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The Farrell–Jones conjecture for
some nearly crystallographic groups

F THOMAS FARRELL

XIAOLEI WU

In this paper, we prove the K–theoretical and L–theoretical Farrell–Jones conjecture
with coefficients in an additive category for nearly crystallographic groups of the form
Qn Ì Z , where Z acts on Qn as an irreducible integer matrix with determinant d ,
jd j> 1 .

18F25; 19A31, 19B28

Introduction

Farrell and Linnell [10] proved that if the fibered isomorphism conjecture is true for all
nearly crystallographic groups, then it is true for all virtually solvable groups. Recall
that a nearly crystallographic group is a group of the form A Ì C , where A is a
torsion-free abelian group of finite rank, C is virtually cyclic and the action of C on
A makes A˝Q into an irreducible QC module (compare [10, page 309]).

Let A 2M.Z; n/ with determinant d , jd j> 1, and m.x/ be its characteristic polyno-
mial. Assume that m.x/ is irreducible over Q. If KDQ.x/=m.x/Q.x/, then K is a
number field. Let OK be its ring of integers. We define our group � DOK

�
1
x

�
CÌx Z,

where Z acts on OK

�
1
x

�
C by multiplying x (more details about this group will be

given in Section 2.5). In [11], the authors proved the Farrell–Jones conjecture with
coefficients in an additive category for all solvable Baumslag–Solitar groups. In the
current paper we generalize the method there and prove the following (cf Theorem 5.2).

Main theorem The K– and L–theoretical Farrell–Jones conjecture with coefficients
in an additive category is true for the group � .

Note that the truth of the Farrell–Jones conjecture with coefficients in an additive
category implies the fibered isomorphism conjecture. For more information about the
Farrell–Jones conjecture and its fibered version, see Farrell and Jones [9]. For precise a
formulation and discussion of Farrell–Jones conjecture with coefficients in an additive
category; see Bartels, Farrell and Lück [1], and Bartels, Lück and Reich [6].

As a corollary of our Main theorem, we prove the following (cf Corollary 5.3).
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Corollary The K– and L–theoretical Farrell–Jones conjecture with coefficients in an
additive category is true for the group Qn Ì Z, where Z acts on Qn as an irreducible
integer matrix with determinant d , jd j> 1.

We will stick to the case d > 1 in the proof as it makes our notation cleaner.

Remark Independently, C Wegner proved the Farrell–Jones conjecture for all virtually
solvable groups. The technique he uses is a combination of the Farrell–Hsiang method
and transfer reducibility while our method here does not use transfer reducibility. Also,
our results do not depend on Bartels and Lück’s results on CAT(0) spaces [4; 2]. On the
other hand, it seems our method here cannot be applied to all nearly crystallographic
groups; in particular, it cannot be applied directly to the group Z

�
1
6

�
Ì 2

3
Z.

Our strategy is to show that � is in fact a Farrell–Hsiang group, as defined by Bartels
and Lück in [3] . The main difficulty compared to our previous paper [11] is that we
need to develop a theory for groups acting on trees. The second difficulty is that there
is no canonical metric on the model E.�/ (cf Section 3), so it is much more technical
to prove some metric properties for E.�/.

The paper is organized as follows. In Section 1, we give a brief introduction to the
Farrell–Jones conjecture, including its inheritance properties and the Farrell–Hsiang
method. In Section 2, we develop a theory of group actions on trees for later use. The
construction naturally connects to algebraic number theory. In Section 3, we produce
a model E.�/ for the group � and discuss some geometric properties of the space.
In Section 4, we construct a horizontal flow space for the group � . Using results of
Bartels, Lück and Reich, we produced a long-thin cover on this horizontal flow space.
In the last section, we prove our main theorem.

In this paper, we will occasionally write FJC to abbreviate the K–theoretical or L–
theoretical Farrell–Jones conjecture with coefficients in an additive category. Let G be
a (discrete) group acting on a space X. We say that the action is proper if for any x 2X

there is an open neighborhood U of x such that fg 2G j gU \U ¤∅g is finite.

Acknowledgements This research was in part supported by the NSF grant DMS
1206622. The authors want to thank the Math Science Center at Tsinghua University
for their warm hospitality during the preparation of this work.

1 Some properties of the Farrell–Jones conjecture

In this section we give a brief introduction to the Farrell–Jones conjecture. We first list
some useful inheritance properties valid for FJC. For details, see [1, Section 1.3].
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Proposition 1.1 (1) If a group G satisfies FJC, then every subgroup H <G satis-
fies FJC.

(2) If G1 and G2 satisfy FJC, then the direct product G1˚G2 and the free product
G1 �G2 satisfy FJC.

(3) Let fGi j i 2 Ig be a directed system of groups (with not necessarily injective
structure maps). If each Gi satisfies FJC, then so does the direct limit limi2I Gi .

(4) Let �W G!Q be a group homomorphism. If Q and ��1.C / satisfy FJC for
every virtually cyclic subgroup C <Q then G satisfies FJC.

Lemma 1.2 (Transitivity principle) Let F �H be two families of subgroups of G.
Assume that G satisfies the K–theoretic Farrell–Jones conjecture with respect to H and
that each H 2H satisfies the K–theoretic Farrell–Jones conjecture with respect to F .
Then G satisfies the K–theoretic Farrell–Jones conjecture with respect to F . The same
is true for the L–theoretic Farrell–Jones conjecture.

The following definition of a Farrell–Hsiang group is taken from [3].

Definition 1.3 Let F be a family of subgroups of the finitely generated group G . We
call G a Farrell–Hsiang group with respect to the family F if the following holds for
a fixed word metric dG :

There exists a fixed natural number N such that for every natural number m there
is a surjective homomorphism �mW G ! Fm to a finite group Fm such that the
following condition is satisfied: For every hyper-elementary subgroup H of Fm we
set xH WD��1

m .H / and require that there exists a simplicial complex EH of dimension
at most N with a cell-preserving simplicial xH –action whose stabilizers belong to
F , and an xH –equivariant map fH W G ! EH such that dG.g0;g1/ < m implies
d1

EH
.fH .g0/; fH .g1// <

1
m

for all g0;g1 2G , where d1
EH

is the l1 –metric on EH .

Remark 1.4 As pointed out in [1, Remark 1.15], in order to check that a group G is
a Farrell–Hsiang group, it suffices to check these conditions for one hyper-elementary
subgroup in every conjugacy class of such subgroups of Fm .

Recall that a hyper-elementary group is defined as follows.

Definition 1.5 A hyper-elementary group H is an extension of a p–group by a cyclic
group of order n, where p is a prime number, .n;p/D 1. In other words, there exists
a short exact sequence

1! Cn!H !Gp! 1;

where Cn is a cyclic group of order n, and Gp is a p–group such that .n;p/D 1.
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With this definition, Bartels and Lück proved the following theorem:

Theorem 1.6 Let G be a Farrell–Hsiang group with respect to the family F . Then G

satisfies the K–theoretic and L–theoretic Farrell–Jones conjecture with respect to F .

2 Group acting on trees

In this section, we develop a theory of group actions on trees that will be used in the
next section for constructing the model E.�/. It also plays a key role in the proof of
our main theorem where we need certain contracting maps to have an action on the
tree. The basic construction is taken from Serre’s book [12, Chapter II, Section 1]; we
generalize the results presented there using Stallings folding and other techniques. The
ideas already appeared in the appendix of [11].

