T'x})
(see Lemma 2.5), one has 6(a) = w(a)v for all a € L,[X]. O

It is proved in [31] that geometric property (T) is a coarse invariant. The same is true
for the cohomological property (T).

Theorem 6.6 Let X and Y be uniformly locally finite metric spaces that are coarsely
equivalent. Then X has cohomological property (T) if and only if Y has it.

Proof We first prove that if an inclusion X < Y is a coarse equivalence and X has
cohomological property (T), then so does Y . Since Y is uniformly locally finite, there
is a finite family { f;} of partial translations such that dom( f;) C X and | J; ran(f;) =Y.
It is not too difficult to see that every partial translation on Y is a concatenation of
partial translations of the form fjos;jo fl._1 , where the s;; are partial translations on X .
Now suppose that a 1—cocycle 6: £,[Y]— H is given. By cohomological property (T)
of X, the pseudo-group cocycle b(s) := 0(s — w(s)) is uniformly bounded on partial
translations s of X . By the cocycle identity, b( fjoso f;._l) is also uniformly bounded
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for every i and j. It follows that b is bounded on partial translations of Y, and by
Lemma 6.5 it is a 1-coboundary. This proves that ¥ has cohomological property (T).

In view of Lemma 2.1, it remains show that cohomological property (T) of X x n im-
plies that of X". We identify C,[n] with M, (C) and C,[X xn] with M, (C)®C,[X] via

a6,y < D €1 ® ey, () ey
i,
Then, the augmentation map wyx, for X x n is of the form wyx, = wy ® © where
on([ai jli,j) =[6i,j >k aikli,j on M(C). It follows that Zi,j eij®aj,j € Ly[X xn]
implies } ; a;,j € Ly[X] for every i. Let a *-representation 7: Cy[X]— B(#) and a
1—cocycle 0: L,[X]— # be given. Then we define a 1—cocycle 8,: Ly[X xn] — HE"
for the *—representation 7, = id ® of M, (C) ® Cy[X] on H®" by

(Sorsns) (),

Itis indeed a 1—cocycle and hence there is V= (v;)}_, € H®" such that 0,(7) =, (@)0

for all @ € £,[X x n]. It follows that 8(a) = w(a)v, for all a € L,[X], and 6 is a
1 —coboundary. |

The following finishes the proof of Theorem 1.1.

Theorem 6.7 For a uniformly locally finite metric space X , one has the following.

e Cohomological property (T) implies geometric property (T).

o If the coarse structure of X is induced by a property (T) group G (ie, G = (S)
acts on X in such a way that {(x, gx):x € X, g € S} is a generating controlled
subset), then X has cohomological property (T).

e Incase X is a disjoint union of the Cayley graphs of finite k—marked groups, X
has cohomological property (T) if and only if it has geometric property (T).

Proof Suppose that X does not have geometric property (T). By [31, Proposition 3.8],
there are *—representations 7, of Cy[X] on H, and unit vectors &, € (H,)< such
that ||7rn(a —w(@))én|l < 47" supy ex lax,y| for every a = [ax,y]x,y of propagation
at most n. Here (H,). is the space of constant vectors, which consists of the vectors
in H, that are annihilated by 7,(L£,[X]). (Remember that our @ is denoted by P
in [31].) Now, we may define a 1—cocycle 6 from L£,[X] into @, H, by 0(a) =
Zf? 2"y (a)é,. We claim that 6 is not a 1—coboundary. For if it were, there would
be ¢ = Zf? {n € ,, Hn such that 0(a) = ZEB 7n(a)sy . This means that 7, (a)¢, =
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2", ()&, for every a € Ly[X], or equivalently, ¢, —2"&, € (H,)c. But this implies
P31,)L8n = 2"y and contradicts the fact that |[{|| < co. Consequently, 6 is not a
1—coboundary and X does not have cohomological property (T). This proves the first
assertion.

