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A characterization of indecomposable web modules
over Khovanov–Kuperberg algebras

LOUIS-HADRIEN ROBERT

After shortly reviewing the construction of the Khovanov–Kuperberg algebras, we
give a characterization of indecomposable web modules. It says that a web module is
indecomposable if and only if one can deduce its indecomposability directly from the
Kuperberg bracket (via a Schur lemma argument). The proof relies on the construction
of idempotents given by explicit foams. These foams are encoded by combinatorial
data called red graphs. The key point is to show that when the Schur lemma does not
apply for a web w , an appropriate red graph for w can be found.

17B37; 57M27, 57R56

1 Introduction

In this paper, we study the category of projective modules over Khovanov–Kuperberg
algebras. These algebras emerge naturally when one extends algebraically the sl3 –
homology to tangles.

The sl3 –homology, defined by Khovanov [5], is a categorification of the sl3 –invariant,
which is itself a specialization of the HOMFLY-PT polynomial; see Freyd et al [2]
and Przytycki and Traczyk [13]. Mackaay and Vaz [11] and Morrison and Nieh [12]
extended the sl3 –homology to tangles in a Bar-Natan fashion. More recently, Lauda,
Queffelec and Rose [9] considered such an extension, and understood it as arising from
the 2–representation theory of the categorified quantum slm ’s.

For any1 finite sequence of signs ", the Khovanov–Kuperberg algebra K" is an sl3 –
analogue of Khovanov’s arc algebras H n [4]. They were introduced in 2012 by
Mackaay, Pan and Tubbenhauer [10] and the author [14].

Each algebra K" contains a family of orthogonal idempotents .1w/ (w runs through
the set of isotopy classes of nonelliptic "–webs; see Kuperberg [8]). In contrast with
the sl2 case, these idempotents do not need to be primitive. In [10], Mackaay, Pan

1Actually, the sequences of signs need to be admissible. This means that the sum of signs is equal to 0
modulo 3. This restriction is the sl3 –analogue of the parity restriction for Khovanov’s arcs algebras H n .
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and Tubbenhauer proved that the projective modules associated with these idempotents
form a base of the Grothendieck group of K" � projgr . The author [14] provided
a combinatorial condition for a module corresponding to a nonelliptic web to be
indecomposable.

The aim of this paper is to provide a handy criterion for an idempotent 1w to be
primitive.

Theorem Let w be a nonelliptic "–web. The idempotent 1w is indecomposable if
and only if hwwi is monic of degree l."/.

In this statement, l."/ represents the length of " and hwwi represents the Kuperberg
bracket [8] of the web obtained by gluing w and its reoriented mirror image along ".
The implication from right to left is immediate (see Lemma 2.17).

We would like to point out a few facts about the proof.

(1) The proof is fully constructive: if an idempotent 1w is not primitive, we give
two explicit orthogonal idempotents e1 and e2 such that 1w D e1C e2 .

(2) We develop a handy framework for certain calculations with foams (Section 3B).

(3) If w is a nonelliptic "–web, we prove that a .w;w/–foam is equivalent to a
nonzero multiple of I �w if and only if it is isotopic to I �w .

One can construct the algebras K" over any unital commutative ring; in this paper
we work over Q. If one extends the coefficients of the algebras K" to C , the main
theorem follows from the paper of Mackaay, Pan and Tubbenhauer [10], where they
proved in this context that the base given by nonelliptic webs is unitriangular with
respect to the dual canonical basis.

The proof of the main theorem relies mainly on one combinatorial tool called a red
graph. These are subgraphs of the dual graph of a web satisfying certain conditions.
The proof proceeds in two distinct steps. First, we prove that given a red graph, we can
construct a nontrivial idempotent. Then we show that whenever hwwi is not monic of
degree l."/, we can find a red graph for w .

Organization of the paper

In Section 2, we explain the construction of the Khovanov–Kuperberg algebras. In
Section 3, we introduce red graphs and construct idempotents from red graphs. We
prove in Section 3C that the constructed idempotents are not trivial. Section 4 is the
longest and the most technical. The main point is to give an algorithm to construct
a red graph in a web such that hwwi is not monic of degree l."/. This requires the
introduction of stacks of red graphs and a way to recover red graphs from these stacks.
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Figure 1: Example of a closed web
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2 The Khovanov–Kuperberg algebras

2A The 2–category of . � ; � /–webs

2A.1 Webs In the following "D ."1; : : : ; "n/ (or "0 , "1 etc) will always be a finite
sequence of signs, its length n will be denoted by l."/, and such an " will be admissible
if
Pl."/

iD1
"i is divisible by 3.

Definition 2.1 (Kuperberg [8]) A closed web is a plane trivalent oriented finite graph
(with possibly some vertexless loops and multiple edges) such that every vertex is
either a sink or a source.

Remark The orientation condition is equivalent to saying that the graph is bipartite
(by sinks and sources). Given any oriented embedded disk in R2 which transversely
intersects a web, the algebraic intersection number of the web with this disk is equal
to 0 modulo 3. To express this fact, we say that the flow of a web is preserved modulo 3.

Proposition 2.2 A closed web contains at least a square, a digon or a vertexless circle.

Proof It is enough to consider a connected web w . A connected web is always
2–connected (because of the flow); hence it makes sense to use the Euler characteristic.
Suppose that w is not a circle. Then

#F � #EC #V D 2;

but 3#V D 2#E . And if we denote by Fi the set of faces with i sides, we haveX
i>0

i#Fi D 2#E:

Algebraic & Geometric Topology, Volume 15 (2015)
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Altogether, this gives X
i>0

#Fi �
i

6
#Fi D 2;

which proves that some faces have strictly less than 6 sides.

Proposition 2.3 (Kuperberg [8]) There exists one and only one map h � i from closed
webs to Laurent polynomials in q which is invariant by isotopy, multiplicative with
respect to disjoint union and which satisfies the local relations� �

D

� �
C

� �
;� �

D Œ2� �

� �
;� �

D

� �
D Œ3�;

where Œn� def
D .qn � q�n/=.q � q�1/. We call this polynomial the Kuperberg bracket.

The formulas being symmetric in q and q�1 , the Kuperberg bracket is a symmetric
Laurent polynomial.

Proof Uniqueness comes from the remark on page 1305; existence follows from the
representation-theoretic point of view developed by Kuperberg [8] and means the given
relations are consistent. A nonquantified version of this result is due to Jaeger [3].

Definition 2.4 The degree of a symmetric Laurent polynomial P .q/D
P

i2Z aiq
i is

maxi2Zfi such that ai ¤ 0g.

Definition 2.5 A ."0; "1/–web w is an intersection of a closed web w0 with Œ0; 1��
Œ0; 1� such that:
� There exists �0 2 �0; 1� such that

w\ Œ0; 1�� Œ0; �0�

D

�
1

2l."0/
;

1

2l."0/
C

1

l."0/
;

1

2l."0/
C

2

l."0/
; : : : ;

1

2l."0/
C

l."0/� 1

l."0/

�
� Œ0; �0�:

� There exists �1 2 Œ0; 1Œ such that

w\ Œ0; 1�� Œ�1; 1�

D

�
1

2l."1/
;

1

2l."1/
C

1

l."1/
;

1

2l."1/
C

2

l."1/
; : : : ;

1

2l."1/
C

l."1/� 1

l."1/

�
� Œ�1; 1�:

� The orientations of the edges of w match �"0 and C"1 (see Figure 2 for
conventions).
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C C C

C C � �

C C C

C C � � � � �

� � C C

Figure 2: Two examples of ."0; "1/–webs with "0 D .C;C;C/ and "1 D

.C;C;�;�/ and the mirror image of the second one

When "1 is the empty sequence we speak of "0 –webs, we call " the boundary of an
"–web, and when we do not want to specify "1 and "2 we speak of . � ; � /–webs.

If w1 is an ."0; "1/–web and w2 is an ."1; "2/–web, we define w1w2 to be the
."0; "2/–web obtained by gluing w1 and w2 along "1 and resizing. Note that this can
be thought of as a composition if we think about an ."; "0/–web as a morphism from "0

to " (ie a . � ; � /–web should be read as a morphism from top to bottom). The mirror
image of an ."0; "1/–web w is the mirror image of w with respect to R� f1

2
g with

all orientations reversed. This is an ."1; "0/–web and we denote it by w . If w is an
."; "/–web the closure of w is the closed web obtained by connecting the top and the
bottom by simple arcs (this is like a braid closure). We denote it by tr.w/.

Definition 2.6 A . � ; � /–web with no circle, no digon and no square is said to be
nonelliptic. The nonelliptic . � ; � /–webs are the minimal ones in the sense that they
cannot be reduced by the relations of Proposition 2.3.

Proposition 2.7 (Kuperberg [8]) For any given couple ."0; "1/ of sequences of signs
there are finitely many nonelliptic ."0; "1/–webs.

Remark From the combinatorial flow modulo 3, we obtain that there exist some
."0; "1/–webs if and only if the sequence �"0 concatenated with "1 is admissible.

2A.2 Foams All material here comes from the paper of Khovanov [5].

Definition 2.8 A prefoam is a smooth oriented compact surface † (its connected
component are called facets) together with the following data:
� A partition of the connected components of the boundary into cyclically or-

dered 3–sets and for each 3–set .C1;C2;C3/, three orientation preserving
diffeomorphisms �1W C2 ! C3 , �2W C3 ! C1 and �3W C1 ! C2 such that
�3 ı�2 ı�1 D idC2

.
� A function from the set of facets to N (this gives the number of dots on each

facet).

Algebraic & Geometric Topology, Volume 15 (2015)
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Figure 3: Singularities of a prefoam

The CW complex associated with a prefoam is the 2–dimensional CW complex †
quotiented by the diffeomorphisms so that the three circles of one 3–set are identified
and become just one, called a singular circle. The degree of a prefoam f is equal to
�2�.†0/, where � is the Euler characteristic and †0 is the CW complex associated
with f with the dots punctured out (ie a dot increases the degree by 2).

Remark A CW complex associated with a prefoam has two local models depending
on whether we are on a singular circle or not. If a point x is not on a singular circle, then
it has a neighborhood diffeomorphic to a 2–dimensional disk, else it has a neighborhood
diffeomorphic to a Y shape times an interval (see Figure 3).

Definition 2.9 A closed foam is the image of an embedding of the CW complex
associated with a prefoam such that the cyclic orders of the prefoam are compatible
with the left hand rule in R3 with respect to the orientations of the singular circles.2

The degree of a closed foam is the degree of the underlying prefoam.

Definition 2.10 If wb and wt are ."0; "1/–webs, a .wb; wt /–foam f is the intersec-
tion of a foam f 0 with R� Œ0; 1�� Œ0; 1� such that:

� There exists �0 2 �0; 1� such that

f \R� Œ0;�0�� Œ0;1�

D

�
1

2l."0/
;

1

2l."0/
C

1

l."0/
;

1

2l."0/
C

2

l."0/
;:::;

1

2l."0/
C

l."0/�1

l."0/

�
� Œ0;�0�� Œ0;1�:

� There exists �1 2 Œ0; 1Œ such that

f \R� Œ�1;1�� Œ0;1�

D

�
1

2l."1/
;

1

2l."1/
C

1

l."1/
;

1

2l."1/
C

2

l."1/
;:::;

1

2l."1/
C

l."1/�1

l."1/

�
� Œ�1;1�� Œ0;1�:

2We mean here that if, next to a singular circle, with the forefinger of the left hand we go from face 1 to
face 2 to face 3 the thumb points to indicate the orientation of the singular circle (induced by orientations
of facets). This is not quite canonical, physicists prefer the right-hand rule, but this is the convention used
by Khovanov [5].
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� There exists �b 2 �0; 1� such that f \R� Œ0; 1�� Œ0; �b �D wb � Œ0; �b �.

� There exists �t 2 Œ0; 1Œ such that f \R� Œ0; 1�� Œ�t ; 1�D wt � Œ�t ; 1�, where
the orientations of the facets of f are compatible with the those of wt and the
reversed orientations of wb .

The degree of a .wb; wt /–foam f is equal to �.wb/C�.wt /� 2�.†/, where † is
the underlying CW complex associated with f with the dots punctured out.

