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On Kauffman bracket skein modules at roots of unity

THANG T Q LÊ

We reprove and expand results of Bonahon and Wong on central elements of the
Kauffman bracket skein modules at roots of 1 and on the existence of the Chebyshev
homomorphism, using elementary skein methods.

57N10; 57M25

0 Introduction

0.1 Kauffman bracket skein modules

Let us recall the definition of the Kauffman bracket skein module, which was introduced
by J Przytycki [15] and V Turaev [18]. Let RDCŒt˙1�. A framed link in an oriented
3–manifold M is a disjoint union of smoothly embedded circles, equipped with a
nonzero normal vector field. The empty set is also considered a framed link. The
Kauffman bracket skein module S.M / is the R–module spanned by isotopy classes
of framed links in M subject to the relations

LD tLCC t�1L�;(1)

LtU D�.t2
C t�2/L;(2)

where in the first identity, L;LC;L� are identical except in a ball in which they look
like they do in Figure 1, and in the second identity, the left-hand side stands for the
union of a link L and the trivial framed knot U in a ball disjoint from L. If M DR3

then S.R3/DR. The value of a framed link L in S.R3/DRDCŒt˙1� is a version
of the Jones polynomial; see Kauffman [10].

L LC L�

Figure 1: The links L , LC and L�

For a nonzero complex number � , let S�.M / be the quotient S.M /=.t � �/, which is
a C–vector space.
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For an oriented surface †, possibly with boundary, we define S.†/ WD S.M /, where
M D † � Œ�1; 1� is the cylinder over †. The skein module S.†/ has an algebra
structure induced by the operation of gluing one cylinder on top of the other.

For a framed knot K in M and a polynomial p.z/ D
Pd

jD0 aj zj 2 CŒz�, then we
define p.K/ by

p.K/D

dX
jD0

aj K.j/
2 S.M /;

where K.j/ is the link consisting of j parallels of K (using the framing of K ) in
a small neighborhood of K . When L is a link, define p.L/ by applying p to each
component of L. More precisely, for a framed link L � M with m components
L1; : : : ;Lm , define

p.L/D

dX
j1;:::;jmD0

� mY
kD1

ajk

�� mG
kD1

L
.jk/

k

�
:

Here
Fm

kD1 L
.jk/

k
is the link which is the union, over k 2 f1; : : : ;mg, of jk parallels

of Lk .

Remark 0.1 Suppose K �† is a simple closed curve on the surface †. Consider K

as a framed knot in † � Œ�1; 1� by identifying † D † � 0 and equipping K with
the vertical framing, ie the framing where the normal vector is perpendicular to †
and has direction from �1 to 1. Then K.j/ D Kj , where Kj is the power in the
algebra S.†/. Thus, p.K/ has the usual meaning of applying a polynomial to an
element of an algebra.

But if K is a knot in † � Œ�1; 1�, our p.K/ in general is not the result of apply-
ing the polynomial p to the element K using the algebra structure of S.†/, ie
p.K/¤

P
aj Kj .

0.2 Bonahon and Wong’s results

Definition 1 A polynomial p.z/ 2CŒz� is called central at � 2C� if for any oriented
surface † and any framed link L in †� Œ�1; 1�, p.L/ is central in the algebra S�.†/.

Bonahon and Wong [2] showed that if � is a root of unity of order 2N , then TN .z/ is
central, where TN .z/ is the Chebyshev polynomial of type 1 defined recursively by

T0.z/D 2; T1.z/D 1; Tn.z/D zTn�1.z/�Tn�2.z/;

for all n� 2. We will prove a stronger version, using a different method.
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Theorem 1 A nonconstant polynomial p.z/ 2CŒz� is central at � 2C� if and only if

(i) � is a root of unity,

(ii) p.z/ 2 CŒTN .z/�, ie p is a C–polynomial in TN .z/, where N is the order
of �2 .

Remark 0.2 We also find a version of “skew-centrality” when �2N D �1 (see
Section 2), which will be useful in this paper and elsewhere.

Remark 0.3 Let us call a polynomial p.z/ 2 CŒz� weakly central at � 2 C� if for
any oriented surface † and any simple closed curve K on †, p.K/ is central in the
algebra S�.†/. Then our proof will also show that Theorem 1 holds true if one replaces
“central” by “weakly central”. It follows that being central is equivalent to being weakly
central.

A remarkable result of Bonahon and Wong is the following.

Theorem 2 (Bonahon–Wong [2]) Let M be an oriented 3–manifold, possibly with
boundary. Suppose �4 is a root of unity of order N . Let "D �N 2

. There is a unique
C–linear map ChW S".M /! S�.M / such that for any framed link L�M , Ch.L/D
Tn.L/.

If M D†� Œ�1; 1�, then the map Ch is an algebra homomorphism. Actually Bonahon
and Wong only consider the case of S.†/, but their proof works also in the case of
skein modules of 3–manifolds. In their proof, Bonahon and Wong used the theory
of quantum Teichmüller space of Chekhov and Fock [7] and Kashaev [9], and the
quantum trace homomorphism developed in their earlier work [3]. Bonahon and Wong
asked for a proof using elementary skein theory. We will present one here. The main
idea is to use central properties (in a more general setting) and several operators and
filtrations on the skein modules defined by arcs.