The second assertion follows from the observation that every 1—cocycle 6: L,[X]— H
is a 1—coboundary for the induced unitary representation of a property (T) group G,
which implies that 6 is also a 1—coboundary for C,[X]. The last assertion follows
from Theorem 1.1:(1) < (2), Lemma 4.2, and the previous two assertions. |

In fact, by adapting the method of [20], one can prove that cohomological property (T)
implies A2 —vA € £2C,[X] for some v > 0 (see Theorem 3.1). The following is a
characterization of Cayley metric spaces Cay(G) having cohomological property (T).
Recall that a unitary G —representation 7 is said to be weakly regular if it is weakly
contained in the regular representation on £,(G).

Proposition 6.8 Let X = Cay(G) be the Cayley metric space and assume that X has
property A (or equivalently, G is exact). Then, X has cohomological property (T) if
and only if H'(G,H) = 0 for every weakly regular unitary G —representation H.

Proof Since X = Cay(G) has property A, every x-representation of Cy[X] is
weakly contained in the regular representation on £,(X) by [26, Proposition 1.3].
Thus the “if” part of the proposition follows from Corollary 6.2. Conversely, suppose
that H!(G,H) # 0 for a weakly regular G -representation = on #. We view 7
as a *—homomorphism from the reduced group C*-algebra C;(G) into B(#). By
Arveson’s and St’i\nespring’s theorems applied in tandem to C; (GA) C C¥[X], there are
a Hilbert space H D H and a s-representation 7: C}[X]— B(H) such that 7(g)|x
coincides with the original 7(g) for every g € G. Since H!(G, ’;Q) O HY (G, H)#0,
one has H'(X,#H) # 0 by Corollary 6.2. O

It follows that Cay(F>) has geometric property (T) [31, Corollary 6.5], but not coho-
mological property (T) (since H'(F,,{,(F,)) # 0). Lattices in SL(2, C) also do not
have cohomological property (T) [9, Exemple 3] although they have zero first L?—Betti
numbers [14, Theorem 4.1]. These examples show that cohomological property (T)
is in general strictly stronger than geometric property (T). The authors do not know
whether these properties are equivalent for a disjoint union of finite metric spaces
of bounded geometry. There are many Cayley metric spaces that have cohomolog-
ical property (T), besides those come from property (T) groups, eg Cay(F; x Fy).
Indeed, it is well known that H!(G; x G,,H) = 0 for every non-amenable group
G; and every weakly regular representation (7, %). We sketch the proof of this fact
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for the reader’s convenience. Let b: G; x G, — H be a 1—cocycle, ie it satisfies
b(gh) = b(g) + n(g)b(h) for every g,h € Gy x G,. Thus, for every g; € G| and
g2 € Gy, one has (7(g2) —1)b(g1) = (w(g1) — 1)b(g2). Since G; is not amenable,
7 does not weakly contain the trivial representation, or equivalently, there is a finite
subset S; C G; and C > 0 such that [[v|| = C|| X ,es, (7(g) — D]l holds for all
v € H. This implies that b is bounded on each of the G; and hence on G| X G. Such
a 1—cocycle is a 1—coboundary [1, Proposition 2.2.9].

7 On the structure of maximal uniform Roe algebras

In this section, we develop the representation theory of the maximal uniform Roe
algebras of a (coarse) disjoint union. For the reader’s convenience, we recall the
basic properties of C(K)-C*-algebras [11] in the unital setting. Let K be a compact
Hausdorff space. A unital C*—algebra A is called a C(K)-C*-algebra if it comes
together with a x—homomorphism 6 from C(K) into the center of 4. We will omit
writing 6 as if C(K) is a subalgebra of A. Foreach t € K, let I; = Co(K \ {t})A4
be the corresponding ideal of A (in fact I; = Co(K \ {t})A by Cohen’s factorization
theorem), and denote by 7r;: A — A/I; =: A; the corresponding quotient. Then, every
irreducible representation of A factors through some 7;, since its restriction to C(K)
is a character associated with some point ¢ € K. It follows that the representation
Asavw ], m:(a) €[], A; is faithful. In particular, Sp(a) = |, Sp(r+(a)) for every
a € A. Each A; is called a fiber of A. A *—homomorphism o: A — B between
C(K)-C*-algebras A and B is simply called a morphism if its restriction to C(K) is
the identity map. Such a morphism naturally induces *-homomorphisms o;: A; — By
on the fibers. Note that a morphism o: A — B is injective if and only if it is the case
for each fiber o;: A; — By. In particular, a C(K)—C*-algebra A is nuclear if and
only if all fibers {A;}; are nuclear.

