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Whitney towers, gropes and
Casson–Gordon style invariants of links

MIN HOON KIM

In this paper, we prove a conjecture of Friedl and Powell that their Casson–Gordon
type invariant of 2–component links with linking number one is actually an obstruc-
tion to being height-3:5 Whitney tower/grope concordant to the Hopf link. The proof
employs the notion of solvable cobordism of 3–manifolds with boundary, which
was introduced by Cha. We also prove that the Blanchfield form and the Alexan-
der polynomial of links in S3 give obstructions to height-3 Whitney tower/grope
concordance. This generalizes the results of Hillman and Kawauchi.

57M25, 57M27; 57N70

1 Introduction

In the study of topological knot concordance, various invariants were introduced in
seminal papers including Levine [32], Casson and Gordon [3; 4], and Cochran, Orr and
Teichner [15]. All of these invariants can be extracted from the 0–surgery manifolds of
knots. Influenced by these works, the link slicing problem has been studied extensively
using various covers of the 0–surgery manifolds of links. For example, Harvey [26],
Cochran, Harvey and Leidy [11] and Horn [29] used Cheeger–Gromov �–invariants
from PTFA (poly-torsion-free-abelian) covers. In Cha [5; 6], Hirzebruch type invariants
from iterated prime power fold covers were defined and used.

In general link concordance problems, it is known that 0–surgery manifolds do not
reveal full information. For example, for 2–component links with linking number
one, the aforementioned invariants automatically vanish. In fact, those invariants are
obtained from solvable covers of 0–surgery manifolds. For 2–component links with
linking number one, there are no nontrivial solvable covers of the 0–surgery manifolds
(and consequently the aforementioned invariants vanish) because they have perfect
fundamental groups. Also, there is an in-depth study which presents related results
about link concordance versus 0–surgery homology cobordism; see Cha and Powell [9].

Recently, for 2–component links with linking number one, S Friedl and M Powell [25]
introduced a Casson–Gordon style metabelian invariant �.L; �/ by considering another
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1814 Min Hoon Kim

closed 3–manifold obtained from the link exterior. Also, they found new 2–component
links with linking number one which are not concordant to the Hopf link. The aim
of this paper is to give a better understanding of �.L; �/ in the context of symmetric
Whitney towers and gropes in dimension 4.

Friedl–Powell invariant �.L; �/

To describe our main result, we briefly summarize the construction and main result
in [25]. (For more details, see Section 4.)

Let L be an ordered, oriented 2–component link with linking number 1 in S3 and H

be the Hopf link. Define ML to be the closed 3–manifold obtained by gluing the
exteriors of L and H along their boundary, identifying the meridians of corresponding
components. For a prime p , choose a homomorphism 'W H1.MLIZ/!Z=pi�Z=pj

which sends two meridians of L to the standard basis .1; 0/ and .0; 1/, respectively.
Let M

'
L
! ML be the piCj –fold covering induced by ' . For a prime q and a

character �W H1.M
'
L
IZ/! Z=qk , Friedl and Powell define an invariant

�.L; �/ 2L0.C.H//˝Z ZŒ1=q�

in [25, Section 3.2] (see also our Definition 4.1). Here, HD Z3 , C.H/ is the quotient
field of the group ring CŒH�, and L0.C.H// is the Witt group of finite-dimensional
nonsingular sesquilinear forms over C.H/. The main result of [25] essentially says
that if L is concordant to H , then �.L; �/ vanishes [25, Theorem 3.5]. For a precise
definition of the vanishing of �.L; �/, see Definition 4.2. We omit the precise statement
here because we would need to discuss some technicalities including the choice of a
metabolizer of the linking form.

Symmetric Whitney tower/grope concordance and �.L; �/

The symmetric Whitney towers and gropes are approximations of embedded surfaces
which play a central role in the study of topological 4–manifolds. For example,
a special kind of grope with caps gives a topologically embedded disk in the disk
embedding theorem of Freedman and Quinn [23]. Also, using symmetric Whitney
towers and gropes, T Cochran, K Orr and P Teichner developed a filtration theory
of the knot concordance group [15]. It turns out that the structure of this filtration
theory is extremely rich (for example, see Cochran, Orr and Teichner [16], Cochran and
Teichner [17], Cochran, Harvey and Leidy [12; 13], Cha [7], Davis [21], Franklin [22]
and Burke [2]). For links, we are mainly interested in two equivalence relations,
height h Whitney tower concordance and height h grope concordance. (For precise
definitions, see Cha [8, Definitions 2.12, 2.15].)
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We remark that J Conant, R Schneiderman, and Teichner developed another interesting
filtration theory using a coarser notion called order-n Whitney tower concordance
(for a survey and references, we refer to [18]). It is not our purpose to study this
asymmetric filtration theory of Conant, Schneiderman and Teichner. We focus on the
finer equivalence relations, symmetric Whitney tower/grope concordance.

Our main result, Theorem A, says that the Friedl–Powell invariant �.L; �/ can be
understood in terms of symmetric Whitney tower/grope concordance as conjectured
in [25, Remark 1.3(5)]:

Theorem A Suppose that L is a 2–component link with linking number 1 and H is
the Hopf link. If L and H are height-3:5 Whitney tower (or grope) concordant, then
the Friedl–Powell invariant �.L; �/ vanishes for L in the sense of Definition 4.2.

In the proof, we use the notion of h–solvable cobordism, introduced by J C Cha in [8]
(for the definition, see Section 3.1). By [8, Theorem 2.13], if two links L and L0 are
height-.hC 2/ Whitney tower/grope concordant, then their exteriors XL and XL0 are
h–solvable cobordant for all h 2 1

2
Z�0 . Actually, we prove Theorem A in Section 4.3

under the (potentially) weaker assumption that there exists a 1:5–solvable cobordism
between the exteriors XL and XH .

Remark (1) In [15, Theorem 9.11], Cochran, Orr and Teichner proved that if a
knot K bounds a Whitney tower/grope of height 3:5 in D4 , or more generally
if K is 1:5–solvable, then the Casson–Gordon invariant �.K; �/ vanishes. Our
result can be viewed as an analogue for 2–component links with linking number 1.

