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Relations between Witten—Reshetikhin—Turaev and
nonsemisimple s[(2) 3-manifold invariants

FRANCESCO COSTANTINO
NATHAN GEER
BERTRAND PATUREAU-MIRAND

The Witten—Reshetikhin—Turaev (WRT) invariants extend the Jones polynomials
of links in S? to invariants of links in 3—manifolds. Similarly, the authors con-
structed two 3-manifold invariants N, and N? which extend the Akutsu-Deguchi—
Ohtsuki (ADO) invariant of links in S* colored by complex numbers to links in
arbitrary manifolds. All these invariants are based on the representation theory of
the quantum group Uysl,, where the definition of the invariants N, and N? uses a
nonstandard category of U,sl, —-modules which is not semisimple. In this paper we
study the second invariant, N(r) , and consider its relationship with the WRT invariants.
In particular, we show that the ADO invariant of a knot in S3 is a meromorphic
function of its color, and we provide a strong relation between its residues and the
colored Jones polynomials of the knot. Then we conjecture a similar relation between
N9 and a WRT invariant. We prove this conjecture when the 3—manifold M is not a
rational homology sphere, and when M is a rational homology sphere obtained by
surgery on a knot in S3 or a connected sum of such manifolds.

57N10; 57TR56

Introduction

In [18], Witten proposed a program to construct a topological invariant of 3—manifolds
from the viewpoint of quantum mathematical physics. Reshetikhin and Turaev [16]
gave a rigorous construction of these invariants, which have become known as quantum
invariants of 3—manifolds. These invariants are defined via surgery presentations
of a 3—manifold, and the best known example is a weighted sum of colored Jones
polynomials. The invariants of Reshetikhin and Turaev generalize to the setting of
modular categories. Some of the common obstructions to applying this construction
to any ribbon tensor category D include the following facts: (i) the simple objects
may have zero “quantum dimension”, (ii) there might be infinitely many isomorphism
classes of simple objects in D and (iii) D might be nonsemisimple. In [6] we derived
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a general categorical setting where these obstructions can be overcome. In particular,
we showed that the category ¢ of nilpotent representations of a generalized version
of quantized s[(2) at a primitive r"—ordered root of unity gives rise to two related
invariants, N, and N9. In this paper we investigate the invariant N?.

Let € be the category mentioned above and defined in Section 1.2. This category has
a complex family of weight modules, divided into typical and atypical modules. Here
all the atypical modules have integral weights.

Let F be the usual Reshetikhin—Turaev invariant of ¥ —colored framed oriented links
in S3 arising from %. The invariant F has the following properties:

e If L is a framed oriented link whose components are all colored by simple
modules of ¥ with integral weights, then F is determined by the Kauffman
bracket and so is a version of the colored Jones polynomial.

e If L is a framed oriented link with a component colored by a typical module,
then F(L)=0.

In [9], Geer, Patureau-Mirand and Turaev gave an extension of F' to framed oriented
links colored with modules in & with nonintegral weights; see also Costantino and
Murakami [8]. This extension is an invariant £’ defined on € —colored framed oriented
links with at least one component colored by a typical module. F’ is a generalization
of the framed oriented link invariants defined by Akutsu, Deguchi and Ohtsuki in [1].
We have the relation

F'(LyuLy) = F'(L1)F(L>),

where L is in the domain of F’ and L, is any %' —colored framed oriented link. From
this relation it follows that F’ recovers F: if L is any % —colored framed oriented link
then

F'(Luo)

(D F(L) = F’—(())’

where o is an unknot colored by any typical module. Thus F’ is a kind of extension
of the colored Jones polynomial to complex colors. Furthermore, as we show in
Corollary 18, the invariant F'(Ky) of a knot K C S? colored by a typical module
of weight @ € C is a meromorphic function of o whose residues at the integers are
proportional to the colored Jones polynomials of K evaluated at g = ¢'” /T . This relation
allows us to reprove the well-known symmetry principle (see Kirby and Melvin [13])
for the colored Jones polynomials of K using a mainly graphical argument detailed in
Corollary 16; see Remark 17.
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In [6], the authors laid out a relationship between N, and N analogous to that outlined
above between F’ and F; we now briefly recall this relation. The invariants N, and N2
are WRT-type 3—-manifold invariants which consist of certain weighted sums of F’(L),
where L is a surgery presentation of M . These invariants are topological invariants of
triples (M, T, w), where M is a closed oriented 3—manifold, 7" is a & —colored framed
oriented link in M , and w is an element in H'(M \ T;C/2Z). For N, the triples
must satisfy some requirements of “typicality” as in the case of F’. The invariant NQ
is zero unless  is in the image of the natural map H'(M;Z/27) — H' (M :;C/27)
induced by the universal coefficient theorem. (Compare this with the above statement
that F(L) is zero if at least one component of L is colored by an atypical module.)
Finally, N, recovers N(,) (compare with (1)) since

N (M, T, 0)# (M, T, o))
NF(M/’ T/,Cl)/) ’

2) NY (M, T, o) =

where (M', T’, ) is a triple for which N, does not vanish; for further details on the
notion of connected sum, see [6].

Since F' is essentially the colored Jones polynomial, the above analogy leads us to the
question: Is N(r) related to the WRT-invariant? The purpose of this paper is to answer
this question positively for certain types of triples (M, T, ). To formulate this properly
we must define the WRT-invariant of a triple (M, T, w). Kirby and Melvin [13] and
Blanchet [2] considered WRT-type invariants of (M, ), where w € H'(M,Z/27).
In Theorem 11 we give a slight generalization of their invariants to triples of the form
(M, T,w), where T is a colored framed oriented link in M and w € H' (M\T,Z/27).
We denote this invariant by WRT, (M, T, w). The question above can be formulated
as the following conjecture.

If G is a finite abelian group, let ord(G) be the order of G, ie the number of elements

in the set underlying G . If G is an infinite abelian group, set ord(G) = 0.