2.1 Basic construction

We briefly recall the construction in Serre’s book [12, Section 1, Chapter II]. Let K be
a field1with a discrete valuation v . Let O denote the valuation ring of K , ie the set of
x 2K such that v.x/� 0. We choose a uniformizer � , ie an element � 2K� such
that v.�/D 1 and let k denote the residue field O=�O .

We let V denote a vector space of dimension 2 over K . A lattice of V is any finitely
generated O–submodule of V that generates the K–vector space V . If x 2K� and
L is a lattice of V , Lx is also a lattice of V . Thus the group K� acts on the set of
lattices; we call the orbit of a lattice under this action its class. The set of lattice classes
is denoted by T .

Let L and L0 be two lattices of V . By the invariant factor theorem there is an O–basis
fe1; e2g of L and integers a; b such that e1�

a; e2�
b is an O–basis for L0 . We define

the distance between the corresponding lattice class ƒ and ƒ0 by d.ƒ;ƒ0/D ja� bj.
Two elements ƒ, ƒ0 of X are called adjacent if d.ƒ;ƒ0/D 1. In this way one defines
a combinatorial graph structure on T . The graph T is a tree. Vertices of T at distance
n from a fixed vertex ƒ0 correspond bijectively to direct factors of L0=L0�

n of
rank 1, ie to points of the projective line P .L0=L0�

n/Š P1.O=�nO/. In particular,
edges with origin ƒ0 correspond bijectively to the points of P .L0=L0�/Š P1.k/; if
q D card.k/, the number of these edges is qC 1. For the purpose of this paper, q will
always be a finite number.

1We require that multiplication in a field commutes while Serre [12] does not
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We let GL.V / denote the group of K–automorphisms of V . If we fix a basis .e1; e2/

of V , then GL.V / is naturally isomorphic to GL2.K/. Let p be the prime ideal
corresponding to the valuation function v .

Definition 2.1 We call a subgroup of GL.V / p–bounded if it is a bounded subset of
the vector space End.V /. If we identify GL.V / with GL2.K/, this means that there
is an integer l such that v.sij /� l for each s D .sij / 2G .

2.2 Subgroups of GL.V / and its action on the tree

We will use vp to denote the valuation function corresponding to the prime ideal p.
Choose a uniformizer �p . We fix a basis .e1; e2/ for V . GL.V / acts on the regular
.card.O=p/C 1/–valence tree, which we will denote by Tp (see Figure 1 for T2 ).

ep
Lp.3/Lp.2/Lp.1/Lp.0/Lp.�1/Lp.�2/Lp.�3/

Figure 1: The regular 3–valence tree T2

We are interested in the following subgroup of GL.V / and its action on the tree:

G D
˚�

a b
0 1

� ˇ̌
a 2K�; b 2K

	
:

Note that G is generated by elements of types
�

a 0
0 1

�
,
�

1 b
0 1

�
. The action of G on the

tree Tp has the following properties (compare [12, Section 1.3 Chapter II]):
� Let Lp.n/ represent the lattice class Oe1˚�

n
pOe2 , denote the end

Lp.0/Lp.1/Lp.2/ � � �

by ep , and the geodesic line � � �Lp.�2/Lp.�1/Lp.0/Lp.1/Lp.2/ � � � by Lp .
Then the action of G on Tp fixes the end ep . In particular,

�
a 0
0 1

�
acts on Lp

as translation by distance �vp.a/. We can put an orientation on the tree Tp ,
where the orientation of every edge is pointing towards ep and G preserves
the orientation. Furthermore, we can define a Busemann function fp from Tp

to R by
fp.P / WD lim

n!1
d.P;Lp.n//� n:
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� At the vertex Lp.0/, there are card.O=p/ many vertices going into Lp.0/, which
correspond bijectively to elements in the residue field O=p. For any b 2 O ,�

1 b
0 1

�
acts on these vertices by mapping x to xC b , where x 2O=p, and fixes

Lp.0/; in fact, it fixes the horoball fP 2 Tp j fp.P /� 0g.

� G acts transitively on the vertices of Tp . The stabilizer of every vertex is
bounded. The stabilizer of Lp.0/ consists of matrices of the form

�
a b
0 1

�
, where

vp.a/D 0, vp.b/� 0.

Remark 2.2 The Busemann function fd can be defined in the same way for any tree
with a specified base point and a specified end.

2.3 Group action on Tpk

Let Tpk be the regular .card.O=pk/C 1/–valence tree.

Let Gpk be the subgroup of G generated by elements of the following three types:

� type I:
�

a 0
0 1

�
, vp.a/D k .

� type II:
�

m 0
0 1

�
, vp.m/D 0.

� type III:
�

1 b
0 1

�
, b 2O .

Matrices of type I act by translation on Tp when restricted to the line

� � �Lp.�2/Lp.�1/Lp.0/Lp.1/Lp.2/ � � �

by distance �k . Recall that Lp.i/DOe1˚�
i
pOe2 . Hence fp.M ıP /D fp.P /C k

for any point P 2 Tp and type-I matrix M . When M is a matrix of type II or III,
then fp.M ıP /D fp.P /.

To get an action of Gpk on Tpk from its action on Tp , we need the following definition
of Stallings folding, which is taken from [7].

Definition 2.3 Let T be an oriented tree with G –action. Consider two edges e1 and
e2 in T that are incident to a common vertex v . Let �W e1 ! e2 denote the linear
homeomorphism fixing v . Then define an equivalence relation � on T as the smallest
equivalence relation such that:

(i) x � �.x/ for all x 2 e1 .

(ii) If x � y and g 2G then g.x/� g.y/.

The quotient space T=� is a simplicial tree with a natural simplicial action of G . Call
the quotient map T ! T=� a fold.

Algebraic & Geometric Topology, Volume 15 (2015)
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Remark 2.4 The key is that after the folding, G induces an action on the new tree.

Consider the following subset of Tp :

fP 2 Tp j �kC 1� fp.P /� 0g:

It has infinite many components. We will choose the component containing the vertex
Lp.0/, which is a subtree of Tp ; call it yTp .

ep
Lp.3/Lp.2/Lp.1/Lp.0/Lp.�1/Lp.�2/Lp.�3/

Figure 2: T2 after Stallings folding

Proceeding similarly to the Stallings folding described in the appendix of [11], the
Stalling folding on Tp is generated by folding every pair of edges in yTp that are incident
to a common vertex in it. The resulting tree (compare Figure 2) will be homeomorphic
to Tpk . Furthermore, if we delete all the 2–valent vertices in the resulting tree, it will
be exactly Tpk . We will identify them as the same. Tpk will have a natural induced
orientation, a specified geodesic line and a base point under the identification. This
further determines a Busemann function fpk on Tpk . We will denote the new geodesic
line by Lpk , and its vertices by Lpk .n/. Now Gpk has an induced action Tpk with
the following properties:

� Gpk fixes the end epk .
� Matrices of type I act by translation by distance �1 on Tpk when restricted to

the geodesic line Lpk . Hence fpk .M ıP /D fp.P /C 1 for any point P 2 Tpk

and any matrix M of type I. Matrices of type II fix the geodesic line Lpk .
Furthermore, when M is a matrix of type II or III, fpk .M ıP /D fpk .P /.