In general, the calculation of S.M / is difficult. For some results on knot and link
complements in S3 , see the author [11], the author and Tran [12] and Marché [14].
Note that if �4N D 1, then "D �N 2

is a 4th root of 1. In this case the S".M / is well
known and is related to character varieties of M . This makes Theorem 2 interesting.
At t D �1, S�1.M / has an algebra structure and, modulo its nilradical, is equal to
the ring of regular functions on the SL2.C/–character variety of M ; see Bullock [4],
Przytycki and Sikora [16] and Bullock, Frohman and Kania-Bartoszyńska [5]. For the
case when " is a primitive 4th root of 1, see Sikora [17].
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0.3 Plan of the paper

Section 1 is preliminaries on Chebyshev polynomials and relative skein modules.
Section 2 contains the proof of Theorem 1. Section 3 introduces the filtrations and
operators on skein modules, and Sections 4 and 5 contain some calculations which
are used in Section 6, where the main technical lemma about the skein module of the
twice-punctured torus is proved. Theorem 2 is proved in Section 7.

Acknowledgements The author would like to thank F Bonahon, whose talk at the
conference “Geometric Topology” at Columbia University (August 12–16, 2013)
prompted the author to work on this project. The author also thanks C Frohman,
A Sikora and H Wong for helpful discussions. The work is supported in part by
the NSF.

1 Ground ring, Chebyshev polynomials and relative skein
modules

1.1 Ground ring

Let RDCŒt˙1�, which is a principal ideal domain. For an R–module and a nonzero
complex number � 2 C� let V� be the R–module V =.t � �/. Then R� Š C as
C–modules, and V� has a natural structure of an R� –module.

We will often use the constants

(3) �k WD �.t
2kC2

C t�2k�2/ 2R:

For example, �0 is the value of the unknot U as a skein element.

1.2 Chebyshev polynomials

Recall that the Chebyshev polynomials of type 1 Tn.z/ and type 2 Sn.z/ are given by

T0 D 2; T1.z/D z; Tn.z/D zTn�1.z/�Tn�2.z/;

S0 D 1; S1.z/D z; Sn.z/D zSn�1.z/�Sn�2.z/:

Here are some well-known facts. We drop the easy proofs.
Lemma 1.1 (i) One has

Tn.uCu�1/D un
Cu�n;(4)

Tn D Sn�Sn�2:(5)

(ii) For a fixed positive integer N , the C–span of fTNj j j � 0g is CŒTN .z/�, the
ring of all C–polynomials in TN .z/.
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Since Tn.z/ has leading term zn , fTn.z/ j n� 0g is a C–basis of CŒz�.

1.3 Skein module of a surface

Suppose † is a compact connected orientable 2–dimensional manifold with boundary.
A knot in † is trivial if it bounds a disk in †. Recall that S.†/ is the skein module
S.†� Œ�1; 1�/. If @†¤ ∅, then S.†/ is a free R–module with basis the set of all
links in † without trivial components, including the empty link; see [16]. Here a link
in † is considered as a framed link in †� Œ�1; 1� by identifying † with †� 0, and
the framing at every point P 2†� 0 is vertical, ie given by the unit positive tangent
vector of P � Œ�1; 1��†� Œ�1; 1�.

The R–module S.†/ has a natural R–algebra structure, where L1L2 is obtained by
placing L1 on top of L2 .

It might happen that †1 � Œ�1; 1�Š†2 � Œ�1; 1� with †1 6Š†2 . In that case, S.†1/

and S.†2/ are the same as R–modules, but the algebra structures may be different.

1.4 Example: The annulus

Let A�R2 be the annulus AD fEx 2R2 j 1� jExj � 2g. Let z 2 S.A/ be the core of
the annulus, z D fEx; j Exj D 3

2
g. Then S.A/DRŒz�.

1.5 Relative skein modules

A marked surface .†;P/ is a surface † together with a finite set P of points on its
boundary @†. For such a marked surface, a relative framed link is a 1–dimensional com-
pact framed submanifold X in †� Œ�1; 1� such that @X DP DX \@.†� Œ�1; 1�/, X

is perpendicular to @.†� Œ�1; 1�/ and the framing at each point P 2PD @X is vertical.
The relative skein module S.†;P/ is defined as the R–module spanned by the isotopy
class of relative framed links modulo the same skein relations (1) and (2). We will use
the following fact.

Proposition 1.2 [16, Theorem 5.2] The R–module S.†;P/ is free with basis the
set of isotopy classes of relative links embedded in † without trivial components.

2 Annulus with two marked points and central elements

2.1 Marked annulus

Recall that A�R2 is the annulus AD fEx 2R2 j 1� jExj � 2g. Let Aio be the marked
surface .A; fP1;P2g/, with two marked points P1D .0; 1/, P2D .0; 2/, which are on
different boundary components. See Figure 2, which also depicts the arcs e , u, u�1 .
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P1

P2

arc e arc u arc u�1

Figure 2: The marked annulus Aio and the arcs e , u and u�1

For L1;L2 2 S.Aio/ define the product L1L2 by placing L1 inside L2 . Formally
this means we first shrink Aio � L1 by 1

2
, we get .1

2
Aio/ � .

1
2
L1/, where 1

2
Aio is

an annulus on the plane whose outer circle is the inner circle of Aio . Then L1L2 is
.1

2
L1/[L2 � .

1
2
Aio/[Aio . The identity of S.Aio/ is presented by e , and u�1uD

e D uu�1 .

Proposition 2.1 The Kauffman bracket skein modules of Aio are S.Aio/DRŒu˙1�,
the ring of Laurent R–polynomials in one variable u. In particular, S.Aio/ is commu-
tative.

Proof Using Proposition 1.2 one can easily show that the set fuk j k 2 Zg is a free
R–basis of S.Aio/.

