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Casson towers and filtrations of the
smooth knot concordance group

ARUNIMA RAY

The n–solvable filtration fFng
1
nD0

of the smooth knot concordance group (denoted
by C ) due to Cochran, Orr and Teichner has been instrumental in the study of knot
concordance in recent years. Part of its significance is due to the fact that certain
geometric attributes of a knot imply membership in various levels of the filtration. We
show the counterpart of this fact for two new filtrations of C due to Cochran, Harvey
and Horn; the positive and negative filtrations, denoted by fPng

1
nD0

and fNng
1
nD0

respectively. In particular, we show that if a knot K bounds a Casson tower of height
nC2 in B4 with only positive (resp. negative) kinks in the base-level kinky disk, then
K 2 Pn (resp. Nn ). En route to this result we show that if a knot K bounds a Casson
tower of height nC 2 in B4 , it bounds an embedded (symmetric) grope of height
nC 2 and is therefore n–solvable. We also define a variant of Casson towers and
show that if K bounds a tower of type .2; n/ in B4 , it is n–solvable. If K bounds
such a tower with only positive (resp. negative) kinks in the base-level kinky disk
then K 2 Pn (resp. K 2Nn ). Our results show that either every knot which bounds
a Casson tower of height three is topologically slice or there exists a knot in

T
Fn

which is not topologically slice. We also give a 3–dimensional characterization, up
to concordance, of knots which bound kinky disks in B4 with only positive (resp.
negative) kinks; such knots form a subset of P0 (resp. N0 ).

57M25

1 Introduction

A knot is the image of a smooth embedding S1 ,! S3 D @B4 . A knot is called
slice if it bounds a smooth, properly embedded disk in B4 . The set of knots, modulo
slice knots, under the connected sum operation forms an abelian group called the
knot concordance group, denoted by C . We will often use the same letter to denote
a knot K and its concordance class. There is a parallel theory of concordance in the
topological category. In particular, a knot is called topologically slice if it bounds a
proper, topologically embedded, locally flat disk in B4 . There exist infinitely many
knots which are topologically slice but not smoothly slice (see Endo [14], Gompf [20],
Hedden and Kirk [25], Hedden, Livingston and Ruberman [26] and Hom [27]).
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1120 Arunima Ray

Much like the 3–dimensional study of knots frequently focuses on determining how
close a knot is to being unknotted, the 4–dimensional study attempts to assess how
close a knot is to being slice. In 2003, this notion was formalized when Cochran,
Orr and Teichner [12] introduced the n–solvable filtration of C and showed that the
lower levels of the filtration encapsulate the information one can extract from various
classical concordance invariants, such as algebraic concordance class, Levine–Tristram
signatures, Casson–Gordon invariants etc. Therefore, in an almost quantifiable sense,
the deeper a knot is within the n–solvable filtration, the closer it is to being slice.
Studying filtrations gives us a way of understanding the structure of C , a large unwieldy
object, in terms of smaller (and hopefully simpler) pieces.

Part of the justification for the naturality of the n–solvable filtration is its close rela-
tionship with several more geometric filtrations of C . In particular, certain geometric
attributes imply membership in various levels of the n–solvable filtration as follows.

Theorem 1 [12, Theorems 8.11 and 8.12] If a knot K bounds a grope of height
nC 2, then K is n–solvable. If a knot K bounds a Whitney tower of height nC 2,
then K is n–solvable.

Cochran, Harvey and Horn [9] have recently introduced a new pair of filtrations (by
monoids) of C , the positive and negative filtrations

� � � � PnC1 � Pn � � � � � P0 � C;
� � � �NnC1 �Nn � � � � �N0 � CI

see Section 2 for precise definitions. These new filtrations have proven to be of
interest because they can be used to study smooth concordance classes of topologi-
cally slice knots; this distinguishes them from the n–solvable filtration, since if K

is topologically slice, K is n–solvable for all n. Cochran, Harvey and Horn also
defined the bipolar filtration (by subgroups) of C , Bn WDPn\Nn [9], and it is expected
that this filtration will nontrivially filter topologically slice knots at each n, ie if
Tn D Bn\ftopologically slice knotsg, it is expected that Tn ¤ TnC1 . This is currently
known for knots at n� 1; see [9] and Cochran and Horn [10]. For links of two or more
components, this is known for all n by work of Cha and Powell [6].

In this paper we will prove counterparts of Theorem 1 for the positive and negative fil-
trations in terms of Casson towers (see Casson [3] and Freedman [15]): 4–dimensional
objects built using layers of immersed disks (see Figure 1 for a schematic picture).
In particular, we define several new filtrations of C : fCng

1
nD1

, fCCn g
1
nD1

, fC�n g
1
nD1

,
fC2;ng

1
nD1

, fCC
2;n
g1
nD1

and fC�
2;n
g1
nD1

.
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Figure 1: Schematic diagram of a Casson tower of height three

Any knot K that can be changed to a slice knot by only changing positive crossings
to negative crossings is known to be in P0 by [9, Proposition 3.1] and Cochran and
Lickorish [11, Lemma 3.4]. Such a knot also bounds an immersed disk in B4 with
only positive self-intersections (ie kinks). Indeed if a knot K bounds an immersed
disk in B4 with only positive kinks, we can blow up the kinks, ie connect-sum with a
CP .2/ at each kink, to obtain a slice disk for K in a 4–manifold with positive-definite
intersection form as called for in the definition for P0 . (This reveals how the definition
of P0 is a generalization of both the ordering on knot concordance classes given by
Cochran and Gompf [8] and Cochran and Lickorish [11], and the notion of kinkiness of
knots defined by Gompf in [20].) Similar statements hold for knots bounding immersed
disks with only negative kinks and N0 . Since bounding an immersed disk is closely
related to membership in the 0th level of the positive and negative filtrations, Casson
towers — built using layers of immersed disks — are natural objects to study in this
context.

In this paper, we establish several relationships between various filtrations of C
(Theorem A) and completely characterize knots in C˙

1
, ie knots which bound kinky

disks in B4 with only positive (resp. negative) kinks (Theorem B) as follows.

Theorem A Let fFng
1
nD0

denote the n–solvable filtration of C , fGng
1
nD0

the (sym-
metric) grope filtration of C , and fG2;ng

1
nD0

a slight enlargement of the grope filtration
(precise definitions for the filtrations can be found in Section 2).

For any n� 0:
(i) CnC2 � GnC2 � Fn .

(ii) C2;n � G2;n � Fn .

(iii) CC
nC2
� CC

2;n
� Pn .

(iv) C�
nC2
� C�

2;n
�Nn .
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Theorem B For any knot K , the following statements are equivalent.

(i) K 2 CC
1

(resp. C�
1

).

(ii) K is concordant to a fusion knot of split positive (resp. negative) Hopf links.

(iii) K is concordant to a knot which can be changed to a ribbon knot by changing
only positive (resp. negative) crossings.

The second inclusion in part (ii) of Theorem A is exactly the second result listed earlier
in Theorem 1 [12, Theorem 8.11] and we only include it here for completeness.

Let Wn denote the set of knots which bound Whitney towers of height n in B4 . Whitney
towers are similar to Casson towers except that kinks appear in pairs of opposing sign
and higher-stage disks are attached to curves which traverse from one kink in a pair
to the other (see Freedman and Quinn [17] for more details). It is well known that
any Casson tower yields a Whitney tower with the same attaching curve; one may see
this using Kirby diagrams (the basic idea is that, in a Casson tower, we can locally
introduce a kink of the opposite sign at any kink in such a way that the attaching
curve for the higher-stage disk in the Casson tower is changed appropriately). As a
result, in conjunction with Theorem 1 [12, Theorem 8.12], it was already known that
CnC2 �WnC2 � Fn . Our contribution consists of showing that if a knot bounds a
Casson tower T of height n in B4 , it bounds a properly embedded grope of height n

within T (Proposition 3.1). In contrast, Schneiderman has shown that if a knot bounds
a properly embedded grope of height n in B4 , it bounds a Whitney tower of height n

in B4 ; see [43, Corollary 2]. The converse to Schneiderman’s statement is not known.
In summary, it was previously known that GnC2�WnC2�Fn and CnC2�WnC2�Fn .
We have now shown that CnC2 � GnC2 �WnC2 � Fn .

We will see C˙n � Cn and C˙
2;n
� C2;n for all n, and therefore parts (i) and (ii)

of Theorem A imply C˙nC2 � Fn and C˙2;n � Fn . Along with [9, Proposition 5.5]
which states that Pn � Fodd

n (and Nn � Fodd
n ), we get the following inclusions for

each n (fFodd
n g
1
nD0

is a larger filtration than the n–solvable filtration, ie Fn � Fodd
n

for each n):

Fn � Fodd
n

� �

CC
nC2
� Pn

Fn � Fodd
n

� �

CC
2;n
� Pn

Fn � Fodd
n

� �

C�
nC2
� Nn

Fn � Fodd
n

� �

C�
2;n
� Nn

We state the following corollaries to facilitate easy reference in our proofs and examples.
They may be considered to be corollaries of Theorem A or of Theorem 1 along with
the fact that Casson towers yield Whitney towers with the same attaching curve.

Corollary 1 If a knot K lies in C2 , Arf.K/D 0.
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Corollary 2 If a knot K lies in C2;1 , then K is algebraically slice.

The above statements follow easily from well-known properties of the n–solvable
filtration, namely, any knot in F0 has trivial Arf invariant and any knot in F1 is
algebraically slice [12].