If fb is a .wb; wm/–foam and ft is a .wm; wt /–foam we define fbft to be the
.wb; wt /–foam obtained by gluing fb and ft along wm and resizing. This operation
may be thought of as a composition if we think of a .w1; w2/–foam as a morphism
from w2 to w1 ; ie from the top to the bottom. This composition map is degree
preserving. Like for the webs, we define the mirror image of a .w1; w2/–foam f to
be the .w2; w1/–foam which is the mirror image of f with respect to R�R� f1

2
g

with all orientations reversed. We denote it by f .

Definition 2.11 If "0D "1D∅ and w is a closed web, then a .∅; w/–foam is simply
called foam or w–foam when one wants to focus on the boundary of the foam.

All these data together lead to the definition of a monoidal 2–category.

Definition 2.12 The 2–category WT is the monoidal3 2–category where

� the objects are finite sequences of signs,

� the 1–morphisms from "1 to "0 are isotopy classes (with fixed boundary) of
."0; "1/–webs,

� the 2–morphisms from bw t to bwb are Q–linear combinations of isotopy classes
of .wb; wt /–foams, whereb� stands for “the isotopy class of”. The 2–morphisms
come with a grading and the composition respects the degree.

The monoidal structure is given by concatenation of sequences at the 0 level, and
disjoint union of vertical strands or disks (with corners) at the 1 and 2 levels.

Remark Note that the 2–morphism spaces contain morphisms of arbitrary degree. To
emphasize this specifically, we denote the hom-space between two . � ; � /–webs by
HOM rather than hom which usually refers to spaces of 2–morphisms of degree 0.

3Here we choose a rather strict point of view and hence the monoidal structure is strict (we consider
everything up to isotopy), but it is possible to define the notion in a nonstrict context, and the same data
leads to a monoidal bicategory.

Algebraic & Geometric Topology, Volume 15 (2015)
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2B Khovanov’s TQFT for . � ; � /–webs

In [5], Khovanov defines a numerical invariant for prefoams and this allows him to
construct a TQFT F from the category HOMWT .∅;∅/ to the category of graded Q–
modules, (via a universal construction à la Blanchet–Habegger–Masbaum–Vogel [1]).
This TQFT is graded (this comes from the fact that prefoams with nonzero degree are
evaluated to zero), and satisfies the following local relations (brackets indicate grading
shifts):

F
� �

D F
� �

˚F
� �

;

F
� �

D F
� �
f�1g˚F

� �
f1g;

F
� �

D F
� �

DQf�2g˚Q˚Qf2g:

These relations show that F is a categorified counterpart of the Kuperberg bracket. We
sketch the construction below.

Definition 2.13 We denote by A the Frobenius algebra ZŒX �=.X 3/ with trace �
given by

�.X 2/D�1; �.X /D 0; �.1/D 0:

We equip A with a grading by setting deg.1/D�2, deg.X /D 0 and deg.X 2/D 2.
With these settings, the multiplication has degree 2 and the trace has degree �2. The
co-multiplication is determined by the multiplication and the trace and we have

�.1/D�1˝X 2
�X ˝X �X 2

˝ 1;

�.X /D�X ˝X 2
�X 2

˝X;

�.X 2/D�X 2
˝X 2:

This Frobenius algebra gives us a 1C1 TQFT (this is well known, see for example the
book of Kock [7] for details), we denote it by F : the circle is sent to A, a cup to the
unity, a cap to the trace, and a pair of pants either to multiplication or co-multiplication.
A dot on a surface will represent multiplication by X so that F extends to the category
of oriented dotted .1C 1/–cobordisms. We have a surgery formula given by Figure 4.

This TQFT gives of course a numerical invariant for closed dotted oriented surfaces. If
we define numerical values for the differently dotted theta prefoams (the theta prefoam
consists of three disks with trivial diffeomorphisms between their boundaries; see

Algebraic & Geometric Topology, Volume 15 (2015)
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D� � �

Figure 4: The surgery formula for the TQFT F

Figure 5: The dotless theta prefoam

F
7! 1

F
7! �1

Figure 6: The evaluations of dotted theta foams; the evaluation is unchanged
when one cyclically permutes the faces. All the configurations which cannot
be obtained from these by cyclic permutation are sent to 0 by F .

Figure 5), then by applying the surgery formula, we can compute a numerical value for
prefoams.

In [5], Khovanov shows that setting the evaluations of the dotted theta foams, as shown
in Figure 6, leads to a well-defined numerical invariant F for prefoams. This numerical
invariant gives the opportunity to build a (closed web, . � ; � /–foams)–TQFT: for a
given web w , consider the graded Q–module generated by all the .w;∅/–foams, and
mod this space out by the kernel of the bilinear map .f;g/ 7! F.f g/. Note that
f g is a closed foam. Khovanov showed that the obtained graded vector spaces are
finite-dimensional with graded dimensions given by the Kuperberg formulas, and he
showed that we have the local relations described in Figure 7.

This method allows us to define a new graded 2–category WT . Its objects and its
1–morphisms are those of the 2–category WT while its 2–morphism spaces are those
of WT modded out like in the last paragraph. One should notice that a .wb; wt /–
foam can always be deformed into a .tr.wbwt /;∅/–foam and vice-versa. Khovanov’s
results restated in this language give that if wb and wt are ."0; "1/–webs, the graded
dimension of HOMWT .wt ; wb/ is given by

(1) htr.wbwt /i � q
l."0/Cl."1/:

Algebraic & Geometric Topology, Volume 15 (2015)
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D� D

D D D 0

D� D

D� , D �

D �

D� �

C C D 0; C C D 0

C C D 0

Figure 7: Local relations for 2–morphisms in WT . The first 3 lines are
called bubbles relations, the next is the bamboo relations, the one after is the
digon relation, then we have the square relation and finally we show the 3 dot
migration relations.

Algebraic & Geometric Topology, Volume 15 (2015)



A characterization of indecomposable web modules over K" 1313

Note that when "1 D∅, there is no need to take the closure, because wbw t is already
a closed web. The shift by l."0/C l."1/ comes from the fact that �.tr.wbwt // D

�.wt /C�.wb/� .l."0/C l."1//.

Definition 2.14 We consider the set of local relations which consists of

� the surgery relation,

� the evaluations of the dotted spheres and of the dotted theta foams,

� the square relations and the digon relations (see Figure 7).

We call them the foam relations.

2C The Khovanov–Kuperberg algebra K "

We want to extend the Khovanov TQFT to the 0–dimensional objects, ie to build a
2–functor from the 2–category WT to the 2–category of algebras. We follow the
methodology of Khovanov [4] and we start by defining the image of the 0–objects:
the algebras K" . This can be compared with the paper of Mackaay, Pan and Tubben-
hauer [10].

Definition 2.15 Let " be an admissible finite sequence of signs. We define �K" to be
the full subcategory of HOMWT .∅; "/ whose objects are nonelliptic "–webs. This is
a graded Q–algebroid. We recall that a k –algebroid is a k –linear category. This can
be seen as an algebra by setting

K"
D

M
.wb;wt /2.ob. �K"//2

HOMWT .wb; wt /

and the multiplication on K" is given by the composition of morphisms in �K" whenever
it’s possible and by zero when it’s not. We write

K"
w1 w2

def
D HOMWT .w2; w1/:

This is a unitary algebra because of Proposition 2.7. The unit element is
P
w2ob. �K"/ 1w .

Suppose " is fixed; for a nonelliptic "–web w we define Pw to be the left K"–module

Pw D
M

w02ob. �K"/
HOMWT .w;w

0/D
M

w02ob. �K"/
K"

w0 w :

The structure of module is given by composition on the left.

Algebraic & Geometric Topology, Volume 15 (2015)
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For a given ", the modules Pw are all projective and we have the following decompo-
sition in the category of left K"–modules:

K"
D

M
w2ob. �K"/

Pw:

Proposition 2.16 Let " be an admissible sequence of signs, and w1 and w2 two
nonelliptic "–webs. Then the graded dimension of HOMK".Pw1

;Pw2
/ is given by

h.w1w2/i � q
l."/ .

Proof An element of HOMK".Pw1
;Pw2

/ is completely determined by the image
of 1w1

and this element can be sent to any element of HOMWT .Pw2
;Pw1

/, and
dimq.HOMWT .Pw1

;Pw2
//D h.w1w2/i � q

l."/ thanks to (1).

In what follows we will prove that certain modules are indecomposable. They all have
finite dimension over Q hence it’s enough to show that their rings of endomorphisms
contain no nontrivial idempotents. Idempotents always have degree zero, so we have
the following lemma.

Lemma 2.17 If w is a nonelliptic "–web such that hwwi is monic of degree l."/,
then the graded K"–module Pw is indecomposable.

Proof This follows from the previous discussion: the hypothesis on hwwi implies
that dim..HOMWT .Pw;Pw/0/D 1. This shows that HOMWT .Pw;Pw/0 contains
only multiples of the identity and hence that it contains no nontrivial idempotent.

A similar lemma to proves that two modules are not isomorphic.

Lemma 2.18 If w1 and w2 are two nonelliptic "–webs such that hw1w2i has de-
gree strictly smaller than l."/, then the graded K"–modules Pw1

and Pw2
are not

isomorphic.

Remark In [10], Mackaay, Pan and Tubbenhauer proved that if w1 and w2 are two
nonisotopic webs, then Pw1

and Pw2
are not isomorphic, which is a stronger result. In

contrast with the main theorem, their result remains true when working over Q instead
of over C .

Proof If they were isomorphic, there would exist two morphisms f and g such that
f ı g D 1Pw1

and therefore f ı g would have degree zero. The hypothesis of the
lemma implies that f and g (because hw1w2i D hw2w1i) have positive degree, so
the degree of their composite is positive too.

Algebraic & Geometric Topology, Volume 15 (2015)
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Remark The way we constructed the algebra K" is very similar to the construction
of H n in [4] by Khovanov. Using the same method we can finish the construction of a
0C 1C 1 TQFT:

� If " is an admissible sequence of signs, then F."/DK" .

� If w is an ."1; "2/–web with "1 and "2 admissible, then

F.w/D
M

u2ob. �K"1 /

v2ob. �K"2 /

F.uwv/;

and it has a structure of graded K"1–module–K"2 (ie .K"1 ;K"2/–bimodule).
Note that if w is a nonelliptic "–web, then F.w/D Pw .

� If w and w0 are two ."1; "2/–webs and f is a .w;w0/–foam, then we set

F.f /D
X

u2ob. �K"1 /

v2ob. �K"2 /

F. fu v /;

where fu v is the foam f with glued on its sides u� Œ0; 1� and v� Œ0; 1�. This
is a map of graded K"1–modules–K"2 .

We encourage the reader to have a look at the beautiful construction for the sl2 case
in [4].

In the sl2 case the classification of projective indecomposable modules is fairly easy,
because all the all web modules associated with arc diagrams without circles are
indecomposable. In our case, this situation is much more complicated because of the
following proposition.

Proposition 2.19 ([6; 12], see [15] for details) Let " be the sequence of signs
.C;�;�;C;C;�;�;C;C;�;�;C/ and let w and w0 be the two "–webs given by
Figure 8. Then the web module Pw is decomposable and admits Pw0

as a direct factor.

The aim of this paper is to prove the following statement which is a converse to
Lemma 2.17.

Theorem 2.20 Let w be an "–web. The K"–module Pw is indecomposable if
and only if hwwi is monic of degree l."/. Furthermore if the K"–module Pw is
decomposable, it contains another web module as a direct factor.

Algebraic & Geometric Topology, Volume 15 (2015)
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Figure 8: The "–webs w (left) and w0 (right). To fit into the formal context
of the 2–category one should stretch the outside edges to horizontal line below
the whole picture. We draw it this way to enjoy more symmetry. To simplify
we didn’t draw the arrows.

The proof relies on a combinatorial tool called red graphs. In Section 3, we give an
explicit construction (in terms of foams) of a nontrivial idempotent associated to a red
graph. In Section 4, we show that when an "–web w is such that hwwi is not monic
of degree l."/, it contains a red graph.

3 Idempotent from red graphs

3A Definitions

Definition 3.1 Let w be an "–web. A red graph for w is a nonempty subgraph G of
the dual graph of w denoted by D.w/ such that:

(i) All faces belonging to V .G/ are diffeomorphic to disks. In particular, the
unbounded face is not in V .G/.

(ii) If f1 , f2 and f3 are three faces of w which share one vertex, then at least one
of the three does not belong to V .G/.