Conjecture 1 Let (M, T, w) be a compatible triple where w takes values in Z /27 C
C/27. Then

NO(M, T, w) = ord(H,(M ;7)) WRT,(M, T, w).
Note that if an abelian group G has a square presentation matrix A € My(Z), then
ord(G) = |det(A4)|. In particular, if a 3—manifold is obtained by surgery on a framed

oriented link in S3 whose linking matrix is A4, then 4 is a presentation matrix for
H{(M;Z) and thus ord(H{(M ;Z)) = |det(A)]|.

In Sections 3 and 4 we prove Conjecture 1 in the following two cases: (i) when M is
an empty rational homology sphere obtained by surgery on a knot in S3 (or more in
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general a connected sum of manifolds of this type) and (ii) when the first Betti number
of M is greater than zero.

It should be noticed that the invariant N, does not reduce to N(r). For example, the
invariant WRT, is trivial for r =2, and N(r) should only depend on H{(M, Z). But for
r = 2, the invariant N, (M, &, w) is a canonical renormalization of the Reidemeister
torsion of M associated to w, and in particular it classifies lens spaces. This is shown
by Blanchet and the authors in [3], where the invariant N, is extended to manifolds with
boundary using the setting of topological quantum field theory (TQFT). The results in
this paper have some consequences for the TQFTs of [3] and open the bigger question
of their relations with the Witten—Reshetikhin—Turaev TQFTs.

The referee pointed out a similar conjecture by Kerler that we discuss now. The reduced
quantum group associated to s[(2) when ¢ is a root of unity of order r is a finite-
dimensional Hopf algebra. As a consequence, the dual of this Hopf algebra has a nonzero
right integral (see Hennings [10] and Kauffman and Radford [11]) from which one can
define a Hennings—Kauffman—Radford invariant of 3—manifolds HKR, . The following
theorem due to Chen, Kuppum and Srinivasan was first suggested and conjectured by
Ohtsuki [15] and Kerler (see [12]; note that Kerler’s conjecture is more general).

Theorem 2 [5, Theorem 1.1] If ¢ is a root of unity of odd order r > 3, then for any
closed oriented 3—manifold M we have

HKR, (M) = ord(H, (M ; Z)) WRT°® (A1),

where WRT?OG)(M ) denotes the SO(3) version of the Witten—Reshetikhin—Turaev
invariant.

This suggests that N? could be equal to the Hennings—Kauffman-Radford invariant.
However, a direct comparison between HKR, and N? is difficult for the following
reasons: the Hopf algebra UqH s[(2) whose representations are used to define N9 is
infinite-dimensional, it is not a ribbon Hopf algebra, and it is not known if it has a
right integral. So it is not possible to apply directly the Hennings—Kauffman—Radford
construction to U, qH 5s[(2). On the other hand, we only know how to compute N9 using
a set of representations {Vy}qec\z (see Section 1.2) that do not exist for the reduced
quantum group involved in the definition of HKR, .

Recently, Murakami [14] combined the Hennings—Kauffman—Radford construction and
the so-called logarithmic knot invariants to define a generalized Kashaev invariant GK,
of nonempty framed oriented links in 3—manifolds (which also has an SO(3) version).
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The relation between HKR; and GK, is very similar to the relation between N(r)
and N,: if M is an empty manifold then

GK,((M,2)#(M', L)) =HKR,(M)GK,(M', L).
(Compare with (2).) Hence another approach to establish a link between N‘,) and HKR,

might be to study the relation between N, and GK, .

Acknowledgements Costantino’s research was supported by the French ANR project
ANR-08-JCJC-0114-01. The research of Geer was partially supported by NSF grants
DMS-1007197 and DMS-1308196.

1 Preliminaries

1.1 Notation

All manifolds in the present paper are oriented, connected and compact unless explicitly
stated, and all tangles are framed and oriented. Given a set Y, a graph is said to be
Y—colored if it is equipped with a map from the set of its edges to Y.

Let r be an integer greater than or equal to 2 and let ¢ = e/ For x € C, we
write ¢* for e¥*7/" and set {x} = ¢* —q¢~*. Let X, = Z \ rZ C C and define the
modified dimension d: C \ X, — C by

r—1 .

_ {/} e
3 d) =)' —L— = (! .
©) @=D ].1:[1{oz+r—j} 1 {ra}
Finally, let
4) H ={l—-r3—r...,r=3r—1%L

1.2 A quantization of s[(2) and some of its modules

Here we give a slightly generalized version of quantum s[(2), for more details see [7].
Let UqH sl(2) be the C—algebra given by generators E, F, K, K~!, H and relations
HK = KH, [H, E1=2E, [H, F]=—2F,

K—K!

KEK '=¢?E, KFK'=¢™2F, [E,F]= .
q—q
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1368 Francesco Costantino, Nathan Geer and Bertrand Patureau-Mirand

The algebra U, qH 5[(2) is a Hopf algebra where the coproduct and counit are defined by

AE)=1E+E®K, &(E)=0,
AF)=K'@F+F®1, &F)=0,
AH)=H®1+1® H, ¢&(H)=0,
A(K)=KQK, e(K) = 1.

Define UqH 5[(2) to be the Hopf algebra UqH 5[(2) modulo the relations E” = F" =0.

Let V be a finite-dimensional U, qH sl(2)-module. An eigenvalue A € C of the operator
H:V — V is called a weight of V' and the associated eigenspace is called a weight
space. We call V' a weight module if V splits as a direct sum of weight spaces and
gf = K as operators on V. Let ¢ be the category of finite-dimensional weight
UQH s[(2)-modules. The category ¢ is a ribbon Ab—category, see Geer, Patureau-

Mirand and Turaev [9], Murakami [14] and Ohtsuki [15].

We now recall the definition of the duality morphisms and the braiding of the category % .
Let V and W be objects of €. Let {v;} be a basis of V' and {v]} be a dual basis of
V* =Homc (V, C). Then

by:C—>VeV* givenbylHZvi@)v;‘,
dy:V*®V — C givenby f @wr— f(w),
by,:C—>V*®V givenby I~ Y K" 'v; @],
dy;V@V*—C givenby v® f — f(K'"v)

are duality morphisms of %’. In [15] Ohtsuki introduced an R-matrix operator defined
on V®W by

1
(5) H®H/2 Z {{’j}' n(n—l)/zEn ® Fn’

H®H/2

where ¢ is the operator given by

qH®H/2(U ® v/) — q)\.)\,’/zv ® U/,

for weight vectors v and v’ of weights A and A’. The braiding cy,p: VW - WV
on ¢ is defined by v® w — t(R(v ® w)), where 7 is the permutation x® y > y Q x.