2.2 Passing through Tk

Recall that S.A/DRŒz�. One defines a left action and a right action of S.A/ on S.Aio/

as follows. For L 2 S.A/;K 2 S.Aio/ let L �K be the element in S.Aio/ obtained
by placing L above K , and K �L 2 S.Aio/ be the element in S.Aio/ obtained by
placing K above L. For example,

e � z D ; z � e D :

Proposition 2.2 One has

Tk.z/ � e D tkuk
C t�ku�k ;(6)

e �Tk.z/D tku�k
C t�kuk ;(7)

Tk.z/ � e� e �Tk.z/D .t
k
� t�k/.uk

� u�k/:(8)

Proof It is important to note that the map f W S.A/! S.Aio/ given by f .L/DL�e

is an algebra homomorphism.
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Resolve the only crossing point, we have

z � e D D t C t�1
D tuC t�1u�1:

Hence

Tk.z/ � e D Tk.tuC t�1u�1/ (because f is an algebra homomorphism)

D tkuk
C t�ku�k (by (4)):

This proves (6). The proof of (7) is similar, while (8) follows from (6) and (7).

Corollary 2.3 Suppose �2N D 1. Then TN .z/ is central at � .

Proof We have �N D ��N since �2N D1. Then (8) shows that TN .z/�eD e�TN .z/,
which easily implies the centrality of TN .z/.

Remark 2.4 The corollary was first proved by Bonahon and Wong [2] using another
method.

2.3 Transparent elements

We say that p.z/2CŒz� is transparent at � if for any 3 disjoint framed knots K;K1;K2

in any oriented 3–manifold M , p.K/[K1Dp.K/[K2 in S�.M /, provided that K1

and K2 are isotopic in M . Note that in general, K1 and K2 are not isotopic in M nK .

Proposition 2.5 The following are equivalent.

(i) p.z/ � e D e �p.z/ in S�.Aio/.

(ii) p.z/ is transparent at � .

(iii) p.z/ is central at � .

Proof It is clear that (i) ) (ii) ) (iii). Let us prove (iii) ) (i).

By gluing a 1–handle to A we get a punctured torus Tpunc as in Figure 3. Here the
base of the 1–handle is glued to a small neighborhood of fP1[P2g in @A, and the
core of the 1–handle is an arc ˇ connecting P1 and P2 . Let �W S.Aio/! S.Tpunc/ be
the R–map which is the closure by ˇ , ie �.K/DK[ˇ . Then �.uk/ is a knot in Tpunc

for every k 2 Z, and �.uk/ is not isotopic to �.ul/ if k ¤ l . Since fuk j k 2 Zg is
an R–basis of S.Aio/ and the isotopy classes of links in Tpunc form an R–basis of
S.Tpunc/, � is injective.

Assume (iii). Then p.z/�.e/ D �.e/p.z/, or �.p.z/ � e/ D �.e � p.z//. Since � is
injective, we have p.z/ � e D e �p.z/.
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P2

P1
ˇ

Figure 3: The core ˇ connects P1 and P2 in Tpunc .

2.4 Proof of Theorem 1

The “if” part has been proved; see Corollary 2.3. Let us prove the “only if” part.
Assume that p.z/ is central at � and has degree k � 1. Since fTj .z/ j j � 0g is a
basis of CŒz�, we can write

(9) p.z/D

kX
jD0

cj Tj .z/; cj 2C; ck ¤ 0:

By Proposition 2.5, p.z/ � e � e �p.z/D 0. Using expression (9) for p.z/ and (8),
we get

0D p.z/ � e� e �p.z/D

kX
jD0

cj .�
j
� ��j /.uj

� u�j /:

Because fuj j j 2Zg is a basis of S�.Aio/, the coefficient of each uj on the right-hand
side is 0. This means

(10) cj D 0 or �2j
D 1 for all j:

Since ck ¤ 0, we have �2k D 1. Since k � 1, this shows �2 is a root of unity of
some order N . Then (10) shows that cj D 0 unless N jj . Thus, p.z/ is a C–linear
combination of Tj with N jj . This completes the proof of Theorem 1.

2.5 Skew transparency

One more consequence of Proposition 2.2 is the following.

Corollary 2.6 Suppose �2N D�1. Then in S�.Aio/,

TN .z/ � e D�e �TN .z/:

Algebraic & Geometric Topology, Volume 15 (2015)
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This means every time we pass TN .K/ through a component of a link L, the value of
the skein gets multiplied by �1. Following is a precise statement.

Suppose K1 and K2 are knots in a 3–manifold M . Recall that an isotopy between K1

and K2 is a smooth map H W S1 � Œ1; 2�!M such that for each t 2 Œ1; 2�, the map
Ht W S

1 ! M is an embedding, and the image of Hi is Ki for i D 1; 2. Here
Ht .x/DH.x; t/. For a knot K �M let I2.H;K/ be the mod 2 intersection number
of H and K . Thus, if H is transversal to K then I2.H;K/ is the number of points
in the finite set H�1.K/ modulo 2.

Definition 2 Suppose �D˙1. A polynomial p.z/ 2CŒz� is called �–transparent at
� 2C� if for any 3 disjoint framed knots K;K1;K2 in any oriented 3–manifold M ,
with K1 and K2 connected by an isotopy H , one has the following equality in S�.M /:

p.K/[K1 D �
I2.H ;K /Œp.K/[K2�:

From Corollary 2.6 we have:

Corollary 2.7 Assume �4N D 1. Then � WD �2N D˙1, and TN .z/ is �–transparent.

A special case is the following. Suppose D �M is a disk in M with @D DK , and a
framed link L�M is disjoint from K . Then, if �2N D �D˙1, one has

(11) K[TN .L/D �
I2.D;L/�0TN .L/ in S�.M /:

Here �0 D�.�
2C ��2/ is the value of trivial knot in S�.M /.

3 Filtrations of skein modules

Suppose ˆ is a link in @M . We define an R–map ˆW S.M /! S.M / by ˆ.L/D
ˆ[L.

3.1 Filtration by an arc

Suppose ˛ is an arc properly embedded in a marked surface .†;P/ with @† ¤ ∅.
Assume the two boundary points of ˛ , which are on the boundary of †, are disjoint
from the marked points. Then D˛ WD ˛ � Œ�1; 1� is a disk properly embedded in
†� Œ�1; 1�, with boundary ˆ˛ D @.˛� Œ�1; 1�/D .˛� f�1; 1g/[ .@˛� Œ�1; 1�/.