(iii) If f1 and f2 belongs to V .G/ then every edge of D.w/ between f1 and f2

belongs to E.G/, ie G is an induced subgraph of D.w/.

If f is a vertex of G we define ed.f /, the external degree of f , by the formula

ed.f /D degD.w/.f /� 2 degG.f /:

Remark Note that the external degree of a face f is always an even number because,
w being bipartite, all cycles are of even length and hence degD.w/ is even. Condition (ii)
ensures that ed.f / is nonnegative.
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Figure 9: Example of a red graph

f  f

Figure 10: Interpretation of the external degree in terms of gray half-edges.
On the left is a portion of a web w with a red graph; on the right is the same
portion of w with the vertices of G colored orange. The external degree of f
is the number of half-edges adjacent to f which are not orange. In our case
ed.f /D 2 .

Let G be a red graph for w . If on the web we color the faces which belong to V .G/,
then the external degree of a face f in V .G/ is the number of half-edges of w which
are adjacent to a vertex of a cycle of w bounding f and lie in the uncolored region.
These half-edges are called the gray half-edges of f in G , or of G when we consider
the set of all gray half-edges of all vertices of G . See Figure 10.

An oriented red graph is a red graph together with an orientation. A priori, there is no
restriction on the orientations, but as we shall see just a few of them will be relevant.

Definition 3.2 Let w be an "–web, G be a red graph for w and o an orientation
for G , we define the level io.f / (or i.f / when this is not ambiguous) of a vertex f
of G by the formula

io.f /
def
D 2� 1

2
ed.f /� #fedges of G pointing to f g

D 2� 1
2

degD.w/.f /C #fedges of G pointing away from f g

and the level I.G/ of G is the sum of levels of all vertices of G .
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The level is designed to locally encode the degree of a certain foam which we will
show to be idempotent. The 2 corresponds to the opposite of the degree of a cup, while
the other terms comes from zip moves (which have degrees equal to C1), this will
become clear in Lemma 3.18.

Remark The level is an integer because of the remark on page 1316. Note that the
level of G does not depend on the orientation of G and

I.G/D 2#V .G/� #E.G/�
1

2

X
f 2v.G/

ed.f /:

Definition 3.3 A red graph is admissible if one can choose an orientation such that
for each vertex f of G we have i.f / > 0. Such an orientation is called a fitting
orientation. An admissible red graph G for w is exact if I.G/D 0.

Definition 3.4 Let w be an "–web and G be a red graph for w . A pairing of G is a
partition of the gray half-edges of G into subsets of 2 gray half-edges adjacent to the
same face of w , one pointing towards it, and the other pointing away from it. A red
graph together with a pairing is called a paired red graph.

Definition 3.5 A red graph G in an "–web w is fair (resp. nice) if for every vertex
f of G we have ed.f /6 4 (resp. ed.f /6 2).

Lemma 3.6 If G is an admissible red graph in an "–web w , then G is fair.

Proof This follows directly from the definition of the level.

Corollary 3.7 Let w be a nonelliptic "–web. If G is an admissible red graph for w
then it has at least two edges.

Proof If G were to contain just one vertex f , it would have external degree greater
than or equal to 6, contradicting Lemma 3.6. We can actually show that such a red
graph contains at least 6 vertices (see Corollary 4.12 and Proposition 4.15).

Remark If a red graph G is nice, there is only one possible pairing. If it is fair, the
number of pairings is 2n , where n denotes the number of vertices with external degree
equal to 4.

If in a picture one draws together a web w and a red graph G for w , they can encode
a pairing of G in the picture by joining4 with dashed lines the paired half-edges. Note
that if G is fair it is always possible to draw disjoint dashed lines (see Figure 11 for an
example).
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Figure 11: A web w , a red graph G and the two possible pairings for G

Definition 3.8 Let " be an admissible sequence of signs of length n, an "–web w is
said to be virtually indecomposable if hwwi is a monic symmetric Laurent polynomial
of degree n. An "–web which is not virtually indecomposable is virtually decomposable.
If w is a virtually decomposable "–web, we define the level of w to be the integer
1
2
.deghwwi � n/. Note that, despite of its fractional definition, the level is an integer.

The rest of the paper is devoted to showing the following theorem.

Theorem 3.9 Let " be an admissible sequence of signs of length n and w an "–web.
Then the K"–module Pw is indecomposable if and only if w is virtually indecompos-
able.

Remark We do not suppose that w is nonelliptic, but as a matter of fact, if w is
elliptic then hwwi is not monic of degree n and the module Pw is decomposable.

One direction of the equivalence is given by Lemma 2.17. To prove the other direction
of Theorem 3.9 we use red graphs and we will show the following two statements; the
first is proved in this section, the latter in Section 4.

Theorem 3.10 To every exact paired red graph of w we can associate a nontrivial
idempotent of HOMK".Pw;Pw/. Furthermore the direct factor associated with this
idempotent is isomorphic to a web module.

Theorem 3.11 If w is a nonelliptic virtually decomposable "–web of level k , then w
contains a red graph of level k .

From the existence of a red graph of level k in the web w alone, we cannot deduce
immediately that Pw is decomposable. However, an easy study of the combinatorics
of red graphs (Section 4B) will be enough to make this conclusion. Indeed, it follows
immediately from Propositions 4.6 and 4.8 that when there exists a red graph in w of
nonnegative level, there exists an exact red graph in w . Hence, Theorem 3.9 follows
from Theorems 3.10 and 3.11.

4We impose that w intersect the dashed lines only at their ends.
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Figure 12: Example of a G –reduction of an "–web w . The dashed lines
represent the pairing.

Definition 3.12 Let w be an "–web and G a paired red graph for w . We define the
G–reduction of w to be the "–web denoted by wG and constructed as follows (see
Figure 12 for an example):

(1) For every face of w which belongs (as a vertex) to G , remove all edges adjacent
to this face.

(2) For every face of w which belongs (as a vertex) to G , connect the gray half-edges
of G according to the pairing.

Note that even when w is nonelliptic, wG needs not to be nonelliptic.

Definition 3.13 Let w be an "–web and G a fair paired red graph for w . We define the
projection associated with G to be the .w;wG/–foam denoted by pG and constructed
as follows (from bottom to top):

(1) For every edge of G , unzip (see Figure 13) the corresponding edge in w . Note
that condition (ii) in the definition of red graph implies that all these unzip moves
are far from each other, therefore we can perform the unzips simultaneously.5

Let us denote by w0 the "–web at the top of the foam after this step. Each vertex
of G corresponds canonically to a face of w0 . Such a face is a circle, a digon
or a square (with extra information given by the pairing) because G is fair, so
every vertex of G has external degree smaller than or equal to 4.

(2) � On each square of w0 which corresponds to a vertex of G , perform a square
move, following the pairing information, (see Figure 14).

� On each digon of w0 which corresponds to a vertex of G , perform a digon
move (see Figure 14).

� On each circle of w0 which corresponds to a vertex of G , glue a cap (see
Figure 14).

5We mean that the isotopy type of the resulting foam does not depend on the order in which the edges
are unzipped.
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e

Figure 13: Unzip on the edge e

Figure 14: A square move, a digon move and a cap. The same foams turned
upside-down are called a reversed square move, a reversed digon move and
a cup.

We also define iG , the injection associated with G , to be the .wG ; w/–foam which is
the mirror image of pG with respect to the horizontal plane R2 � f

1
2
g, and QeG to be

the .w;w/–foam equal to iG ıpG . An example can be seen in Figure 15.

Remark In the previous definition, the square, digons and circles of w0 are two-by-
two nonadjacent, hence the order in which one performs square, digon or cap moves
does not change the isotopy class of the foam we construct.

Remark It’s worthwhile to note that a digon move can be seen as an unzip followed
by a cap, and that a square move can be seen as two unzips followed by a cap. With
this point of view, we see that in iG (and in pG ), to every edge of G and every pair of
gray half-edges corresponds a zip (or an unzip) and every vertex of G corresponds a
cup (or a cap).

Theorem 3.10 is an easy consequence of the following proposition.

Proposition 3.14 If w is a nonelliptic web and G is an exact paired red graph
for w , then the .wG ; wG/–foam pG ı iG is equivalent under the foam relations of
Definition 2.14 to a nonzero multiple of the identity .wG ; wG/–foam wG � Œ0; 1�.
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Figure 15: At the top is a web together with a fair (actually nice) paired red
graph G . At the bottom we see a movie representing eG .

To prove this proposition we need to develop a framework in which to perform calcula-
tions with the explicit foams we gave in Definition 3.13.

3B Foam diagrams

Definition 3.15 Let w be an "–web. A foam diagram � for w consists of
� the "–web w ,
� a fair paired red graph G ,
� a function ı (called a dot function for w ) from E.w/, the set of edges of w ,

to N . This function will be represented by the appropriate number of dots on
each edge of w . The null function is denoted by 0.

To a foam diagram � we associate f .�/, the .wG ; wG/–foam given by pG ısw.ı/ıiG ,
where sw.ı/ is the identity foam idw Dw� Œ0; 1� of w with exactly ı.e/ dots on every
facet e� Œ0; 1� (with e 2E.w/). The .wG ; wG/–foam f .�/ is equal to pG ı iG , with
dots encoded by ı . A foam diagram will be represented by the "–web drawn together
with the red graph, and with some dots added on the edges of the "–web in order to
encode ı .

We will often identify � D .w;G; ı/ with f .�/ and it will be seen as an element of
HOMK".PwG

;PwG
/. We can rewrite some of the relations depicted in Figure 7 in

terms of foam diagrams.
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Proposition 3.16 The relations depicted in Figure 7 give rises to the following relations
on foams associated with foam diagrams:

� The 3–dots relation

D 0

� The sphere relations

D D 0 D�1

� The digon relations

D D 0

D� D

� The square relations

D�

� The E–relation

D �

The dashed lines indicate the pairing. When the orientation of the "–web is not depicted
the relation holds for any orientation.
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def
D

Figure 16: Extension of foam diagrams to partially oriented red graphs

Lemma 3.17 Let w be an "–web and � D .w;G; ı/ a foam diagram. Then f .�/
is equivalent to a Z–linear combination of swG

.ıi/ D f ..wG ;∅; ıi// for some dot
functions ıi for wG .

Proof Thanks to the E–relation of Proposition 3.16 one can express f .�/ as a Z–linear
combination of f ..wj ;Gj ; ıj //, where the Gj are red graphs without any edge. Thanks
to the sphere, the digon and square relations of Proposition 3.16, each f ..wj ;Gj ; ıj //

is equivalent either to 0 or to ˙f .wG ;∅; ı0j /.

Lemma 3.18 Let w be an "–web and � D .w;G; 0/ a foam diagram, with G exact.
Then f .�/ is equivalent to a multiple of wG � Œ0; 1�.

Proof From the previous lemma we know that f .�/ is equivalent to a Z–linear
combination of wG � Œ0; 1� with some dots on it. We will see that the foam f .�/ has
the same degree as the foam wG � Œ0; 1�. This will prove the lemma because adding a
dot on a foam increases its degree by 2.

To compute the degree of f .�/ we view it as a composition of elementary foams thanks
to its definition:

deg.f .�//D deg.w� Œ0; 1�/C2
�
�2#V .G/C.#E.G/C#fgray half-edges of Gg=2/

�
D l."/C2 �0

D deg.wG� Œ0; 1�/:

The first equality is due to the decomposition pointed out in the remark on page 1321
and because an unzip (or a zip) has degree C1 and a cap (or a cup) has degree �2.
The factor 2 is due to the fact f .�/ is the composition of iG and pG . The second
equality follows from the exactness of G .

To prove Proposition 3.14, we only need to show that in the situation of the last lemma,
the multiple is not equal to zero. In order to evaluate this multiple, we extend foam
diagrams to (partially) oriented fair paired red graphs by the local relation indicated in
Figure 16.
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Figure 17: A positive edge (left) and a negative edge (right).

By partially oriented we mean that some edges are oriented and some are not. If G

is partially oriented, and � is a foam diagram with red graph G , we say that �0 is
the classical foam diagram associated with � if it is obtained from � by applying the
relation of Figure 16 to every oriented edge. Note that � and �0 represent the same
foam.

Definition 3.19 If w is an "–web, G a red graph for w and o a partial orientation
of G , we define  .o/ to be equal to #fnegative edges of G g. An oriented edge is
called positive or negative according to the rule depicted in Figure 17.