For each n € {0,...,r — 1}, let S, be the usual (n 4+ 1)—dimensional irreducible
highest welght U, UH 5[(2) —module with highest weight 7. The module S, has a basis
{si = Fl'so | i = 0 .,n} determined by H.s; = (n —2i)s;, E.so=0= F'tlg
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and E.s; = ({i}{n+1—i}/{1}*)si_ . Its quantum dimension is given by the trace of
the action of XK'=, and so qdim(S,) = (—1)"{n + 1}/{1}.

Since ¢ is a root of unity and F” = 0, we can consider a larger class of finite-
dimensional highest weight modules: For each @ € C we let Vy be the r—dimensional
highest weight UqH 5[(2)—module of highest weight o 4+ r — 1. The module V, has a
basis {vg, ..., v,—1} whose action is given by

(6) Huv; = (a+r—1-2i)v;, E-UiZ%Ui—l» F.vi=v;1;.

To describe these modules we need the following definitions. A module is irreducible
or simple if it has no proper submodule. A nonzero module is indecomposable if it
cannot be written as a direct sum of two proper submodules. A module V' is absolutely
irreducible if Endg (V) = Cldy .

All the modules V,, have vanishing quantum dimension. They are divided into:

Atypical modules If £k € X, = Z \ rZ C C then V} is indecomposable but not
irreducible, however it is still absolutely irreducible (since any endomorphism must map
the highest weight vector vy to a multiple of itself). In particular, if k € {0,...,r — 1}
then the assignment sending the highest weight vector so of S,_;_j to the vector vy
of V} determines an injective homomorphism 1: S, _{_; — V. Here the submodule
S, _1_ in V% is not a direct summand. Also, if j € {1 —r,..., 0} then the assignment
sending the highest weight vector vg of V; to the highest weight vector sg of S, 14
induces a surjective homomorphism 7: V; — S, 14 ;.

Typical modules If o € C\ X, then V, is irreducible, and so absolutely irreducible.
We call such modules typical.

Let A be the set of typical modules. For g € C/2Z, define 4, as the full subcategory
of weight modules with weights congruent to g mod 2. Then it is easy to see that
{€g}gec/2z is a C/2Z—grading in ¢'; see [6].

1.3 The link invariants F and F’

The well-known Reshetikhin—Turaev construction defines a C —linear functor F from
the category of ¥ —colored ribbon graphs with coupons to 4. When L is a ¥—colored
framed oriented link, F (L) can be identified with a complex number. When L is a
framed oriented link whose components are all colored by S,, F(L) is the Kauffman
bracket with variable specialization A = ql/ 2 In/2r 5o it is a version of the
colored Jones polynomial specialized at the root of unity g = e'™ /T (For details, see
Section 1.4.)

= ¢
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Vanishing quantum dimensions make the functor F trivial on any closed ¥ —colored
ribbon graph that has at least one edge colored by a typical module. In [9], the definition
of F is extended to a nontrivial map F’ defined on closed % —colored ribbon graphs
with at least one edge colored by a typical module. We now recall the definition of F’.

Let Ty be any ¥ —colored (1, 1)-ribbon graph with both ends colored by the same
element W of ¢. If W is absolutely irreducible, then F(7y/) is an endomorphism
of W that is determined by a scalar (Ty):

F(Tw) = (Tw) ldw .

Theorem 3 [9] Let L be a closed ¥ —colored ribbon graph with at least one edge
colored by a typical module V,,. Cutting this edge, we obtain a ¢ —colored (1,1)—
ribbon graph Ty, whose closure is L. Then

F'(L) = d(@)(Va){Ty,) €C

is independent of the choice of the edge to be cut and yields a well-defined invariant
of L.

We will use the following proposition later.

Proposition 4 Let T be a (1, 1)—tangle formed from a closed ¢ —colored ribbon
graph and a single open uncolored component. Let Ty be T' with the open component
colored by W . We have the following equalities of scalars:

(Ts,_,_,.)=(Ty,) forke{0,...,r—1},

<TSr—1+j>:(TVj> fOI‘jE{l—V,...,O}.

Proof In this proof we use the language of coupons; for more details see [17]. In
particular, a morphism f: V — W can be represented by a coupon c( /), which is a
box with arrows:

w

c(f)=/]

14

By definition of F', we have F(c(f)) = f. By fusing this coupon to the bottom of the
(1, 1)-tangle Ty we obtain a ribbon graph which we denote by Ty oc(f). Similarly,
we can fuse c¢(f') to the top of the tangle 7} to obtain a ribbon graph c¢(f)o Ty .

From the discussion about atypical modules presented above, we have the injection
1: Sy_1—x — Vi and the surjection 7: V; — S,_14j, for k € {0,...,r — 1} and
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j€{l—r,...,0}. Thus, as explained in the previous paragraph, we can consider the
ribbon graphs Ty, oc(1) and c¢(1) o Ts,_,_, . Since the category of ¢ —colored ribbon
graphs is a ribbon category, we have that Ty, oc(z) and ¢(1) o Ts,_,_, are equal as
ribbon graphs, so their images are equal under F'. Combining this with the fact that
F(Ty, ) and F(Tg ) are scalar endomorphisms, we have

(Ty )t =Ty ) F(c() = F(Ty 0c() = F(c() o Ts,_, ;) = 1(Ts,_,_;.)-

Thus, we have (Ty,) = (Ts,_,_, ). Similarly, we have (Ts,_,, ;) = (Ty;). m|

1.4 Comparison with the Jones polynomials

In this paper, by the colored Jones polynomial, we mean the Kauffman bracket version,
which is an invariant of framed oriented links independent of their orientation. Let
L=LyU---ULg CS? be a framed oriented link and J(L) € C[gT!/2] be its Jones
polynomial, determined by the following skein relations:

o () (X)-ae()()
o {p)(f) m AO)er

More generally, if each L; is colored by an integer n; > 0 then, roughly speaking,
one defines the 7™ —colored Jones polynomial J;(L) as a linear combination of Jones
polynomials of framed oriented links obtained by taking parallels of each component
of L at most n; times. More precisely, one identifies the tubular neighborhood of each
component L; with the product S! x [—1, 1] x [~1, 1] (using the framing of L; and
an arbitrary orientation) and defines framed oriented links

Lf-‘=S1X{%,%,...,%}X{O},

adopting the notation Lf.‘ -Ll}.’ = Lf.‘ +% Then one recursively defines a linear combina-
tion of framed oriented links parallel to L; by

) Tu(Li):=L} Ty_1(Li)—Ty—2(L;) and To(L;) =2, T1(L;) = L;.