Let F˛
k
D F˛

k
.S.†// be the R–submodule of S.†/ spanned by all relative links

which intersect with D˛ at less than or equal to k points. For L 2 S.†/, we define
fil˛.L/Dk if L2F˛

k
nF˛

k�1
. The filtration is compatible with the algebra structure, ie

fil˛.L1L2/� fil˛.L1/Cfil˛.L2/:
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Remark 3.1 A similar filtration was used in [14] to calculate the skein module of
torus knot complements.

A convenient way to count the number of intersection points of a link L with D˛ is
to count the intersection points of the diagram of L with ˛ . Let D be the vertical
projection of L onto †. In general position D has only singular points of type double
points, and we assume further that D is transversal to ˛ . In that case, the number of
intersection points of L with D˛ is equal to the number of intersections of D with ˛ ,
where each intersection point of ˛ and D at a double point of D is counted twice.

Recall that ˆ˛.L/DL[ˆ˛ , where ˆ˛ is the boundary of the disk D˛ D ˛� Œ�1; 1�.
It is clear that F˛

k
is ˆ˛ –invariant, ie ˆ˛.F˛k /�F˛

k
. It turns out that the action of ˆ˛

on the quotient F˛
k
=F˛

k�1
is very simple. Recall that �k D�.t

2kC2C t�2k�2/.

Proposition 3.2 For k � 0, the action of ˆ˛ on F˛
k
=F˛

k�1
is �k times the identity.

This is a consequence of Proposition 3.3, proved in the next subsection.

3.2 The Temperley–Lieb algebra and the operator ˆ

The well-known Temperley–Lieb algebra TLk is the skein module of the disk with 2k

marked points on the boundary. We will present the disk as the square SqD Œ0; 1��Œ0; 1�
on the standard plane, with k marked points on the top side and k marked points on
the bottom side. The product L1L2 in TLk is defined as the result of placing T1 on
top of T2 . The unit zek of TLk is presented by k vertical straight arcs; see Figure 4.

zek arc ˛ ˆ˛.zek/

Figure 4: The unit zek , the arc ˛ and ˆ˛.zek/: here k D 4

Let ˛� Sq be the horizontal arc Œ0; 1�� 1
2

. The element ˆ˛.zek/ is depicted in Figure 4.
In general, ˆ˛.L/ is L encircled by one simple closed curve.

Proposition 3.3 With the above notation, one has

(12) ˆ˛.zek/D �kzek .mod F˛k�1/:

Algebraic & Geometric Topology, Volume 15 (2015)
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Proof A direct proof can be carried out as follows. Using the skein relation (1) one
resolves all the crossings of the diagram of ˆ˛.zek/, and finds that only a few terms
are not in F˛

k�1
, and the sum of these terms is equal to �kzek . This is a good exercise

for the dedicated reader.

Here is another proof using more advanced knowledge of the Temperley–Lieb algebra.
First we extend the ground ring to the field of fractions C.t/. Then the Temperley–Lieb
algebra contains a special element called the Jones–Wenzl idempotent fk (see eg
Lickorish [13, Chapter 13]). We have fk D zek .mod F˛

k�1
/, and fk is an eigenvector

of ˆ˛ with eigenvalue �k . Hence, we have (12).

4 Another annulus with two marked points

4.1 Annulus with two marked points on the same boundary

Let Aoo be the annulus A with two marked points Q1;Q2 on the outer boundary as
in Figure 5. Let u0;u1 be arcs connecting Q1 and Q2 in Aoo as in Figure 5.

Q1

Q2

arc u0 arc u1

Figure 5: The marked annulus Aoo and arcs u0;u1

Define a left S.A/–module and a right S.A/–module on S.Aoo/ as follows. For
K 2 S.Aoo/ and L 2 S.A/ let KL be the skein in S.Aoo/ obtained by placing K on
top of L, and LK 2 S.Aoo/ obtained by placing L on top of K . It is easy to see that
KLDLK . Recall that S.A/DRŒz�.

Proposition 4.1 The module S.Aoo/ is a free S.A/–module with basis fu0;u1g:

S.Aoo/DRŒz�u0˚RŒz�u1:

Proof Any relative link in Aoo is of the form uiz
m with i D 0; 1 and m 2 Z. The

proposition now follows from Proposition 1.2.
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4.2 Framing change and the unknot

Recall that Sk is the k th Chebyshev polynomial of type 2. The values of the unknot
colored by Sk and the framing change are well known (see eg Blanchet, Habegger,
Masbaum and Vogel [1]): in S.M /, where M is an oriented 3–manifold, one has

LtSk.U /D .�1/k
t2kC2� t�2k�2

t2� t�2
L;(13)

Sk

� �
D .�1/k tk2C2kSk

� �
:(14)

Here in (13), U is the trivial knot lying in a ball disjoint from L.

4.3 Some elements of S.Aoo/

Let uk ; k � 0 are arcs in Aoo depicted in Figure 6. The elements u1 and u0 are
the same as the ones defined in Figure 5. Let v0 D u0 and vk ; k � 1 be arcs in Aoo

depicted in Figure 6.

uk D vk D

Figure 6: The arcs uk and vk , with k D 3

Proposition 4.2 One has

uk D tk�1Sk�1.z/u1C tk�3Sk�2.z/u0;(15)

vk D t2�kSk�1.z/u1C t�kSk.z/u0;(16)

for all k � 1, for all k � 0, respectively.

Proof Suppose k � 3. Applying the skein relation to the innermost crossing of uk ,
we get

uk D D t C t�1

which, after an isotopy and removing a framing crossing, is

uk D tuk�1z� t2uk�2;

from which one can easily prove (15) by induction.