Lemma 3.20 Let w be an "–web and G a partially oriented red graph with a nonori-
ented edge e of G . Then we have the following equality of foams:

e
D

e
�

e

If G is an unoriented red graph for w , and ı a dot function for w , then

f .w;G; ı/D
X

o

.�1/.o/f .w;Go; ı/;

where Go stands for G endowed with the orientation o, and o runs through all the
2#E.G/ complete orientations of G .

Proof The first equality is the translation of the E–relation (see Proposition 3.16) in
terms of foam diagrams of partially oriented red graphs. The second formula is the
expansion of the first one to all edges of G .

Lemma 3.21 If w is an "–web, G an exact paired red graph for w and o a nonfitting
orientation for G , then the .wg; wG/–foam f .w;Go; 0/ is equivalent to 0.
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Figure 18: The 5 different local situations of a foam diagram �0 in a neigh-
borhood of a vertex of G0 . On the second line, the digon on the left is positive
and the digon on the right is negative.

Proof The orientation o is a nonfitting orientation. Hence, there is at least one vertex
v of G so io.v/ > 0. There are two different situations, either io.v/D 1 or io.v/D 2.
Using the definition of foam diagrams for oriented red graphs (Figure 16), we deduce
that �0 the classical foam diagram associated with f .w;Go; 0/ looks around v like
one of the three following situations:

The sphere relations and the digon relations provided by Proposition 3.16 imply that
the foam f .w;Go; 0/ is equivalent to 0.

Lemma 3.22 If w is an "–web, G an exact paired red graph for w and o a fitting ori-
entation for G , then the .wG ; wG/–foam f .w;Go; 0/ is equivalent to .�1/�.o/wG � I ,
where �.o/D #V .G/C #fpositive digons of Gog (see definition in Figure 18).

Proof Let �0 D .w0;G0; ı0/ be the classical foam diagram associated with .w;Go; 0/.
The red graph G0 has no edge. Locally, the foam diagram �0 corresponds to one of the
five situations depicted in Figure 18.

By using some of relations of Proposition 3.16 we can remove all the vertices of G0 .
We see that f .w;Go; 0/ is equivalent to .�1/#V .G0/�#fpositive digonsgwG�I because the
positive digon is the only one with no minus sign in the relations of Proposition 3.16.
This proves the result because V .G/D V .G0/.

Lemma 3.23 If w is an "–web, G an exact paired red graph for w , and o1 and o2

two fitting orientations for G , then �.o1/C  .o1/D �.o2/C  .o2/.
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Proof We consider the two classical foam diagrams �0
1
D .w0;G0; ı1/ and �0

2
D

.w0;G0; ı2/ corresponding to .w;Go1
; 0/ and .w;Go2

; 0/, respectively.

The red graph G0 has no edge, and the possible local situations are depicted in Figure 18.
Consider a vertex v of G0 , then a side of the face of w corresponding to v is either
clockwise or counterclockwise oriented (with respect to this face). From the definition
of  we obtain that for i D 1; 2,  .oi/ is equal to the number of dots in �0i on clockwise
oriented edges in w0 . The dot functions ı1 and ı2 differ only on the edges adjacent to
the digons, so  .o1/�  .o2/ is equal to the number of negative digons in �0

1
minus

the number of negative digons in �0
2

. So

 .o1/�  .o2/D �.o2/��.o1/;

 .o1/C�.o1/D  .o2/C�.o2/:

Proof of Proposition 3.14 The foam pG ı iG is equal to f .w;G; 0/. From Lem-
mas 3.20–3.22 we have

f .w;G; 0/D
X

o fitting orientation of G

.�1/.o/f .w;Go; ı/

D

X
o fitting orientation of G

.�1/.o/C�.o/wG � Œ0; 1�

D˙#ffitting orientations of Gg.wG � Œ0; 1�/:

The red graph G was supposed to be exact. In particular, the set of fitting orientations
is not empty so pG ı iG is a nontrivial multiple of idwG

D wG � Œ0; 1�.

Proof of Theorem 3.10 From Proposition 3.14, we know that there exists a nonzero
integer �G such that pG ı iG D �GwG � Œ0; 1�. Hence, 1

�G
iG ıpG is an idempotent.

It is clear that it is nonzero, and quite reasonable that it is not equivalent to the identity
foam; for a proper proof, see Proposition 3.25 or the remark on page 1314.

Remark To construct pG we need to invert �G . This is the reason we work over Q.
It would be interesting to know which values �G can take for a minimal red graph G ,
to know if we can work over other fields (or rings).

3C On the identity foam

Definition 3.24 Let w be an "–web with no circle and f a .w;w/–foam. We say
that f is reduced if every facet of f is diffeomorphic to a disk and if f contains no
singular circle (ie only singular arcs). In particular this implies that every facet of f
meets w� f0g or w� f1g.
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The aim of this section is to prove the following proposition.

Proposition 3.25 Let w be a nonelliptic "–web. If f is a reduced .w;w/–foam
which is equivalent (under the foam relations of Definition 2.14) to a nonzero multiple
of w� Œ0; 1�, then the underlying prefoam is diffeomorphic to w� Œ0; 1� and contains
no dot.

For this purpose we begin with a few technical lemmas.

Lemma 3.26 Let w be a closed web and e an edge of w . Then there exists a .∅; w/–
foam f which is not equivalent to 0 such that the facet of f adjacent to the edge e

contains at least one dot.

Proof We prove the lemma by induction on the number of edges of the web w . It
is enough to consider the case in which w is connected because the functor F is
monoidal. If the web w is a circle this is clear, since a cap with one dot on it is not
equivalent to 0. If w is the theta web, then this is clear as well, since the half theta
foam with one dot on the facet meeting e is not equivalent to 0.

Else, there exists a square or digon in w disjoint from e . Let us denote by w0 the web
similar to w but with the digon replaced by a single edge or the square smoothed in
one way or the other. By induction we can find an .∅; w0/–foam f 0 nonequivalent
to 0 with one dot on the facet adjacent to e .

In a neighborhood of the strand or the smoothed square, we consider a digon move or
a square move (move upside down the pictures of Figure 14). Seen as a .w0; w/–foam
it induces an injective map. Therefore, the composition of f 0 with this .w0; w/–foam
is not equivalent to 0 and has one dot on the facet adjacent to e .

Notation 3.27 Let w be an "–web and e an edge of w . We denote by f .w; e/ the
.∅; ww/–foam which is diffeomorphic to w� Œ0; 1� with one dot on the facet e� Œ0; 1�.
We denote by f .w;∅/ the .∅; ww/–foam which is diffeomorphic to w� Œ0; 1� with
no dot on it.

Corollary 3.28 Let w be an "–web, and e an edge of w . The foam f .w; e/ is
nonequivalent to 0.

Proof From Lemma 3.26 we know that for any w , there exists a .w;w/–foam which
is nonequivalent to 0 and is the product of f .w; e/ with another .w;w/–foam. This
proves that the .w;w/–foam f .w; e/ is not equivalent to 0.
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"i "iC1 "i "iC1 "i "iC1

Figure 19: From left to right a \ , a � and an H

Definition 3.29 If w is an "–web. We say that it contains a �, a \ or an H if in a
neighborhood of the boundary, w looks like one of the pictures of Figure 19.

Lemma 3.30 Every nonelliptic "–web contains at least a �, a \ or an H .

Proof The closed web ww contains a circle a digon or a square, and this happens
only if w contains a \, � or H .

Remark In fact, one can “build” every nonelliptic web with these three elementary
webs. This is done via the so-called growth algorithm [6].

Lemma 3.31 Let w be a nonelliptic "–web. Then the elements of .f .w; e//e2E.w/

are pairwise nonequivalent (but they may be linearly dependent).

Sketch of the proof We proceed by induction on the number of edges of w . The
base case is straightforward, since if w has only one edge there is nothing to prove.
We can distinguish several case thanks to Lemma 3.30.

If w contains a \, we denote by e the edge of this \, and by w0 the "0–web similar
to w but with the \ removed. Suppose that e1 D e . Then e2 ¤ e and the .∅; ww/–
foams f .w; e1/ and f .w; e2/ are nonequivalent because if we glue a cap with one
dot on it on the cup (we mean e � I ), on the one hand we obtain a .∅; w0w0/–foam
equivalent to 0 and on the other hand a .∅; w0w0/–foam equivalent to �f .w0;∅/.
Thanks to Lemma 3.26, we know that this last .∅; w0w0/–foam is not equivalent
to 0. If e1 and e2 are different from e , it is clear as well, because f .w; e1/ and
f .w; e2/ can be seen as composite of f .w0; e1/ and f .w0; e2/ with a birth (seen as a
.w0w0; ww/–foam) which is known to correspond to injective map.

The same kind of argument shows the two other cases, but the digon relations and the
square relations are used instead of the sphere relations.

Lemma 3.32 Let w be an "–web with no closed connected component (ie w is @–
connected; see Section 4C) and f a reduced .w;w/–foam f . Suppose that every facet
meets w� f0g on at most one edge, and meets w� f1g on at most one edge. Then it is
isotopic to w� Œ0; 1�.

Algebraic & Geometric Topology, Volume 15 (2015)



1330 Louis-Hadrien Robert

Proof The proof is inductive on the number of vertices of w . If w is a collection of
arcs, the foam f has no singular arc. As f was supposed to be reduced, it has no
singular circle. Therefore it is a collection of disks which corresponds to the arcs of w ,
which proves the result in this case.

We suppose now that w has at least one vertex. Let us pick a vertex v which is a
neighbor (via an edge e ) of the boundary " of w . We claim that the singular arc ˛
starting at v� f0g must end at v� f1g.

Indeed, the arc ˛ cannot end at w�f0g, for otherwise, the facet f adjacent to e would
be adjacent to another edge of w . Therefore the arc ˛ ends at w � f1g. For exactly
the same reasons, it has to end at v� f1g, so the facet which is adjacent to e� f0g is
isotopic to e� I . Now we can remove a neighborhood of this facet and we are back in
the same situation with a "0–web with fewer vertices, and this concludes the proof.

Proof of Proposition 3.25 We consider a nonelliptic "–web w . Let f be a reduced
.w;w/–foam such that f is equivalent to w�I up to a nontrivial scalar. We claim that
the foam f satisfies the hypotheses of Lemma 3.32. First, the web w , being nonelliptic,
has no closed connected component. Suppose that a facet of f meets w� f0g at two
different edges e1 and e2 . The foams obtained by composing f with f .w; e1/ and
f .w; e2/ would be equal. This contradicts Lemma 3.31. The same argument shows
that every facet meets w� f1g on at most one edge. Hence, the foam f does satisfy
the hypotheses of Lemma 3.32, and f is isotopic to w� Œ0; 1�.

We conjecture that Proposition 3.25 still holds without the nonellipticity hypothesis.
However the proof has to be changed since Lemma 3.31 and Lemma 3.32 cannot be
extended to elliptic webs.

Corollary 3.33 If w is a nonelliptic "–web and w0 is an "–web with strictly fewer
vertices than w , then if f is a .w;w0/–foam and g is a .w0; w/–foam, the .w;w/–
foam fg is not equivalent to a scalar times the identity.

4 Characterization of indecomposable web modules

4A General view

The purpose in this section is to prove Theorem 3.11. The proof is an induction on
the number of edges of the web w . But for the induction to work, we need to handle
elliptic webs and to introduce stacks of red graphs and @–connectedness (Section 4C).
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' P ˚ f�1g ˚ fC1g

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

Figure 20: Example of a decomposition of a web module into indecompos-
able modules. All direct factors which are web modules are obtained through
idempotents associated with red graphs. The module P is not a web module
but is a projective indecomposable module.

Definition 4.1 Let w be an "–web. A stack of red graphs S D .G1;G2; : : : ;Gl/

for w is a finite sequence of paired red graphs such that G1 is a red graph of w1
def
Dw ,

G2 is a red graph of w2
def
D wG1

, G3 is a red graph of w3
def
D .wG1

/G2
D .w2/G2

etc.
We denote .� � � ..wG1

/G2
/ � � � /Gl

by wS and we denote l by l.S/ and say that it is
the length of S . We define the level of a stack to be the sum of the levels of the red
graphs of the stack.

Definition 4.2 A stack of red graphs is nice if all its red graphs are nice. Note that in
this case the pairing information on red graphs is empty.