Finally, J;(L) is defined as the linear combination of the Jones polynomials of the
framed oriented links obtained by replacing L; with T}, (L;). Clearly, the Jones polyno-
mial defined above corresponds to the case when n; =1 for all 7. The following holds.

Proposition 5 Let L = Ly U---U Ly C S3 be a framed oriented link, and let
i = (ny,...,nx) be a tuple of integers all in the set {0,...,r —1}. Let L; be the
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framed oriented link L such that L; is colored by n;, for all i . Similarly, let L g be
the framed oriented link L such that L; is colored by Sy;, where Sy, is the simple
module defined in Section 1.2. Then

Ji(Li)lg=cin/r = F(Lyg).

Proof First, assume that n; = 1, for all i . In this case, we will prove that the relations
of (7) and (8) hold. We start by recalling that .S; is spanned by two vectors sg, S
with H(s;) =1—2i, K(s;) =¢'"%is; and E(s;) = 0= F(s,) while E(s;) = s; and
F(s1) = s,. The second relation of (8) is a consequence of the formula for the quantum
dimension qdim(S;) = —g —¢~! given above. The first relation follows from the fact
that the inverse of the twist on S is given by the action of

o g Z {{1}}' =D/ (g pyng—H/2 g,
see [6]. To see that (7) holds, recall that the braiding cg, s, is defined by v ® w >
7(R(v ® w)), where R is the R—matrix and t is the permutation x ® y — y ® x.
Since E? and F? act by zero on Sy, we have that cg, s, and cgll s, are determined by
o(¢H®H2(ld+(g—¢g HWE®F)) and (d—(¢—¢ HE® F)g H®H/2 o,

respectively. Thus, (7) follows from the direct computations

(g"*toR—q™"*R™ o 1)(s0 ®50) = (¢4 ")s0 ® 50,

(@'PtoR—g7 PR on)(s50®s1) = (g =4 )so @51,

(¢"?toR—¢7'PR™ on)(s1 ®51) = (g—g )51 ®s1,

(@10 R—g7"? R 01)(s1 ®50) = (¢ —q )51 ® 5.

Finally, to prove the statement in general, it is sufficient to note that the standard tensor
decomposition of S 1®” as a sum of copies of S; with i <n is still valid for n <r in €.
To prove this it is sufficient to note that if 2 <n < r then S;,—; ® S1 =~ S, & Sy,—»
and argue by induction. Hence the formula (9) expressing Tj(L) translates this
decomposition algebraically expressing F(L) (with L colored by n) as a linear
combination of invariants of cables of L whose components are all colored by Sj.
Thus, the theorem follows. O

1.5 The 3-manifold invariants N’ and WRT

The Witten—Reshetikhin—Turaev invariant uses certain weighted sums of colored Jones
polynomials of framed oriented links in S* to define invariants of framed oriented
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links in 3—manifolds. Such a weighted sum can be described using Kirby colors. In [6]
an analogous procedure uses F’ to define an invariant of colored framed oriented links
in arbitrary manifolds. In this section we recall some of the results of [6] and discuss a
refined WRT invariant.

In this section, we fix an integer r > 2 with r €4Z. Let M be a compact connected ori-
ented 3—manifold, 7" be a ¥ —colored ribbon graphin M and w € H' (M \ T, C/27).
For any embedding of 7 in S3, a surgery presentation for (M, T) is an oriented
framed link L in S3\ T such that (M, T) is diffeomorphic to (S3(L), T'), where
S3(L) is the closed 3-manifold obtained by performing surgery on L. If L is a
surgery presentation of (M, T'), the map g, on the set of edges of L U T with values
in C/27 defined by g4 (e;) = w(m;), where m; is a meridian of the edge e;, is called
the C/2Z—coloring of L U T induced by w.

Definition 6 Let M, T and w be as above.

(1) We say that (M, T, w) is a compatible triple if for each edge e of T its coloring
is in €, (m,), Where m, is a meridian of e.

(2) A framed oriented link L C S* which is a surgery presentation for (M, T) is a
computable presentation of the compatible triple (M, T, w) if one of the two following
conditions holds:

(a) L+# o and gu(Li) € (C/27Z)\(Z/27Z) for all components L; of L.
(b) L = & and there exists an edge of 7" colored by V,, € A.

Next we explain when a given compatible triple (M, T, w) has a computable surgery
presentation. The inclusion Z /27 C C /27 induces an injective map

HY(M\T,Z/2Z) ~Hom (H; (M \T,Z),Z/27)
< Hom(H{(M \T,Z),C/2Z) =~ H' (M \ T,C/2Z).

We say that a cohomology class @ € H! (M \ T, C/27) is integral if it is in the image
of this map.

Proposition 7 Let M be a 3—manifold which is not diffeomorphic to the sphere S>.
A compatible triple (M, T, w) has computable surgery presentation if and only if the
cohomology class w is not integral.