Gompf and Singh’s refinement of Freedman’s reimbedding theorem for Casson towers
(see [15, Theorem 4.4] and Gompf and Singh [22, Theorem 5.1]) implies that the
filtrations fCng

1
nD1

and fC˙n g
1
nD1

stabilize at n D 5, ie C5 D C6 D C7 D � � � and
C˙

5
D C˙

6
D C˙

7
D � � � . In fact, as we describe in Section 2, C5 is equal to T , the set

of all topologically slice knots. It is possible (and is believed by some experts) that C3

is equal to T . It is worth noting that while C5 D T , each of C˙
5

is a proper subset
of T . This mirrors the fact that the positive/negative filtrations are able to distinguish
topologically slice knots while the n–solvable filtration cannot.

As we see above the fCng
1
nD1

filtration stabilizes at nD 5 (or conjecturally at nD 3).
It is also easy to see that C1 D C , ie any knot bounds an immersed disk in B4 .
This indicates that if one is interested in studying smooth concordance classes of
topologically slice knots one should focus on these levels. The filtration fC2;ng

1
nD0

is designed specifically to filter knots within these levels, in particular between C2

and C3 .

We also see, in Corollary 3.8, that C3 � C2;n and C˙
3
� C˙

2;n
for all n� 0. Then from

part (i) of Theorem A,

C3 �

1\
nD0

Fn:

The only presently known elements of
T1

nD0 Fn are topologically slice knots and it
is conjectured that

T1
nD0 Fn D T . From the above, we can infer that either any knot

bounding a Casson tower of height three is topologically slice or there exist knots inT1
nD0 Fn which are not topologically slice. Similarly, since

1\
nD0

C2;n �

1\
nD0

Fn

we are led to conjecture that any knot in
T

C2;n is topologically slice.

By parts (iii) and (iv) of Theorem A,

CC
3
�

1\
nD0

Pn and C�3 �

1\
nD0

Nn:
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This indicates that membership in C˙
3

is a very restrictive condition. For example, the
results of [9] show how membership in just the 0th and 1st levels of the positive and
negative filtrations impose severe restrictions on smooth concordance class. This also
reveals that while the positive and negative filtrations have had success in distinguishing
concordance classes of topologically slice knots, they cannot be used to distinguish
between topologically slice knots in C˙

3
.

1.1 Organization of the paper

We will start by stating precise definitions of Casson towers and the various filtrations
of C in Section 2. Sections 3 and 4 consist of the proofs of Theorems A and B
respectively; additionally in Section 4 we give an overview of various notions of
positivity of knots and how membership in P0 and CC

1
are related to them. In Section 5

we will list various properties of the Casson tower filtrations. We generalize our results
to the case of (string) links in Section 6.
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to the author’s persistent emails, to Jae Choon Cha for his helpful comments on an
earlier draft, and to the anonymous referee whose detailed and thoughtful remarks and
suggestions significantly improved this paper. The author was partially supported by
NSF–DMS–1309081 and the Nettie S Autrey Fellowship (Rice University).

2 Notation and definitions

2.1 Casson towers

Suppose f W D!M is a smooth self-transverse immersion, where D is a genus-zero,
oriented 2–manifold, M is an oriented, smooth 4–manifold, and f �1.@M / D @D .
We will refer to the points of self-intersection of f .D/ as kinks and f .D/ as being
kinky. In this paper we will only use kinky disks, that is, the case where D is a disk.
Since M and D are oriented, each kink of f .D/ has a canonical sign. A regular
neighborhood of a kinky disk in a 4–manifold will be called a kinky handle. For a
kinky handle which is a regular neighborhood of the kinky disk f .D/, the attaching
curve is the simple closed curve f .@D/.

In our proofs we will frequently utilize Kirby diagrams to describe 4–manifolds. Back-
ground on Kirby diagrams and Kirby calculus can be found in Gompf and Stipsicz [23].
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Figure 2: Two Kirby diagrams for a kinky handle with a single positive kink:
the two panels are pictures of the same space and differ only by an isotopy of
curves; we show both versions since each will appear later in the paper. The
dotted curve represents a 1–handle, and the other curve is the attaching curve
for the kinky handle.

Kirby diagrams for a kinky handle with a single positive kink are given in Figure 2,
where the sign of the clasp corresponds to the sign of the kink. To obtain pictures for a
kinky handle with a single negative kink, we need simply to use the negative clasp. It
is important to note that the leftmost (undecorated) curves in the two diagrams do not
represent attaching circles for handles but rather the attaching curve for the kinky handle
itself. This indicates that a kinky handle with a single kink is diffeomorphic to S1�D3

since it has a Kirby diagram consisting of a single dotted circle. A Kirby diagram for a
kinky handle with n kinks would consist of n unlinked unknotted circles decorated
with dots (indicating correctly that the corresponding 4–manifold is diffeomorphic to
\n

S1 �D3 ) with an (undecorated) attaching curve passing through each dotted circle
to clasp itself according to the sign of the kink (see Figure 3). For more details, the
interested reader is directed to [23, Chapter 6].

The 0–framed meridians of the dotted circles in the Kirby picture for a kinky han-
dle � form the standard set of curves for � ; this set is characterized by the prop-
erty that if we were to attach 2–handles to these (framed) curves, the resulting
4–manifold .�; attaching curve/ would be diffeomorphic to the standard 2–handle
.D2 �D2; @D2 � f0g/. There is also a notion of a canonical framing for the attaching
curve of a kinky handle � , namely the unique framing such that if a 2–handle were
attaching to � along the attaching curve with that framing, the resulting 4–manifold
would have intersection form zero. This is equivalent to saying that if one pushes off a
parallel copy of the attaching curve by its canonical framing, the two circles should
bound disjoint embedded surfaces inside � . Note that this notion is distinct from the

Algebraic & Geometric Topology, Volume 15 (2015)
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framing one gets from the normal bundle of the core kinky disk for � , and in fact these
two notions differ by exactly twice the number of (signed) self-intersections of the core
kinky disk for � (see [22]).

Using kinky handles we may construct a Casson tower. Detailed descriptions of Casson
towers may be found in [3; 15; 22]. A Casson tower of height one is simply a kinky
handle. A Casson tower of height two is obtained from a Casson tower of height
one, T1 , by attaching kinky handles to each member of a standard set of curves for T1

by matching the framings (recall that for any kinky handle the attaching curve and each
member of the standard set of curves are framed). We refer to these newly attached
kinky handles as the second-stage kinky handles. Suppose that towers of height n have
been defined. We define a standard set of curves for a height n tower to be the union
of standard sets of curves for each nth –stage kinky handle. We then construct a height
nC 1 Casson tower by attaching kinky handles (nC 1th –stage kinky handles) to each
member of a standard set of curves for a Casson tower of height n. The corresponding
infinite construction, ie a Casson tower with infinite height, is called a Casson handle.

0

0

0

Figure 3: A Kirby diagram for a general Casson tower of height two: the
bottommost curve in the picture is the attaching curve.

We will consider every Casson tower to have a fixed decomposition into kinky handles.
A Kirby diagram for a general Casson tower of height two is shown in Figure 3. The
attaching curve for a Casson tower or handle is the attaching curve for the first-stage
kinky handle; in Figure 3 it appears as the bottommost (undecorated) curve. In the
Kirby diagram, the parallel of the attaching curve with linking number zero is the
pushoff along the canonical framing (we can infer this from the fact that the two curves
bound disjoint surfaces in the first-stage kinky handle, as we see at the beginning of
the proof of Proposition 3.1). The standard set of curves for a Casson tower appear in

Algebraic & Geometric Topology, Volume 15 (2015)
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the diagram as (0–framed) meridians of the dotted circles of the last layer of kinky
handles, that is, simple loops traversing the terminal 1–handles exactly once; note that
these curves generate the fundamental group of the Casson tower (since a Casson tower
is diffeomorphic to some \ S1 �D3 , its fundamental group is free). Sometimes we
will also refer to the meridians of the dotted circles at a given stage within a Casson
tower. For example, we might refer to the standard set of curves at the second stage of
a Casson tower of height four. If a stage of the Casson tower is not specified, we refer
to the standard set of curves at the terminal stage.

Every Casson tower has a 2–complex as a strong deformation retract, called its core.
For a Casson tower of height one, namely the regular neighborhood of a kinky disk D ,
the core is exactly D . For a Casson tower of greater height, the core consists of the
cores of each kinky handle along with certain canonical annuli. This is described in
greater detail in [22, Section 2.2.6].

We will say that a curve 
 � @M which is nullhomologous in @M bounds a Casson
tower T in a 4–manifold M if there is a proper embedding of T in M where a
0–framed regular neighborhood of the attaching curve of T (seen in a Kirby diagram
for T ) is identified with a 0–framed neighborhood of 
 in @M . If the 4–manifold is
not mentioned, the reader should assume it to be B4 . In particular, this means that if a
knot K is said to bound, say, the Casson tower T shown in Figure 3, the 0–framed
longitude of K in S3 can be seen as the 0–framed longitude of the attaching curve
of T , ie it appears as the parallel of the attaching curve with zero linking number.

Recall that for any group G , G.n/ denotes the nth term of its derived series.

Definition 1 A knot K is said to be in Cn if it bounds a Casson tower of height n.

Definition 2 A knot K is said to be in C2;n if it bounds a Casson tower T of height
two such that each member of a standard set of curves for T is in �1.B

4 � C /.n/ ,
where C is the core of T .

Each Cn and C2;n is a subgroup of C with respect to the connected sum operation on
knot concordance classes.