Definition 4.3 An "–web w is @–connected if every connected component of w
meets the boundary.

A direct consequence is that a @–connected "–web contains no circle.
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Figure 21: A stack of red graphs of length 2

Lemma 4.4 A nonelliptic "–web is @–connected.

Proof An "–web which is not @–connected has a closed connected component. This
connected component contains at least a circle, digon or square and hence is elliptic.

We can now rewrite Theorem 3.11 as it will be proven.

Proposition 4.5 (1) If w is a @–connected "–web which is virtually decomposable
of level k > 1 then there exists a nice stack of red graphs S for w of level greater
than or equal to k such that wS is @–connected.

(2) If w is a @–connected "–web which is virtually decomposable of level k > 1,
contains no digon and contains exactly one square which is supposed to be
adjacent to the unbounded face then there exists a nice red graph G in w of level
greater than or equal to k such that wG is @–connected.

(3) If w is a nonelliptic "–web which is virtually decomposable of level k > 0 then
there exists a nice red graph G in w of level greater of equal to k such that wG

is @–connected.

We will prove Proposition 4.5 in Section 4D, thanks to a technical lemma (Lemma 4.22)
which will be proven in Section 4F after an alternative perspective on red graphs
(Section 4E). Before this we discuss combinatorics of red graphs and @–connectedness.

Remark It is easy to see that a nonelliptic superficial "–web contains no red graphs
of nonnegative level, hence this result is strictly stronger than an earlier result of the
author [14].
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4B Combinatorics on red graphs

In our construction, it is very difficult to ensure exactness or even admissibility of the
red graph. The aim of this section is to show that all we need to focus on is the index
of the red graphs we build. Proposition 4.6 tells that whenever we find a red graph in a
web with nonnegative index, we can find an admissible red graph with nonnegative
index, and Proposition 4.8 indicates that if we can find an admissible red graph in a
web, then there exists an exact red graph for this web.

Proposition 4.6 Let w be an "–web. Suppose there exists a red graph G for w
such that I.G/ > 0; then there exists an admissible red graph �G for w such that
I.�G/> I.G/.

Proof If G is already admissible, there is nothing to show; hence we suppose that
G is not admissible. Among all the orientations for G , we choose one such thatP
f 2V .G/ ji.f /j is minimal and we denote it by o. From now on G is endowed with

this orientation. As G is not admissible there exist some vertices with negative level
and some with positive level.

We first show that there is no oriented path from a vertex fp with io.fp/ > 0 to a
vertex fn with io.fn/ < 0. Suppose there exists such a path and denote it by  . Let
us inspect the orientation o0, which is the same as o except along the path  where it
is reversed. For all vertices f of G but fp and fn , we have io.f /D io0.f / and

io0.fp/D io.fp/� 1; io0.fn/D io.fn/C 1:

But then
P
f 2V .G/ jio0.f /j would be strictly smaller than

P
f 2V .G/ jio.f /j and this

contradicts that o is minimal.

We consider the induced oriented subgraph .�G; Qo/ of .G; o/ whose vertices are exactly
those of G which can be reached from a vertex with positive level by an oriented path.
This set is not empty since it contains the vertices with positive degree. It contains no
vertex with negative degree. For all vertices of �G , we have

iQo.f /D 2� 1
2

degD.w/.f /C #fedges of �G pointing away from f g

D 2� 1
2

degD.w/.f /C #fedges of G pointing away from f g

D io.f /:

The second equality holds because if f is in V .�G/, every edge in E.G/nE.�G/ points
to f by definition of �G . This shows that �G is admissible and I.�G/ > I.G/.
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Lemma 4.7 Let w be a nonelliptic web, suppose that it contains a red graph of level k .
Then it contains an admissible nice red graph of level at least k .

Proof We consider a red graph G of w of level k . Thanks to Proposition 4.6 we can
suppose that it is admissible. We can take a minimal red graph G (for the inclusion of
the set of vertices) for the property of being of level at least k and admissible. The
graph G is endowed with a fitting orientation. Now suppose that it is not nice, it means
that there exists a vertex v of G which has external degree equal to 4. But G being
admissible all the edges of G adjacent to v point out of v , so we can remove v ; ie we
can consider the induced subgraph G0 with all the vertices of G but v and with the
induced orientation. Then the red graph G0 is admissible with the same level. Hence
G is not minimal, which is a contradiction.

For a nonelliptic "–web, the existence of an exact red graph may appear as an excep-
tional situation between the case where there is no admissible red graph and the case
where all admissible red graphs are nonexact. The aim of the rest of this section is to
show Proposition 4.8, which indicates that this is not the case. Along the way we state
some small results that are not directly useful for the proof but may enlighten us as to
what red graphs look like.

Proposition 4.8 Let w be a nonelliptic "–web. If there exists an admissible red graph
for w then there exists an exact red graph for w .

Definition 4.9 Let w be an "–web, and G and G0 two admissible red graphs for w .
We say that G0 is a red subgraph of G if V .G0/ � V .G/. We denote by G.G/ the
set of all admissible red subgraphs. It is endowed with the partial order given by the
inclusion of sets of vertices. We say that G is minimal if G.G/D fGg.

Note that a red subgraph is an induced subgraph and that a minimal red graph is
connected.

Lemma 4.10 Let w be an "–web and G a minimal admissible red graph endowed
with a fitting orientation. Then there is no nontrivial partition of V .G/ into two sets
V1 and V2 such that for each vertex v1 in V1 and each vertex v2 in V2 every edge
between v1 and v2 is oriented from v1 to v2 .

Proof If there were a such a partition, we could consider the red subgraph G0 with
V .G0/D V2 . For every vertex in V2 , the level is the same in G and G0 and, hence,
G0 would be admissible and G would not be minimal.
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Corollary 4.11 Let w be an "–web and G a minimal admissible red graph for w .
Then the graph G has no leaf.6 Therefore if it has 2 or more vertices, it is not a tree.

Proof Let us endow G with a fitting orientation. If v were a leaf of G , the vertex v
would be either a sink or a source, hence V .G/n fvg and fvg would partition V .G/ in
a way forbidden by Lemma 4.10.

Corollary 4.12 If G is an admissible red graph for a nonelliptic "–web w , then G is
not a tree.

Proof Consider a minimal red subgraph of G . Thanks to Corollaries 3.7 and 4.11, it
is not a tree. Hence G is not a tree.

Lemma 4.13 Let w be an "–web and G a minimal admissible red graph for w . If G

has more than 2 vertices, then it is nice.

Proof Suppose that we have a vertex v of G with external degree equal to 4. Consider
a fitting orientation for G . All edges of G adjacent to v would point out, otherwise
the degree of v would be negative. So v would be a sink and, thanks to Lemma 4.10,
this is not possible.

Lemma 4.14 Let w be a nonelliptic "–web and G a minimal admissible red graph.
If the red graph G is endowed with a fitting orientation, then it is strongly connected.

The terms weakly connected and strongly connected are classical in graph theory. The
first means that the underlying unoriented graph is connected in the usual sense. The
second that for any pair of vertices .v1; v2/, there exists an oriented path from v1 to v2

and an oriented path from v2 to v1 .

Proof Let v be a vertex of G , consider the subset Vv of V .G/ which contains the
vertices of G reachable from v by an oriented path. The sets Vv and V .G/ nVv form
a partition of V .G/ which must be trivial because of Lemma 4.10, but v is in Vv so
Vv D V .G/. This is true for any vertex v , so G is strongly connected.

Proposition 4.15 If G is a red graph for a nonelliptic "–web w , then any (not oriented)
simple cycle has at least 6 vertices.

Proof Take a nontrivial simple cycle C in G . We consider the collection of faces
of w nested inside C (this is nonempty thanks to condition (iii) of the definition of
red graphs). This defines a plane7 graph H . We define H 0 to be the graph H with the
bivalent vertices smoothed (we mean here that if locally H looks like , then H 0

looks like ). An example of this construction is depicted in Figure 22.

6We mean vertex of degree 1.
7We mean a graph embedded in the plane without any crossing.
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Figure 22: On the left the "–web w and the red graph G , in the middle the
graph H , and on the right the graph H 0

The "–web w being nonelliptic, each face of H has at least 6 sides. We compute the
Euler characteristic of H 0 :

�.H 0/D #F.H 0/� #E.H 0/C #V .H 0/D 2:

As in Proposition 2.2, this gives us
P

i2N #Fi.H
0/.1� i=6/D 2, where Fi.H

0/ is the
set of faces of H 0 with i sides. Restricting the sum to i 6 5 and considering F 0i the
set of bounded faces, we have

5X
iD0

#F 0i .H
0/.6� i/> 6:

But the bounded faces of H 0 with fewer than 6 sides come from bounded faces of H

which have at least 6 sides. The number n of bivalent vertices in H is therefore greater
than or equal to

P5
iD0 F 0i .H

0/.6� i/; ie greater than or equal to 6. But n is also the
length of the cycle C .

Note that a cycle in a red graph can have an odd length (as in the example of Figure 22).

Lemma 4.16 Let G be a minimal admissible red graph for a nonelliptic "–web w .
Then G has at least one vertex with degree 2.

Proof Suppose that all vertices of G have degree greater than or equal to 3, then the
graph G would contain a face with less than 5 sides (this is the same argument as in
Proposition 2.2 which states that a closed web contains a circle, a digon or a square).
This contradicts Proposition 4.15.

Proposition 4.8 is a direct consequence of the following lemma.
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Figure 23: On the left w , on the right w0

Lemma 4.17 Let w be a nonelliptic "–web and G a minimal admissible red graph
for w . Then G is exact.

Proof We endow G with a fitting orientation o. Suppose G is not exact; then we can
find a vertex f with io.f / > 0.

First consider the case where deg.f /D 2. The "–web w being nonelliptic, ed.f /> 2.
This shows that the two edges adjacent to f point away from f . Hence, f is a sink
and this contradicts Lemma 4.10.

Now, let us consider the general case. Let f 0 be a vertex with degree 2. Lemma 4.14
implies that there exists an oriented path  from f to f 0. Let us reverse the orientations
of the edges of  . We denote by o0 this new orientation. Then we have io0.f / D

io.f /� 1 > 0 and io0.f 0/ D io.f
0/C 1 > 1. The levels of all other edges are not

changed, hence o0 is a fitting orientation, and we are back in the first situation (where
f 0 plays the role of f ).

4C The @–connectedness

Lemma 4.18 Let w be a @–connected "–web with a digon. The "–web w0 obtained
from w by replacing a digon by a single edge (see Figure 23) is still @–connected. In
other words @–connectedness is preserved by digon reduction.

Proof This is clear because every path in w can be projected onto a path in w0 .

Note that @–connectedness is not preserved by square reduction, see for example
Figure 24. However we have the following lemma.

Lemma 4.19 If w is a @–connected "–web which contains a square S , then one of
the two "–webs obtained from w by a reduction of S (see Figure 25) is @–connected.

Proof Consider the oriented graph Qw obtained from w by removing the square S and
the 4 half-edges adjacent to it (see Figure 26). We obtain a graph with 4 fewer trivalent
vertices than w and 4 more univalent vertices than w . We call ES the cyclically
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Figure 24: The @–connectedness is not preserved by square reduction.

S

Figure 25: The "–web w with the square S (left), and the two reductions of
the square S .

S

Figure 26: On the left w , on the right Qw

ordered set of the 4 new univalent vertices of Qw . The orientations of the vertices
in ES are .C;�;C;�/. Note that in Qw , the flow modulo 3 (see the remark on page
1305) is preserved everywhere, so the sum of the orientations of the univalent vertices
of any connected component must be equal to 0 modulo 3. Suppose now that there
is a connected component t of Qw which has all its univalent vertices in ES . The
flow condition implies that either all vertices of ES are vertices of t or exactly two
consecutive vertices of ES are vertices of t , or that t has no univalent vertex. The
first situation cannot happen because by adding the square S to t we would construct
a closed connected component of w , which is supposed to be @–connected. The last
situation cannot happen either for the same reason. Hence the only situation that can
occur is the second one. If there were two different connected components t1 and t2
of Qw such that t1 and t2 have all their vertices of degree 1 in ES , then adding the
square S to t1[ t2 would lead to a closed connected component of w . Hence, there is
at most one connected component of Qw with all vertices of degree 1 in ES . Call these
vertices eC and e� and call e0C and e0� the two other vertices of ES (the indices give
the orientation). If we choose w0 to be the "–web corresponding to the smoothing
which connects eC with e0� and e� with e0C , then w0 is @–connected.
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Figure 27: On the left wS0
, on the right w . If tS0

is a circle, then w contains
a digon.