Now, we consider a x—algebra B containing C(K) in its center. Then its universal
enveloping C*-algebra 4 = C*(B) is a C(K)—C*-algebra. For each ¢ € K, the ideal
Jr = Co(K \ {t})B is dense in the ideal I; of A. It is not hard to see that A; = A/I;
is the universal enveloping C*—algebra of B; := B/J;.

Let {(G™, sg’”), . ,s](cm))}m be a sequence of k—marked groups and denote by ay,
the corresponding homomorphism from Fy = (s, ..., s;) onto G that maps s;
to sl.(m). Let X =], Cay(G(m),sgm), e ,s](cm)) be the disjoint union. For g € Fj,
let vg denote the element in C,[X] that is represented by the kernel

if x,y € G™ and x = 0,,(2) .
otherwise,

(ve)(x. 7) = {(1)
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and note that

CulX]= { > Egvg

g<Fy

&g € Loo(X) are zero for all but finitely many g }

The center of the algebraic uniform Roe algebra C,[X] consists of those functions in
oo (X) that are constant on each of the G™  and so it is canonically isomorphic to
£oo(N). We recall that the Gelfand spectrum of £oo(N) is the Stone—Cech compactifi-
cation SN of N, and £, (N) is *—isomorphic to C(BN). Thus, the maximal uniform
Roe algebra Cj .. [X]is a C(BN)-C*-algebra. Let us fix an element w € BN for a
while, and identify it with the corresponding character w: oo (N) — C. We will denote
w(§) also by limg, £(m). We still abuse the notation and denote the corresponding
ultrafilter by w, too. Namely, we identify @ with the family of those subsets £ C N
such that w(1g) = 1. Here we recall that an ultrafilter is a family of non-empty
subsets that satisfies the finite intersection property and the maximality condition that
E ¢ w implies (N \ E) € w. For example, n € N is identified with the principal
character £ (N) > & > £(n) and with the principal ultrafilter consisting of the subsets
E C N that contain n. By the universality of the Stone—Cech compactification, the
map N 5 m — G e G(k) extends to a continuous map AN 3 w > G©@ e G(k).
We note that

G =F /{we Fy:{imeN |om(w) =1} € 0}

as a k—marked group, with the corresponding homomorphism denoted by o,,: Fj —
G @) To see the relation between G(®) and C,[X],, let us observe that

ColBN\ {6} oo (X) = {@(’"))s,":l & T tooG™)

m=1

Co(BN\{wH)Cu[X] = {a = [ax,ylx,y € Cu[X]

lim £ = o},
w

lim sup |ax,y|= O}.
@ x,yeGum

Hence, my(vg) =1 in Cy[X]p € 1 —vg € Co(BN \{0})Cy[X] & 04(g) = 1. This
means that g — 4, (vg) gives rise to an inclusion G(©@) < Cy[X]p. Moreover, Cy[X]w
is canonically isomorphic to the algebraic crossed product £oo(X)g x G©@) . Here
Loo(X)w :=Loo(X)/(Co(BN\{w})lso (X)), which is nothing but the ultraproduct C*—
algebra of the £oo (G ™). We denote by £(®) the element in £oo(X),, that corresponds
to & = (5(’”));?:1 €[T=1 Loo(G™) . For g € G@ | let ug denote the corresponding
element in the maximal (or full) crossed product C*—algebra £o0(X)w Xmax G@).