Definition 3 A knot K is said to be in CCn (resp. C�n ) if it bounds a Casson tower of
height n such that the base-level kinks are all positive (resp. negative).

Definition 4 A knot K is said to be in CC
2;n

(resp. C�
2;n

) if it bounds a Casson tower T

of height two such that the base-level kinks are all positive (resp. negative) and each
member of a standard set of curves for T is in �1.B

4�C /.n/ , where C is the core
of T .

Algebraic & Geometric Topology, Volume 15 (2015)
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Each C˙n and C˙
2;n

is a monoid with respect to the connected sum operation on knot
concordance classes. They are not subgroups of C , since if K 2CCn , �K 2C�n but �K

may not be in CCn ; and if K 2 CC
2;n

, �K 2 C�
2;n

but �K may not be in CC
2;n

.

We will sometimes use the notation C˙n when referring to either of CCn or C�n . Clearly,

� � � � C˙nC1 � C˙n � � � � � C˙1 � C;
� � � � CnC1 � Cn � � � � � C1 � C;

� � � � C˙2;nC1 � C˙2;n � � � � � C˙2;1 � C˙2;0 � C˙2 � C;
� � � � C2;nC1 � C2;n � � � � � C2;1 � C2;0 � C2 � C:

Studying the filtrations fCng
1
nD1

is unsatisfying in general since C5 D C6 D C7 D � � � .
As we mentioned in the introduction, this is due to Freedman’s reimbedding theo-
rem [15, Theorem 4.4] (later improved by Gompf and Singh in [22, Theorem 5.1])
which states that any Casson tower of height five contains within it arbitrarily high
Casson towers sharing its initial three stages. In particular, this allows us to see
that a Casson tower of height five contains a Casson handle within it. Along with
Freedman’s extraordinary theorem that any Casson handle is homeomorphic to an open
2–handle [15, Theorem 1.1], this implies that if a knot bounds a Casson tower T of
height five, it has a topological slice disk within T itself.

The question of whether a given Casson tower contains a topological slice disk for
its attaching curve can be rephrased in terms of whether a certain iterated, ramified
Whitehead double of the Hopf link is topologically slice in the 4–ball where all but
one of the slice disks is standard. (This relationship can be easily seen using Kirby
diagrams and is indicated by Kirby in [28, pages 80–81].) Using this connection it
is easy to infer that not all Casson towers of height one or two contain topological
disks. The simplest Casson towers of height three and four (ie with a single kink at
each stage) contain topological slice disks for the attaching curve (see Freedman [16])
but this is not known for such towers in general. It appears to be widely believed by
experts that all Casson towers of height three and higher contain topological slice disks
for the attaching curve.1

Let T denote the set of all topologically slice knots. The above shows that if a
knot bounds a tall enough Casson tower (height five is sufficient, height three is
conjectured to be enough), it is topologically slice, that is, C5 � T . Indeed, a result of
Quinn [35, Proposition 2.2.4] (see also [21, Theorem 5.2]) shows that any topologically
slice knot bounds a Casson handle in B4 . Therefore, C5 is equal to T . If every Casson

1The current literature is somewhat misleading on the status of this conjecture for general Casson
towers of height three and four.
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tower of height three contains a topological slice disk for its attaching curve, C3 would
be equal to T .

2.2 Filtrations of the knot concordance group

We end this section by recalling the definitions of several filtrations of C .

Definition 2.1 [9, Definition 2.2] For any n� 0, a knot K � S3 is in Pn (resp. Nn )
and is said to be n–positive (resp. n–negative) if there exists a smooth, compact,
oriented 4–manifold V such that there is a properly embedded, smooth 2–disk �� V

with @�DK , @V D S3 , Œ�� trivial in H2.V;S
3/ and

(i) �1.V /D 0;

(ii) the intersection form on H2.V / is positive definite (resp. negative definite);

(iii) H2.V / has a basis represented by a collection of surfaces fSig disjointly em-
bedded in the exterior of � such that �1.Si/� �1.V ��/

.n/ for all i .

Definition 2.2 [12] For any n � 0, a knot K � S3 is in Fn and is said to be n–
solvable if there exists a smooth, compact, oriented 4–manifold V such that there is
a properly embedded, smooth 2–disk � � V with @� D K , @V D S3 , Œ�� trivial
in H2.V;S

3/ and

(i) H1.V /D 0;

(ii) there exist surfaces fL1;D1;L2;D2; : : : ;Lk ;Dkg (with product neighborhoods)
embedded in V �� which form an ordered basis for H2.V / such that
(a) for each i , Li and Di intersect transversely and positively exactly once,
(b) Li \Dj , Li \Lj and Di \Dj are each empty if i ¤ j ,
(c) �1.Li/� �1.V ��/

.n/ for all i ,
(d) �1.Di/� �1.V ��/

.n/ for all i .

Remark 2.3 The above definition appears different from the original definition of
n–solvability in [12] at first glance, but the equivalence between the two definitions
is straightforward and we refrain from including the proof here. (A proof for the
equivalence between the corresponding definitions for the n–positive filtration can be
found in [9, Proposition 5.2].)

The original definition of the n–solvable filtration in [12] was concerned with the
topological knot concordance group. Here, as in several recent works in the literature,
we are using a version of the filtration for the smooth knot concordance group.
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If the Di in the above definition are not required to have product neighborhoods, we
get a slight enlargement of the n–solvable filtration, fFodd

n g
1
nD0

.

Definition 2.4 A grope is a pair (2–complex, attaching circle). A grope of height one
is a compact, oriented surface † with a single boundary component, the attaching circle.
Gropes of greater height are defined recursively as follows. Let f˛i ; ˇi W i D 1; : : : ;gg

be disjointly embedded curves representing a symplectic basis for H1.†/, where † is a
grope of height one. A grope of height n is obtained by attaching gropes of height n�1

along its attaching circle to each ˛i and ˇi in †.

Remark 2.5 The above gropes are sometimes referred to as symmetric gropes and
therefore, the following construction is sometimes referred to as the symmetric grope
filtration.

Definition 2.6 [12] For any n� 1, a knot K � S3 is in Gn if K extends to a proper
embedding of a grope of height n with its untwisted framing in B4 . This gives the
grope filtration of C , fGng

1
nD1

.

Definition 2.7 For any n � 0, a knot K � S3 is in G2;n if K extends to a proper
embedding of a grope G of height two with its untwisted framing in B4 such that
pushoffs of each member of a symplectic basis for the first homology groups of the
second-stage surfaces of G are in �1.B

4�G/.n/ .

Remark 2.8 The groups G2;n defined above have not appeared in the literature before
to the author’s knowledge. However, several proofs of results related to the grope
filtration hold for the filtration fG2;ng

1
nD0

; this is perhaps unsurprising since it is easily
seen that GnC2 � G2;n for each n. The following is an example of such a result.

Theorem 2.9 [12, Theorem 8.11] We have GnC2 � G2;n � Fn for each n.

Proof Suppose a knot K bounds a grope G in B4 . If a curve on the second-stage
surfaces bounds a grope of height n away from the first two stages (call it G0 ), the
curve lies in �1.B

4�G0/.n/ ; as a result the first inclusion is clear.

The second inclusion follows easily from a close reading of the proof of [12, Theo-
rem 8.11] (Theorem 1) where Cochran, Orr and Teichner show GnC2 � Fn . Briefly,
given a grope G of height nC 2 bounded by a knot, they only use the first two stages
(call it G0 ) and the fact that a symplectic basis for H1 of each second-stage surface is
in �1.B

4�G0/.n/ .
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3 Casson towers and various filtrations of the smooth knot
concordance group

In this section we prove several results connecting the types of Casson towers bounded
by a knot K and membership within the many filtrations of C . Together these results
comprise Theorem A.

Proposition 3.1 The attaching curve of a Casson tower T of height n bounds a
properly embedded grope of height n within T .

˛1 0

˛2

0

Figure 4: Proof of Proposition 3.1: a Kirby diagram for the first two stages
of a Casson tower with a single kink at each stage

Proof A simple case is pictured in Figure 4, showing a neighborhood of the first two
stages of a Casson tower with a single kink in each stage. We will directly and explicitly
construct a grope bounded by the attaching curve (the leftmost (undecorated) curve) in
Figure 4; after completing the proof in the simple case, we will outline the proof in
the general case. This is partly to avoid drowning the reader in a sea of subscripts and
because passing to the general case will not be particularly onerous. For clarity, we
break up the proof into steps.

Step 1 The first stage of the grope, †, bounded by the attaching curve in the simple
example, is shown in Figure 5. It consists of the standard disk bounded by the attaching
curve with a tube (dashed) along the dotted circle corresponding to the single kink in
the first-stage kinky handle.
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˛1 0

˛2

0

`

m

Figure 5: Proof of Proposition 3.1, step 1: † , the first stage of the grope,
consists of the standard disk bounded by the attaching curve with a tube
(dashed) along the dotted circle; m and ` denote the meridian and longitude
respectively.

0

˛2

0

Figure 6: Proof of Proposition 3.1, step 2: surfaces connecting the meridian
and longitude of † to pushoffs of the meridian of the first-level dotted circle

Step 2 It is easy to see, abstractly, that both the meridian m and the longitude ` of †
are homotopic to ˛1 , the meridian of the dotted circle. We easily tube inside † from
m to ˛1 , as shown in Figure 6. We also see an embedded annulus, shown in Figure 6,
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0

˛2

0

Figure 7: Proof of Proposition 3.1, step 3: the second-stage surfaces of the
grope use the annuli constructed previously (in Figure 6) and the 0–framed
2–handle attached to the meridian of the first-stage dotted circle. We use two
copies of the core of the attached 2–handle in addition to the standard disk
shaded gray in the picture, with a tube about the second-stage dotted circle.
Notice that two copies of the tubes are needed and they are nested.

cobounded by ` and a pushoff of ˛1 . These two annuli intersect exactly once (as
desired) at the point of intersection of m and `.