� At the vertex Lpk .0/, there are card.O=pk/ many vertices going into Lp.0/,
which correspond bijectively to elements in the residue ring O=pk . For any
b 2O ,

�
1 b
0 1

�
acts on these vertices by mapping x to xC b , where x 2O=pk ,

and fixes Lp.0/; in fact, it fixes the horoball fP 2 Tpk j fpk .P /� 0g.
� Gpk acts transitively on the vertices of the tree Tpk . The stabilizer of every

vertex is p–bounded.
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2.4 Action on the tree Tp
1
k1p

2
k2 ���pn

kn

In this subsection, we extend the group action on trees to more general cases. Let
pi be the prime ideal corresponding to the valuation function vi , and let Oi be the
corresponding valuation ring. Now let Tp

1
k1 p

2
k2 ���pn

kn be the .
QiDn

iD1 card.Oi=pi
ki /C1/–

valence regular tree. Let Gp
1
k1 p

2
k2 ���pn

kn be the subgroup of G generated by elements of
the following three types:

� type I:
�

a 0
0 1

�
, where vpi

.a/D ki , for every 1� i � n.

� type II:
�

m 0
0 1

�
, where vpi

.m/D 0, for every 1� i � n.

� type III:
�

1 b
0 1

�
, b 2

iDnT
iD1

Oi .

Notice that
Gp

1
k1 p

2
k2 ���pn

kn �Gp
1
k1 for any 1� i � n:

Hence as explained in Section 2.3, Gp
1
k1 p

2
k2 ���pn

kn acts on the tree Tpi
ki . Therefore it acts

on the product space Tp
1
k1 �Tp

2
k2 � � � �Tpn

kn diagonally. Now consider the “diagonal
subspace”˚
.y1;y2; : : : ;yn/2Tp

1
k1 �Tp

2
k2 �� � ��Tpn

kn

ˇ̌
fp

i
ki .yi/Dfp

j
kj .yj / for any 1� i; j �n

	
;

where fp
i
ki is the Busemann function on the corresponding Tp

i
ki . This “subspace” is left

invariant under the Gp
1
k1 p

2
k2 ���pn

kn action, hence it has an induced Gp
1
k1 p

2
k2 ���pn

kn –action.
It is not too hard to show that this subspace is homeomorphic to the tree Tp

1
k1 p

2
k2 ���pn

kn

we defined before; we will think of them as the same. Therefore we have an induced
action of Gp

1
k1 p

2
k2 ���pn

kn on Tp
1
k1 p

2
k2 ���pn

kn . There is a natural Busemann function defined
on Tp

1
k1 p

2
k2 ���pn

kn by fp
1
k1 p

2
k2 ���pn

kn .y/ D fp
1
k1 .y1/. The geodesic line of Tp

1
k1 p

2
k2 ���pn

kn

corresponds to the “diagonal subspace” of the product of the corresponding geodesic
lines in Tp

i
ki . We will represent this geodesic line by

� � �Lp
1
k1p

2
k2���pn

kn.�2/Lp
1
k1p

2
k2���pn

kn.�1/Lp
1
k1p

2
k2���pn

kn.0/Lp
1
k1p

2
k2���pn

kn.1/Lp
1
k1p

2
k2���pn

kn.2/ � � � :

For convenience, we will denote this geodesic line as LI . There is a specified end of
Tp

1
k1 p

2
k2 ���pn

kn ,

Lp
1
k1 p

2
k2 ���pn

kn .0/Lp
1
k1 p

2
k2 ���pn

kn .1/Lp
1
k1 p

2
k2 ���pn

kn .2/ � � � ;

which we will denote as eI . The action of Gp
1
k1 p

2
k2 ���pn

kn on Tp
1
k1 p

2
k2 ���pn

kn has the
following properties:

� Gp
1
k1 p

2
k2 ���pn

kn fixes the end eI .
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� Matrices of type I act by translation by distance �1 on Tp
1
k1 p

2
k2 ���pn

kn when
restricted to the geodesic line LI . Matrices of type II fix the geodesic line
LI . Hence fp

1
k1 p

2
k2 ���pn

kn .M ı P / D fp
1
k1 p

2
k2 ���pn

kn .P /C 1 for any point P 2

Tp
1
k1 p

2
k2 ���pn

kn and any matrix M of type I. If M is a matrix of type II or III, then
fp

1
k1 p

2
k2 ���pn

kn .M ıP /D fp
1
k1 p

2
k2 ���pn

kn .P /.

� At the vertex Lp
1
k1 p

2
k2 ���pn

kn .0/, there are
QiDn

iD1 card.Oi=pi
ki / many vertices

going towards it, which bijectively correspond to elements in the product of the
residue ring

QiDn
iD1 Oi=pi

k . For any b 2
TiDn

iD1 Oi ,
�

1 b
0 1

�
acts on these vertices

by mapping .x1;x2; : : : ;xn/ to .x1Cb;x2Cb; : : : ;xnCb/, where xi 2Oi=pi
k

and fixes Lp
1
k1 p

2
k2 ���pn

kn .0/; in fact, it fixes the horoball

fP 2 Tp
1
k1 p

2
k2 ���pn

kn j fp
1
k1 p

2
k2 ���pn

kn .P /� 0g:

� Gp
1
k1 p

2
k2 ���pn

kn acts transitively on the vertices of the tree Tp
1
k1 p

2
k2 ���pn

kn and the
stabilizer of each vertex is .p1; p2; : : : ; pn/–bounded. This means that there
exists an integer l such that vpi

.mst /� l for each M D .mst / in the stabilizer
and for any 1� i � n.

2.5 Applications to algebraic number fields

Let A 2M.Z; n/ with det A D d > 1, and m.x/ be the characteristic polynomial
of A: m.x/D xnCan�1xn�1C� � �Ca1xCa0 , ai 2Z. Assume that A is irreducible
over Q. Then its characteristic polynomial equals its minimum polynomial.

Let K be Q.x/=m.x/Q.x/, then K is a number field. Let OK be its ring of
integers and xOK be the principle ideal in OK generated by x . One easily sees
that jOK=xOK j D d D ja0j.

Since OK is a Dedekind domain, xOK is a product of prime ideals pk1

1
p2

k2 � � � pkm
m ,

where ki 2 ZC and each pi is a prime ideal. Let vpi
be the valuation function

corresponding to the prime ideal pi ; vpi
.x/D ki .

Let Gx be the subgroup of GL2.K/ generated by elements of the following three
types:

� type I:
�

a 0
0 1

�
, where vpi

.a/D ki , for every 1� i � n.

� type II:
�

m 0
0 1

�
, where vpi

.m/D 0, for every 1� i � n.

� type III:
�

1 b
0 1

�
, b 2OK .

As explained in the previous subsection, we have a Gx –action on a oriented regular
.dC1/–valence tree with a specified Busemann function fx , a specified geodesic line
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� � �Px.�2/Px.�1/Px.0/Px.1/Px.2/ � � � . We denote the geodesic line by Lx and the
end Px.0/Px.1/Px.2/ � � � by ex .