(2) Theorem A is strictly stronger than [25, Theorem 3.5] by the following fact
from [8, Theorem 4.1]: for any integer n> 2, there are links which are height-n
grope concordant to H but not height-n:5 Whitney tower concordant to H (in
particular, not concordant to H ).

Symmetric Whitney tower/grope concordance and abelian invariants

In [15, Theorem 1.1], Cochran, Orr and Teichner proved that a Seifert form of a
knot K is metabolic if and only if K bounds a height-2:5 grope in D4 . By Schneider-
man [35, Corollary 2] and [15, Theorem 8.12], this condition is equivalent to that K

bounds a height-2:5 Whitney tower in D4 . Motivated from this result, in Section 5 we
prove that Blanchfield form and the multivariable Alexander polynomial are actually
obstructions to height-3 Whitney tower/grope concordance.

Abelian link concordance invariants are studied by A Kawauchi [30] and J Hillman [28].
To state our main result, we recall their notation (for details, see Section 5) and main

Algebraic & Geometric Topology, Volume 15 (2015)



1816 Min Hoon Kim

results. Let L be a �–component link and let XL be the exterior of L. Denote
ZŒt˙

1
; : : : ; t˙� � by ƒ� . The ring ƒ� is endowed with the involution �W ti 7! t�1

i .
Let S be the multiplicative set generated by ft1� 1; : : : ; t�� 1g. Denote by ƒ�S the
localization of ƒ� with respect to S . Let K be the quotient field of ƒ� . Using the
Hurewicz map �1.XL/! Z� , we define H�.XLIƒ�/ and H�.XLIƒ�S /.

In [28, Chapter 2], Hillman defined the K=ƒ�S –valued localized Blanchfield form bL

on the quotient of the torsion submodule of H1.XLIƒ�S / by its maximal pseudonull
submodule. Also, he proved that the Witt-class of bL , denoted by ŒbL�, in the Witt
group W .K; ƒ�S ;�/ is a link concordance invariant.

In [30], Kawauchi defined the torsion Alexander polynomial of L which we denote
by �T

L
. In [30, Theorems A, B], he proved that if two links L0 and L1 are concordant,

then rankƒ� H1.XL0
Iƒ�/ D rankƒ� H1.XL1

Iƒ�/ and �T
L0
f0
xf0
�
D �T

L1
f1
xf1 for

some fi.t1; : : : ; t�/ 2ƒ� , i D 0; 1 with jfi.1; : : : ; 1/j D 1.

We extend these theorems of Hillman and Kawauchi in terms of symmetric Whitney
tower/grope concordance as follows:

Theorem B Suppose that two links L0 and L1 are height-3 Whitney tower/grope
concordant. Then ŒbL0

�D ŒbL1
� 2W .K; ƒ�S ;�/.

Theorem C Suppose that two links L0 and L1 are height-3 Whitney tower/grope
concordant. Then:

(1) rankƒ� H1.XL0
Iƒ�/D rankƒ� H1.XL1

Iƒ�/.

(2) �T
L0
f0
xf0
�
D�T

L1
f1
xf1 for some fi.t1; : : : ; t�/ 2ƒ� , i D 0; 1 with

jfi.1; : : : ; 1/j D 1:

As a special case of Theorems B and C for 2–component links with linking number 1,
we have the following special case. This illustrates that the concordance problem
between a 2–component link with linking number 1 and the Hopf link is similar to the
concordance problem between a knot and the unknot.

Corollary D Suppose that L is a 2–component link with linking number 1 and H is
the Hopf link. If L and H are height-3 Whitney tower/grope concordant, then:

(1) ŒbL�D 0 2W .K; ƒ2;�/.

(2) rankƒ2
H1.XLIƒ2/D 0.

(3) �T
L

�
D f xf for some f .t1; t2/ 2ƒ2 such that jf .1; 1/j D 1.

Algebraic & Geometric Topology, Volume 15 (2015)



Whitney towers and link invariants 1817

Remark Theorems B and C should be compared to the following equivalent statements
for knots about abelian invariants (eg [15, Theorem 1.1] and Kearton [31]).

(1) The knot K bounds a grope of height 2:5 in D4 .

(2) The 0–surgery manifold of K , MK is 0:5–solvable.

(3) The Seifert form of K is metabolic (or K is algebraically slice).

(4) The Blanchfield form of K is Witt-trivial.

Therefore, the most natural assumption for Theorems B and C might be the existence
of 0:5–solvable cobordism between link exteriors. The proof for the knot case heavily
relies on the existence of Seifert surfaces for K . For general links, as substitutes for
Seifert surfaces, there are immersed Cooper surfaces studied in Cooper [19] (or its
generalization in Cimasoni [10]). However, because of their singularities, a similar
approach using Cooper surface seems somewhat difficult.

Acknowledgements The author would like to express his deep gratitude to his advisor
Jae Choon Cha for suggesting the problem and for many valuable conversations about
this work. He also would like to thank Stefan Friedl, Jonathan Hillman and Mark Powell
for their helpful suggestions. This research was supported by a National Research
Foundation of Korea Grant funded by the Korean Government (NRF–2011–0002353).

2 Casson–Gordon type representations

The goal of this section is to prove Theorem 2.3 which will give the key dimen-
sion estimate in the proof of Theorem A. Lemma 2.2 and Theorem 2.3 are inspired
by [7, Lemma 3.10 and Theorem 3.11]. In the proof of Lemma 2.2, we use the injectivity
theorem of Friedl and Powell [24, Theorem 3.1] stated in Lemma 2.1.