Step 3 The curve ˛1 and a pushoff of ˛1 bound disjoint surfaces in the complement
of † and the annuli from Step 2, as follows. Each surface consists of the core (or a
pushoff of the core) of the attached 0–framed 2–handle tubed along the next dotted
circle, as shown in Figure 7. Since the 2–handle is attached with 0–framing, the
pushoffs do not intersect. These surfaces, along with the annuli between m and ˛1 ,
and ` and ˛1 , form the second stage of our grope. Note that each of the two second-
stage surfaces has genus one. Call these surfaces †1 and †2 .

Step 4 Constructing the third stage surfaces of the grope will indicate how to proceed
in subsequent stages. Unlike before, we now have two sets of meridians and longitudes
which are each abstractly homotopic to the meridian of the second dotted circle, ˛2 .
We will construct disjoint annuli cobounded by these curves and pushoffs of ˛2 , away
from the surfaces of the first two stages. If we proceed as we did in Step 2 we do
obtain annuli that are disjoint from each other, but since the second stage surfaces
are nested, two of the four annuli intersect the second-stage surfaces. However, these
intersections are particularly nice: they are boundary-parallel circles in the annuli. We
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m1

m2

†1

†2

Figure 8: Proof of Proposition 3.1, step 4: the meridians m1 and m2 of
the second-stage surfaces †1 and †2 cobound disjoint annuli A1 and A2

(shown in two shades of gray) with pushoffs of ˛2 ; however, A2 intersects †1

in a circle, shown in bold. We can resolve this by pushing in a neighborhood
of the bolded circle into the 4–ball.

can push these intersections into the 4–ball to get disjoint annuli. (Here is a good toy
analogy. Consider two nested, standard, unknotted tori in S3 . Any meridional disk of
the outer torus will intersect the inner torus in a circle, but we can push the disk into
the 4–ball in a neighborhood of the circle to get a meridional disk for the outer torus
which is disjoint from the inner torus and still mostly in S3 .) Figure 8 shows the case
for the meridians of the nested tori. Let m2 be the meridian of the outer surface †2

and m1 the meridian of the inner surface †1 . The tubes shown in two shades of gray
in Figure 8 are analogous to the tube between m and ˛1 in Step 2 (Figure 6). The
bolded circle (which is a meridian of †1 ) is the intersection we need to resolve; we do
so by pushing a neighborhood of it into the 4–ball.

By this pushing in process, we obtain four embedded annuli as needed; each such
annulus has a pushoff of ˛2 as one of its boundary components. Since ˛2 and its
pushoffs bound disjoint surfaces as in Step 3, we can finish constructing the third stage
surfaces as before. Again, note that each of the four third-stage surfaces has genus one.

Step 5 To construct the higher-stage surfaces of the grope we essentially repeat Step 4
as follows. At the end of Step 4, we obtained four nested third-stage surfaces. As a
result, to raise the grope height to four we need to find disjoint surfaces bounded by
four meridian–longitude pairs. Construct annuli as before which are disjoint from one
another but intersect the third-stage surfaces; these intersections are the same type as
in Step 3, and we eliminate them by pushing into the 4–ball. Each such annulus has a
pushoff of the meridian of the next dotted circle (not pictured) as one of its boundary
components. These pushoffs bound disjoint surfaces as in Step 3, and therefore, we
obtain eight fourth-stage surfaces, each of genus one. To construct the nth –stage
surfaces, we start with 2n�2 meridian–longitude pairs, and we proceed as in Step 4
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to construct 2n�1 n–stage surfaces. by resolving 2n�1.2n�1 � 1/ intersections by
pushing into the 4–ball.

It is easy to see, since most of the grope is in 3–dimensional space, that the attaching
curve bounds this grope with untwisted framing. This finishes the proof in the simple
case pictured in Figure 4.

Now we address the general case of a more complicated Casson tower. (The reader
might refer to Figure 3 to recall the general picture.) As in Figure 4, the attaching curve
will be unknotted; however, the number of dotted circles linking with the attaching
curve will be equal to the number of kinks in the first-stage kinky handle (of course,
each pairwise linking number is zero: each dotted circle forms the Whitehead link with
the attaching curve). To obtain the first-stage surface of the promised grope, as we did
in Step 1 above we take the standard disk bounded by the unknotted attaching curve and
tube along each of the dotted circles; the resulting surface has genus equal to the number
of kinks in the first-stage kinky handle. Now we must build the subsequent stages
of the grope. Note that each member of a meridian–longitude pair in the first-stage
surface was obtained from a specific dotted circle for the first-stage kinky handle, and
as in the simple case already proved we can find an embedded annulus from each curve
to the meridian of the corresponding dotted circle. Following along with the proof of
the simple case, we need to find disjoint surfaces bounded by meridians of the dotted
circles and their pushoffs away from the previous stage. The only change we have to
make to our strategy from before is that we tube along multiple dotted circles instead
of just one; however, we can do this since the dotted circles do not interact with one
another. We can then continue to build all the subsequent stages using the same strategy
as in the proof of the simple case. Therefore, the genera of the later-stage surfaces are
equal to the number of kinks in the corresponding kinky handle in the Casson tower.
(Note however that we lose the information about the signs of the kinks when going
from a Casson tower to a grope.)

The following corollary is immediate.

Corollary 3.2 For each n� 1, Cn � Gn .

Corollary 3.3 Let T denote the set of all topologically slice knots. Then

T �
1\

nD1

Gn:

Proof This follows immediately from Proposition 3.1 and Quinn’s result that any topo-
logical slice disk for a topologically slice knot contains a Casson handle; see [35, Propo-
sition 2.2.4] and Gompf [21, Theorem 5.2].

Algebraic & Geometric Topology, Volume 15 (2015)



1136 Arunima Ray

The above was previously known (without using Casson handles). Briefly, a topological
slice disk for a knot K is a topologically embedded locally flat grope of arbitrary height.
Such a grope can be deformed to yield a smooth grope of arbitrary height (some more
detail may be found by Cha in [5, Remark 2.19]).

It is easy to see that CnC2 � C2;n and C˙
nC2
� C˙

2;n
for all n � 0. This is because

each member of a standard set of curves for the second stage of a Casson tower
of height nC 2 bounds a Casson tower of height n away from the first two stages.
Therefore, by Proposition 3.1, each such curve bounds a grope of height n away from
the first two stages. In fact, a much stronger result is known, as we see below.

Corollary 3.4 We have C3 � C2;n for all n. Similarly, CC
3
� CC

2;n
and C�

3
� C�

2;n
for

all n.

Proof Suppose a knot bounds a Casson tower T of height three. Each member of a
standard set of curves for the second stage of T bounds a kinky disk away from C , the
core of the first two stages. Therefore, the curves must be nullhomotopic away from C

and as a result, contained in �1.B
4�C /.n/ for all n.

Proposition 3.5 We have C2;n � G2;n � Fn for all n� 0.

Proof The second inclusion is from Theorem 2.9. For the first inclusion, suppose we
have a knot K in C2;n . That is, K bounds a Casson tower T �B4 of height two such
that the standard set of curves are in �1.B

4 �C /.n/ , where C is the core of T . By
Proposition 3.1, we know that K bounds a grope G of height two within T . In fact,
we see that the generators of the first homology groups of the second-stage surfaces
for G are exactly the meridians of the dotted circles of the second-stage kinky disks
of T , ie they are exactly the standard set of curves for T , which are given to be in
�1.B

4�C /.n/ . Therefore, K 2 G2;n .

Proposition 3.6 We have CC
nC2
� Pn for all n � 0. Similarly, C�

nC2
� Nn for

all n� 0.

Proof As before, we first show the proof in the case where there is a single kink at
each stage of the Casson tower, and then describe the necessary changes for the general
case.

Figure 9 shows a Kirby diagram for the first two stages of a Casson tower T with a
single positive kink at each stage. We blow up at the kink in the first-stage disk. In our
Kirby diagram, Figure 10, this introduces a C1–framed 2–handle, indicating that the
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0

˛
0

Figure 9: Proof of Proposition 3.6: a Kirby diagram of the first two stages of
a Casson tower with a single positive kink at each stage

new manifold is diffeomorphic to T #CP .2/. Since the blow up occurred in the interior
of T , we have an embedding T # CP .2/ ,! B4 # CP .2/ (where earlier we had an
embedding T ,!B4 ). Let V denote B4#CP .2/. Recall that a 0–framed neighborhood
of the knot K can be seen as a 0–framed neighborhood of the undecorated attaching
curve in the Kirby diagram for the Casson tower. As a result, a slice disk � for K is
obvious in T #CP .2/, shown in Figure 10 (the attaching curve for the 2–handle pierces
through it twice transversely). We also see that the 0–framed pushoff of the Casson
tower attaching curve bounds a disjoint parallel disk. Since V is simply connected with
positive definite intersection form all that remains to be done is to find a generator S

for H2.V /ŠZ such that �1.S/��1.V ��/
.n/ . We will do so by finding a generator

S such that the generators of �1.S/ bound gropes of height n in .T # CP .2//��.