Algebraic & Geometric Topology, Volume 15 (2015)
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Similarly, using the skein relation to resolve the innermost crossing point of vk , we get

vk D t�1vk�1z� t�2vk�2 for k � 2,

from which one can prove (16) by induction.

Remark 4.3 Identity (15) does not hold for k D 0. This is due to a framing change.

4.4 Operator ‰

Let ‰ be the arc in @A� Œ�1; 1� beginning at Q1 and ending at Q2 , as depicted in
Figure 7. Here we draw A� Œ�1; 1� as a handlebody. For any element ˛ 2 S.A/ let

Q1

Q2

Q1

Q2

arc ‰ ‰.z3/

Figure 7: Arc ‰ connecting Q1 and Q2 and ‰.z3/

‰.˛/ 2 S.Aoo/ be the skein ‰[˛ . For example, ‰.z3/ is given in Figure 7.

Proposition 4.4 For k � 1, one has

(17) ‰.Tk.z//D u1Œt
2.t�2k

� t2k/Sk�1.z/�Cu0Œt
�2kSk.z/� t2kSk�2.z/�:

Proof Applying Proposition 2.2 to the part in the left rectangle box, we get

Tk D tk
C t�k :

The positive framing crossing in the first term gives a factor �t3 . Thus

‰.Tk.z//D�tkC3uk C t�kvk :

Plugging in the values of uk ; vk given by Proposition 4.2, we get the result.

Remark 4.5 One can use Proposition 4.4 to establish product-to-sum formulas similar
to the ones in Frohman and Gelca [8].
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5 Twice-punctured disk

5.1 Skein module of twice-punctured disk

Let D�R2 be the disk of radius 4 centered at the origin, D1�R2 the disk of radius 1

centered at .�2; 0/, and D2 the disk of radius 1 centered at .2; 0/. We define D to

˛1 ˛0 ˛2 ˛3

Figure 8: The twice-punctured disk D and the arcs ˛1; ˛0; ˛2; ˛3

be D with the interiors of D1 and D2 removed. The horizontal axis intersects D at 3
arcs denoted from left to right by ˛1; ˛0; ˛2 ; see Figure 8. The vertical axis of R2

intersects D at an arc denoted by ˛3 . The corresponding curve ˆ˛i
on @D� Œ�1; 1�

will be denoted simply by ˆi for i D 0; 1; 2; 3. If D � Œ�1; 1� is presented as the
handlebody H , which is a thickening of D in R3 , then the curves ˆ1; ˆ0; ˆ2; ˆ3 are
shown in Figure 9.

ˆ1 ˆ0 ˆ2 ˆ3

Figure 9: The curves ˆ1; ˆ0; ˆ2; ˆ3 on the boundary of the handlebody

Let x1;x2 , and y be the closed curves in D :

x1 D x2 D ; y D :

It is known that we have the equality S.D/DRŒx1;x2;y�, the R–polynomial in the
variables x1;x2;y ; see Bullock and Przytycki [6]. In particular, S.D/ is commutative.

Let � be the rotation about the origin of R2 by 180ı . Then �.D/ D D . Hence �
induces an automorphism of S.D/DRŒx1;x2;y�, which is an algebra automorphism.
One has �.y/D y; �.x1/D x2; �.x2/D x1 .

5.2 Degrees on S.D/D RŒx1;x2;y �

Define the left degree, right degree and double degree on RŒx1;y;x2� as follows. For
a monomial m D x

a1

1
ybx

a2

2
define its left degree degl.m/ D a1 C b , right degree
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degr .m/ D a2C b , double degree deglr .m/ D degl.m/C degr .m/ D a1C a2C 2b .
One readily finds that

degl.m/D fil˛1
.m/; degr .m/D fil˛2

.m/;

where fil˛ is defined in Section 3.1. Using the definition of fil˛ involving the numbers
of intersection points we get the following.

Lemma 5.1 Suppose L is an embedded link in D and L intersects transversally the
arc ˛i at ki points for i D 1; 2; 3. Then, as an element of S.D/, L D x

a1

1
x

a2

2
yb ,

where 2b � k3 and

degl.L/� k1; degl.L/� k1 .mod 2/;

degr .L/� k2; degr .L/� k2 .mod 2/:

Consequently, deglr .L/� k1C k2 and deglr .L/� k1C k2 .mod 2/.

Proof If LDL1tL2 is the union of 2 disjoint sublinks, and the statement holds for
each of Li , then it holds for L. Hence we assume L has one component, ie L is an
embedded loop in D �R2 . Then L is isotopic to either a trivial loop, x1 , x2 or y . In
each case, the statement can be verified easily. For example, suppose LD x1 . For the
mod 2 intersection numbers, I2.L; ˛1/D I2.x1; ˛1/D 1. Hence k1 , the geometric
intersection number between L and ˛1 , must be odd and bigger than or equal to 1.
Hence, we have degl.L/� k1 and degl.L/� k1 .mod 2/.

Corollary 5.2 Suppose L is a link diagram on D which intersects transversally the
arc ˛i at ki points for i D 1; 2; 3. Then, as an element in S.D/,

degl.L/� k1; degr .L/� k2; 2 degy.L/� k3;

and L is a linear R–combination of monomials whose double degrees are equal to
k1C k2 modulo 2.

5.3 The R–module Vn and the skein 


Let 
 and x
 be the following link diagrams on D :

(18) 
 D ; x
 D :

Let
Vn D fp 2RŒx1;x2;y� j degl.p/� n; degr .p/� n; deglr .p/ eveng:

In other words, Vn �RŒx1;x2;y� is the R–submodule spanned by x
a1

1
x

a2

2
yb , with

ai C b � n for i D 1; 2 and a1C a2 even.
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Lemma 5.3 One has Tn.
 /;Tn.x
 / 2 Vn .