We recall the notation used in [24] for the convenience of the reader. Let 'W G!A be
a surjective group homomorphism, where A is a finite abelian p–group. Assume that
'W G!A factors through a surjective homomorphism �0W G!H0 to a torsion free
abelian group H0 . Let K D Ker' , HD Im.�0jK / and �W K!H be the restriction
of �0 to K . Note that H is a torsion free abelian group. In short, we have the following
commutative diagram:

1 // K

�D�0jK
��

// G

'

��

�0
// A // 1

H // H0

>>
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Suppose that ˛W K! GL.d;Q/ is a d –dimensional representation to a field Q of
characteristic zero such that ˛jKer� factors through a q–group for some prime q .
Let Q.H/ be the quotient field of the group ring QŒH�. Note that ˛ and � give a right
ZK–module structure on Qd ˝Q Q.H/DQ.H/d as follows:

(2-1)
Qd
˝Q Q.H/�ZK!Qd

˝Q Q.H/;
.v˝p;g/ 7! .v �˛.g/˝p; �.g//:

We write t D jAj. ZG is a left (rank t free) ZK–module. Note that there is a right
action of G on dt –dimensional Q–vector space Qd ˝ZK ZG . Equivalently, there is
an induced representation ˛0W G! GL.dt;Q/.

As in (2-1), ˛0 and �0 give a right ZG –module structure on Q.H0/dtDQdt˝QQ.H0/:

(2-2)
Qdt
˝Q Q.H0/�ZG!Qdt

˝Q Q.H0/;

.v˝p;g/ 7! .v �˛0.g/˝p; �0.g//:

Regard Z=q as a ZG –module with the trivial G –action.

Lemma 2.1 [24, Theorem 3.1] Let f W M ! N be a morphism of projective left
ZG –modules such that

1Z=q˝ZG f W Z=q˝ZG M ! Z=q˝ZG N

is injective. Then

1Q.H0/dt ˝ZG f W Q.H0/dt
˝ZG M !Q.H0/dt

˝ZG N

is injective.

Using Lemma 2.1, we prove Lemma 2.2 and Theorem 2.3.

Lemma 2.2 Let f W M !N be a morphism of left ZG –modules.

(1) If N is projective, then

dt � dimZ=q Im.1Z=q˝ZG f /� dimQ.H0/ Im.1Q.H0/dt ˝ZG f /:

(2) If, in addition, M is finitely generated and free, then

dt � dimZ=q Ker.1Z=q˝ZG f /� dimQ.H0/ Ker.1Q.H0/dt ˝ZG f /:
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Proof (1) Let k D dimZ=q Im.1Z=q ˝ZG f / (k may be any cardinal number.)
Note that Z=q ˝ZG � induces two surjections .ZG/k ! .Z=q/k and Imf !

Im.1Z=q ˝ZG f /. Since .ZG/k is free, there exists a homomorphism i W .ZG/k !

Imf such that the following diagram commutes:

.ZG/k
i

//

��

Imf

��

.Z=q/k
Š
// Im.1Z=q˝ZG f /

Recall that N is a projective ZG–module. Obviously, .ZG/k is a projective ZG–
module. Hence, we can apply Lemma 2.1 to i W .ZG/k ! Imf �N and obtain the
injection

1Q.H0/dt ˝ZG i W Q.H0/dtk
DQ.H0/dt

˝ZG .ZG/k ,!Q.H0/dt
˝ZG N:

Since Im i � Imf ,

Q.H0/dtk
Š Im.1Q.H0/dt ˝ZG i/� Im.1Q.H0/dt ˝ZG f /:

This implies

dt � dimZ=q Im.1Z=q˝ZG f /D dtk � dimQ.H0/.1Q.H0/dt ˝ZG f /:

(2) Let M D .ZG/n . Part (1) and the following elementary observation complete the
proof:

dimZ=q Ker.1Z=q˝ZG f /C dimZ=q Im.1Z=q˝ZG f /D dimZ=q Z=q˝ZG M D n:

Similarly,

ndt D dimQ.H0/ Ker.1Q.H0/dt ˝ZG f /C dimQ.H0/ Im.1Q.H0/dt ˝ZG f /:

Theorem 2.3 Suppose C� is a chain complex of projective left ZG –modules with Cn

finitely generated. Let fxigi2I be a collection of n–cycles in Cn . Let M be the
.Q.H/d ˝ZK ZG/–span of fŒ1Q.H/d ˝ZK xi �gi2I . Let SM be the Z=q–span of
fŒ1Z=q˝ZG xi �gi2I . Then we have

dimQ.H/Hn.Q.H/d ˝ZK C�/=M � dt � dimZ=q Hn.Z=q˝ZG C�/= SM :

Proof Let @nW Cn ! Cn�1 be the boundary map of C� and define f W .ZG/I ˚

CnC1!Cn by .ei ; v/ 7! xiC@nC1.v/, where feigi2I is the standard basis of .ZG/I .
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Then we have

Hn.Q.H/d ˝ZK C�/=M D Ker.1Q.H/d ˝ZK @n/= Im.1Q.H/d ˝ZK f /;(2-3)

Hn.Z=q˝ZG C�/= SM D Ker.1Z=q˝ZG @n/= Im.1Z=q˝ZG f /:

From the ZG –module structure on Q.H0/dt in (2-2),

Q.H0/˝Q.H/Q.H/d ˝ZK ZG D .Q.H0/˝Q.H/Q.H/d ˝ZK ZG/˝ZG ZG

DQ.H0/dt
˝ZG ZG:

Since C� is a chain complex of left ZG –modules,

Q.H0/˝Q.H/Q.H/d ˝ZK C� DQ.H0/dt
˝ZG C�:

Since H ,!H0 , Q.H0/ is a flat right Q.H/–module. Therefore, we have

(2-4) H�.Q.H0/dt
˝ZG C�/DQ.H0/˝Q.H/H�.Q.H/d ˝ZK C�/:

Note that the dimension is left unchanged by Q.H0/˝Q.H/ . From (2-4), it follows that

dimQ.H/Hn.Q.H/d ˝ZK C�/=M

D dimQ.H0/Q.H0/˝Q.H/ .Hn.Q.H/d ˝ZK C�/=M /

D dimQ.H0/Hn.Q.H0/dt
˝ZG C�/=.Q.H0/˝Q.H/M /:

Similarly to (2-3),

Hn.Q.H0/dt
˝ZG C�/=.Q.H0/˝Q.H/M /

D Ker.1Q.H0/dt ˝ZG @n/= Im.1Q.H0/dt ˝ZG f /:

From the above observations and the inequality from Lemma 2.2,

dimQ.H/Hn.Q.H/d ˝ZK C�/=M

D dimQ.H0/Hn.Q.H0/dt
˝ZG C�/=.Q.H0/˝Q.H/M /

D dimQ.H0/ Ker.1Q.H0/dt ˝ZG @n/� dimQ.H0/ Im.1Q.H0/dt ˝ZG f /

� dt.dimZ=q Ker.1Z=q˝ZG @n/� dimZ=q Im.1Z=q˝ZG f //

D dt � dimZ=q Hn.Z=q˝ZG C�/= SM :

This completes the proof.