Proof If w is not integral then from [6, Proposition 1.5] there exists a computable
surgery presentation of (M, T, w). On the other hand, assume that (M, T, w) has a
computable surgery presentation. Since M is not S, L # @, so from part (2a) of
Definition 6 we have that w is not integral. |
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Recall the set H, ={1—r,3—r,...,r —1} defined in (4). For « € C \ Z we define
the Kirby color €2, as the formal linear combination

(10) Q=) d+k)Varr.
keH,

If « is the image of « in C/27Z, we say that Q, has degree . We can “color”
a knot K with a Kirby color Q4: let K(£24) be the formal linear combination of
knots D g, d(o + k)Kgyk, where Ky is the knot K colored with Vg . If
ae€C/2Z\7Z/2Z,by Qg we mean any Kirby color of degree . Let A_ and A
be the scalars given by

i(rq)3/? if r =1 mod 4,
A_=AL =13 (i—1)(rqg)*? ifr =2mod 4,
—(rq)3/2 if » =3 mod 4.

Next we recall the main theorems of [6].

Theorem 8 [6] If L is a framed oriented link which gives rise to a computable
surgery presentation of a compatible triple (M, T, w), then

F'(LUT)
AL Al

Nr(M, T,Cl)) =

is a well-defined topological invariant (ie depends only on the homeomorphism class of
the triple (M, T, w) ), where (p, s) is the signature of the linking matrix of the surgery
link L and for each i the component L; is colored by a Kirby color of degree g, (L;).

The notion of connected sum is easily extended to compatible triples. In particular,
given two compatible triples (My, T, wy) and (M», T, w>), let

(M, T, 01)# (M3, Ty, w3) = (M1 # M5, T1 UT,, w),

where M # M, is the usual connected sum and w is the unique cohomology class
which restricts to both w; and w, via an isomorphism coming from the Mayer—Vietoris
sequence and excision; see [6] for details.

For a € C\ X,, let u, be the unknot in S 3 colored by Vy. Let wy be the unique ele-
ment of H'(S3\ug; C/27Z) suchthat (S3, 1y, wg) is a compatible triple. If (M, T, )
is any compatible triple, then Proposition 7 implies that (M, T, ) # (S3, ug, wy) has
a computable surgery presentation.
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Theorem 9 [6] Let (M, T,w) be a compatible triple. Define
N,((M, T, 0)#(S3, ug, a)a))
d(a) ’

Then N‘r)(M ,T,w) is a well-defined topological invariant (ie depends only on the
homeomorphism class of the compatible triple (M, T, w)). Moreover, if (M, T, w)
has a computable surgery presentation then N%(M, T, w) = 0.

NO(M, T, w) =

Let us also give a definition of the refined Witten—Reshetikhin—Turaev invariants
WRT, (M, T, w). The definition is based on the fact that the Kauffman bracket version
of the colored Jones polynomial can be computed through F'; see Proposition 5.

We define the Kirby colors of degree 0 and 1 respectively by

r—2 . r—2 .
RT ._ +1 o RT ._ {+1 o
Q2 = E T S; and Q7 = E —TS],
J=0, j even j=0, j odd

Lemma 10 Let A10(3) = F(u41) where uy is the unknot with framing £1 colored
by QIST. Then

50() _ A+ 4 ASO() _AS0G) _ _ A~
+ {1}r - + {1
In particular, in both cases, Aio@ #0.
Proof The proof is a direct computation using the values of the quantum dimension

and of the twist for the simple modules S, . In particular, qdim(S;) = (1) {i + 1}/{1}
and the twist on S; acts by the scalar (—l)iq(i2+2i)/2. Thus

r—2
— . i2 j - -
APO =y Y 1T = (17 (S g2 23,
Jj=0, j even
where
L(r—2)/2] 5
Ea _ Z qZ(n +an)
n=0

is part of a quadratic Gauss sum. These terms can be computed using standard results
on quadratic Gauss sum. a

Kirby and Melvin [13] and Blanchet [2] consider invariants of (M, J,w) where
we H'(M,7/2Z). The following theorem is a slight generalization of these invariants.
(Here we use the conventions of this paper and not those of [2; 13].)

Algebraic € Geometric Topology, Volume 15 (2015)



1376 Francesco Costantino, Nathan Geer and Bertrand Patureau-Mirand

Theorem 11 (Refined Witten—Reshetikhin—Turaev invariants) Let (M, T, w) be a
compatible triple with T' a €5 U ¢7—colored ribbon graph and w € H YWM\T,7/27).
If L is a framed oriented link which gives rise to a surgery presentation of the pair
(M, T), then

F(LUT)

WRT, (M, T, w) =

is a well-defined topological invariant (ie depends only on the homeomorphism class of
the triple (M, T, w) ), where (p, s) is the signature of the linking matrix of the surgery
link L and for each i the component L; is colored by a Kirby color of degree g, (L;).

Proof In[13],for T = & and r even, this invariant is considered in a slightly different
form. Also, in [2, Remark I1.4.3], for T = &, the existence of this invariant is discussed.
Indeed, the Reshetikhin—Turaev functor applied to graphs colored by the module
S| € ¢y satisfies the Kauffman skein relation for 4 = ql/ 2 — ei7/2r 1t follows
that if L C S* is a framed oriented link whose components are colored by elements
of {So,...,S,_2}, then F(L) is the metabracket [2; 4] evaluated at the element
corresponding to the coloring of L at A = ql/ 2 It follows that WRT, (M, @, ®) is
the invariant denoted qu /2(Mp g, ) in [2, Remark 11.4.3].

For a complete proof of the theorem, one can also apply [6, Theorem 3.7] to the modular
category obtained as the quotient of the subcategory of 4 generated by S by its ideal
of projective modules. Indeed, this category is obviously a Z /2Z-modular category
relative to @ with modified dimension qdim and trivial periodicity group. a

In particular, when w = 0 one gets an invariant of manifolds also known as the SO(3)
version of the Reshetikhin—Turaev invariants:

Definition 12 Let 7" be a %;—colored ribbon graph in a closed 3-manifold M . Then

WRTSO®) (M, T) = WRT, (M, T, 0).