Proof The diagram 
 k has k intersection points with each of ˛1 and ˛2 . By
Corollary 5.2, we have degl.


k/ � k; degr .

k/ � k , and each monomial of 
 k

has double degree � k C k � 0 .mod 2/. This means 
 k 2 Vk for every k � 0.
Because Tn.
 / is Z–linear combination of 
 k with k � n, we have Tn.
 / 2 Vn . The
proof for x
 is similar.

Remark 5.4 It is an easy exercise to show that TN .x
 /D TN .
 /jt!t�1 .

6 Skein module of twice-punctured disk at root of 1

Recall that 
 and x
 are knot diagrams on D defined by (18). The following was proved
by Bonahon and Wong, using quantum Teichmüller algebras and their representations.

Proposition 6.1 Suppose �4 is a root of 1 of order N . Then in S�.D/ one has

TN .
 /D �
�N 2

TN .y/C �
N 2

TN .x1/TN .x2/;(19)

TN .x
 /D �
N 2

TN .y/C �
�N 2

TN .x1/TN .x2/:(20)

As mentioned above, there was an urge to find a proof using elementary skein theory;
one such proof is presented here. Our proof roughly goes as follows. Using the
transparent property of TN .
 /, we show that TN .
 / is a common eigenvector of
several operators. We then prove that the space of common eigenvectors has dimension
at most 3, with a simple basis. We then fix coefficients of TN .
 / in this basis using
calculations in highest order. Then the result turns out to be the right-hand side of (19).

Throughout this section we fix a complex number � such that �4 is a root of unity
of order N . Define "D �N 2

. We will write VN;� simply by VN and �k for �k.�/.
Thus, in the whole section,

�k D�.�
2kC2

C ��2k�2/:

6.1 Properties of � and �k

Recall that �4 is a root of 1 of order N .

Lemma 6.2 Suppose 1� k �N � 1. Then:

(i) �2k D �0 if and only if k DN � 1.

(ii) �k D �
2N�0 implies that k DN � 2.

Algebraic & Geometric Topology, Volume 15 (2015)



On Kauffman bracket skein modules at roots of unity 1109

(iii) If N is even then �2N D�1.

(iv) One has

(21) �2N 2C2N
D .�1/NC1:

Proof (i) With �k D�.�
2kC2C ��2k�2/, we have

�2k ��0 D��
�2�4k.�4k

� 1/.�4kC4
� 1/:

Hence, �2k ��0 D 0 if and only if either N j k or N j .kC 1/. With 1� k �N � 1,
this is equivalent to k DN � 1.

(ii) We have

�k � �
2N�0 D��

�2N�2.�2N�2k
� 1/.�2NC2kC4

� 1/:

Either �2N�2k D 1 or �2NC2kC4 D 1. Taking the squares of both identities, we see
that either N j .N � k/ or N j .k C 2/. With 1 � k � N � 1, we conclude that
k DN � 2.

(iii) Suppose N is even. Since �4 has order N , one has .�4/N=2 D �1. Then
�2N D .�4/N=2 D�1.

(iv) The proof is left for the reader.

6.2 Operators ˆi and the vector space W

Recall that ˆi WDˆ˛i
, i D 0; 1; 2; 3, is defined in Section 5.1. Then ˆi.VN /� VN

for i D 0; 1; 2; 3.

Let ˆ4 be the curve on @D � Œ�1; 1� depicted in Figure 10. Here we draw H D
D� Œ�1; 1� as a handlebody. We also depict ˆ4.x

3
2
/.

ˆ4 ˆ4.x
3
2
/

Figure 10: The curve ˆ4 and ˆ4.x
3
2/

We do not have ˆ4.VN /� VN , since ˆ4 in general increases the double degree. By
counting the intersection points with ˛1 and ˛2 , we have, for every E 2 S�.D/ D
CŒx1;x2;y�,

(22) deglr .ˆ4.E//� deglr .E/C 1:
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Proposition 6.3 If E is one of fTN .
 /;TN .x
 /;TN .y/;TN .x1/TN .x2/g, then

�.E/DE;(23)

ˆ1.E/D �
2N�0E;(24)

ˆi.E/D �0E for i D 0; 3;(25)

ˆ4.E/D �
2N x1E:(26)

Proof The first identity follows from the fact that each of 
; x
 ;y;x1[x2 is invariant
under � . The remaining identities follow from the �2N –transparent property of TN .z/,
Corollary 2.7.

Remark 6.4 Note that ˆ4 is CŒx1�–linear and (26) says E is a �2N x1 –eigenvector
of ˆ4 .

Let W be the subspace of VN consisting of elements satisfying (23)–(26). This
means W � VN consists of elements which are at the same time 1–eigenvector of � ,
�2N�0 –eigenvector of ˆ1 , �0 –eigenvector of ˆ0 and ˆ3 , and �2N x1 –eigenvector
of ˆ4 .

We will show that W is spanned by TN .y/;TN .x1/TN .x2/, and possibly 1.

6.3 Action of ˆ3 , ˆ0 and ˆ1

For an element F 2CŒx1;x2;y� and a monomial mD x
a1

1
x

a2

2
yb let coeff.F;m/ be

the coefficient of m in F .

Lemma 6.5 Suppose E 2W and coeff.E;yN /D 0. Then E 2CŒx1;x2�.

Proof Let k be the y–degree of E . Since E 2W and coeff.E;yN /D 0, one has
k �N � 1.

We need to show that k D 0. Suppose to the contrary that 1� k . Then 1� k �N �1.

First we will prove kDN �1, using the fact that E is a �0 –eigenvector of ˆ3 by (25).