The action of Gx has the following properties:
� Gx fixes the end ex .
� Matrices of type I act by translation by distance �1 on Td when restricted

to the geodesic line Lx . Matrices of type II fix the geodesic line Lx . Hence
fx.M ıP / D fx.P /C 1 for any point P 2 Td and any matrix M of type I.
When M is a matrix of type II or III, then fx.M ıP /D fx.P /.

� At the vertex Px.0/, there are d vertices going into Px.0/, which bijectively
correspond to elements in the residue ring

QiDn
iD1 O=pi

k Š O=
QiDn

iD1 pi
k Š

O=xO . For any b 2O ,
�

1 b
0 1

�
acts on these vertices by permutation, mapping

x to x C b , where x 2 O=xO and fixes Px.0/. In fact, it fixes the horoball
fP 2 Td j fx.P /� 0g.

� Gx acts transitively on the vertices of the tree Td . And the stabilizer of each
vertex is .p1; p2; : : : ; pn/–bounded. This means that there exists an integer l

such that vpi
.mst /� l for each M D .mst / in the stabilizer and for any 1� i �n.

Let
˚�

xk b
0 1

�
j k 2 Z; b 2OK Œ

1
x
�
	

be a subgroup of Gx . Note that this subgroup is
isomorphic to our group � DOK

�
1
x

�
CÌx Z. We have the following lemma.

Lemma 2.5 � acts on the vertices of Td transitively and the stabilizer of every
vertex is a free abelian group of rank n, where n is the degree of the characteristic
polynomial m.x/.

Proof The transitive part comes from the fact that
�

x 0
0 1

�
acts transitively on vertices

of the geodesic line Lx and the subgroup
˚�

1 b
0 1

� ˇ̌
b 2 OK

	
acts transitively on the

d edges going towards the vertex Px.0/. Since the action is transitive, we only need
to show that the stabilizer of Px.0/ is a free abelian group of rank n. Note first that
the stabilizer of Px.0/ is a subgroup of

˚�
1 b
0 1

� ˇ̌
b 2OK

�
1
x

�	
and if b 2 OK , then�

1 b
0 1

�
fixes Px.0/. If b 62OK , then there exists a smallest l > 0 such that b 2 x�lOK ,

hence bD x�la for some a 2OK , a 62 xOK . Hence
�

1 a
0 1

�
fixes Px.0/ and permutes

(nontrivially) edges that point towards Px.0/. On the other hand,�
1 x�l a
0 1

�
D
�

x�l 0
0 1

��
1 a
0 1

��
xl 0
0 1

�
:

Since
�

xl 0
0 1

�
acts on the geodesic line by translation by distance �l ,

�
1 x�l a
0 1

�
does

not fix Px.0/. Therefore we have proved the stabilizer of Px.0/ is˚�
1 b
0 1

� ˇ̌
b 2OK

	
ŠOC

K
;

which is a free abelian group of rank n.
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3 A model for E.�/

In this section, we construct a model for E
�
OK

�
1
x

�
CÌx Z

�
, a contractible space with

a free, proper and discontinuous � –action, where � is the group OK

�
1
x

�
CÌx Z. We

also put a metric on the space, such that � acts isometrically on E.OK

�
1
x

�
C Ìx Z/.

Then we shall prove some inequalities that we will need in the future. Compare with
[11] for the case when � is a solvable Baumslag–Solitar group.

Let X D Td �Rn . We claim there is a free properly discontinuous diagonal action
of � on X . The action of � on Td comes from the fact that � is a subgroup of Gx

(see Section 2.5) via the faithful representation

'W �!Gx � GL2.K/ with '.b; k/D
�

xk b
0 1

�
;

where .b; k/ 2OK

�
1
x

�
C Ì Z. On the other hand, we also have an affine action of �

on Rn given in the following way. Since OK is a free abelian group of rank n, we
can fix a basis e1; e2; : : : ; en of it. Since x acts linearly on OK , we can denote the
corresponding matrix relative to the basis e1; e2; : : : ; en by Ax . Any b 2OK

�
1
x

�
can

be written uniquely as b1e1Cb2e2C� � �Cbnen , where bi 2Z
�

1
d

�
(since det.Ax/Dd ).

We have

.�/ .b; k/.w1; w2; : : : ; wn/D .w1; w2; : : : ; wn/A
k
xC .b1; b2; : : : ; bn/ � � � :

Remark 3.1 Note here that the actions of � on Td and Rn can both be extended
naturally to Gx ; hence we have an induced diagonal action of Gx on Td �Rn .

Proposition 3.2 � acts on Td �Rn properly, discontinuously and cocompactly.

Proof This is essentially a corollary of Lemma 2.5. � acts on the vertices of Td tran-
sitively while the stabilizer of Px.0/ is a subgroup of OK

�
1
x

�
Ìx f0g and isomorphic to

Zn . Note also that the action of OK

�
1
x

�
Ìx f0g on Rn is simply by translation defined

above by the formula .�/, and we have that Rn=OK Œ
1
x
�Ìx f0g is homeomorphic to the

n–dimensional torus T n . Hence the action is proper, discontinuous and cocompact.

One also sees that Td �Rn=� is homeomorphic to a mapping torus of T n . In fact, the
linear action Ax of .x; 0/ 2OK

�
1
x

�
Ìx Z on Rn induces an d–fold self covering map

on the standard torus T n and Td �Rn=� is homeomorphic to T n � Œ0; 1�=.w; 0/�

.wAx; 1/. We need to put a metric on Td �Rn so that � acts on it by isometries. For
that we only need to put a metric on the quotient space T n� Œ0; 1�=.w; 0/� .wAx; 1/.
First put a standard flat metric on T n � f0g, and use the pullback metric by Ax as the
metric on T n�f1g. Then we linearly expand the metric to T n� Œ0; 1�. Recall that Td
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has a standard metric with edge length 1, and Rn has the standard Euclidean metric.
Note that the metric we put here is different from the metric we constructed for the
Baumslag–Solitar group in [11, Section 2].

We are going to need the following lemmas in the future.

Lemma 3.3 For any two points .z1; w1/; .z2; w2/ 2 Td �Rn ,

dTd�Rn..z1; w1/; .z2; w2//� dTd�Rn..z1; w2/; .z2; w2//D dTd
.z1; z2/

Proof The metric is not a warped product, but very close to one. In fact, any
geodesic of the tree Td is naturally a geodesic of Td � Rn (compare [8, Lemma
3.2] in the warped product case). Hence dTd�Rn..z1; w2/; .z2; w2// D dTd

.z1; z2/.
The same argument for proving the warped product case in [8, Lemma 3.1] shows
dTd�Rn..z1; w1/; .z2; w2//� dTd

.z1; z2/.

Remark 3.4 It is not always true that dTd�Rn..z1; w1/; .z2; w2//� dRn.w1; w2/.

Corollary 3.5 If z1; z2 2 Td , w1; w2 2Rn , then

dTd�Rn..z1; w1/; .z2; w2//�
1
2
dTd�Rn..z1; w1/; .z1; w2//:

Proof Combining the triangle inequality for metric spaces and Lemma 3.3 yields the
corollary.