We remark that in this paper we use Theorem 2.3 only for a finite collection I .
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3 An h–solvable cobordism

In this section, we give the definition of an h–solvable cobordism following [8]. Also,
we prove Proposition 3.2 about prime power coverings of 1–solvable cobordisms.

3.1 Definition of h–solvable cobordism

For oriented compact bordered 3–manifolds M and M 0 , a cobordism W between M

and M 0 is a 4–dimensional manifold with boundary @W DM [@ �M 0 , where �M 0

denotes M 0 with reversed orientation. We often denote a cobordism by .W IM;M 0/.
A cobordism .W IM;M 0/ is an H1 –cobordism (respectively, a homology cobordism) if
Hi.M IZ/ŠHi.W IZ/ŠHi.M

0IZ/ under the inclusion map for i � 1 (respectively,
for all i ). Note that H2.W;M / is a free abelian group if .W IM;M 0/ is an H1 –
cobordism (for example, see [7, Lemma 3.7]). A cobordism .W IM;M 0/ is an H1 –
cobordism with Q–coefficients if Hi.M IQ/ Š Hi.W IQ/ Š Hi.M

0IQ/ under the
inclusion map for i � 1.

Example If L is a link in S3 , then the link exterior XL is a bordered 3–manifold
with a canonical homeomorphism between a disjoint union of tori and @XL sending the
standard basis to the meridians and 0–framed longitudes of L. If two links L and L0

are concordant, then XL and XL0 are homology cobordant bordered 3–manifolds via
a concordance exterior and h–solvable cobordant for all h 2 1

2
Z�0 (see the definition

of solvable cobordism given below).

We use the following notation for covering maps associated to the derived series.

Convention (1) For a space X , there is a sequence of regular covers over X

X .nC1/
!X .n/

! � � � !X .1/
!X .0/

DX

which corresponds to the derived series

�.nC1/
� �.n/ � � � � � �.0/ D �; where � D �1.X / and �.nC1/

D Œ�.n/; �.n/�:

With this, we can always identify H�.X IZŒ�=�.n/�/DH�.X
.n/IZ/ as usual.

(2) For a 4–manifold W with � D �1.W /, let

�nW H2.W IZŒ�=�
.n/�/�H2.W IZŒ�=�

.n/�/! ZŒ�=�.n/�

be the intersection form.

(3) For a covering map Y !X , Cov.Y jX / denotes its deck transformation group.
The action of Cov.Y jX / on H�.Y IZ/ is a right action.
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Definition 3.1 Suppose .W IM;M 0/ is an H1 –cobordism between bordered 3–
manifolds M and M 0 with � D �1.W /. Let r D 1

2
rank H2.W;M IZ/.

(1) A submodule L �H2.W IZŒ�=�
.n/�/ is an n–Lagrangian if L projects to a

half-rank summand of H2.W;M IZ/ and �n vanishes on L.

(2) For an n–Lagrangian L .k � n), homology classes

d1; : : : ; dr 2H2.W IZŒ�=�
.k/�/

are k –duals if L is generated by l1; : : : ; lr 2L whose projections l 0
1
; : : : ; l 0r 2

H2.W IZŒ�=�
.k/�/ satisfy �k.l

0
i ; dj /D ıij .

(3) An H1 –cobordism .W IM;M 0/ is called an n:5–solvable cobordism (respec-
tively, n–solvable cobordism) if it has an .nC 1/–Lagrangian (respectively,
n–Lagrangian) admitting n–duals. If there exists an h–solvable cobordism
from M to M 0 , we say that M is h–solvable cobordant to M 0 for h 2 1

2
Z�0 .

3.2 Prime power cover of 1–solvable cobordism

In this subsection, we prove Proposition 3.2 about the (abelian) prime power cover
of 1–solvable cobordism for later purpose. For a finitely generated abelian group G ,
denote the torsion subgroup of G by tG and the free part of G by FG DG=tG .

Proposition 3.2 Suppose .W IM ;M 0/ is a 1–solvable cobordism with 'W �1.W /!A

be a surjective group homomorphism to an abelian p–group A and p is prime. We
denote the cobordism of the induced coverings by .W ' IM ' ;M 0'/. Then:

(1) ˇ2.W
' ;M '/D jAjˇ2.W;M / where ˇ2 is the second Betti number.

(2) The inclusion induced map FH2.W
' IZ/! FH2.W

' ;M ' IZ/ is surjective.

(3) .W ' IM ' ;M 0'/ is an H1 –cobordism with Q–coefficients.

Proof (1) Fix a (relative) CW–complex structure on .W;M /. This induces a (rel-
ative) CW–complex structure on .W ' ;M '/. Let C� D C�.W

' ;M ' IZ/. Then C�
is a chain complex of free ZA–modules and C�.W;M IZ/ D C� ˝ZA Z. Since
.W IM;M 0/ is an H1 –cobordism, Hi.C�˝ZA Z=p/D 0 for i D 0; 1 by the universal
coefficient theorem. Since p is prime, Levine’s well-known chain homotopy lifting
argument [34] shows that Hi.C� ˝Z Z=p/ D 0 for i D 0; 1. In particular, by the
universal coefficient theorem, Hi.C�/ is a torsion abelian group for i D 0; 1. By the
universal coefficient theorem, Hi.W

' ;M ' IQ/DHi.C�/˝Z QD 0 for i D 0; 1.
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By taking C� D C�.W
' ;M 0' IZ/, the same argument shows Hi.W

' ;M 0' IQ/D 0

for i D 0; 1. By Poincaré duality and the universal coefficient theorem,

Hi.W
' ;M '

IQ/Š HomQ.H4�i.W
' ;M 0'

IQ/;Q/D 0 for i D 3; 4:

So, ˇ2.W
' ;M '/ D �.W ' ;M '/ where � is the Euler characteristic. Similarly,

�.W;M /D ˇ2.W;M / because Hi.W;M IZ/DHi.W;M 0IZ/D 0 for i D 0; 1. By
definition, .W ' ;M '/ is an A–cover of .W;M / and �.W ' ;M '/ D jAj�.W;M /.
This completes the proof of (1).