Figure 28: On the left wS0
, on the right w . If tS0

contains a digon then w
contains a square adjacent to S0 .

Definition 4.20 Let w be a @–connected "–web and S a square in w . The square S

is a @–square if the two "–webs wD and wjj obtained from w by the two reductions
of S are @–connected.

Lemma 4.21 If w is a @–connected web, then either it is nonelliptic, or it contains a
digon or a @–square.

Proof Suppose that w is not nonelliptic. As w is @–connected, it contains no circle.
If must contain at least a digon or a square. If it contains a digon we are done, so
suppose w contains no digon. We should show that at least one square is a @–square.
Suppose that there is no @–square. This means that for every square S , there is a
reduction such that the resulting "–web ws.S/ obtained from w by a reduction of S

has a closed connected component tS . Let us consider a square S0 such that tS0
is

as small as possible (in terms of the number of vertices, for example). The web tS0

is closed and connected, so either it is a circle, or it contains a digon or at least two
squares. If tS0

is a circle then w contains a digon adjacent to the square S0 , and we
excluded this case (see Figure 27).

If it contains a digon, the digon must intersect any regular neighborhood of S0 or else
the digon would already be in w . Hence, it appears that the digon comes from a square
S1 in w (S1 is adjacent to S0 ), and tS1

has two fewer vertices than tS0
, which is

excluded by the minimality of TS0
; see Figure 28.
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Figure 29: On the left w0 , on the right w with the red graph G

Hence, the closed web tS0
contains at least two squares. Let us pick a square S 0

which is disjoint from S0 and hence comes from a square in w . At least one of the
two smoothings of the square S 0 must disconnect ts0

, else the square S 0 would be
a @–square in w . But as it disconnects tS0

, tS 0 is a strict subgraph of tS0
, and this

contradicts the minimality of S0 . This concludes the proof that w must contain a
@–square.

4D Proof of Proposition 4.5

In this section, we prove Proposition 4.5 admitting the following technical lemma
which will be proven in Section 4F.

Lemma 4.22 Let w be a @–connected "–web which contains no digon and at most
one square which must be adjacent to the unbounded face. Let G be a nice red graph of
w and G0 a nice red graph of wG such that wG and wG0 are @–connected. Then there
exists a red graph G00 of w such that .wG/G0 D wG00 and the level of G00 is greater
than or equal to the sum of the levels of G and G0 .

This lemma says that under certain conditions one can “flatten” two red graphs.

Proof of Proposition 4.5 As we announced this will be done by induction on the
number of edges of w . Let us suppose that (1), (2) and (3) hold for all "–webs with
strictly less than n edges, and let us consider an "–web with n edges. Note that
whenever w is nonelliptic, statement (3) is stronger than statement (1), so it suffices to
prove (2) and (3) in this case.

We first prove (1). If w contains a digon, then we apply the induction hypothesis to w0 ,
the "–web similar to w but with the digon reduced (ie replaced by a single strand).
The red graph G which consists of only one vertex (the digon) and no edge is nice and
has level equal to 1 (see Figure 29).

If w0 is not virtually decomposable or virtually decomposable of level 0, then w is
virtually decomposable of level 1. In this case, the stack with only one red graph equal
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Figure 30: Transformations of G0 to obtain G

to G is suitable and we are done. Else we know that w0 is of a certain level k � 1

and that there exists a nice stack of red graphs S 0 of level at least k � 1 in w0 and we
consider the stack S equal to the concatenation of G with S 0 . This is a nice stack of
red graphs of level at least k and we are done.

Suppose now that the "–web w contains no digon, but a square, then it contains a
@–square (see Lemma 4.21). Suppose that the level of w is k > 1 (else there is nothing
to show); then at least one of the two reductions is virtually decomposable of level k

(this is a Cauchy–Schwartz inequality; see [15, Section 1.1] for details). Then we
consider w0 the "–web obtained by a reduction of the square so that it is of level k .
From the induction hypothesis we know that there exists a stack of red graphs S 0 in w0

of level k . If all the red graphs of S 0 are disjoint from a neighborhood of the square,
then we can transform the stack S 0 into a stack of w with the same level. Else, we
consider the first red graph G0 of S 0 which is not disjoint from the square location and
according to the situation we define G by the moves given in Figure 30.

Replacing G0 by G we can transform the stack S 0 into a stack for the "–web w . The
level of G is equal to the level of G0 in all case but the second on the left. In this case,
we have I.G/D I.G0/C2. Hence, in all cases, we have I.G/> I.G0/, and therefore
the level of S is greater than or equal to k .
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Figure 31: The H of w (left) and its two reductions wjj (middle) and w� (right)

We now prove (2). From what we just did, we know that w contains a nice stack of
red graphs of level k . Among all the nice stacks of red graphs of w with level greater
than or equal to k , we choose one with minimal length and call it S . If its length were
greater than or equal to 2, then Lemma 4.22 would tell us that we could take the first
two red graphs and replace them by just one red graph with level greater than or equal
to the sum of their two levels, so S would not be minimal. This proves that S has
length 1, therefore, w must contain a nice red graph of level at least k .

We now prove (3). The boundary of w contains at least a \, a � or an H (see
Figure 19). In the first two cases, we can consider w0 the "–web with the \ removed
or the � replaced by a single strand. Then w0 is nonelliptic and virtually decomposable
of level k and there exists a nice red graph in w0 of level at least k . This red graph can
be seen as a red graph of w , and we are done. If the boundary of w contains no � and
no \, then it must contain an H . There are two ways to reduce the H (see Figure 31).
At least one of the two following situations happens: wjj is virtually decomposable of
level k or w_ is virtually decomposable of level kC 1.

In the first situation, we can use the same reasoning as before: wjj being nonelliptic,
the induction hypothesis gives that we can find a nice red graph Gjj of level at least k

in wjj . The red graph Gjj can be seen as a red graph of w , we denote it by G . The
red graph G is nice and has level at least k and we are done. In the second situation,
we consider w_ , to which we can apply the induction hypothesis (we are either in case
(2) or in case (3)), so we can find a nice red graph G� of level at least k C 1. The
red graph G� can be seen as a red graph of w , we denote it by G . The only possible
difference between G and G� is as follows: one vertex of G may have two more gray
half-edges than the corresponding vertex of G� . Hence the red graph G has level at
least k but may not be nice. We can conclude the proposition thanks to Lemma 4.7.

4E A new approach to red graphs

In this section, we give an alternative approach to red graphs: instead of starting with a
web and simplifying it with a red graph, we construct a red graph from a web and a
simplification of this web. For this we need a property of webs that we have not used
so far.
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p p

Figure 32: On the left a positive crossing, on the right a negative one. The
path is dashed and the web is solid.

Proposition 4.23 Let w be a closed web. Then it admits a (canonical) face 3–coloring
with the unbounded face colored by an arbitrary but fixed color c 2Z=3Z. We call this
coloring the face coloring of base c of w . When c is not mentioned it is meant to be 0.

Proof We will color the connected components of R2 nw with elements of Z=3Z.
We can consider the only unbounded component U of R2 nw . We color it by c ; then
for each other connected component f , we consider p an oriented path from a point in
the interior of U to a point in the interior of f , which crosses w transversely. We then
define the color of f to be the sum (modulo 3) of the signs of the points of intersection
of the path p with w (see Figure 32 for sign conventions). This does not depend on
the path because in w the flow is always preserved modulo 3 (see the remark on page
1305). And, by definition, two adjacent faces are separated by an edge, so they do not
have the same color.

Corollary 4.24 Let w be an "–web. Then the connected component of R�RCnw
admits a (canonical) 3–coloring with the unbounded connected component colored
by c . We call this coloring the face coloring of base c of w .

Proof We complete w with w and use the previous proposition to obtain a coloring of
the faces of ww . By restriction, this gives us a canonical coloring for R�RCnw .

Note that in this corollary it is important to consider the connected component of
R�RCnw instead of the connected component of R2 nw . Let us formalize this in a
definition.

Definition 4.25 If w is an "–web, the regions of w are the connected components of
R�RCnw . The faces of w are the regions which do not intersect R� f0g.

Definition 4.26 Let w be an "–web. An "–web w0 is a simplification of w if

� the set of vertices of w0 is included in the set of vertices of w ,
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� every edge e of w0 is divided into an odd number of intervals .Œai ; aiC1�/i2Œ0;2k�

such that for every i in Œ0; k�, Œa2i ; a2iC1� is an edge of w (with matching
orientations) and for every i in Œ0; k � 1�, �a2iC1; a2iC2Œ lies in the interior of
the connected component of R�RCnw opposite to Œa2i ; a2iC1� with respect
to a2iC1 (see Figure 33).

ak

Figure 33: Local picture around aj . The edge of w0 is orange and large,
while the "–web w is black and thin.

Figure 34: The "–web w (in black) and w0 (in orange) of Proposition 2.19
seen in terms of simplification.

Note that in this definition the embedding of w0 with respect to w is very important.

Lemma 4.27 Let w be an "–web and w0 a @–connected simplification of w . Suppose
that an edge e of w is a (part of an) edge of w0 as well. Then, for any color c , in the
face colorings of base c of w and w0 , the regions adjacent to e in w and in w0 are
colored in the same way.

Proof If the edge e has one end on the boundary, this is obvious. Else, w0 being @–
connected, we can build a path from the boundary to a point in a regular neighborhood
of e following some edges of w0 . This path intersects the web w more times that w0 ,
but the signs of these extra intersections annihilate two by two, so, in the face colorings
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of base c of w and w0 , the regions adjacent to e in w and in w0 are colored in the
same way.

Definition 4.28 Let w be an "–web and w0 a simplification of w . We consider the
face colorings of w and w0 . A face f of w lies in one or several regions of w0 . This
face f is essential with respect to w0 if all regions of w0 which it intersects have a
different color than f .

Remark We could have given a more general definition for regions, but it is easy to
see that a region of w which is not a face w is never essential.

Lemma 4.29 Let w be a @–connected "–web and w0 a @–connected simplification
of w . If a face f of w is not essential with respect to w0 then it intersects only one
region of w0 .

Proof Consider a face f of w which intersects more than one region of w0 . We will
prove that it is essential with respect to w0 . Consider an edge e0 of w0 which intersects
f (there is at least one by hypothesis). The intersection of e0 with the boundary of f
consists of some vertices of w (at least two). Let v be one of these vertices. A regular
neighborhood of v is depicted in Figure 35.

f 0

v

e0

Figure 35: Above v the colors of w and w0 coincide thanks to Lemma 4.27.

We want to prove that none of the faces of w0 which are adjacent to e0 has the same
color as the face f . This follows from the Lemma 4.27, and from the fact that the part
of e0 above v is an edge of w (see Figure 35).

Proposition 4.30 Let w be a @–connected "–web (this implies that every face of w is
diffeomorphic to a disk) and w0 a @–connected simplification of w . Then there exists a
(canonical) paired red graph G such that w0 is equal to wG . We denote it by Gw!w0 .

Proof We consider the canonical colorings of the faces of w and w0 . The red graph G

is the induced subgraph of D.w/ (the dual graph of w ) whose vertices are essential
faces of w with respect to w0 . The pairing is given by the edges of w0 . We need to
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v v v

Figure 36: The three configurations for the vertex v of w : a vertex of w0

(left), inside an edge of w0 (middle), inside a region of w0 (right).

prove first that this is indeed a red graph, and in a second step that wG D w
0 . We

consider a vertex v of w and the 3 regions adjacent to this vertex. We want to prove
that at least one of the 3 regions is not essential with respect to w0 .

There are three different situations (depicted in Figure 36):

(a) The vertex v is a vertex of w0 .

(b) The vertex v is in the interior of an edge of w0 .

(c) The vertex v is in the interior of a face of w0 .

In case (a), Lemma 4.27 proves that none of the three regions is essential.

Consider the case (b). One of the three regions intersects two different regions of w0 ,
hence it is essential thanks to Lemma 4.29; the two others are not.

In case (c), the 3 regions have different colors so that one of them has the same color
as the region of w0 in the interior of which v lies. This region is therefore not essential.
This shows that G is a red graph (we said nothing about the admissibility).