Lemma 3.6 Given a point z0 2 Td , there exists an neighborhood I of z0 in Td

containing z0 such that for any z 2 I , if dRn.w0; w1/ is greater than some fixed "0 ,
then there exists "00 such that dTd�Rn..z; w0/; .z; w1// > "

0
0 .

Proof The lemma comes from the observation we can define another standard product
metric in Td � Rn ; the two metrics are different but they induce the same topol-
ogy on Td � Rn . Hence they will induce the same topology on fzg � Rn . In
fact, the open ball of radius "0 centered at .z; w0/ under the product metric is
open under our metric also, hence there exists "00 such that the ball of radius "00
centered at .z; w0/ under our metric is contained in the ball of radius "0 under the
product metric. Therefore if dfzg�Rn.w0; w1/ is greater than "0 , then .z; w1/ is
going to be outside the ball of radius "0 under the product metric centered at .z; w0/.
Hence it will be outside the ball of radius "00 centered at .z; w0/ under our metric,
in particular dTd�Rn..z; w0/; .z; w1// > "00 . One can choose the neighborhood I

to be compact and sufficiently small; then, we can further rechoose "00 such that
dTd�Rn..z; w0/; .z; w1// > "

0
0 holds for any z 2 I .
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Lemma 3.7 Let z0 be a fixed point in Td and w1; w2 be two fixed points in Rn .
Denote the distance dTd�Rn..z0; w1=n/; .z0; w2=n// by Dn . Then for any � > 0,
there exists an N > 0 which depends on D1 but is independent of z0 such that for any
n>N we have Dn < � . In particular,

lim
n!1

Dn D 0:

Proof Two metrics on fz0g �Rn that measure the distance between .z0; w1=n/ and
.z0; w2=n/: one using geodesics in Td�Rn , and the other using the standard Euclidean
metric. Since they define the same topology on fz0g�Rn , we have that for any ball of
radius �=2> 0 centered at .z0; 0/ under our metric, we can find �0 > 0 such that the
ball of radius �0 under the Euclidean metric is contained in the ball of radius �=2 under
our metric. We first assume that .z0; w1/ lies in the fundamental domain (assume
it contains Px.0/Px.1/� f0g), which is compact; in particular dRn.w0; 0/ < L for
some L > 0. Therefore both .z0; w0/ and .z0; w1/ lie in the ball of radius D1CL

centered at .z0; 0/ under the Euclidean metric. Now we choose N big enough such
that for any n > N , .z0; w1=n/ and .z0; w2=n/ lie in the ball of radius �0=2 under
Euclidean metric; in particular, their distance under the Euclidean metric is smaller
than �0 , hence both .z0; w1=n/ and .z0; w2=n/ will lie in the same ball of radius �=2
centered at .z0; 0/ under our metric, therefore the distance between .z0; w1=n/ and
.z0; w2=n/ under our metric is Dn < � . Since the fundamental domain is compact, we
can rechoose N so that the lemma holds for any .z0; w1/ in the fundamental domain.

Next we extend the result to any .z0; w1/ 2 Td � Rn . Choose g D .b; k/ 2 � D

OK

�
1
x

�
CÌx Z such that g.z0; w1/ lies in the fundamental domain. Then we have

dTd�Rn

�
g
�
z0;

w1

n

�
;g
�
z0;

w2

n

��
D dTd�Rn

��
gz0;

w1

n
Ak

xC b
�
;
�
gz0;

w2

n
Ak

xC b
��
:

Since translation in the Rn direction does not change the distance,

dTd�Rn

�
g
�
z0;

w1

n

�
;g.z0;

w2

n
/
�
D dTd�Rn

��
gz0;

w1

n
Ak

xC
b
n

�
;
�
gz0;

w2

n
Ak

xC
b
n

��
D dTd�Rn

��
gz0;

1
n
gw1

�
;
�
gz0;

1
n
gw2

��
:

In particular, when nD 1,

dTd�Rn

��
gz0;

1
n
gw1

�
;
�
gz0;

1
n
gw2

��
DD1

and .gz0; 1=ngw1/ lies in the fundamental domain, therefore when n>N ,

dTd�Rn

��
gz0;

1
n
gw1

�
;
�
gz0;

1
n
gw2

��
< �:

Hence dTd�Rn.g.z0; w1=n/;g.z0; w2=n// < � . The element g acts on Td �Rn as
an isometry, hence

dTd�Rn

��
z0;

w1

n

�
;
�
z0;

w2

n

��
< �:
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This finishes our proof.

Lemma 3.8 Let T be a positive integer and z0; z1 2 Td such that z1 lies in the
geodesic ray connecting z0 and the end ex , and dTd

.z0; z1/ D T . Let z lie on
the geodesic connecting z0 and z1 . Then there exists ˇ > 1 depending on T and
independent of z1 such that for any w 2Rn , if dTd�Rn..z1; w/; .z1; 0//DR� 1, then
dTd�Rn..z; w/; .z; 0//� ˇR.

Proof First fix w and z1 , then let M be the maximum of dTd�Rn..z; w/; .z; 0//,
where z lies in the geodesic connecting z0 and z1 (which is compact). Then we can
just choose ˇ DM=R (we assume R > 0). Moreover we can choose such a ˇ for
all w such that dTd�Rn..z1; w/; .z1; 0//� 1 at the same time since the set of all such
w forms a compact set. Notice that when w gets close to 0, the metric gets close to
Euclidean metric and we are able to choose such ˇ for those w continuously (one can
also extend ˇ to those w by simply making ˇ large enough). We can further assume z1

lies on the edge Px.0/Px.1/ by using the isometric action of � on Td�Rn to translate
any z1 to Px.0/Px.1/. In fact we can always translate the geodesic connecting z0

and z1 to a geodesic that lies in the specified geodesic line Lx and so that z1 lies
in Px.0/Px.1/. Finally, because Px.0/Px.1/ is compact, we can further choose a ˇ
that works for all z1 2 Px.0/Px.1/. Hence ˇ is independent of z1 .

4 Flow space for Td � Rn

In this section we define a flow space for E.OK

�
1
x

�
Ì Z/. The construction here is

parallel to the one in our previous paper [11], but as the metric we put on Td �Rn is
not as nice as before need some new ideas in certain proofs.

We first introduce Bartels and Lück’s flow space, starting with the notion of a generalized
geodesic.

Definition 4.1 Let X be a metric space. A continuous map cW R! X is called a
generalized geodesic if there are c�; cC 2 xR WDRqf�1;1g satisfying

c� � cC; c� ¤1; cC ¤�1

such that c is locally constant on the complement of the interval Ic WD .c�; cC/ and
restricts to an isometry on Ic .

Definition 4.2 Let .X; dX / be a metric space. Let FS.X / be the set of all generalized
geodesics in X . We define a metric on FS.X / by

dFS.X /.c; d/ WD

Z
R

dX .c.t/; d.t//

2ejt j
dt:
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The flow on FS.X / is defined by ˆW FS.X /�R! FS.X /, where ˆ� .c/.t/D c.tC�/

for � 2R, c 2 FS.X / and t 2R.

Lemma 4.3 The map ˆ is a continuous flow. If we take c; d 2 FS.X /, � 2R, then

e�j� jdFS.X /.c; d/� dFS.X /.ˆ� .c/; ˆ� .d//� ej� jdFS.X /.c; d/:

Proof A more general version is proved in [4, Lemma 1.3].