Gathering all the above discussions, we have followed due process to ensure the
canonicality of the canonical maps.
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Theorem 7.1 Let X = | |,,en Cay(G(”’),sgm), .. ,s](cm)) be as above. With the
above notation, the maximal uniform Roe algebra Cy ,..[X] is a C(BN)-C* —algebra

and for each w € BN there is a canonical *—isomorphism

CF il X o 2 Loo(X)g Xmax G

u,max

that sends deFk Egvg in Cu[A/] to deFk Sg(rw)”aw(g) .

Corollary 7.2 Use the same notation as in Theorem 7.1 and assume that all the G ™
are amenable. Then for every w € BN there is a canonical *—isomorphism

7o(C*({vg | g € Fi})) = Ch [G).

max

Moreover, it is the range of a conditional expectation on C;"max[X Jo-

Proof Since the G are amenable, there are G "™ —invariant states (¢, on £oo(G ™),
and hence for every w € BN the state £oo(X) 3 £ > limg, m (E™) gives rise to a
G@) _invariant state on £oo(X ). It follows that the canonical s—homomorphism
from C*_ [G®)] into £oo(X)e Xmax G is faithful. O

max
This corollary gives an alternative proof that if X =1 |, Cay(G™, sE’"), .. ,sl((m))
has geometric property (T), then all the groups in the Cayley boundary of {G ™},
have property (T). It also recovers a result of [16]: X has property A if and only if
all the groups in the Cayley boundary are amenable.

On this occasion, we clarify the relation between the two different notions of a disjoint
union and their associated maximal uniform Roe algebras. So, let | |, X (m) (resp.
[, X (m)) be the disjoint union (resp. coarse disjoint union) of a given sequence
{X(’”)}m of metric spaces. Thus, as a set, X :=|[ |, Xm = 11, X and as a
coarse space, Cu[]_[mX(m)] = <Cu[|_|mX(’”)] + Ko, where Ky is the algebra of the
finitely supported kernels on X . Since Ky is an ideal of C,[][,, X 0m)] and it has
the unique C*—completion K(£,(X)), it gives rise to an embedding K (£, (X)) —
Cy max[LLn X (] as a closed two-sided ideal. There is a conditional expectation E
from Cy[] ], X ] onto Cy[|_|,, X ], given by E(a)x,y = ax,y if x and y belong
to the same X ) else E(a)x,y =0.

Proposition 7.3 Let {X™)},, be a sequence of metric spaces. Then, the canonical
embedding of Cy[|_|,, X "] into C,[[],, X "] extends to a faithful embedding of
C¥ Ll X O] into CF . [11,, X ™). Hence, one has a canonical identification

u,max u,max

Co o []_[ X(’”)] = C} nax [I_I X“"’} + K (£ (X)).

m m
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The conditional expectation E also extends to a faithful, unital and completely positive
conditional expectation from C% . [[[,, X "] onto C¥ . [L],, X ™.

u,max u,max

Proof We first note that Jo := Ko N Cy[|_],, X ] has unique C*—completion J =
®D,, Mym (the C*—direct sum). Since C,[] [,, X ™]/Ko = Cy[Ll,, X "™]/Jo, one
has the commuting diagram

S ——— C:,max |:|_| X(m):| Ci]k,max [Ll X(m):|/']

m m

K(€2(X)) —= C¥ nax []_[ X“’”} —— C []_[ X“")] JK(£5(X)),

m m

where the right column morphism is an isomorphism. Since the inclusion ¢ is injec-
tive on J, it is injective on Cy .| |,, X (™) also. That E extends to a unital and

completely positive map on Cy . [[[,, X ()] follows from the fact that for every
a e Cy[[],, X"] one has

N N N
E(a) = Z 1X(m)al)((m) + (1 - Z IX(m))Cl(l — Z IX('”))
m=1 m=1 m=1

for a large enough N, and in particular || E(@)||max < ||@|/max- Since E is faithful on
K(£2(X)) and C* . [11,, X ™1/K(£2(X)), it is faithful on C* (][, X™]. o

u,max u,max
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