Let us now show that w0 D wG . We consider a collection .Nf /f 2V .G/ of regular
neighborhoods of the essential faces of w with respect to w0 . Let us first show that
for every essential face f of w , the restrictions to Nf of wG and w0 match. As f
is essential, it is a vertex of G . Then the restriction of wG to Nf is a collection of
strands joining different points of the boundary according to the pairing, just as w0 .

In R�RCn.
S
f 2V .G/Nf / the "–webs w0 and wG are both equal to w . This completes

the proof.

Note that Gw!w0 depends on how w0 is embedded to see it as a simplification of w .

Definition 4.31 Let w an "–web and w0 a simplification of w . Then the simplification
is nice, if for every region r of w , r \w0 is either the empty set or connected.

This leads to a natural lemma.
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Lemma 4.32 Let w be a @–connected "–web and w0 a @–connected simplification
of w . The simplification is nice if and only if the red graph Gw!w0 is nice

Proof Thanks to Lemma 4.29, only essential faces of w with respect to w0 can
have nontrivial intersection with w0 , and for an essential face f , twice the number
of connected components of f \w0 is equal to the external degree of the vertex of
Gw!w0 corresponding to f .

Lemma 4.33 If w is a @–connected "–web, and w0 a @–connected simplification
of w . Then the level of Gw!w0 is given by

I.Gw!w0/D 2 #fessential faces of w with respect to w0g� 1
2
.#V .w/� #V .w0//:

This shows that the level of Gw!w0 depends on the number of essential faces of w
with respect to w0 and therefore on the embedding of w0 .

Proof The level of a red graph G is given by

I.G/D 2 #V .G/� #E.G/�
1

2

X
f 2V .G/

ed.f /:

By definition of Gw!w0 , we have

fessential faces of w with respect to w0g D V .Gw!w0/:

The only thing to realize is that we have

2

�
#E.G/w!w0 C

1

2

X
f 2V .Gw!w0 /

ed.f /
�
D #V .w/� #V .w0/;

and this follows from the definition of wGw!w0 D w
0 .

Definition 4.34 If f is a face of w , w0 a simplification of w and r a region of w0 , we
say that f avoids r if f \r D∅ or if the boundary of r in each connected component
of f \ r joins two consecutive vertices of f (see Figure 37). In the first case we say
that f trivially avoids r .

If f is an essential face of w with respect to w0 and r is a region of w0 , we say that
f fills r if f does not avoid r . If F 0 is a set of regions of w0 we say that f fills
(resp. avoids) F 0 if it fills at least one region of F 0 (resp. avoids all the regions of F 0 ).
We define

n.f;F 0 /
def
D #fr 2 F 0 such that f fills r g:

If G0 is a red graph of w0 , we write n.f;G0 / for n.f;V .G0 //.
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f

r

Figure 37: The local picture of a face f (in white) of w (in black) nontrivially
avoiding a region r (in yellow) of w0 (in orange).

With the same notation, and with a set of faces F of w ,

#F D #ffaces f of F avoiding F 0gC
X
f 02F 0

X
f 2F
f fills f 0

1

n.f;F 0/
:(2)

Lemma 4.35 Let w be a @–connected "–web and w0 a nice @–connected simplifi-
cation of w . Let F 0 be a collection of regions of w0 . Then for every face f of w ,
n.f;F 0/6 2.

Proof This is clear since f \w0 consists of at most one strand, so it intersects at
most 2 regions of F 0 .

Remark Let w be an "–web, w0 a nice @–connected simplification of w and f
an essential face of w with respect to w0 . The simplification being nice, the face f
intersects at most two regions of w0 .

Let us consider a case where the face f intersects two regions r1 and r2 of w0 . Either
it (nontrivially) avoids one of them or fills both of them. Consider also a collection F 0

of regions of w0 with fr1; r2g � F 0 . If f is a square then it (nontrivially) avoids one
of the regions and n.f;F 0/D 1.

Suppose now that f has at least 6 edges. If f nontrivially avoids r2 (and consequently
n.f;F 0/D 1) then at least two neighbors (in Gw!w0/ of f fill r1 (see Figure 38). If
on the contrary f has just one neighbor which fills r1 , then f fills r2 . Under this
condition, n.f;F 0/D 2.

Lemma 4.33 tells that in order to evaluate the index of a red graph coming from a
simplification, it is crucial to control its number of vertices. The following definition
gives a tool to count locally the number of vertices of a red graph.
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r2r1

f

r2r1

f

Figure 38: On the left f avoids r2 , on the right it fills r1 and r2 .

Definition 4.36 Let w an "–web and w0 a simplification of w , F a collection of
faces of w , F 0 a set of regions of w0 , and f 0 a face of w0 . We set

�.f 0;F ! F 0/
def
D

X
f 2F
f fills f 0

1

n.f;F 0/
2

1
2
Z:

If G is a red graph for w and G0 a red graph for w0 , we write �.f 0;G ! G0/ for
�.f 0;V .G/! V .G0//.

4F Proof of Lemma 4.22

In this section, we use the point of view developed in Section 4E to prove Lemma 4.22.
We rewrite it with this new vocabulary.

Lemma 4.37 Let w be a @–connected "–web which contains no digon and exactly
one square. We suppose furthermore that this square is adjacent to the unbounded
region. Let G be a nice red graph of w and G0 a nice red graph of w0 D wG . Then
there exists a nice simplification �w of w such that

(A) the "–webs .wG/G0 and �w are isotopic,

(B) #V .�G/> #V .G/C #V .G0/; where �G denotes the red graph Gw!�w .

Remark Note that the inequality (B) is what is needed, because, thanks to Lemma 4.33,
this implies

I.�G/> I.G/C I.G0/:

Proof Because of condition (A), the isotopy class of the web �w is already known. To
describe it completely, we only need to specify how �w is embedded.

Let us denote by w00 the "–web .w0/G0 . For each face f 0 of w0 which is a vertex
of G0 , let us denote by Nf 0 a regular neighborhood of f 0 . In a regular neighborhood
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of w0 \w00 , we define �w to be equal to w00 . Therefore we only need to define the
embedding of �w in

S
Nf 0 .

If f 0 is a face of w0 which is in V .G0/, we distinguish two different cases:

(i) The face f 0 corresponds to a vertex of G0 with external degree equal to 0. The
intersection of Nf 0 with w00 is empty, and we define �w[Nf 0 to be the empty
set. See Figure 39 for an example.

(ii) The face f 0 corresponds to a vertex of G0 with external degree equal to 2. In
this case, the intersection of Nf 0 with w00 is a single strand. We define the
intersection of �w with Nf 0 to be a single arc as well (with the same ends),
but we still need to specify how this arc is embedded with respect to w . See
Figure 40 for an example.

These are the only cases to consider since G0 is nice. It is clear that �w and w00 are
isotopic.

We claim that the following inequalities hold in case (i) and that it is possible to find
embeddings of the arcs in case (ii) such that the inequalities hold for case (ii) as well:�

�.f 0; �G!G0/> �.f 0;G!G0/C 1
2

if S �Nf 0 ,
�.f 0; �G!G0/> �.f 0;G!G0/C 1 if S ªNf 0 ,

(3)

where S is the square of w .

This will be proven by Lemma 4.39 and Lemma 4.42.

The square S of w is in at most one Nf 0 , so if we sum (3) for all f 0 in V .G0/, we
obtain X

f 02F 0

�.f 0; �G!G0/>
X
f 02F 0

�.f 0;G!G0/C #V .G0/� 1
2
;

and using (2), we have

#V .�G/> #V .G0/C #V .G/� 1
2
;

because the set of faces of w which belong to V .G/ and avoid V .G0/ is precisely
the set of faces of w which belong to V .�G/ and avoid V .G0/. But #V .�G/ being an
integer we have #V .�G/> #V .G0/C #V .G/.

As we said, the inequalities (3) will be proven later, but let us examine the precise
situation. The restriction of G to f 0 is a graph which satisfies the following conditions:

� It is bicolored (because the vertices of G are essential faces of w with respect
to w0 ).

Algebraic & Geometric Topology, Volume 15 (2015)



A characterization of indecomposable web modules over K" 1351

� It is naturally embedded in a disk because Nf 0 is diffeomorphic to a disk.
� The boundary of every face of G has at least 6 edges (this is a consequence of

Proposition 4.15).
� The vertices in the interior of the disk have degree at least three (because the

only possible square of w is adjacent to the unbounded region of w ). If f is
such a vertex of G , n.f;V .G0//D 1 (see the remark on page 1348).

� The vertices on the boundary (these are the ones which fill another region of w0 )
have degree at least 1. If such a vertex f has degree 1 and is located next to
another region of w0 which is in V .G0/, then n.f;V .G0//D 2 (see remark on
page 1348) unless it is the square (in this case n.f;V .G0//D 1). In other cases
n.f;V .G0//> 1.

Figure 39: Example of the procedure to define �G when the external degree
of f 0 is equal to 0

4G Proof of combinatorial lemmas

This section is dedicated to the two technical lemmas used in the proof of Lemma 4.37.
We first introduce certain ad-hoc objects and then state and prove the lemmas.

Definition 4.38 A D–graph is a graph G embedded into the disk D2 . The set of
vertices V .G/ is partitioned into two sets: V @.G/ contains the vertices lying on @D2 ,
while V in.G/ contains the others. The set F.G/ of connected components of D2nG is
partitioned into two sets: F in.G/ contains the connected component included in VD2 ,
while F@.G/ contains the others.

A D–graph is said to be nonelliptic if
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� every vertex v of V in.G/ has degree greater than or equal to 3,

� every vertex v of V @.G/ has degree greater than or equal than 1,

� the faces of F in.G/ are of size8 at least 6.

A colored D–graph is a D–graph G together with

� a coloring (by green and blue) of the vertices of G such that two adjacent
vertices have different colors (this implies that G is bipartite),

� a subdivision of @D2 into two intervals (we allow one interval to be the empty set
and the other one to be the full circle; in this case we say that G is circle-colored):
a green one and a blue one (denoted by Iblue and Igreen ). When they are proper
intervals we define x and y to be the two intersection points of Igreen and Iblue

with the convention that when we scan @D2 clockwise, we see x , then Igreen ,
then y and finally Iblue .

Figure 40: Example of the procedure to define �G when the external degree
of f 0 is equal to 2

The vertices of V @ are different from x and y . The color of a vertex does not need to
match the color of the interval it lies on. We define Vgreen (resp. Vblue ) to be the set of
green (resp. blue) vertices and define V @

green , V in
green , V @

blue and V in
blue similarly.

If G is a colored D–graph, and v is a vertex of V @ , we set

n.v/D

�
2 if v has degree 1 and the color of v fits the color of the interval,
1 else.

8We mean the number of edges of its boundary.
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If v is a vertex of V in , we set n.v/D 1. Note that this definition of n is a translation of
the n of the previous section (see remark on page 1348). More precisely, for every ver-
tex v but maybe the one corresponding to the square we have n.v/6 nprevious section.v/.

4G.1 Case with external degree equal to 0

Lemma 4.39 Let G be a nonelliptic circle-colored D–graph (with the circle colored
by a color c ). Then

#F > 1C
X
v2Vc

1

n.v/
:

Remark This is exactly what we want because if we add
P
v 62Vc

1=n.v/ on both
sides, we obtain the second inequality of (3).