Note that the isometry group of .X; dX / acts canonically on FS.X /. Recall that a map
is proper if the inverse image of every compact subset is compact. Bartels and Lück
also proved the following for the flow space FS.X / in [4, Proposition 1.9 and 1.11].

Proposition 4.4 If .X; dX / is a proper metric space, then .FS.X /; dFS.X // is a proper
metric space; in particular, it is a complete metric space. Furthermore, if a group � acts
isometrically and properly on .X; dX /, then � also acts isometrically and properly on
.FS.X /; dFS.X //. In addition, if � acts cocompactly on X , then � acts cocompactly
on FS.X /.

Now we define our flow space by

HFS.Td �Rn/ WD FS.Td /�Rn;

where Td has its natural metric with edge length 1. Since � has an action on both
FS.Td / and Rn , � will have a diagonal action on FS.Td /�Rn . One can think of
HFS.Td �Rn/ as the horizontal subspace of FS.Td �Rn/. In fact, there is a natural
embedding of HFS.Td �Rn/ (as a topological space with the product topology) into
FS.Td �Rn/ defined as follows: For a generalized geodesic c on Td and w 2Rn , we
define a generalized geodesic on Td �Rn , which maps t 2R to .c.t/; w/ 2 Td �Rn

(by Lemma 3.3, ..c.t/; w// is a geodesic of Td �Rn for t 2 Œ0;1�). HFS.Td �Rn/

will inherit a metric from this embedding.

For the rest of this section, let X D Td �R.

Lemma 4.5 The flow space HFS.Td �Rn/ is a proper metric space, in particular a
complete metric space.

Proof The proof here is parallel to the proof of Lemma 3.5 in [11], where we replace
[11, Lemma 2.6] by Lemma 3.6. For completeness, we write the proof here. To
prove that HFS.Td �Rn/ is a proper metric space, we need to show that every closed
ball Br .c/ D fc

0 j dHFS.Td�Rn/.c; c
0/ � rg in HFS.Td �Rn/ is compact. Let fcig

be a Cauchy sequence in the closed ball Br .c/; we need to show it converges to a
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point in Br .c/. Since the space FS.Td �Rn/ is proper, we can now assume fcig

converges to a point c0 in FS.Td � Rn/. We only need to show c0 2 HFS.Td �

Rn/. Denote the projection map from Td � Rn to Td as q1 , from Td � Rn to
Rn as q2 . Then ci.t/ D .q1.ci.t/; q2.ci.t///. Suppose c0 62 HFS.Td � Rn/; then
q2.c0.t// is not a constant map. Choose a big enough closed interval I in R such
that q2.c0.t// restricted to I is not a constant. In particular, we can choose two points
t1; t2 2 I such that q2.c.t1// ¤ q2.c.t2//. Let A1 D q2.c.t1// and A2 D q2.c.t2//.
Let ı D jA1 �A2j, which is the distance between A1 and A2 under the standard
Euclidean metric. Let I1 D ft 2 I j jq2.c0.t//�A1j � ı=4g, and correspondingly
I2D ft 2 I j jq2.c0.t//�A2j � ı=4g. Note that I1 and I2 are nonempty compact sets
with measure bigger than 0. Now for any given ci , if jq2.ci/�A2j � ı=2, then for
t 2 I2 , dRn.q2.c0.t//; q2.ci.t///� ı=4 and

dFS.X /.c0; ci/D

Z
R

dTd�Rn.c0.t/; ci.t//

2ejt j
dt

�

Z
I2

dTd�Rn.c0.t/; ci.t//

2ejt j
dt

�

Z
I2

dTd�Rn..q1.c0.t//; q2.c0.t///; .q1.ci.t//; q2.ci.t////

2ejt j
dt

D

Z
I2

1
2
dTd�Rn.c0.t/; .q1.c0.t//; q2.ci.t////

2ejt j
dt .by Corollary 3.5/:

Note that here dRn.q2.c0.t//; q2.ci.t///� ı=4, and we can choose I 0
2
� I2 such that

Lemma 3.6 holds, hence there exists ı0 such that

dTd�Rn.c0.t/; .q1.c0.t//; q2.ci.t//// > ı
0

for any t 2 I 0
2

. ThenZ
I2

1
2
dTd�Rn.c0.t/; .q1.c0.t//; q2.ci.t////

2ejt j
dt �

Z
I 0

2

1
2
ı0

2ejt j
dt > 0:

The last integral is independent of ci ; denote its value by �1 . If jq2.ci/ � A2j �

ı=2, then jq2.ci/�A1j � ı=2. For the same reason, there exists �2 > 0 such that
dFS.X /.c0; ci/� �2 . Let � Dmin.�1; �2/ > 0; then dFS.X /.c0; ci/� � > 0. Hence the
sequence fcig can never converge to c0 ; a contradiction.

Remark 4.6 The proof in fact shows that the embedding HFS.X / � FS.X / is a
closed � –equivariant embedding.

Algebraic & Geometric Topology, Volume 15 (2015)



The Farrell–Jones conjecture for some nearly crystallographic groups 1683

We define now the flow

ˆW HFS.Td �Rn/�R! HFS.Td �Rn/

by ˆ� ..c; w//.t/ D .c.t C �/; w/ for c 2 FS.Td / and �; w; t 2 R. Note that ˆ is a
� –equivariant flow.

Lemma 4.7 The flow space HFS.X / has the following properties:

(i) � acts properly and cocompactly on HFS.X /.

(ii) Given C > 0, there are only finitely many � orbits of periodic flow curves with
period less than C (but bigger than 0).

(iii) Let HFS.X /R denote the R–fixed point set, ie the set of points c 2HFS.X / for
which ˆ� .c/D c for all � 2R. Then HFS.X /�HFS.X /R is locally connected.

(iv) If we put

k� WD supfjH j jH � � subgroup with finite order jH jg;

dHFS.X / WD dim.HFS.X /�HFS.X /R/;

then k� and dHFS.X / are finite.

Proof We skip the proofs of (i), (iii) and (iv) as they are parallel to the proof of Lemma
3.7 of [11]. The proof of (ii) needs some modification and uses the fact that x acts on
OK Œ

1
x
� as an irreducible matrix (over Q) with determinant greater than 1:

Note that periodic orbits in HFS.Td �Rn/ are periodic orbits in FS.Td �Rn/, which
move horizontally (ie move along the tree direction, with Rn coordinate fixed). Note
also that the embedding of HFS.Td �Rn/ into FS.Td �Rn/ is a � –equivariant map,
and there are only finitely many nonzero horizontal periodic geodesics on .Td�Rn/=�

of period less than C . In fact .Td �Rn/=� D T n � Œ0; 1�=.w; 0/� .Axw; 1/, where
T n is the n–dimensional torus (see Section 3 for more details) and horizontal periodic
geodesics with period m on it correspond to the number of solutions of the equation
Am

x w � w.mod.1; 1; : : : ; 1// times dm (number of branchings in Td ), where w 2
.R=Z/n . The equation has finitely many solutions for any positive integer m. In fact
the solutions are w D .Am

x � I/�1k; k 2Zn , w 2 .R=Z/n . Here Am
x � I is invertible

due to the fact that Ax is an irreducible k � k matrix (over Q) with k > 1. So there
will be only finitely many nonzero horizontal periodical orbits on HFS..Td �R/=�/
with period less than C . Hence the claim in (ii) now follows.