Remark 13 Let us denote by WRTEUQ) (M, T) the original WRT-invariant which is
obtained as in Theorem 11 except that all components of L are colored by

QRT — QIST + QIFT

(and the elements Aiu(z) are also defined with QRT). For odd r, it can be shown that if

(M, T,w) is a compatible triple and ¢ € H'(M,Z/2Z), then (M, T, + ¢) is also a
compatible triple. Then WRT, (M, T, w 4+ ¢) = glmh/2 WRT, (M, T,w), where A € Z
only depends on w, ¢ and on the linking matrix of a link presentation L of M .
Loosely speaking, WRT, does not have a strong dependance on the cohomology class.
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Similarly, WRTE’UQ)(M , T) is proportional to WRTfo(s)(M , T); see [2, Section III].
A similar property holds for N(r) and, more generally, for admissible triples: if ¢ €
HY(M,Z7/2Z) then N.(M,T,w + ¢) = ¢/™/2N, (M, T,w), where A € C only
depends on w, ¢ and on the linking matrix of a link presentation L of M . Thus up to
this combinatorial invariant A, N, (M, T, ) only depends on the reduction modulo Z
of the compatible cohomology class w € H'(M \ T,C/27).

The behavior for » even is different; in this case results of [13; 2] suggest the following
conjecture:
WRTY@ (M. T)= )  WRT,(M.T. ).

compatible
weH (M\T,Z/27)

2 Relations between F’ and the colored Jones polynomial

Recall the r—dimensional modules V,,, a € C, given in Section 1.2. Using the
basis given in (6) and its dual basis, we identify V, and V with C”. With these
identifications we can identify certain Hom-spaces with spaces of matrices. For
example, we can make the following identifications: Endy (V) = Mat,x,(C) and
Hom(C, Vy ® V) = Mat, ,,2(C).

We say a function g: C — C is a Laurent polynomial in g% if there exists a Laurent
polynomial f € C[x, x~!] such that g(a) = f(g®). The action of the basis given in (6)
implies that all the entries in the matrices py,, (E), py, (F), py, (H) and py, (K) are
Laurent polynomials in g%.
Lemma 14 All the entries in the images of the maps

gp: C — Mat,2(C) given by o+ by,

gd: C —Mat,2,1(C) givenbya—dy,,

gy C — Mat,,2(C) given by a - by, ,

gar: C — Mat,2,(C)  given by a > dy,
are Laurent polynomials in q%. Also, for each entry f;; in the image of the map

f: CxC — Mat,2,,2(C), (x,p)+ q_"“‘g/zq_(’_1)("""’3)/201/01,VlS

there is a two-variable Laurent polynomial g;;(x, y) such that f;j(a, 8) = gij(q%, qP).

Proof The first statement follows from the formulas for b, d, b’ and d’ given in
Section 1.2. For example, the entry in the image of g, corresponding to v; ® v;.‘
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is v]’."(Kl_’ V) = 5ijq(1_’)(°‘+’_1_2i). The second statement follows from the form
of the R—matrix given in (5). In particular, if v; and v; are any basis vectors of Vy
and Vpg, respectively, then
q—aﬂ/Zq—(r—1)(a+f3)/2qH®H/2En Q F".v,' ®vj
— q—a(j-i-n)—ﬂ(i—n)qc/ZEn ® Fn.vi ® Vi,

where ¢ is an integer which does not depend on « or . Also,

{i}! . . .
E"QF"(vi®Quj))=——{i — =t fi—m—=1)—alv;_ i4n-
® (U1®UJ) (i —I’l}!{l}zn i —ajli af---{i—(n ) — o}, n®Vjtn
Since the coefficients in the last two equalities are Laurent polynomials in ¢* and qﬂ,
the desired result about the function f follows. O

The above lemma has the following corollaries.

Corollary 15 Let T(y, ...v,,) be a (1,1)—tangle with n components whose i th

component is colored by Vy,, a; € C. Then the function gr: C" — C given by
(oq,...,0p) — (T(Vo(1 Va,)) 18 a holomorphic function in C". In particular g is
continuous.

.....

Proof Assume the first component is the open component. By definition we have

F(Twy, Vo) = Ty Vo)) Wi

so it is enough to consider F(T(y,, ..., v,,,))- The value of F (T(Val Va,)) 18 computed
by decomposing a projection of T(y, ...y, ) into building blocks made of cups, caps,
vertical edges and crossings. Then the building blocks are associated with the duality
morphisms, the identity and the positive and negative braidings, respectively. These

.....

morphisms are tensored and composed according to the projection of T(VO[1 veeVan) -
Lemma 14 implies that the contribution from a duality morphism corresponding to a cup
or cap on the i™ component is a Laurent polynomial in ¢% . Lemma 14 also implies
that all contributions of a crossing between the i and j" components are Laurent
polynomials in ¢% and ¢% times a factor of ¢~®%/2¢g=(r=D{@i+j)/2 Thyg, the map
gr(ay,...,an)= (T(Va1 ..... Va,)) 18 @ Laurent polynomial in the variables ¢!, ..., g%
times an 1ntegral power of ¢ ~j0/ 24— =D(@i+¢j)/2 apd 50 g7 is holomorphic. O

Corollary 16 Let K be a knot. Let Ky, /" be K colored by Vo with framing [ € Z.
Let TO bea (1,1) —tangle with zero frammg whose closure is KO Then there is a
Laurentpo]ynom1al K(X) e C[X, X~!] such that (T0 )y = K(q“) and

(11) F(K{,) =6/ d(@) K (™),
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where 6, = q("‘z_(’_l)z)/z is the twist on V,,. Moreover, we have

K@) =K. F(K}, )=q¢"F(K})

Va+2;
(Kf, )= (D"0g") F(K,).

Proof As in the proof of Corollary 15, the function gr(a) = (Tﬁa) is a Laurent
polynomial in g% times an integral power of q"‘z/ 2. From the form of the map cy,, y,
in Lemma 14, the integral power of q“z/ 2 is equal to the number of positive crossings
minus the number of negative crossings in the projection of T0 Since the framing
of K, is zero, this power is zero. Thus, g7 («) is a Laurent polyn0m1a1 in g% and
so there exists a K(X) € C[X, X~1] such that (T?) = K(q“). Now we can use the
duality and the braiding to compute the value of the twist:

Then (11) follows from the above discussion and the definition of F’,
FI(K],) = 6] F'(KY,) = 0/ d(@)(TP,) = 6/ d(@) K (4*).