(2) Since W ' ! W is an abelian covering with Cov.W ' jW / D A, �1.W /.1/ �

�1.W
'/. The covering map W .1/!W ' induces H2.W

.1/IZ/!H2.W
' IZ/. Let

l1; : : : ; lr ; d1; : : : ; dr be the images of the (generators of) a 1–Lagrangian and 1–duals
in H2.W

' IZ/. By the definition of 1–solvable cobordism, ˇ2.W;M / D 2r . Let
AD fg1; : : : ;gtg. From (1), ˇ2.W

' ;M '/D ˇ2.W;M /jAj D 2r t .

From the (right) group action of A on H2.W
' IZ/, we can define

lij D li �gj and dkl D dk �gl for 1� i; k � r and 1� j ; l � t:

By the definition of a 1–Lagrangian and of 1–duals, the intersection pairing

�W FH2.W
' ;M '

IZ/�FH2.W
' ;M 0'

IZ/! Z

on the image of flij ; dklg is given by�
0 Irt�rt

Irt�rt X

�
:

Since this matrix has determinant 1 and ˇ2.W
' ;M '/D 2r t , the image of flij ; dklg is

a basis of FH2.W
' ;M ' IZ/. This proves inc�W FH2.W

' IZ/!FH2.W
' ;M ' IZ/

is surjective because flij ; dklg � FH2.W
' IZ/.

(3) From (2), inc�W H2.W
' IQ/!H2.W

' ;M ' IQ/ is surjective. From (1) and the
homology long exact sequence of a pair .W ' ;M '/, inc�W Hi.M

' IQ/!Hi.W
' IQ/

is an isomorphism for iD0; 1. The same argument works for .W;M 0/. This completes
the proof.

4 Solvable cobordism and Friedl–Powell invariant

Throughout this section, for any finitely generated abelian group G , tG and FG denote
the torsion part of G and the free part of G , respectively. G^ denotes HomZ.G;Q=Z/.
For a finite abelian group G , G^DExtZ.G;Z/ since HomZ.G;Q/DExtZ.G;Q/D0.
H�.�/ denotes homology with integral coefficients.
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4.1 Definition of the Friedl–Powell invariant �.L; �/

To define the Friedl–Powell invariant �.L; �/, we set up the notation and conventions
used in [25]. Here, L is a 2–component link with linking number 1 and H is the
Hopf link. We denote the exterior of J by XJ D S3 � �.J / for J D H;L. We
can decompose @XL into Ya [ Yb with Ya Š Yb D S1 � D1 t S1 � D1 where
both Ya and Yb are annuli neighborhood of (parallels of) meridians of L. Define
MJ DXJ [@XH�I �XH for J DH;L where the gluing map respects the ordering
of the link components and identifies each of the subsets Ya;Yb � @XJ for J DL;H .

For a prime p , we say a group homomorphism 'W H1.ML/ ! Z=pi ˚ Z=pj is
admissible if ' sends the two meridians of L to the standard basis .1; 0/; .0; 1/. (From
the Mayer–Vietoris sequence, H1.ML/ŠH1.XL/˚ZŠZ3 .) Let M

'
L
!ML be the

piCj –fold covering space from ' . We denote the Hurewicz map by �0W �1.ML/!

H1.ML/. Define �W �1.M
'
L
/!H1.ML/ to be the restriction �0j�1.M

'

L
/ and HD

Im� . Choose an isomorphism  W �1.T
3/ŠH . (Note that H is isomorphic to Z3 as

a finite-index subgroup of H1.ML/Š Z3 .)

For a prime power character �W �1.M
'
L
/! Z=qk , we have the bordism class

Œ.M
'
L
; ���/t�.T 3; tr� /� 2�3.Z=q

k
�H/;

where trW �1.T
3/ ! Z=qk is the trivial group homomorphism. From the Atiyah–

Hirzebruch spectral sequence calculation given in [25, Section 3.2]; Œ.M '
L
; �� �/t

�.T 3; tr� /� is q–primary torsion in �3.Z=q
k �H/. In other words, there exist a

nonnegative integer s , a cobordism W between qsM
'
L

and qsT 3 , and ˆW �1.W /!

Z=qk �H such that the following diagram commutes:

qs.M
'
L
t�T 3/
� _

@
��

���ttr� 
// K.Z=qk �H; 1/

W
ˆ

55

From the sequence of ring homomorphisms

ZŒ�1.W /�
ˆ
�! ZŒZ=qk

�H�D ZŒZ=qk �ŒH�!Q.�qk /.H/!C.H/D K;

we can define the twisted intersection form H2.W IK/�H2.W IK/!K . We denote the
nonsingular part of the intersection form on H2.W IK/ (respectively, on H2.W IQ/)
by �K.W / (respectively, �Q.W /).
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Definition 4.1 (Friedl–Powell invariant) We have

�.L; �/D .�K.W /�K˝�Q.W //˝
1

qs
2L0.K/˝Z ZŒ1=q�;

where L0.K/ is the Witt group of finite-dimensional nonsingular sesquilinear forms
over K .

In [25, Section 3.2], it is shown that �.L; �/ is well defined. That is, �.L; �/ depends
neither on the choice of W nor on the choice of isomorphism  W �1.T

3/!H .

In Section 4.2, we will describe the linking form

�LW tH1.X
'
L
;Y 'a /� tH1.X

'
L
;Y 'a /!Q=Z:

Now we give the precise statement that the Friedl–Powell invariant vanishes.

Definition 4.2 For 2–component link L with linking number 1, we say the Friedl–
Powell invariant vanishes for L if for any admissible homomorphism 'W H1.ML/!