Remark 4.8 We define an embedding ‰W Td �Rn ! FS.Td / �Rn by .z; w/!
.cz; w/, where cz is the unique generalized geodesic that sends .�1; 0/ to z , and
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Œ0;1/ isometrically to the geodesic Œz; ex/, where ex is the specified end of Td . Also,
we can flow this embedding by flowing its image in HFS.X /; define ‰� .z; w/ D
ˆ� .‰.z; w//. It is easy to see that ‰� is a � –equivariant map since ex is fixed under
the group action.

We need the following lemma in the proof of our main theorem.

Lemma 4.9 Let z0 be a fixed point in Td , w1; w2 be two fixed points in Rn , and
Pn D .z0; w1=n/, Qn D .z0; w2=n/, dX .P1;Q1/ < D . Then for any � > 0, there
exists a number xN , which depends only on � , D and d , such that for any n> xN ,

dX .Pn;Qn/ <
�

4
and dHFS.X /.‰.Pn/; ‰.Qn//� �:

Proof Choose T to be the first positive integer greater than ln 4=� . Since ‰.Pn/.T /

and ‰.Qn/.T / have the same Td coordinate, by Lemma 3.7 we can choose a big
enough integer xN such that for any n > xN , dX .‰.Pn/.T /; ‰.Qn/.T // < �=.4ˇ/,
where ˇ > 1 is determined by Lemma 3.8 for our T here. Note that xN depends only
on � , D , T (which is determined by � ) and d . Using the definition of generalized
geodesics, we have

dX .‰.Pn/.t/; ‰.Pn/.T //D t �T and dX .‰.Qn/.t/; ‰.Qn/.T //D t �T;

where t � T . Hence for any t � T , by the triangle inequality, we have

dX .‰.Pn/.t//; ‰.Qn/.t//

� dX .‰.Pn/.t/; ‰.Pn/.T //C dX .‰.Pn/.T /; ‰.Qn/.T //

C dX .‰.Qn/.T /; ‰.Qn/.t//

�
�

4ˇ
C 2.t �T /�

�

4
C 2.t �T /:

On the other hand, for any 0� t � T , by Lemma 3.8, we have

dX .‰.Pn/.t//; ‰.Qn/.t//� ˇdX .‰.Pn/.T //; ‰.Qn/.T // <
�

4
:

In particular,

dX .Pn;Qn/D dX .‰.Pn/.0//; ‰.Qn/.0// <
�

4
:

Also, for t � 0, ‰.Pn/.t/D‰.Pn/.0/DPn and ‰.Qn/.t/D‰.Qn/.0/DQn , hence

dX .‰.Pn/.t//; ‰.Qn/.t//D dX .Pn;Qn/ <
�

4ˇ
:

Algebraic & Geometric Topology, Volume 15 (2015)



The Farrell–Jones conjecture for some nearly crystallographic groups 1685

Therefore, for any n> xN ,

dHFS.X /.‰.Pn/; ‰.Qn//

D

Z
R

dX .‰.Pn/.t//; ‰.Qn/.t///

2ejt j
dt

D

Z
.�1;0�

dX .‰.Pn/.t//; ‰.Qn/.t///

2ejt j
dt C

Z
Œ0;T �

dX .‰.Pn/.t//; ‰.Qn/.t///

2ejt j
dt

C

Z
ŒT;1/

dX .‰.Pn/.t//; ‰.Qn/.t///

2ejt j
dt

�

Z
.�1;0�

�
4

2ejt j
dt C

Z
Œ0;T �

�
4

2ejt j
dt C

Z
ŒT;1/

�
4
C 2.t �T /

2ejt j
dt

�
�

4
C e�T

�
�

4
C
�

4
D
�

2
:

Hence we proved the lemma.

Because of the properties proved in Lemma 4.7, [5, Theorem 1.4] yields a long thin
cover for HFS.X /; ie the following result holds.

Proposition 4.10 There exists a natural number N , depending only on k� ; dHFS.X /
and the action of � on an arbitrary neighborhood of HFS.X /R , such that for every
� > 0 there is an VCyc–cover U of HFS.X / with the following properties:

(i) dimU �N .

(ii) For every x 2 HFS.X / there exists Ux 2 U such that

ˆŒ��;��.x/ WD fˆ� .x/ j � 2 Œ��; ��g � Ux :

(iii) � nU is finite.

Here VCyc denotes the collections of virtually cyclic subgroups of a group.

Recall that the dimension of a cover U is defined to be the greatest N such that there
exist N C 1 elements in U with nonempty intersection. In general, for a collection of
subgroups F , we define a F –cover as following.

Definition 4.11 Let G be a group and Z be a G–space. Let F be a collection of
subgroups of G . An open cover U of Z is called an F –cover if the following three
conditions are satisfied.
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(i) For g 2G and U 2 U we have either g.U /D U or g.U /\U D∅.
(ii) For g 2G and U 2 U , we have g.U / 2 U ,

(iii) For U 2 U the subgroup GU WD fg 2G j g.U /D U g is a member of F .

For a subset A of a metric space Z and ı > 0, Aı denotes the set of all points z 2Z

for which d.z;A/ < ı . Combining Lemma 4.3 and the fact that � acts cocompactly
on FS.Td /�R (Lemma 4.7, (i)), Proposition 4.10 can be improved to the following.

Proposition 4.12 There exists a natural number N , depending only on k� ; dHFS.X /
and the action of � on an arbitrary neighborhood of HFS.X /R such that for every
� > 0 there is a VCyc–cover U of HFS.X / with the following properties:

(i) dim U �N .
(ii) There exists a ı > 0 depending on � such that for every x 2 HFS.X / there

exists Ux 2 U such that .ˆŒ��;��.x//ı � Ux .
(iii) � nU is finite.

Proof A simple modification of [5, Section 1.3, pages 1804–1805] yields the result.
Their Lemma 7.2, used in the proof, is replaced by Lemma 4.3 in our case.

5 Proof of the main theorem

5.1 Some induction

Let D be a integral domain with quotient field K , let a 2U.D/, where U.D/ denotes
the units of D . Form the semi-direct product group DC Ìa Z, where DC denotes the
additive group of D and Z acts on DC via multiplication by a.

Lemma 5.1 If FJC is true for DC Ìa Z, then it is also true for KC Ìa Z, and hence
for every subgroup of KC Ìa Z.

Proof If b 2D n 0, then

D
h

1

b

i
D

1[
nD1

1

bn
DC D lim

n!1

1

bn
DC and

�
D
h

1

b

i�C
Ìa ZD lim

n!1

1

bn
DC Ìa Z:

Since 1
bn DC Ìa ZŠDC Ìa Z, FJC is true for 1

bn DC Ìa Z and hence for the direct
limit group D

�
1
b

�
C Ìa Z by Proposition 1.1(3). On the other hand

KC Ìa ZD lim
b2Dn0

D
h

1

b

iC
Ìa Z;

hence FJC is true for KCÌa Z. By Proposition 1.1(1), any subgroup of KCÌa Z also
satisfies FJC.
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Let m.x/ be a monic polynomial in ZŒx� that is irreducible in QŒx�. Let K be the
number field determined by m.x/, ie K D QŒx�=m.x/QŒx�, and let OK denote its
ring of integers.