Next we show that K (g%t = K (¢%). Consider the one-dimensional space t = C
with the U, qH s[(2)—module structure given by

Fv=Fv=0, Hv=rv

for any v € 7. The quantum dimension of 7 is (—1)"T!'. From the form of the

)= #)-r+(7)
F (rXVa) — glatr=nr F(TXVQ)‘

Hence for a 0—framed knot K colored with 7, one has F(K) = F(unknot) = (—1)" 1.
Let 7° be the 0—framed tangle underlying T0 Let T2 be T colored with 7. Since
T0 has zero framing then (77 9 = 1. Now F (T 0 ) is equal to the endomorphism
associated to 70 labeled with V, ® t or equlvalently the 2—cabling of T° where
the two components are labeled by V, and t, respectively. We can use the third
equality in (12) to unlink the component labeled with 7 from the component labeled
with V,,. Therefore, since Tlga+,~ has zero framing we have

R-matrix we have

12)

(Ty,,,) =Ty (T?) = (Ty,).
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Finally, (11) and the above formulas for 6y and d(«) imply

F'(KL d(o +2r)K (g% 1?7

Vator ) = a+2r
— (q(ZroH-ZrZ)G )fd(a)E(qa) :qZI‘Oth/(Ké )’
FI(KY, ) =0),,d@+r) K@) = (1) Gq") F(K,),

which concludes the proof. |

Remark 17 Corollary 16 with Proposition 4 implies the well-known symmetry prin-
ciple relating the colored Jones polynomial associated to Sj_; with the one associated
to S,_1_p forke{l,...,r—2}.

Corollary 18 Let K be a knot and let Ky, be K colored by V,. The function
gx: C\ X, — C defined by o — F'(Ky, ) is a meromorphic function on the whole
plane C. Moreover, the residue at each pole is determined by the colored Jones
polynomial.

Proof Recall that
{1

F'(Ky,) =d()(Ty,) = (=1)"" 11_[ m

(TVa>’

where , is the (1, 1)—tangle obtained from cutting Ky, . From Corollary 15 it follows
that a — (=1)"!TT" ]_1{ JTy,) is a holomorphic function in the entire plane C.
And it is clear as well that o — [ i=1 {a +r — j} is a holomorphic function in the
entire plane C which is zero when « € Z \ rZ. Therefore, the quotient of these two
functions is a meromorphic function whose set of poles is Z \ rZ.

All of these poles are simple and so the residue can be computed as follows. Let
n € Z \ rZ. The residue at n of the 2r —periodic meromorphic function d is given by

Res(d, ) = lim (o —n)(~1)"~ 1?“;
i (- )

r—14nl nmw
x—0 sin((n 4 x)) =D b/ s1n( r )

So the residue of gg at n is equal to

Res(gg.,n) = Res(d,n)(Ty,) = (—1)"" 1+"; sin( )(Tyn)

To finish the proof we show that the above formula for Res(gg,7) can be rewritten in
terms of the colored Jones polynomial. To do this we have two cases. First, suppose
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n=rk+2mr with k € {1,...,r —1} and m € Z. By Corollary 16 and Proposition 4
we have

(Tv,) =(Ty,) = (Ts,_,_.)-

Combining the fact that

_ kit —=k} ro1—g sin(5F)
qdim(S, 1) = (=1) (1 = (=1 m

and Proposition 5 we have

sn(£)

1—k
r 1 k(K)|q elmm/r = ( l)r Sln(%) <TS1~—1—k>-
Thus,
ro.(m
Res(gx 1) = = sin( 20 ) Jo 1K) yqinsr-
Similarly, if n =k 4+ 2mr with k € {l—r,...,—1} and m € Z then one can show that

T
Res(gx 1) = == sin( 22 ) /1 14 (K)|y_qinsr- 0

3 Surgery on a knot in the 3-sphere S3

In this section we prove Conjecture 1 when M is an empty closed manifold obtained
by surgery on a nonzero framed knot in S3.

Theorem 19 Suppose that K is a knot in S* with nonzero framing f. Let M be the
manifold obtained by surgery on the knot K and w € H'(M,Z/27). Then

NY (M, @, 0) = | f|WRT(M, @, ) = ord(Hy (M ; Z)) WRT(M, @, ).

Corollary 20 Let M be a rational homology sphere obtained by surgery on a knot

in S3. Then
1

WRT® (M. )= — NY(M, 2,0).

Remark 21 The three invariants WRTEOG), N® and M + ord(H(M,Z)) are mul-
tiplicative with respect to the connected sum of 3—manifolds. Hence Theorem 19
implies that Conjecture 1 is also true for a connected sum of manifolds each obtained
by surgery on a knot in S3.

The rest of this section is devoted to the proof of Theorem 19.
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Proof of Theorem 19. First we improve the results of [6, Section 2.4] and derive
a formula for N(r)(M , D, w). We still denote by w the integer in {0, 1} whose class
modulo 2 is the value g, (K) of the cohomology class on the meridian of K and let
eec{0,1} besuchthate=r—14+w e Z/27.

For o € C\ X;, recall the function P(a) = } "y cpy. F'(Ky,,,) of [6, Section 2.4].
(As above, Ky means K colored by V'.) The function P is continuous and so can
be naturally extended to all of C. Indeed, let DKy, ;) be the 2—cable of K whose
components are colored with V,, and Vg such that o or B isin C \ X} . From Lemma 14
we have that the map («, f) — q_f("‘z""32"'2"‘/3)/2 F/(DK(Va,VB)) is a rational function
in .

Wc[qia,qiﬂ ]
(Also see the proof of Corollary 15.) Thus, this function is a Laurent polynomial in
Clg*®, ¢*P]. In addition, if « + B € C \ X, then F’(DK(Va,Vﬁ)) can be computed
by coloring K with Vo ® Vg =~ @yep, Va+p+k- Combining the statements of this
paragraph we have that

Pa+B)= Y F(Kys.)=F DKy,
keH,

+a B
ﬂ—q,ﬁ_q_,ﬂ(?[q gt

is a continuous function of (¢, 8), which we extend to all of C x C.