Z=pi ˝Z=pj and for a prime p , there exists a metabolizer P D P? of the linking
form

�LW tH1.X
'
L
;Y 'a /� tH1.X

'
L
;Y 'a /!Q=Z

with the following property: For any character of prime-power order �W H1.M
'
L
/!

Z=qk which satisfies that �jH1.X
'

L
/ factors through

H1.X
'
L
/

��

�j
H1.X

'
L
/
// Z=qk

H1.X
'
L
;Y

'
a /

ı

88

and that ı vanishes on P , �.L; �/D 0 2L0.K/˝Z ZŒ1=q�.

The following main theorem will be proved in Section 4.3:

Theorem A Suppose that L is a 2–component link with linking number 1 and H

is the Hopf link. If XL and XH are 1:5–solvable cobordant, then the Friedl–Powell
invariant �.L; �/ vanishes for L in the sense of Definition 4.2. In particular, the
conclusion holds if L and H are height-3:5 Whitney tower/grope concordant.
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4.2 1–solvable cobordism and a metabolizer of the linking form

In this subsection, we recall the definition of the linking form

�LW tH1.X
'
L
;Y 'a /� tH1.X

'
L
;Y 'a /!Q=Z

defined in [25] and prove Proposition 4.3. The adjoint of �L , Ad.�L/W tH1.X
'
L
;Y

'
a /!

tH1.X
'
L
;Y

'
a /
^ , can be obtained by composing the following isomorphisms:

(a) tH1.X
'
L
;Y 'a /! tH 2.X

'
L
;Y

'

b
/! ExtZ.tH1.X

'
L
;Y

'

b
/;Z/D tH1.X

'
L
;Y 'a /

^:

To see this, we use Poincaré duality, the universal coefficient theorem, H1.X
'
L
;Y

'

b
/Š

H1.X
'
L
;Y

'
a / and that tH1.X

'
L
;Y

'
a / is a finite abelian group.

Let .W0IXL;XH / be a 1–solvable cobordism. Recall 'W H1.ML/!Z=pi˚Z=pj is
an admissible homomorphism and H1.ML/ŠH1.XL/˚Z. Then, 'jH1.XL/ extends
to H1.W0/ canonically because H1.XL/ Š H1.W0/. In this sense, an admissible
homomorphism ' always induces a covering .W '

0
IX

'
L
;X

'
H
/! .W IXL;XH /.

Proposition 4.3 Suppose .W0IXL;XH / is a 1–solvable cobordism. Let .W'
0
IX
'
L
;X
'
H
/

be a covering induced from an admissible homomorphism 'W H1.ML/! Z=pi ˚

Z=pj , then
P D Ker.tH1.X

'
L
;Y 'a /! tH1.W

'
0
;Y 'a //

is a metabolizer of the linking form �L .

Proof Suppose that we have the diagram (b) with two exact rows. Then,

P? D .Ad.�L//
�1.Ker @^/D Ker.inc�/D P:

Hence, it suffices to prove the existence of diagram (b) with two exact rows.

(b)

tH2.W
'

0
;X

'
L
/

@
//

�1 Š

��

tH1.X
'
L
;Y

'
a /

inc�
//

Ad.�L/ Š

��

tH1.W
'

0
;Y

'
a /

�2 Š

��

tH1.W
'

0
;Y

'
a /
^

inc^�
// tH1.X

'
L
;Y

'
a /
^ @^

// tH2.W
'

0
;X

'
L
/^

As in (a), tH2.W
'

0
;X

'
L
/Š tH1.W

'
0
;X

'
H
/^ and tH1.W

'
0
;Y

'
a /Š tH2.W

'
0
; @W

'
0
�

Y
'
a /
^ by Poincaré duality and the universal coefficient theorem. (Note that @W '

0
D

X
'
L
[X

'
H

.) So, from the following claim, we can define isomorphisms �1 and �2 .

Claim The inclusion maps induce two isomorphisms:

(1) tH1.W
'

0
;Y

'
a /Š tH1.W

'
0
;X

'
H
/.

(2) tH2.W
'

0
;X

'
L
/Š tH2.W

'
0
; @W

'
0
�Y

'
a /.
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Proof of Claim By Proposition 3.2(3), .W '
0
IX

'
L
;X

'
H
/ is an H1 –cobordism with

Q–coefficients. From this and the proofs of [25, Lemmas 2.6, 2.7 and 2.9] (W0 plays
the role of EC ),

Coker.inc�W H1.X
'
H
;Y 'a /!H1.W

'
0
;Y 'a //Š tH1.W

'
0
;Y 'a /:

From the homology long exact sequence of a triple .W '
0
;X

'
H
;Y

'
a /, we have an exact

sequence

0! tH1.W
'

0
;Y 'a /!H1.W

'
0
;X

'
H
/!H0.X

'
H
;Y 'a /D 0;

which proves (1).

From the proof of [25, Lemma 2.5], tH1.@W
'

0
�Y

'
a ;X

'
L
/D 0 and the inclusion map

.@W
'

0
�Y

'
a ;X

'
L
/! .@W

'
0
;X

'
L
/ induces the zero map on H2 . In particular,

inc�W H2.@W
'

0
�Y 'a ;X

'
L
/!H2.W

'
0
;X

'
L
/

is also the zero map. From the homology long exact sequence of a triple .W '
0
; @W

'
0
�

Y
'
a ;X

'
L
/,

H2.W
'

0
;X

'
L
/Š Ker.@W H2.W

'
0
; @W

'
0
�Y 'a /!H1.@W

'
0
�Y 'a ;X

'
L
//:

By taking torsion subgroups, we obtain (2) via

tH2.W
'

0
;X

'
L
/Š Ker.tH2.W

'
0
; @W

'
0
�Y 'a /! tH1.@W

'
0
�Y 'a ;X

'
L
/D 0/

D tH2.W
'

0
; @W

'
0
�Y 'a /;

completing the proof.

Commutativity of the diagram (b) also easily follows. For exactness of the first row
of (b), we prove the following lemma.