Recall that fil˛3
is twice the y–degree. One has fil˛3

.E/ D 2k . Thus E ¤ 0 2

F˛3

2k
=F˛3

2k�1
. By Proposition 3.2, any nonzero element in F˛3

2k
=F˛3

2k�1
is an eigenvector

of ˆ3 with eigenvalue �2k . But E is an eigenvector of ˆ3 with eigenvalue �0 . It
follows that �2k D �0 . By Lemma 6.2, we have k DN � 1.

Because deglr .E/ is even and less than or equal to 2N , we must have

E D yN�1.c1x1x2C c2/CO.yN�2/; c1; c2 2C:
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We will prove c1D 0 by showing that otherwise, ˆ0 will increase the y –degree. Note
that ˆ0 can increase the y –degree by at most 1, and ˆ0 is CŒy�–linear. We have

(27) ˆ0.E/D yN�1.c1ˆ0.x1x2/C c2ˆ0.1//CO.yN�1/:

The diagram of ˆ0.x1x2/ has 4 crossings; see Figure 11.

Figure 11: The diagram of ˆ0.x1x2/

A simple calculation shows

ˆ0.x1x2/D .1� t4/.1� t�4/yCO.y0/:

Plugging this value in (27), with ˆ0.1/D �0 2C ,

(28) ˆ0.E/D yN c1.1� t4/.1� t�4/CO.yN�1/:

If c1 ¤ 0, then the y–degree of ˆ0.E/ is N , strictly bigger than that of E and E

cannot be an eigenvector of ˆ0 . Thus c1 D 0.

One has now

(29) E D c2yN�1
CO.yN�2/:

Since the y –degree of E is N �1, one must have c2¤ 0. By counting the intersections
with ˛3 , we see that ˆ1 does not increase the y –degree. We have

ˆ1.E/D c2ˆ1.y
N�1/CO.yN�2/

D c2�N�1yN�1
CO.yN�2/ by Proposition 3.2:

Comparing the above identity with (29) and using the fact that E is a �2N�0 –
eigenvector of ˆ1 , we have

�N�1 D �
2N�0;

which is impossible since Lemma 6.2 says that �k D �
2N�0 only when k DN � 2.

This completes the proof of the lemma.

6.4 Action of ˆ4

Recall that ˆ4 is the curve on the boundary of the handlebody H (see Figure 10) which
acts on S�.D/D CŒx1;x2;y�. The action of ˆ4 is CŒx1�–linear, and every element
of W is a �2N x1 –eigenvector of ˆ4 .
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Recall that degr D fil˛2
and degr .x

a1

1
x

a2

2
yb/D a2C b . Note that for F 2CŒx1;x2�,

degr .F / is exactly the x2 –degree of F . By looking at the intersection with ˛2 , we see
that ˆ4 preserves the ˛2 –filtration, ie degrˆ4.F /� degr .F /. We will study actions
of ˆ4 on the associated graded spaces.

We will use the notation FCdegr � lot to mean FCF1 , where degr .F1/ < degr .F /.

Lemma 6.6 Suppose 1� k �N � 1. One has

ˆ4.a.x1/TN .x2//D �
2N x1Œa.x1/TN .x2/�;(30)

ˆ4.Tk.x2//D yŒ�2.��2k
� �2k/xk�1

2 �C degr � lot .mod CŒx1;x2�/:(31)

Proof Identity (30) follows from the �2N –transparency of TN .z/.

Let us prove (31). Applying identity (17) to the dashed box below, we have

ˆ4.Tk.x2//D
Tk

D yŒ�2.��2k
� �2k/Sk�1.x2/�Cx1Œ�

�2kSk.x2/� �
2kSk�2.x2/�;

which implies (31).

6.5 The space W \ CŒx1;x2�

Lemma 6.7 Suppose E 2 W \CŒx1;x2� and the coefficient of xN
1

xN
2

in E is 0.
Then E 2C .

Proof Since Tk.x2/ is a basis of CŒx2�, we can write E uniquely as

E D

NX
kD0

ak.x1/Tk.x2/; ak.x1/ 2CŒx1�:

Let j be the x2 –degree of E0 WDE � aN .x1/TN .x2/. Then j �N � 1.

First we will show j D 0. Assume to the contrary that j � 1. Thus 1 � j �

N � 1. Note that E , by assumption, and aN .x1/TN .x2/, by (30), are eigenvectors
of ˆ4 with eigenvalue �2N x1 . It follows that E0 is also an eigenvector of ˆ4 with
eigenvalue �2N x1 . We have

E0 D

jX
kD0

ak.x1/ˆ4.Tk.x2//D aj .x1/Tj .x2/C degr � lot:

Using (31) and the fact that ˆ4 does not increase degr , we have

ˆ4.E
0/D yŒaj .x1/�

2.��2k
� �2k/xk�1

2 �C degr � lot .mod CŒx1;x2�/:
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When 1� j � n� 1, the coefficient of y , which is the element in the square bracket,
is nonzero. Thus ˆ4.E

0/ 62CŒx1;x2�, while E0 2CŒx1;x2�. This means E0 cannot
be an eigenvector of ˆ4 , a contradiction. This proves j D 0.

So we have
E D aN .x1/TN .x2/C a0.x1/:

Because deglr .E/<2N , the x1 –degree of aN .x1/ is less than n. Using the invariance
under � , one sees that E must be of the form

(32) E D c1.TN .x1/CTN .x2//C c2; c1; c2 2C:

To finish the proof of the lemma, we need to show that c1 D 0. Assume that c1 ¤ 0.
Since E has even double degree, N is even. By Lemma 6.2(iii), �2N D�1.