Next we give a formula for N? in terms of P. By sliding the unknot o, over K

we obtain a computable presentation of (M, @, ) # (S*, 04, wy) as in Theorem 9.

This produces the ¢ —colored framed oriented link DK (q,_,.v,), Where Qe—o =

ZheH, d(e — o + h)V,_gyp is a Kirby color of degree @ —a. By definition of N,
1

N(M, o, 0) = ———— dle—a+h)F (DKw,.v ).
r Asign(f)d(a) hez ( e— oz—i—h)

Since {r(e —a+h)} ={-r(e—a+h)} = (—1)?{ra} we have

( 1)“’
Asign()N; (M, 2, 0) = Y la—h—e}P(hte)
heHr
1 w 0
) N TP te) - Cl Z htep(hte).
(] —4 heH, _q heH,

Finally, as N(r)(M , D, w) does not depend on o we have

N(,’(M,Q,a))=( > g Pk +e) = =)™ > gF Pk +e).

sign(f) keH, Asign(f) keH,
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Next we use the last formula and the continuity of P to write a multiple of N?. In
particular, let .S’ be the limit

S = (=1)?Agen(nHNI(M, 2, 0) = 812% > ¢*TeP(e+ L +e)
leH,

= lim Z G T (K(etk+t4e))
e—>0
ke H,
r—1

: £
= Elin Z Z q +eF,(K(€+2n+e))-

n=1-r k,leH,
k+{=2n

In this sum, for fixed n the only part of the interior sum which varies is ¢* for k, £ € H,
with k+£ = 2n. Here the possible values of £ are integers from max(l —r, 1 —r 4 2n)
to min(r — 1,7 — 1+ 2n), so the sum of qe over these values is equal to

W —nly el

oy T ar

Therefore, we have the following expression for S':

e—>0

= lim m Z n+e{|n|}F/(KV +2n+e)
n=1-r
r—1

= lim {T} Z ({1nl}q" T F (K, ppnye) +n=r13q" T F'(Ky iy iosy))

Now Corollary 16 and a direct computation show that

r—1
= lim % 3 F(Ky, ) ndg" e (1 — g2 EF2nte))
e—> =
r—1
- o (Tyy, . ) in3g"€ lim d(e + 2n + €)(1 — g~ 27%)
{1} n=1 e—0
e . fel
BT ’;<TV2n+e>{n}q 2n+e}lim —=—— e rrel
_ 11‘; rf i "y (2n + e} (T, )

n=1
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Coming back to N9, we have

-1 r—1

rf : n+te
o 2 4 im2n+el (T, ) =c ) pe(2n+e),
{I}Asign(f) Z et Z ¢

n=1 n=0
where ¢ =rf/({1}Agign(r)) and @e (k) = (¢* —q°){k}(Ty, ). From Corollary 16, ¢
is 2r—periodic. Furthermore, Proposition 4 implies that for k € {1,...,r —1}, one has

e (k) + @e(—k) = (¢* —q° —q 7 + ¢V k}(Ts,_,_.) = (k}*(Ts,_,_.)-

So, using that ¢y(0) = @.(r) = 0, we can write

NMo.w)=c 3 goe(k>=c( > et X wb)

NO(M, 2, 0) =

kee+2Z kee+2Z kee+2Z
0<k<2r 0<k<r —r<k<0
rf
=c ) AHTs_,)= TTTNN D r—k(Ts,_,_,)
kee+2Z sign(f) kee+27Z
0<k<r 0<k<r
r
cil Y weips
{ } sign(f) new+27Z
0<n=<r-2
Finally, qdim(S,) = (=1)"{n + 1}/{1} implies
J .
NO(M, @, 0) = Slo—(L) > qdim(Sy)Ju(K) =|f|WRT,(M. 2, 0). O

sien new+27Z
g(f)OSnSr—2

4 Vanishing of N? for nonhomology spheres
Theorem 22 Let (M, T, ) be any compatible triple. If by (M) >0, N (M, T, w) =0.

Proof Since by (M) > 0 there exists a nontrivial § € H'(M;Z) C H'(M;C). For
aecC,let@d§ e H' (M \ T;C/27) be the trivial extension of &8 € H' (M ;C/27),
where @ is the image of « in C/2Z. Then (M, T, + «f) is a compatible triple
for all o« € C. Moreover, there exists a neighborhood N of 0 € C such that w + &8
is nonintegral for all « € N \ {0}. Then for a complex number @ € N \ {0}, [6,
Propositions 1.5 and 3.14] implies that NQ(M, T, w+ad)=0.

Now, for all « € C, by definition of N(,) we have

N, (M. T, +&8) #(S3, 05, wp))
d(p) |

NO(M, T, w+as) =
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where og is the unknot in S3 colored by Vg, peC\ X;,and w p is the unique element
of H'(S3 \ 0og,C/27Z) such that (S3, 0g,wg) is a compatible triple. To compute the
right side of this equation, we choose a colored framed oriented link L®#®s U T U 0B
which is a computable presentation of (M, T, ) #(S?3, 0g,wg). Then the same link
colored by w;, = (w + &8) #wp gives a presentation of (M, T, w + &) # (S3, 0g,wg).
For each component L; of L® the color g, (Li) is an affine function of . The
framed oriented link L® is computable if and only if all the colors g, (Li) are
in C/2Z\ Z/2Z. Let N’ be the open set of C consisting of « such that L% is
computable. Then N’ contains 0 since L is computable.

Now we have
F'(L®UT Uog) (L UT Uly,)
14 N - D s

d(B)AL A AL A

NP (M. T, +a8) =

’

where |y, is the trivial one-component (1, 1)~tangle colored with Vg. The function
@t (L% UT Uly,)

is continuous on N’ since it is a weighted sum of continuous functions (by Corollary 15),
where the weights are products of functions d evaluated away from their poles. Thus,
NO(M, T, w + a@8) is continuous at a = 0. Finally, since N>(M, T, @ + @§) vanishes
on N, we have N (M, T,w) = 0. |
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