Proof By symmetry, we may suppose that c D green. To prove the lemma, we
consider the graph H obtained by gluing two copies of G along the boundary of D2 .
This is naturally embedded into the sphere. We write the Euler characteristic

#F.H /� #E.H /C #V .H /D 1C #C.H /;(4)

where C.H / is the set of connected components of H . We have the equalities

#F.H /D 2#F in.G/C #F@.G/;

#F@.G/D #V @.G/C 1� #C.H /;

#E.H /D 2#E.G/D
X

v2V .G/

deg.v/D 2
X

v2Vgreen.G/

deg.v/;

#V .H /D 2#V in.G/C #V @.G/:

Now we can rewrite (4) as

2#F in.G/C 2#F@.G/C 2#V in.G/D 2C 2#E.G/:(5)

Now we use what we know about the degrees of the vertices:

#E.G/> 3
2

#V in.G/C 1
2

#V @;1.G/C #V @;>1.G/;

#E.G/> 3#V in
green.G/C #V @;1

green.G/C 2#V @;>1
green .G/:

Here, V @;1 (resp. V @;>1 ) denotes the subset of V @ with degree equal to 1 (resp. with
degree strictly greater than 1). If we sum 2

3
of the first inequality and 1

3
of the second
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Figure 41: From left to right: a \ , a � and an H . The circle @D2 is thick
and gray, the D–graph is thin and black. Note that the vertices inside D2

may have degree greater than 3.

one, and substitute this in (5), we obtain

#F.G/C #V in.G/> 1C #E.G/;

#F.G/C #V in.G/> #V in.G/C 1
3

#V @;1.G/C 2
3

#V @;>1.G/

C #V in
green.G/C

1
3

#V @;1
green.G/C

2
3

#V @;>1
green .G/;

#F.G/> #V in
green.G/C

2
3

#V @;1
green.G/C

4
3

#V @;>1
green .G/

C
1
3

#V
@;1

blue.G/C
2
3

#V
@;>1

blue .G/

> #V in
green.G/C

1
2

#V @;1
green.G/C #V @;>1

green .G/

>
X

v2Vgreen

1

n.v/
:

4G.2 Case with external degree equal to 2

Lemma 4.40 If G is a nonelliptic D–graph, then all the faces of G are diffeomorphic
to disks, and if it is nonempty, then at least one of the following situations happens:

(1) The set V @;>1 is nonempty.

(2) There exist two \ (see Figure 41) (if G consists of only one edge, then both \
have the same edge, but are different, since one consider one side of the disk and
the other).

(3) There exist three � or H (see Figure 41).

Proof This is the same Euler characteristic argument that we used in Lemma 3.30.

Definition 4.41 A cut in a (non circle-) colored D–graph is a simple oriented path
 W Œ0; 1�!D such that

�  .0/ D x and  .1/ D y so that Igreen is on the left and Iblue is on the right9

(see Figure 42);

9We use the convention that the left and right side are determined when one scans  from x to y .
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� for every face f of G , f \  is connected;

� the path  crosses G either transversely at edges joining a green vertex on left
and a blue vertex on the right, or at vertices of V @ whose colors do not match
with the intervals they lie on.

y

x

Igreen Iblue

Figure 42: A cut in a colored D–graph (note that G is elliptic)

If  is a cut we denote by Vl. / .G/ and Vr. / .G/ the vertices located on the left
(resp. right) of  . (The vertices located on  are meant to be both on the left and right).

Lemma 4.42 Let G be a nonelliptic (non circle-) colored D–graph. Then there exists
a cut  such that

#F.G/> 1C
X

v2 V
l./

green

1

n.v/
C

X
v2 V

r ./
blue

1

n.v/
:

Remark This is exactly what we want because if we addX
v2 V

r ./
green

1

n.v/
C

X
v2 V

l./
blue

1

n.v/

on both sides, we obtain the second inequality of (3).

Proof The proof is done by induction on s.G/
def
D 3#E.G/C 4#V @;>1.G/. If this

quantity is equal to zero then the D–graph is empty. In this case, we choose  to be
any simple arc joining x to y , and the lemma says 1> 1 which is true. We set

C.G;  /
def
D

X
v2 V

l./
green

1

n.v/
C

X
v2 V

r ./
blue

1

n.v/
:
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v v1 v2 vdeg.v/

Figure 43: Local picture of G (left) and G0 (right) in a regular neighborhood
of v (or v1; : : : ; vdeg.v/ ), when v is green and lies on Igreen

v v00

v0

e

Figure 44: Local picture of G (left) and G0 (right) in a neighborhood of v
(or v0 ), when v is blue and lies on Igreen

It is enough to check the situations (1), (2) and (3) described in Lemma 4.40.

Situation (1) Let us denote by v a vertex of V @;>1 . There are two cases: the color
of v fits with the colors of the intervals it lies on or not.

If the colors fit, say both are green, we consider G0 the same colored D–graph as G

but with v split into v1; v2; : : : ; vdeg.v/ all in V @;1.G0/ (see Figure 43). We have
s.G0/D S.G/� 4 < s.G/ and G0 nonelliptic, therefore we can apply the induction
hypothesis. We can find a cut  0 with #F.G0/> 1CC.G0;  0/. Note that  0 does not
cross any v0 , so we can lift  0 to the D–graph G . This gives us  . We have

C.G;  /D C.G0;  0/C
1

n.v/
�

deg.v/X
kD1

1

n.vk/

D C.G0;  0/C 1� 1
2

deg.v/

6 C.G0;  0/:

On the other hand #F.G/D #F.G0/ so we have #F.G/> 1CC.G;  /.

If the colors do not match (say v is blue), we construct a colored D–graph G0 which
is similar to G everywhere but in a regular neighborhood of v . The vertex v is
pushed into the interior of D2 (we denote it by v0 ) and we add a new vertex v00 on
@D2 and an edge e joining v0 and v00 . The colored D–graph G0 is nonelliptic and
s.G0/D s.G/� 4C 3< s.G/ so we can apply the induction hypothesis and find a cut
 0 with #F.G0/> 1CC.G0;  0/.
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v

 
v00

v0 0

Figure 45: How to transform  0 into 

vg vb vg vbx vg vbx

Figure 46: The three possible configurations of G with two \

If  0 does not cross e we can lift  0 to G (this gives us  ). We have

C.G;  /D C.G0;  0/C
1

n.v/
�

1

n.v0/
D C.G0;  0/C 1� 1D C.G0;  0/:

On the other hand we have F.G/D F.G0/, so #F.G/> 1CC.G;  /.

Consider now the case where  0 crosses e . Then we consider the cut  of G which is
the same as  outside a regular neighborhood of v , and which around v crosses G

in v (see Figure 45). We have

C.G;  /D C.G0;  0/C
1

n.v/
�

1

n.v0/
�

1

n.v00/

D C.G0;  0/C 1� 1� 1
2

6 C.G0;  0/:

But #F.G/D #F.G0/, so we have #F.G/> 1CC.G;  /.

Situation (2) We now suppose that G contains two \. Let us denote by vg (resp. vb )
the green (resp. blue) vertex of the \ and by e the edge of the cap. There are different
possible configurations depending on the positions of x and y . As there are at least
two caps, we may suppose y is outside a regular neighborhood of the \.

There are 3 different configurations (see Figure 46):

� The point x is far from the \.

� The point x is in the \ and vg 2 Igreen and vb 2 Iblue .

� The point x is in the \ and vg 2 Iblue and vb 2 Igreen .
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x

 0

 

vg vbx



Figure 47: How to transform  0 into 

x

 0

 

vg vbx



Figure 48: How to transform  0 into 

We consider G0 to be the colored D–graph similar to G except that the \ is removed.
The colored D–graph G0 is nonelliptic and s.G0/D s.G/�3< s.G/ so we can apply
the induction hypothesis and find a cut  0 with #F.G0/> 1CC.G0;  0/.

Let us first suppose that x and the \ are disjoint. Then vb and vg both lie either on
Igreen or on Iblue . By symmetry we may consider that they both lie on Igreen . We can
lift  0 to G (this gives  ) so that it does not meet the \. We have

C.G;  /D C.G0;  0/C
1

n.vg/
D C.G0;  0/C 1

2
:

But #F.G/D #F.G0/C 1, hence #F.G/> 1CC.G;  /.

Suppose now that the point x is in the \ and vg 2 Igreen and vb 2 Iblue . We can lift  0

to G so that it crosses e (see Figure 47).

We have

C.G;  /D C.G0;  0/C
1

n.vg/
C

1

n.vb/
D C.G0;  0/C 1

2
C

1
2
D C.G0;  0/C 1:

But #F.G/D #F.G0/C 1, hence #F.G/> 1CC.G;  /.

Suppose now that the point x is in the \ and vg 2 Iblue and vb 2 Igreen . We can lift  0

to G so that it crosses10 vg (see Figure 48).

We have
C.G;  /D C.G0;  0/C

1

n.vg/
D C.G0;  0/C 1:

10We could have chosen to cross vb .
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v1 v2

v
e1 e2

v1 v2

v
e1 e2

v0 v0

Figure 49: On the top, the two possible configurations for a � . On the bottom,
the D–graphs G0 obtained from G .

But #F.G/D #F.G0/C 1, hence #F.G/> 1CC.G;  /.

Situation (3) We suppose now that there are three � or H . One can suppose that one
of the �’s or one of the H is disjoint from x and from y .

Let us first consider the case where there is a � disjoint from x and y . Let us denote
by v1 and v2 the two vertices of � which belong to V @.G/, by v the vertex of the �
which is in V in.G/ and by e1 (resp. e2 ) the edge joining v and v1 (resp. v2 ). We
consider G0 to be the D–graph where the � is replaced by a single strand: the edges e1

and e2 and the vertices v1 and v2 are suppressed. The vertex v is moved to @D2 (and
renamed v0 ). This is depicted in Figure 49. The colored D–graph G0 is nonelliptic
and s.G0/ < s.G/ so we can apply the induction hypothesis and find a cut  0 with
#F.G0/> 1CC.G0;  0/.

The vertices v1 and v2 have the same color; by symmetry we may suppose that they
are both green. This implies that v and v0 are both blue.

There are two different configurations:

� The vertices v1 and v2 lie on Igreen .

� The vertices v1 and v2 lie on Iblue .

Let us first suppose that the vertices v1 and v2 lie on Igreen . If the cut  0 does not
cross v0 then we can canonically lift it to G . This gives us  . We have

C.G;  /D C.G0;  0/C
1

n.v1/
C

1

n.v2/

D C.G0;  0/C 1
2
C

1
2
:

But #F.G/D #F.G0/C 1, hence #F.G/> 1CC.G;  /.

Algebraic & Geometric Topology, Volume 15 (2015)
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  0

Figure 50: How to transform  0 into 

v0
3

v0
4

v1 v2

v3 v4

e e2e1

Figure 51: How to transform G into G0

If the cut  0 crosses v0 , we lift  0 to G so that it crosses e1 and e2 (see Figure 48).

In this case,

C.G;  /D C.G0;  0/CC
1

n.v/
�

1

n.v0/
C

1

n.v1/
C

1

n.v2/

D C.G0;  0/C 1� 1C 1
2
C

1
2
:

Hence, #F.G/> 1CC.G;  /.

Now suppose that the vertices v1 and v2 lie on Iblue . This implies that  0 does not
meet v0 , so we can lift  0 canonically to G . This gives us  , and

C.G;  /D C.G0;  0/C
1

n.v/
�

1

n.v0/

D C.G0;  0/C 1� 1:

Hence #F.G/> 1CC.G;  /.

We finally consider an H disjoint from x and y . We use the notation in Figure 51 to
denote vertices and edges of H . We consider the D–graph G0 obtained from G by
simplifying H (see Figure 51 for details and notation). The colored D–graph G0 is
nonelliptic and s.G0/D s.G/� 3� 3C 2� 4 < s.G/ so we can apply the induction
hypothesis and find a cut  0 with #F.G0/> 1CC.G0;  0/.

Up to symmetry there is only one configuration, therefore we may suppose that v1 is
green and lies on Igreen . This implies that v2 and v3 are blue and that v4 is green.
Because of the color condition, the cut  0 does not cross v0

4
and may cross v0

3
. If it
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 0

 



Figure 52: How to transform  0 into 

does not cross v0
3

, one can canonically lift  0 to G0 , and

C.G;  /D C.G0;  0/C
1

n.v1/
C

1

n.v4/
�

1

n.v0
4
/

C.G;  /6 C.G0;  0/C 1
2
C 1� 1

2
:

C.G;  /6 C.G0;  0/C 1:

But #F.G/D #F.G0/C 1, hence #F.G/> 1CC.G;  /.

If the cut  0 crosses v0
3

, one can lift it to G so that it crosses e1 and e2 (see Figure 52).

Hence

C.G;  /D C.G0;  0/C
1

n.v1/
C

1

n.v3/
�

1

n.v0
3
/
C

1

n.v4/
�

1

n.v0
4
/

C.G;  /6 C.G0;  0/C 1
2
C 1� 1C 1� 1

2
:

C.G;  /6 C.G0;  0/C 1:

But #F.G/D #F.G0/C 1, hence #F.G/> 1CC.G;  /.

Conclusion In all situations, using the induction hypothesis we can construct a cut 
such that #F.G/> 1CC.G;  /. This proves the lemma.
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