The rest of the section is devoted to prove the following result.

Theorem 5.2 The FJC is true for the group � D OK

�
1
x

�
C Ìx Z, and hence true

for KC Ìx Z by Lemma 5.1.

Corollary 5.3 Let M 2Mn.Z/ have determinant d >1. Assume that its characteristic
polynomial m.x/ is irreducible in QŒx�. Then � D .ZŒ 1

d
�/n ÌM Z satisfies FJC.

Moreover, Qn ÌM Z satisfies FJC.

Proof It suffices, because of Theorem 5.2, to embed � in KCÌx Z. Let e1; e2; : : : ; en

be a basis for OC
K

. (Recall that OC
K

is a free abelian group of rank n.) Note that x 2OC
K

since m.x/ D 0 and m.x/ is a monic polynomial with integral coefficients. Hence
multiplication by x induces an endomorphism f of OC

K
and f determines a matrix

M 2Mn.Z/ via the basis fe1; e2; : : : ; eng. Furthermore the minimum polynomial of
M is also m.x/. So M and M have the same minimum and characteristic polynomial
m.x/, which is QŒx�–irreducible. Consequently M and M are conjugate via a matrix
T 2 GLn.Q/. Let xe1; xe2; : : : ; xen be a new basis for K DOK ˝Q determined by T

and the basis e1; e2; : : : ; en . Then multiplication by x on K determines the matrix M

in terms of xe1; xe2; : : : ; xen . We can now define the desired group homomorphism

F W
�
Z
�

1
d

��nÌM !KC Ìx Z; .b; k/ 7! .xb; k/;

where .b; k/ 2 ZŒ 1
d
�n ÌM Z, b D .b1; b2; : : : ; bn/ with bi 2 ZŒ 1

d
� and xb D b1xe1 C

b2xe2C � � � C bnxen . This homomorphism is clearly monic. Since this extends to an
embedding of Qn ÌM Z into KC Ìx Z, Qn ÌM Z also satisfies FJC.

5.2 Hyper-elementary subgroups of .Z=sZ/n ÌMs
Z=rZ

Recall a hyper-elementary group is an extension of a p–group by a cyclic group of
order n such that .n;p/D 1 (compare Definition 1.5).

Proposition 5.4 Given M an n� n matrix with integer coefficients with det.M /D

d > 1, we have the following:

Given any positive integer N , there are positive integers s and r satisfying:

(i) s � 1 mod d .

(ii) The order of GLn.Z=sZ/ divides r . In particular we can consider the group
.Z=sZ/n ÌMs

Z=rZ, where Ms is the reduction of M modulo s . Note that
Ms 2 GLn.Z=sZ/ since det.M /D d is coprime to s .
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(iii) If H is a hyper-elementary subgroup of .Z=sZ/n ÌMs
Z=rZ, then at least one

of the following two statements is true:
(a) ŒZ=rZ; pr.H /��N , where pr is the projection map

.Z=sZ/n ÌMs
Z=rZ! Z=rZ:

(b) There exists a natural number k k divides s , k �N and

H \ .Z=sZ/n Ì f0g � k.Z=sZ/n:

Proof The result just says that M is hyperbolic good in the sense of Bartels, Farrell
and Lück in [1, Definition 3.11] by taking oD d , which ensures that the reduction of
M , Ms 2 GLn.Z=sZ/. The only tricky thing is here to show that det.M /D d > 1;
fortunately the proofs of Lemma 3.18 to Lemma 3.21 in [1] still apply directly.

5.3 Proof of Theorem 5.2

The remains of the proof of Theorem 5.2 are exactly parallel to the proof of the FJC
for the solvable Baumslag–Solitar groups in [11, Section 5]. Hence we only sketch it.

Claim The group OK Œ
1
x
�
C Ìa Z is a Farrell–Hsiang group (compare Definition 1.3)

with respect to the family of virtually abelian subgroups.

If we can prove the claim, then by Theorem 1.6 we will have proved that OK Œ
1
x
�
CÌx Z

satisfies the FJC with respect to the family of abelian subgroups. Since FJC is known
for abelian groups, by the transitivity principle (Lemma 1.2), we have proven our
Theorem 5.2. As noted in the proof of Corollary 5.3, OK is a free abelian group of
rank n; we will fix a basis for it, and denote the action of x under this basis by M ,
which is an integer matrix with determinant d > 1. Let Ms denote the reduced matrix
of M modulo s .

Sketch of the proof of the claim Given any m> 0, we will choose the finite group
Fm to be .Z=sZ/n ÌMs

Z=rZ, where r and s depend on m, and r divides the order
of GLn.Z=sZ/. We need to construct a surjective group homomorphism

˛mW OK

h
1

x

iC
Ìx Z! .Z=sZ/n ÌMs

Z=rZ:

Note that OK

�
1
x

�
C is isomorphic to

�
Z
�

1
d

��
n , s is coprime to d and sOK

�
1
x

�
CÌ f0g

is a normal subgroup of OK

�
1
x

�
C Ìx Z with quotient isomorphic to .Z=sZ/n ÌMs

Z.
On the other hand Ms 2GLn.Z=sZ/ while r divides the order of GLn.Z=sZ/. Hence
we can further map .Z=sZ/n ÌMs

Z to .Z=sZ/n ÌMs
Z=rZ.
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Now by Proposition 5.4 the hyper-elementary subgroup of Fm will be divided into two
cases and N will be determined later, but is at least bigger than 4m2 .

Case (a) ŒZ=rZ; pr.H /��N > 4m2 , where pr is the projection map

.Z=sZ/n ÌMs
Z=rZ! Z=rZ:

In this case we will choose EH to be the real line R with large cells. The map fH

from OK

�
1
x

�
CÌa Z to R is just the projection map to the second factor as Z naturally

embeds in R. For more details, compare with the proof in [11, Section 5, Case (1)].

Case (b) There is a natural number k >N such that H\.Z=sZ/n Ìf0g� k.Z=sZ/n

and k divides s . We will use the following diagram to produce EH in this case:

�
�
�! Td �Rn

F�1
k
�! Td �Rn ‰�

�! HFS.Td �Rn/:

Here Fk W Td �Rn! Td �Rn acts by

Fk.z; w/D
�

k 0
0 1

�
.z; w/ for .z; w/ 2 Td �Rn

and � is just the embedding by picking up base point .P0; 0/, ie �.g/D g.P0; 0/. The
action of

�
k 0
0 1

�
on .z; w/ 2 Td �Rn is the diagonal action explained in Section 3. In

particular F�1
k

will shrink Td �Rn in the Rn direction. ‰� is defined in Remark 4.8.
By Proposition 4.12, we have a long thin cover on HFS.Td �Rn/, using ‰� and F�1

k

we can pull back the cover to Td �Rn . EH will be the nerve of this cover, there is a
canonical map xfH W Td �Rn!EH ; we define fH D

xfH ı �. Now by some careful
choices of k and � , one can prove that fH satisfies the inequality we need in the
definition of a Farrell–Hsiang group (Definition 1.3). For more details, compare with
the proof in [11, Section 5, Case (2)].
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