C1

0

˛
0

Figure 10: Proof of Proposition 3.6: after blowing up the first stage kink, a
slice disk for the attaching curve can be seen.

For clarity, we describe how we obtain such an S in several steps. The naïve choice
of generator for H2.V / is the core of the attached C1–framed 2–handle along with
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the obvious disk bounded by it, shaded in gray in Figure 11. However, this clearly
intersects �. We can avert this problem by tubing along the attaching curve. While
this does yield a torus generator for H2.V / disjoint from �, one of its H1 –generators
is the meridian of the attaching curve (and therefore the knot.) We try to fix this by
surgering along the longitude of the torus using the obvious disks (pierced through
by the dotted circle in Figure 11). The 2–sphere obtained intersects the dotted circle
and so we tube along it, as shown in Figure 12. This yields another torus generator
for H2.V /, but once again, one of its H1 –generators is the meridian of the attaching
curve. Fortunately, we can address this easily by noting that the meridian of the present
torus bounds a punctured torus. Cut along the meridian and glue in two copies of the
punctured torus to finally obtain a generator S of H2.V / in Figure 13. We claim that
this is the desired surface generating H2.V /.

C1

0

˛ 0

Figure 11: Proof of Proposition 3.6: finding generators of H2.V /

Note that each member of the standard generating set for �1.S/ is homotopic to a
meridian of the second-stage dotted circle ˛ (ie the standard curve for the second stage
of T ) away from �. Since the standard curve bounds a Casson tower of height n

(and therefore a grope of height n) away from �, we see that �1.S/� �1.V ��/
.n/ .

But we can do better: we can show that the members of the standard generating set
for �1.S/ themselves bound disjoint gropes away from the first two stages of T .
The only additional step needed is to find disjoint annuli connecting the generators
of �1.S/ to ˛ . This is the same construction as in the proof of Proposition 3.1 when
we constructed the third stage surfaces of a grope, and we omit it to avoid repetition.

The reader might ask why S constructed above is a generator of H2.V /. To see this,
start with the naïve choice of generator s , namely, the standard disk (shaded in gray
in Figure 11) capped off with the core of the C1–framed 2–handle. Take a pushoff xs
of s . The spheres xs and s intersect exactly once transversely with positive sign. Now
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C1

0

˛
0

Figure 12: Proof of Proposition 3.6: finding generators of H2.V /

perform the various tubing operations described above on xs : we can do so in the
complement of s . The resulting surface S will continue to have a single positive
transverse intersection with s and therefore is in the same homology class as s .

C1

0

˛
0

Figure 13: Proof of Proposition 3.6: finding generators of H2.V /

For more complicated Casson towers, we apply the same process. To begin with, in
the Kirby diagram for a general Casson tower, the attaching curve will clasp itself
multiple times (equal to the number of kinks in the first-stage kinky handle), as shown
in Figure 3. We blow up at each of these kinks, introducing a C1–framed 2–handle at
each clasp. Since the clasps are isolated from one another the first step of the proof in
the simple case goes through and we can observe a slice disk for the attaching curve
which is pieced through twice transversely by each introduced 2–handle. The number
of generators of H2.V / needed is equal to the number of kinks in the first stage of
the tower, since this is equal to the number of CP .2/ summands introduced to the
4–manifold. We construct these generators as before. In particular, at each C1–framed
2–handle, we start with the core of the 2–handle tubed along the attaching curve, surger
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along the longitude, and tube along the dotted circle (Figures 11 and 12). Since the
newly introduced 2–handles do not interact with each other, we can do this just as
easily as in the simple case. The only difference for the general case comes in the
next step, pictured in Figure 13. In the general case we might have multiple kinks
in the second-stage kinky handles, each of whom will contribute a dotted circle to
the Kirby diagram. As we did in the proof of Proposition 3.1, we simply tube along
each such dotted circle to get the desired generators of H2.V /. Since Proposition 3.1
holds for general Casson towers, this completes the proof in the general case. For each
kink in the first stage, the genus of the corresponding member of the set of generators
of H2.V / is equal to the number of kinks in the associated second-stage kinky disk.

The above shows that CC
nC2
� Pn . For a knot K 2 C�

nC2
the kinks in the first-stage

kinky disk would be negative and we would blow up using �1–framed 2–handles,
indicating a connected sum with CP .2/. The rest of the construction is analogous.

Proposition 3.7 We have CC
2;n
�Pn for all n� 0. Similarly, C�

2;n
�Nn for all n� 0.

Proof The proof of our previous proposition did not truly require the Casson tower
beyond the first two levels. If the standard set of curves of a tower of height two is
known to be in the nth –derived subgroup of the fundamental group of the exterior of
the core of the first two stages, the remainder of the proof follows identically.

The following is now an immediate corollary of Corollary 3.4 and the above result, and
reveals the inefficacy of Proposition 3.6 in studying the positive and negative filtrations
of C .

Corollary 3.8 We have CC
3
�

1T
nD0

Pn . Similarly, C�
3
�

1T
nD0

Nn .

The results of this section constitute the various pieces of Theorem A.

4 Characterization of knots in C˙

1

Knots in C˙
1

can be completely characterized by the following theorem.

Theorem B For any knot K , the following statements are equivalent.

(i) K 2 CC
1

(resp. C�
1

).

(ii) K is concordant to a fusion knot of split positive (resp. negative) Hopf links.

(iii) K is concordant to a knot which can be changed to a ribbon knot by changing
only positive (resp. negative) crossings.
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Remark 4.1 In [11, Remark 3.3, Lemma 3.4], Cochran and Lickorish showed that if a
knot can be changed to the unknot by only changing positive (resp. negative) crossings,
it bounds a kinky disk in the 4–ball with only positive (resp. negative) kinks; very little
further insight is needed to prove the more general statement (iii) ) (i). We include it
here for completeness.

This result should also be compared with a characterization of knots in a particular
subset of P0 given by Cochran and Tweedy in [13].

Figure 14: Both the positive (left) and the negative (right) Hopf link can be
fused to yield the unknot.

Proof of Theorem B Suppose K 2 CC
1

, ie K bounds a kinky disk x� in B4 with all
kinks positive. As before we blow up each kink of x� with a CP .2/ to resolve the
singularities of x�. Remove a tubular neighborhood of the core CP .1/ within each
added CP .2/. This results in a number of additional S3 boundary components which
intersect x� in positive Hopf links. We can tube these newly created S3 s together.
Since the tube acts like a 1–dimensional submanifold of a 4–manifold, it may be
considered to be disjoint from x�. We excise the tube; the resulting 4–manifold W is
diffeomorphic to S3�Œ0; 1� where K is contained in the S3�f1g boundary component.
By throwing away any additional components, we get a smooth genus-zero surface �
cobounded by K and a split collection of positive Hopf links. (The Hopf links are split
in the sense that they can be separated from one another by a collection of disjoint,
smoothly embedded 2–spheres.)

By an isotopy relative to the boundary, we can ensure that the height function on
W Š S3 � Œ0; 1� restricts to a Morse function on � and that the maxima occur at
the t D 4

5
level, the join saddles at the t D 3

5
level, the split saddles at t D 2

5
and

the minima at t D 1
5

. The intersection of � with t D 1
2

is then a connected 1–manifold
embedded in S3 � f

1
2
g Š S3 . Call this knot J . The portion of � in S3 � Œ1

2
; 1� gives

a concordance between K and J . We will show that J is a fusion of split positive
Hopf links.
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The portion of � in S3 � Œ0; 1
2
� is almost what we need already. In particular, it

demonstrates J as a fusion of an unlink (from the minima of �) and a split collection
of positive Hopf links. However, each component of the unlink can be considered as a
fusion of a positive Hopf link, as shown in Figure 14. To be more specific, we can use
an arc disjoint from � to extend each minimum down to S3 � f�g. Since the minima
form an unlink we can keep them split from one another and the Hopf links. Within
S3 � Œ0; ��, we can use saddles to split the unknotted components into positive Hopf
links. This shows that J is a fusion of a collection of split positive Hopf links, and
therefore (i) ) (ii).

Now suppose that K is concordant to a fusion knot of split positive Hopf links. Since
a positive Hopf link can be changed to an unlink by changing a positive crossing,
(ii) ) (iii) is clear.

Suppose that K is concordant to a knot which can be changed to a ribbon knot by
only changing positive crossings, ie there is a kinky annulus in S3 � Œ0; 1�, with only
positive kinks, cobounded by K and a ribbon knot J . By appending the slice disk
for J , we get a kinky disk with only positive kinks bounded by K in B4 .

The corresponding statements for C�
1

can be proved by an analogous argument.

Using an almost entirely identical argument, we can prove the following proposition.

Proposition 4.2 For any knot K , the following statements are equivalent.

(i) K bounds a kinky disk with p positive and n negative kinks.

(ii) K is concordant to a fusion knot of p positive Hopf links, n negative Hopf links
and an unlink.

(iii) K is concordant to a knot that can be changed to a ribbon knot by changing p

positive and n negative crossings.

4.1 Positivity of knots

Theorem B involves several notions which might reasonably be referred to as positivity
for knots. It is instructive to study how they are related to other such notions which are
well established in the literature. Let us start by listing some of these concepts:

(1) K is the closure of a positive braid.

(2) K has a projection where all crossings are positive.

(3) K is strongly quasipositive.

(4) K is quasipositive.
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(5) ��.K/D 0.

(6) K bounds a kinky disk in B4 with only positive kinks, ie K 2 CC
1

.