Lemma 4.4 Suppose .W0IXL;XH / is a 1–solvable cobordism. We have the exact
sequence

tH2.W
'

0
;X

'
L
/
@
�! tH1.X

'
L
;Y 'a /

inc�
��! tH1.W

'
0
;Y 'a /

which is the restriction of a long exact sequence of triple .W '
0
;X

'
L
;Y

'
a / to their torsion

subgroups.

Proof of Lemma 4.4 Since inc� ı@ D 0, we prove that Ker.inc�/ � Im @. Let
x 2 Ker.inc�/. By the homology long exact sequence of triple .W '

0
;X

'
L
;Y

'
a /, there
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exists y 2 H2.W
'

0
;X

'
L
/ such that @y D x . By Proposition 3.2(2), FH2.W

'
0
/ !

FH2.W
'

0
;X

'
L
/ is surjective. Since it is equal to the composition

FH2.W
'

0
/! FH2.W

'
0
;Y 'a /

j
�! FH2.W

'
0
;X

'
L
/;

it follows that j is surjective. We can choose z 2FH2.W
'

0
;Y

'
a / such that y�j .z/ 2

tH2.W
'

0
;X

'
L
/. Then, @.y � j .z//D @y D x and this shows Ker.inc�/� Im @.

Note that if A
f
�!B

g
�!C is an exact sequence of abelian groups. Since Q=Z is a divisible

group, Q=Z is an injective Z–module. For any abelian group G , ExtZ.G;Q=Z/D 0.
Hence, HomZ.�;Q=Z/ is an exact functor and we obtain C^! B^!A^ is exact.
This proves that the second row of the diagram (b) is also exact and completes the
proof of Proposition 4.3.

4.3 Proof of Theorem A

In this subsection, we prove Theorem A. Let .W0IXL;XH / be a 1:5–solvable cobor-
dism with ˇ2.W0;XL/D 2r . Note that @W0DXL[@XH �I [�XH DML . Attach
XH � I to W0 along @XH � I to get

W DW0[@XH�I XH � I

with @W D ML t �MH . Recall that 'W H1.ML/! Z=pi ˚ Z=pj . Applying a
Mayer–Vietoris argument to W DW0[XH �I , the inclusion induces an isomorphism
H1.ML/ Š H1.W /. So, ' extends to H1.W / naturally and denote the induced
cobordism of coverings by .W ' IM

'
L
;M

'
H
/.

From Proposition 4.3, we can take a metabolizer

P WD Ker.tH1.X
'
L
;Y 'a /! tH1.W

'
0
;Y 'a //

of the linking form �L . We fix a character �W H1.M
'
L
/!Z=qk satisfies that �jH1.X

'

L
/

factors through

H1.X
'
L
/

��

�j
H1.X

'
L
/
// Z=qk

H1.X
'
L
;Y

'
a /

ı

88

and ı vanishes on P . It remains to prove that �.L; �/D 0.
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We have the following facts and remarks.

(1) From the arguments of [25, Propositions 2.10, 2.12] (W0 and W play the role
of EC and WC , respectively), we have the following: if ı vanishes on P , then
there exist an integer l � k and a character H1.W

'/!Z=ql , denoted by � in
an abuse of notation, which fits into the following diagram:

�1.M
'
L
/ //

inc�
��

H1.M
'
L
/

�
//

inc�
��

Z=qk ql�k

// Z=ql

�1.W
'/ // H1.W

'/

�

55

(2) Let H1.ML/ D H0 and �0W �1.ML/! H1.ML/ be the Hurewicz homomor-
phism. Define �W �1.M

'
L
/! H0 to be the restriction of �0 to the subgroup

�1.M
'
L
/. Let H D Im� . Since H1.ML/ Š H1.W /, �0 extends to �1.W /.

Therefore, we use �0W �1.W /!H0 and its restriction �W �1.W
'/!H as an

abuse of notation. Note that H0 is isomorphic to Z3 and H is also isomorphic
to Z3 as a finite-index subgroup of H0 .

(3) By (1) and (2), we have ���W �1.W
'/! Z=ql �H . If we write KDC.H/,

then H�.M
'
L
IK/;H�.W ' IK/, and H�.W

' ;M
'
L
IK/ can be defined from

ZŒ�1.W
'/�

���
���! ZŒZ=ql

�H�D ZŒZ=ql � ŒH�!Q.�ql /.H/!C.H/D K:

(4) By [25, Lemma 3.4], there is a 4–manifold W� bounded by 2ql copies of a
3–torus T 3 , which is over Z=ql �H as follows:

qlT 3
� _

��

�� 

&&

W�
�� 

// K.Z=ql �H; 1/

qlT 3

� ?

OO

tr� 

88

Here tr denotes the trivial character �1.T
3/!Z=ql and  W �1.T

3/ŠH . Fur-
thermore, the intersection forms of W� over Q–coefficient and K–coefficients
are Witt-trivial.

We can attach � � �W qlW ' ! Z=ql � H and W� in (4) along � �  W qlT 3 !

Z=ql �H to obtain the cobordism .qlW ' [W�; � � � [ � �  / over Z=ql �H
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between ql.M
'
L
; ���/ and �ql.T 3; tr� /. From Definition 4.1,

�.L; �/D .�K.q
lW '

[W�/�K˝�Q.q
lW '

[W�//˝ 1=ql
2L0.K/˝Z ZŒ1=q�:

By (4), Œ�Q.W�/� D 0 2 L0.Q/ and Œ�K.W�/� D 0 2 L0.K/. In the following two
claims we will prove that Œ�Q.W

'/�D 0 2 L0.Q/ and Œ�K.W '/�D 0 2 L0.K/. By
Novikov additivity, these claims will complete the proof of Theorem A.

Claim 1 We have Œ�Q.W
'/�D 0 2L0.Q/.

Proof of Claim 1 Applying the relative Mayer–Vietoris sequence (see for example
Hatcher [27, page 152]), the sequence

!Hi.@XH � I; @XH /!Hi.W0;XJ /˚Hi.XH � I;XH /!Hi.W;MJ /!

is exact. Since H�.@XH � I; @XH / and H�.XH � I;XH / vanish, Hi.W0;XJ / Š

Hi.W;MJ /. Similarly, Hi.W
'

0
;X

'
J
/ŠHi.W

' ;M
'
J
/.