Recall that E is a �0 –eigenvector of ˆ0 . Applying ˆ0 to (32),

�0Œc1.TN .x1/CTN .x2//C c2�Dˆ0.c1.TN .x1/CTN .x2//C c2/:

Both TN .x1/ and TN .x2/ are eigenvectors of ˆ0 with eigenvalues �2N�0 D ��0 ,
while ˆ0.1/D �0 . Hence we have

�0Œc1.TN .x1/CTN .x2//C c2�D �0Œ�c1.TN .x1/�TN .x2//C c2�;

which is impossible since c1�0 ¤ 0. Hence, we have c1 D 0 and E 2C .

6.6 Some maximal degree parts of TN .
/

Lemma 6.8 One has

coeff.TN .
 /;y
N /D ��N 2

;(33)

coeff.TN .
 /;x
N
1 xN

2 /D �
N 2

:(34)

Proof Since TN .
 /D 

N C deglr � lot, we have

coeff.TN .
 /;y
N /D coeff.
N ;yN /; coeff.TN .
 /;x

N
1 xN

2 /D coeff.
N ;xN
1 xN

2 /:

There are N 2 crossing points in the diagram of 
N . Each crossing can be smoothed
in two ways. The positive smoothing acquires a factor t in the skein relation, and
the negative smoothing acquires a factor t�1 . The are 2N 2

smoothings of 
N . Each
smoothing s of all the N 2 crossings gives rise to a link Ls embedded in D . Then 
N

is a linear combination of all Ls . We will show that the only s for which Ls D yN is
the all negative smoothing.

Consider a crossing point C of 
N . The vertical line passing through C intersects D in
an interval ˛0

3
which is isotopic to ˛3 , and fil˛3

D fil˛0
3

. For an embedded link L in D ,
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as an element of S.D/DRŒx1;x2;y�, L is a monomial whose y –degree is bounded
above by half the number of intersection points of L with ˛0

3
. The diagram 
N

has exactly 2N intersection points with ˛0
3

, with C contributing two (of the 2N

intersection points). If we positively smooth 
N at C , the result is a link diagram with
2N �2 intersection points with ˛0

3
, and no matter how we smooth other crossings, the

resulting link will have less than or equal to 2N�2 intersection points with ˛0
3

. Thus we
cannot get yN if any of the crossing is smoothed positively. The only smoothing which
results in yN is the all negative smoothing. The coefficient of this smoothing is ��N 2

.

Similarly, one can prove that the only smoothing which results in xN
1

xN
2

is the all
positive smoothing, whose coefficient is �N 2

.

6.7 Proof of Proposition 6.1

Let
E D TN .
 /� �

N 2

TN .x1/TN .x2/� �
�N 2

TN .y/:

Then E 2 W . Lemma 6.8 shows that coeff.E;yN / D 0 D coeff.E;xN
1

xN
2
/. By

Lemma 6.5, E 2CŒx1;x2�. Then by Lemma 6.7, we have E 2C , ie E is a constant.

We will show that E D 0. This is done by using the inclusion of H into R3 , which
gives a C–linear map �W S�.D/! S�.R3/DC . Under �, we have

(35) E D �.TN .
 //� �.�
N 2

TN .x1/TN .x2//� �.�
�N 2

TN .y//:

The right-hand side involves the trivial knot and the trivial knot with framing 1, and
can be calculated explicitly as follows. Note that �.
 / is the unknot with framing 1,
while �.x1/D �.x2/D �.y/D U , the trivial knot. With TN D SN �SN�2 , and the
framing change given by (14), we find

(36) TN

� �
D .�1/N �N 2C2N TN

� �
D���N 2

TN

� �
;

where the second identity follows from (21). Similarly, using (13), we have

(37) TN .LtU /D 2.�1/N �2N TN .L/D�.�
2N 2

C ��2N 2

/TN .L/:

From (36) and (37), we calculate the right-hand side of (35), and find that E D 0. This
proves (19).

The proof of (20) is similar. Alternatively, one can get (20) from (19) by noticing that
the mirror image map on RŒx1;x2;y� is the C–algebra map sending t to t�1 , leaving
each of x1;x2;y fixed.

This completes the proof of Proposition 6.1.
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7 Proof of Theorem 2

Recall that " D �N 2

, where �4 is a root of 1 of order N . Then "4 D 1. The map
S".M /! S�.M /, defined for framed links by L! TN .L/, is well defined if and
only if it preserves the skein relations (1) and (2), ie in S�.M /,

TN .L/D "TN .LC/C "
�1TN .L�/;(38)

TN .LtU /D�."2
C "�2/TN .L/:(39)

Here, in (38), L;LC;L� are links appearing in the original skein relation (1), they
are identical everywhere, except in a ball B , where they appear as in Figure 12.

L LC L�

Figure 12: The links L , LC and L�

Identity (39) follows from (37). Let us prove (38).

Case 1 The two strands of L in the ball B belong to the same component. Then (38)
follows from Proposition 6.1, applied to the handlebody which is the union of B and a
tubular neighborhood of L.

Case 2 The two strands of L in B belong to different components. Then the two
strands of LC belong to the same component, and we can apply (38) to the case when
the left-hand side is LC . We have

TN .LC/D TN

� �
D TN

� �
D "�1TN

� �
C "TN

� �
(40)

D "�1TN

� �
C ".�"/TN

� �
(41)

D "�1TN .L/� "
2TN .L�/;(42)

where (40) follows from Case 1 and (41) follows from the framing factor formula (36).
Multiplying (42) by " and using "3 D "�1 , we get (38) in this case. This completes
the proof of Theorem 2.

Remark 7.1 In [2], in order to prove Theorem 2, the authors proved in addition to
Proposition 6.1 a similar statement for links in the cylinder over a punctured torus.
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Here we bypass this extra statement by reducing the extra statement to Proposition 6.1.
Essentially this is due to the fact that the cylinder over a punctured torus is the same as
the cylinder over a twice-punctured disk.
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