(7) K is concordant to a knot that can be changed to a slice knot by changing only
positive crossings.

(8) K is concordant to a fusion knot of a split collection of positive Hopf links.

(9) K 2 P0 .

In the list above, �� denotes negative kinkiness, a smooth concordance invariant defined
by Gompf in [20], which is equal to the minimum number of negative kinks in a kinky
disk bounded by K in the 4–ball. Similarly, the positive kinkiness �C of a knot K is
the least number of positive kinks in a kinky disk bounded by K in the 4–ball, and
the kinkiness of K is the ordered pair .�C.K/; ��.K//.The terms quasipositivity and
strong quasipositivity are due to Rudolph; see [41] for a thorough exposition.

closure of a
positive

braid

has a
positive

projection

strongly
quasipositive quasipositive

��.K/D 0

bounds a
kinky disk
with only

positive kinks

K 2 P0

concordant to a
knot which can

be sliced by
changing only

positive crossings

concordant to a
fusion knot of

positive Hopf links

Figure 15: Known relationships between some notions of positivity of knots

The known relationships between the above notions of positivity of knots are summa-
rized in Figure 15. We have (1) ) (2) trivially, but there are examples of knots with
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positive projections which are not closures of positive braids. Rudolph showed in [40]
that knots with positive projections are strongly quasipositive. Strongly quasipositive
knots are obviously quasipositive by definition. However, Baader showed in [1] that
there exist quasipositive knots that are not strongly quasipositive.2

Items (5) and (6) are equivalent by the definition of �� and items (6), (7) and (8) are
equivalent by Theorem B. Item (5) implies (9) as discussed previously, by blowing up
at the kinks of a kinky disk. Any knot with a positive projection bounds a kinky disk
with only positive kinks; this is so since it can be unknotted by changing only positive
crossings. Therefore, (2) implies (6). However, it is known that knots with positive
projections necessarily have (strictly) negative signatures (see [8], Przytycki [34] and
Traczyk [45]) while knots (such as the figure eight knot) with zero signature may bound
kinky disks with only positive kinks. As a result, (6) does not imply (2).

Rudolph showed that one can construct a strongly quasipositive knot with any given
Seifert pairing [38; 41]. This implies that we can find strongly quasipositive knots with
positive signature, which obstructs membership in P0 by [9, Proposition 1.2]. Member-
ship in P0 does not imply strong quasipositivity, or even quasipositivity. As pointed out
by Rudolph in [39, Remark 4.6], a nonslice knot which is its own mirror image (such
as the figure eight knot, which lies in P0 ) cannot be quasipositive. On the other hand, it
is true that if K is strongly quasipositive, then K 62N0 , as follows. Livingston proved
in [30]3 that if K is strongly quasipositive, then g.K/D g4.K/D �.K/, where g4

denotes smooth 4–genus and � denotes Ozsváth and Szabó [33] and Rasmussen’s [36]
smooth concordance invariant. Therefore, any nontrivial, strongly quasipositive K has
�.K/ > 0, which obstructs membership in N0 by [9, Proposition 1.2]. Collectively
this paragraph addresses a question posed in [9, Section 3], seeking the relationship
between strong quasipositivity and P0 .

The relationships summarized in Figure 15 lead to the natural question of whether
membership in P0 implies any of the equivalent notions (5)–(8). This seems unlikely
to be true, but we do not have a counterexample at present.

5 Examples and properties

Example 5.1 It is well known that any knot can be changed to the unknot by changing
crossings (the minimum number of crossings that need to be changed is the unknotting

2These examples were pointed out by Steven Sivek in response to a question posed by the author on
MathOverflow [44].

3Livingston’s result is not stated in terms of strong quasipositivity. The equivalence of Livingston’s
conditions and strong quasipositivity is pointed out by Hedden in the introduction to [24].
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number of a knot). By tracing the homotopy corresponding to the crossing changes,
we see that every knot bounds a kinky disk if we impose no restrictions on the signs of
the kinks, ie every knot lies in C1 .

Example 5.2 Theorem B shows that membership in C˙
1

is harder. From [9, Propo-
sition 1.2] we know that the signs of various well-known concordance invariants
obstruct membership in P0 and N0 . Since CC

1
� P0 and C�

1
�N0 , they also obstruct

membership in CC
1

and C�
1

. For example, if �.K/< 0, K 62P0 , and therefore K 62CC
1

.
Similarly, K 62CC

1
if the Levine–Tristram signature of K is strictly positive or s.K/<0.

Using Theorem B, we can then see that the signs of these invariants also obstruct when
a knot can be changed to a slice knot by changing only positive or negative crossings.
Results of this nature were proved by Cochran and Lickorish [11] and Bohr [2].

n

Figure 16: The knot T �n : the box with a number n inside should be inter-
preted as n full twists.

Example 5.3 By Theorem B, any knot which can be changed to a slice knot by
changing positive (resp. negative) crossings lies in CC

1
(resp. C�

1
). In particular this

implies that any knot with unknotting number one, or even slicing number one, lies
in either CC

1
or C�

1
(the slicing number of a knot is the minimum number of crossing

changes needed to change it to a slice knot).

Let TCn denote the positively-clasped twist knots with n twists and T �n the negatively-
clasped twist knots (see Figure 16). Clearly, each T˙n can be unknotted by changing
one of the crossings at the clasp and therefore TCn 2 C

C

1
and T �n 2 C

�
1

for all n. On
the other hand, for positive n the knot TCn can be unknotted by changing n negative
crossings (undoing the n twists) and therefore TCn 2C

C

1
\C�

1
for positive n. Similarly,

T �n 2 CC
1
\C�

1
for negative n. Note that it is easy to see that TCn is a fusion of a

positive Hopf link. However, since TCn 2 C
�
1

for positive n, such a knot must also be
concordant to a fusion of negative Hopf links by Theorem B; an example is shown in
Figure 17.

Example 5.4 Example 4.5 of [9] shows that Wh�0 .LHT/ 62 P0 , where LHT is the
left-handed trefoil and Wh�0 . � / denotes the negatively clasped zero-twisted Whitehead
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double. Similarly [9, Example 4.6] shows that if p < 0, q > 0 and r > 0 are odd
and pq C qr C rp D �1, then the pretzel knots K.p; q; r/ 62 P0 . Therefore, since
CC

1
� P0 , none of these knots can bound a kinky disk with only positive kinks and

by Theorem B none of these knots can be changed to a slice knot by changing only
positive crossings.

Figure 17: The knot TC
3

can be obtained as a fusion of a single positive Hopf
link, or as a fusion of three negative Hopf links. Fusion bands are in gray.

Example 5.2 showed that CC
1

and C�
1

have nontrivial intersection. However, they are
distinct sets, as we see below.

Proposition 5.5 We have CC
1
¤ C�

1
.

Proof Corollary 2 of [2] shows that if K is concordant to a nontrivial strongly
quasipositive knot, then �C.K/ > 0. This implies that K 62 C�

1
. However, several

strongly quasipositive knots are in CC
1

. For instance, any knot which is a closure
of a positive braid (and therefore contained in P0 ) is strongly quasipositive. In fact,
Rudolph showed that any knot with a positive projection is strongly quasipositive [40].
This shows that all knots with positive projections are in CC

1
�C�

1
.

Alternatively, Gompf showed that there exist nontrivial knots with kinkiness .0; n/,
with n ¤ 0 in [20] (see Section 4.1 for a definition of kinkiness). These knots are
clearly in C�

1
�CC

1
.

There also exist knots which are neither CC
1

nor C�
1

, as follows. Recall that C1 D C .

Proposition 5.6 We have C1 ¤ CC
1
[C�

1
.

Proof As we saw above, by [2, Corollary 2], any strongly quasipositive knot K has
�C.K/ > 0 and therefore K 62 C�

1
. However, Rudolph showed in [38; 41] that one
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can construct a strongly quasipositive knot with any given Seifert pairing. As a result,
we can find a strongly quasipositive knot K with positive Levine–Tristram signature.
By [9, Proposition 1.2], K 62 P0 and therefore K 62 CC

1
.

Clearly, any of the knots guaranteed by the above proposition must have both �C.K/
and ��.K/ nonzero and in fact, this condition characterizes all knots in C1�

�
CC

1
[C�

1

�
.

Proposition 5.7 We have C2 ¤ C1 , CC
2
¤ CC

1
and C�

2
¤ C�

1
.

Proof The figure eight knot 41 is contained in both CC
1

and C�
1

since it can be
unknotted by changing a single positive or negative crossing. However, we know that
Arf.41/ ¤ 0 and so by Corollary 1, it cannot bound a Casson tower of height two.
Therefore, 41 62 C2 . Since C˙

2
� C2 the result follows.

Of course, any knot with Arf.K/D 1 lies in C1 �C2 by Corollary 1, since C1 D C .
Similarly, any knot K with Arf.K/ D 1 and unknotting number one lies in either
CC

1
�CC

2
or C�

1
�C�

2
.

The above result shows that while the figure eight knot bounds a kinky disk with a
single positive (resp. negative) kink, it cannot be extended to a Casson tower of height
two. In fact, by Corollary 1, the figure eight knot does not bound any height two Casson
tower, regardless of the number (and sign) of kinks at the first stage.

Corollary 5.8 We have CC
2;0
� CC

2
¤ P0 . Similarly, C�

2;0
� C�

2
¤N0 .

Proof This follows immediately from the previous proposition since CC
1
� P0 and

C�
1
�N0 .

Recall that T˙n denotes the twist knot with n twists, where the superscript denotes the
sign of the clasp (see Figure 16).

Proposition 5.9 For even n, TCn 2 C
C

2;0
and T �n 2 C

�
2;0

.

Notice that by Corollary 1, knots in C˙
2;0

must have zero Arf invariant. As a result of
this, for odd n, T˙n cannot be contained in C˙

2;0
, since Arf.T˙n /� n mod 2.

Proof of Proposition 5.9 Let K denote T˙
2k

for some k 2Z. The knot K bounds an
obvious kinky disk D1 in B4 with a single positive (resp. negative) kink, corresponding
to changing one of the two crossings at the clasp. The standard curve, which would
need to bound a second-stage kinky disk, is an unknot which can be seen as the core
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curve of K , shown in Figure 18. Call this curve ˛ . As depicted in the figure, ˛ is
mostly contained in a single slice of B4 (with respect to the radial function). Let
this radius be denoted t0 . We have that D1 is contained in the region of B4 with
radii greater than or equal to t0 , and as a result we see that ˛ bounds an embedded
disk zD2 away from D1 , on the side of B4 with radius less than t0 . If zD2 had the
correct framing, it would imply that each T˙

2k
is slice; since this is false, zD2 must have

the wrong framing. Note that since ˛ is primarily in the copy of S3 corresponding
to radius t0 , the pushoff along the canonical framing is the parallel with the standard
zero (Seifert) framing. On the other hand we see that the pushoff corresponding to zD2

has linking number 2k with ˛ , ie the framing is off by 2k . Our goal for the rest of
this proof is to correct the framing of zD2 and obtain an acceptable second-stage kinky
disk, D2 . Recall that our framing convention is homological, that is, we are seeking
a D2 such that for a pushoff D0

2
along the canonical framing, the signed count of

intersections between D2 and D0
2

should be zero.

n n n

t > t0C � t D t0C � t D t0

Figure 18: Homotopy showing the base-level kinky disk bounded by T˙n : ˛ ,
the standard curve to which the second-level kinky disk should be attached,
is shown dotted.

Around the (single) kink in D1 , we have a linking torus T , which intersects zD2

transversely once. For a precise description of the linking torus at the transverse
point of intersection of two planes, see [17, page 12]. All we will need here is that the
meridian and longitude of the linking torus are respectively meridians of the intersecting
planes. Therefore, in our case, they are both meridians of D1 .

Assume T is oriented such that T � zD2 D �1. Take k parallel (nonintersecting)
copies of T . We can smooth the intersection between each copy of T and zD2 to
obtain a connected surface bounded by ˛ . The embedded surface † thus obtained is
homologically zD2CkT . The smoothing process is described in [23, page 38] and can
be performed without introducing any self-intersections of †.

The framing of † (ie the homological self-intersection number) changes by 2 zD2 �kT D

�2k . We now have a correctly framed surface of genus k bounded by ˛ . We will now
use surgery to obtain a kinky disk bounded by ˛ .
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�

n

Figure 19: The curve �

Figure 20: Proof of Proposition 5.9

Assume k D 1 for the moment. Then † is a genus-one surface. Consider the .1;�1/

curve on †. The meridian and longitude of † are the same as the meridian and
longitude of T , and therefore the .1;�1/ curve on † is isotopic to the curve � shown
in Figure 19, in the exterior of D1 . For larger values of k we can find a set of curves,
shown (abstractly) in Figure 20, which are each isotopic to � � S3 away from D1 .
These curves are the images of the .1;�1/ curves on T in †: this is easily seen from
the construction of †. Surgering along these curves away from D1 would give us a
(correctly framed) second-stage kinky handle and complete the proof. The resulting
disk will have the correct framing since surgery does not change framing (this is because
we are using a homological framing and surgery does not change the homology class).

�

n

Figure 21: The curve � bounds a surface.
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The curve � bounds a genus-one surface away from D1 as shown in Figure 21. The
longitude of this surface is isotopic (away from D1 ) to the standard curve of D1 ,
namely ˛ . We know that ˛ bounds a disk, zD2 , away from D1 . Surgering using
parallel copies of zD2 , we see that � bounds an immersed disk ı away from D1 . Note
that ı will necessarily intersect zD2 (and therefore †).

We can use ı to surger † when k D 1. For larger values of k , we will need multiple
parallel copies of ı , which will necessarily intersect one another. However, as long
as there are no intersections with D1 , we still create a Casson tower of height two as
desired.4

Recall that Wh˙n .K/ denotes the n–twisted Whitehead double of the knot K , where
the superscript indicates the type of clasp. By a very similar argument as above, we
can show the following.

Proposition 5.10 For even n and any knot K , WhCn .K/ 2 C
C

2;0
and Wh�n .K/ 2 C

�
2;0

.

Proof The argument in this case differs from the proof of the previous proposition
only in a few details. As before, Wh˙2k.K/ bounds a first-stage kinky disk D1 with
a single positive (resp. negative) kink. The standard curve ˛ is no longer an unknot
as in the previous case, but has the knot type of K . However, any knot K bounds
a (correctly framed) kinky disk in the 4–ball, since it can be unknotted by changing
crossings (see Example 5.1). However, the n twists in the Whitehead doubling operator
used imply that a regular neighborhood of the naïve choice of second-stage disk, zD2 ,
is twisted 2k times. Fortunately, as before, we can tube with the linking torus at the
(single) kink in the first-stage disk, and surger repeatedly using copies of zD2 to obtain a
Casson tower of height two. The proof is identical to the proof of Proposition 5.9 apart
from the fact that zD2 is no longer embedded. Several new intersections are created as
before, but they are all in the second-stage kinky disk.

Corollary 5.11 We have CC
2;0
¤ CC

2;1
, C�

2;0
¤ C�

2;1
and C2;0 ¤ C2;1 .

Proof The knots TCn and WhCn .K/ are algebraically slice exactly when nD l.lC1/

with l � 0; see Casson and Gordon [4]. (Similarly, knots T �n and Wh�n .K/ are
algebraically slice exactly when nD�l.l C 1/ with l � 0.) This fact, together with
Proposition 5.9, yields infinitely many knots in CC

2;0
�CC

2;1
, C�

2;0
�C�

2;1
and C2;0�C2;1 .

This is because, by Corollary 2, knots in C˙
2;1

or C2;1 must be algebraically slice.

Corollary 5.12 We have CC
3
¤ CC

2
, C�

3
¤ C�

2
and C3 ¤ C2 .

4The author is grateful to Robert Gompf for suggesting a key step in the proof for Proposition 5.9.
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Proof Since C˙
3
� C˙

2;1
and C3 � C2;1 , this follows immediately from the previous

corollary.

From the proof of Proposition 5.10, it is tempting to speculate that iterated twisted
Whitehead doubles bound arbitrarily high Casson towers, ie if a knot K bounds a
Casson tower of height p , Wh˙n .K/ bounds a Casson tower of height pC1 for any n.
Unfortunately, this does not follow when n¤ 0. In particular, if our wishful thinking
were correct, twist knots would bound arbitrarily high Casson towers (since they are
twisted doubles of the unknot, which bounds arbitrarily high Casson towers). However,
we know this is not true since some twist knots are not algebraically slice and therefore,
do not bound Casson towers of height three.

In the nD 0 case, we get the following result.

Proposition 5.13 For any knot K 2 Ck ,

WhC
0
.K/ 2 CC

kC1
; Wh�0 .K/ 2 C

�
kC1:

Proof If a knot J bounds a Casson tower of height k , Wh˙0 .J / bounds a Casson
tower of height kC 1, with a single kink in the lowest level with sign corresponding
to the sign of the clasp of the pattern used. The result follows.

Remark 5.14 Note that the above proposition implies that for any knot K 2 Ck ,

WhC
0
.Wh˙0 � � �Wh˙0„ ƒ‚ …

n�1 times

.K// 2 CC
nCk

; Wh�0 .Wh˙0 � � �Wh˙0„ ƒ‚ …
n�1 times

.K// 2 C�nCk :

The following is an immediate corollary of Theorem A, Propositions 5.13 and 5.10
and Corollary 3.4.

Corollary 5.15 For any even k and any knot K ,

WhC
0
.Wh˙k .K// 2 C

C

3
�

\
n

CC
2;n
�

\
n

Pn;

Wh�0 .Wh˙k .K// 2 C
�
3 �

\
n

C�2;n �

\
n

Nn:

The above is related to [9, Corollary 3.7], which shows that if J 2 P0 then Wh˙0 .J /
is in

T
n Pn . For any K and n, we know that WhCn .K/ 2 P0 , and therefore it was

already known that WhC
0
.WhCn .K// 2

T
n Pn . However, it is not generally true that

Wh�n .K/ 2 P0 for any K . For example, Wh�0 .LHT/ 62 P0 .
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6 Generalization to links

The definitions of Cn , C˙n , C2;n and C˙
2;n

can be naturally generalized to the context
of links. Since the connected sum operation is not well defined on links, we have to
consider the string link concordance group of m–component string links, denoted C.m/,
under the concatenation operation. For L 2 C.m/, let yL denote the m–component link
obtained by taking the closure of L.

Definition 1 0 An m–component string link L is said to be in Cn.m/ if yLi , the
components of yL, bound disjoint Casson towers of height n.

Definition 2 0 An m–component string link L is said to be in C2;n.m/ if yLi , the
components of yL, bound disjoint Casson towers Ti of height two such that each
member of a standard set of curves for each Ti is in �1.B

4�
F

i Ti/
.n/ .

Definition 3 0 An m–component string link L is said to be in CCn .m/ (resp. C�n .m/)
if yLi , the components of yL, bound disjoint Casson towers of height n such that all
the kinks in the first-stage kinky disks are positive (resp. negative).

Definition 4 0 An m–component string link L is said to be in CC2;n.m/ (resp. C�2;n.m/)
if yLi , the components of yL, bound disjoint Casson towers Ti of height two such that
all the kinks in the first-stage kinky disks are positive (resp. negative) and each member
of a standard set of curves for each Ti is in �1.B

4�
F

i Ti/
.n/ .

There are similar definitions for the grope filtrations Gn.m/ and G2;n.m/, and the
n–solvable filtration Fn.m/ for C.m/ which we omit for the sake of brevity; they are
identical to the definitions in the case of knots, except that the components of the link
are required to bound disjoint disks in 4–manifolds of the relevant flavor. Positive
links, ie links in P0.m/, have been studied by Cochran and Tweedy in [13].

Since all of our arguments in Section 3 take place within Casson towers, the results
generalize easily to links. Therefore, we obtain the following theorem.

Theorem A 0 For any n� 0, and m� 1:

(i) CnC2.m/� GnC2.m/� Fn.m/.

(ii) C2;n.m/� G2;n.m/� Fn.m/.

(iii) CC
nC2

.m/� CC
2;n
.m/� Pn.m/.

(iv) C�
nC2

.m/� C�
2;n
.m/�Nn.m/.
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Note that CC
1
.m/� P0.m/ and C�

1
.m/�N0.m/, even in the case of links. Using a

near-identical proof to that of Theorem B, we obtain the following.

Theorem B 0 For any m–component string link L, the following statements are
equivalent.

(i) L 2 CC
1
.m/ (resp. C�

1
.m/).

(ii) yL is concordant to a link each of whose components is a fusion knot of a split
collection of positive (resp. negative) Hopf links.

(iii) yL is concordant to a link each of whose components can be changed to a
ribbon knot by changing only positive (resp. negative) crossings (within the same
component).

Recall that any knot K lies in C1 since it can be unknotted by changing some number
of crossings. However, it is not true that every m–component link lies in C1.m/ as we
see below.

Recall that two links are link homotopic if we can go from one to the other via a
deformation where each component may intersect itself but distinct components must
remain disjoint.

Proposition 6.1 If an m–component string link L lies in C1.m/, then yL is link
homotopic to the m–component unlink and, in particular, the pairwise linking numbers
of yL are zero.

Proof Since L 2 C1.m/, the components of yL bound disjoint immersed disks in B4 .
By following the proof of Theorem B 0 , we see that yL is concordant to a link �M which
can be changed to a ribbon link by changing some number of crossings, ie �M is link
homotopic to a ribbon link. However, we know from Giffen [18] and Goldsmith [19]
that link concordance implies link homotopy. Since yL is concordant to �M and any
m–component ribbon link is concordant to the m–component unlink, we have that yL is
link homotopic to �M which is link homotopic to a ribbon link which is link homotopic
to the m–component unlink.

The linking number between two simple closed curves in S3 can be computed as
the signed intersection number between 2–chains bounded by them in B4 ; see Rolf-
sen [37, page 136]. Since the components of yL bound disjoint 2–chains (in particular,
immersed disks) in B4 all the pairwise linking numbers are zero. Alternatively, recall
that pairwise linking numbers are particular cases of Milnor’s invariants with distinct
indices, which are invariants of link homotopy. The fact that pairwise linking numbers
vanish then follows from the fact that L is link homotopic to the unlink.5

5This alternative proof was pointed out by an anonymous referee.
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As in Corollary 3.3, we obtain the following result.

Corollary 3.3 0 Let T .m/ denote the set of all topologically slice string links with m

components. Then for any m� 1,

T .m/�
1\

nD1

Gn.m/:

As we mentioned in Section 2, the groups G2;n.m/ have not appeared previously in
the literature, but several results relating to the grope filtration carry over easily. In the
case of links, this can be seen in context of k –cobordism of links (see Cochran [7, Def-
inition 9.1] and Sato [42]) as follows. We reference the corresponding results from
Otto [32] regarding the grope filtration below since our proofs are essentially the same.

Proposition 6.2 [32, Proposition 6.4] If L 2 G2;n.m/ then L is 2nC1 –cobordant to
a slice link, ie L is null-2nC1 –cobordant.

Proof The proof is essentially identical to the proof of [32, Proposition 6.4], which
says that if L2 GnC2.m/ then L is null–2nC1 –cobordant. Her proof only uses the fact
that each member of a symplectic basis for the first-stage surfaces (call them †i ) of
the gropes lies in �1.B

4�
F

i †i/, which clearly still holds for a link in G2;n.m/.

In [29, Corollary 2.2], Lin states that if a link L is null–k –cobordant, then Milnor’s
x�–invariants of L with length less than or equal to 2k vanish. Therefore, we obtain
the following corollary.

Corollary 6.3 [32, Corollary 6.6] If L 2 G2;n.m/, then x�L.I/D 0 for jI j � 2nC2 .

Since C2;n.m/� G2;n.m/ for all n and m, we also obtain the following.

Corollary 6.4 [32, Corollary 6.6] If L 2 C2;n.m/, then x�L.I/D 0 for jI j � 2nC2 .

Proposition 6.5 For m� 2nC2 and n� 0:

(i) Z� Fn.m/=G2;n.m/.

(ii) N � Pn.m/=G2;n.m/.

(iii) N �Nn.m/=G2;n.m/.
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Proof The proof of (i) is very closely related to Otto’s proof of [32, Corollary 6.8]
in light of Corollary 6.3. Here is a short sketch. Let H denote the positive Hopf
link, and BDi.H / its i th iterated Bing double (where each component of a link gets
Bing doubled at each step). Otto shows that BDnC1.H / 2 Fn.2

nC2/ for each n.
Work of Cochran [7, Theorem 8.1] then shows that x�BDnC1.H /.I/ D 1 for some I

of length 2nC2 with distinct indices (note that BDnC1.L/ has 2nC2 components)
and additionally, all x�–invariants of smaller length vanish. Corollary 6.3 shows that
BDnC1.H / 2 Fn.2

nC2/=G2;n.2
nC2/ for each n. Since the first nonzero x�–invariant

is additive under concatenation of string links (see [7, Theorem 8.13] and Orr [31])
and each Fn.2

nC2/ is a subgroup of C.2nC2/, we see that BDnC1.H / generates an
infinite cyclic subgroup of Fn.2

nC2/=G2;n.2
nC2/. By adding unknotted and unlinked

components to BDnC1.H / away from all of the other components, we see that Z�
Fn.m/=G2;n.m/ for all m� 2nC2 and n� 0.

�1

Figure 22: The above link is in P0.4/ but not in either C˙
1
.4/ . The strands

going through the box marked with �1 are given a full negative twist relative
to one another.

We give the proof for (ii); taking concordance inverses of these examples will complete
the proof for (iii). Consider the link L given in Figure 22. In [13, Example 4.13],
it is shown that L 2 P0.4/ since it is obtained from an unlink by adding a so-called
generalized positive crossing. (This operation was defined in [13] and consists of
adding a full negative twist to a collection of strands where each link component is
represented algebraically zero times, ie this corresponds exactly to the box marked
with �1 in Figure 22.) By [6, Lemma 3.7], BDn.L/2Pn.2

nC2/. However, BDn.L/ is
link homotopic to BDnC1.H /. Since x�–invariants with distinct indices are invariants
of link homotopy, we see that BDn.L/ 2 Pn.2

nC2/=G2;n.2
nC2/ by Corollary 6.3.

Unlike Fn.2
nC2/, Pn.2

nC2/ is merely a submonoid of C.2nC2/ and therefore we
only get N � Pn.2

nC2/=G2;n.2
nC2/. By adding unknotted and unlinked components

to BDn.L/, we see that N � Pn.m/=G2;n.m/ for all m� 2nC2 and n� 0.

In the case of links we also obtain the following additional results, which we are
currently unable to prove in the case of knots.

Algebraic & Geometric Topology, Volume 15 (2015)
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Proposition 6.6 We have P0.m/¤ CC
1
.m/ and N0.m/¤ C�

1
.m/ for m� 4.

Proof Links demonstrating this inequality may be found in [13, Example 4.13]. The
link L shown in Figure 22 is link homotopic to the Bing double of a Hopf link (this
is easily seen by drawing a picture of both links; recall that the box in Figure 22
containing a �1 indicates a full negative twist of all the strands passing through it) and
therefore has nonzero x�.1234/. This implies that L is not link homotopic to the unlink,
and therefore, by Proposition 6.1 is not in CC

1
.m/. However, we see that L 2 P0.m/

in [13].

The mirror image of the link in Figure 22 is in N0.m/�C�
1
.m/.

We can actually do better by following the proof of Proposition 6.5, as follows.

Proposition 6.7 For m� 2nC2 and n� 0:

(i) Z� Fn.m/=C1.m/.

(ii) N � Pn.m/=C
C

1
.m/.

(iii) N �Nn.m/=C
�
1
.m/.

Proof In the proof of Proposition 6.5, we demonstrated the existence of links which
are in Fn.m/ (resp. Pn.m/, Nn.m/) and have a nonzero x�–invariant with distinct
indices. These links are therefore not link homotopic to the unlink, and as a result, by
Proposition 6.1 are not contained in C1.m/ (resp. CC

1
.m/, C�

1
.m/).
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