For brevity, let ADZ=pi˚Z=pj and write AD fg1; : : : ;gtg. Since .W0IXL;XH /

is a 1:5–solvable cobordism, by Proposition 3.2(1) and (2),

ˇ2.W
' ;M

'
L
/D ˇ2.W

'
0
;X

'
L
/D jAj �ˇ2.W0;XL/D 2r t

and inc�W H2.W
'

0
IQ/!H2.W

'
0
;X

'
J
IQ/ is surjective for J DL;H . Since we have

H2.W
'

0
;X

'
J
IQ/ŠH2.W

' ;M
'
J
IQ/, inc�W H2.W

' IQ/!H2.W
' ;M

'
J
IQ/ is sur-

jective, too. Applying Proposition 3.2(3), Hi.W
'

0
;M

'
J
IQ/D 0 for i D 0; 1. From the

homology long exact sequence of a pair .W ' ;M
'
J
/, this proves that .W ' ;M

'
L
;M

'
H
/

is an H1 –cobordism over Q–coefficients.

Recall @W DML t�MH . For X D @W ' ;M
'
L

, and M
'
H

, let

IX D Im.inc�W H2.X IQ/!H2.W
'
IQ//:

For J DL;H , using the homology long exact sequences of pairs,

H2.W
'
IQ/=I@W ' ŠH2.W

'
IQ/=IM

'

J
ŠH2.W

' ;M
'
J
IQ/

whose rank is 2r t . (A similar argument was used by Cochran and Kim in the proof
of [14, Proposition 2.6].) We remark that to prove the last isomorphism, we used the
fact that inc�W H1.M

'
J
IQ/!H1.W

' IQ/ is an isomorphism for J DL;H .

Let l1; : : : ; lr;d1; : : : ;dr be (generators of) a 2–Lagrangian and 1–duals in H2.W
' IZ/.

From the (right) group action of A on H2.W
'IZ/, we define

lij D li �gj and dkl D dk �gl for 1� i; k � r and 1� j ; l � t:
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The intersection pairing �Q.W
'/W H2.W

' IQ/=I@W '�H2.W
' IQ/=I@W '!Q with

respect to (the image of) flij ; dklg is�
0 Irt�rt

Irt�rt X

�
because li � dk is the Kronecker delta ıik .

Let L.Q/ � H2.W
' IQ/=I@W ' be the Q–span of the image of lij ˝ 1Q . Then,

�Q.W
'/ vanishes on L.Q/�L.Q/ and dimQ L.Q/D1

2
dimQ.H2.W

' IQ/=I@W ' /D

r t . So, Œ�Q.W
'/�D 0 2L0.Q/.

By [25, Lemma 3.2], H�.M
'
J
IK/ D 0 for J D H or L. Therefore, the twisted

intersection form

�K.W
'/W H2.W

'
IK/�H2.W

'
IK/! K

is nonsingular.

Claim 2 We have Œ�K.W '/�D 0 2L0.K/.

Proof of Claim 2 Let ˛W �1.W
'/

�
�! Z=ql ,! C� D GL.1;C/ and ˛0W �1.W /!

GL.t;C/ be the induced representation of ˛ . Recall the maps �0W �1.W / ! H0

and �W �1.W
'/ ! H in (2). Define � WD Im.˛ � �/. There is a corresponding

cover .W � ;M �
L
/! .W ' ;M

'
L
/, where �1.W

�/ D Ker.˛ � �/. Recall W ' !W

is Z=pi ˚Z=pj –cover and ˛ � �W �1.W
'/! C� �H . Since Z=pi ˚Z=pj , C�

and H are abelian,

�1.W /.2/ � �1.W
'/.1/ � Ker.˛��/D �1.W

�/:

Equivalently, there is a sequence of coverings

W .2/
!W �

!W '
!W:

Since Z=ql ,! C� is injective, Ker˛ D Ker�, where ˛W �1.W
'/

�
�! Z=ql ,! C� .

From this, �def
D Im.˛ � �/ D Im.� � �/. In particular, the ring homomorphism

ZŒ�1.W
'/�! K in (3) factors through Z� and

C�.W
'
IK/ def
D K˝ZŒ�1.W '/� C�.W

'
IZŒ�1W ' �/D K˝Z� C�.W

�
IZ/:

Choose 2–cycles fzl1; : : : ; zlr g � C2.W
� IZ/ which represent the image of (generators

of) the 2–Lagrangian under the map induced by W .2/
0
!W .2/!W � . The covering

map W � !W ' induces a surjection Cov.W � jW /! Cov.W ' jW /D fg1; : : : ;gtg.
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Choose a lift zgj 2 Cov.W � jW / of gj for each j D 1; : : : ; t . From the right action of
Cov.W � jW / on C2.W

� IZ/, define

zlij D zli � zgj for 1� i � r and 1� j � t:

Let
L.K/�H2.W

'
IK/DH2.K˝Z� C�.W

�
IZ//

be the K–span of fŒ1K ˝ zlij � j 1 � i � r; 1 � j � tg in H2.W
' IK/. We remark

that L.K/ does not depend on the choice of zgi . We claim that L.K/ is a Lagrangian
for the nonsingular twisted intersection form �K.W

'/.

First, we prove �K vanishes on L.K/ � L.K/. Since �K is K–sesquilinear, the
following is enough:

�K.Œ1K˝Z�
zlik �; Œ1K˝Z�

zljl �/D
X

g2Cov.W � jW /

�W � .zli ; zlj /zgj gzg�1
k D 0:

Now, we prove dimK L.K/ D 1
2

dimK H2.W
' IK/. Recall that H�.MLIK/ D 0

by [25, Lemma 3.2]. Therefore, inc�W H2.W
' IK/ ! H2.W

' ;M
'
L
IK/ is an iso-

morphism. Now, for simplicity, we abuse notation by regarding zlij as an element in
C2.W

� ;M �
L
IZ/ and L.K/ as a subspace of H2.W

' ;M
'
L
IK/.

Recall that fl1; : : : ; lr g are the chosen generators of the 2–Lagrangian in H2.W
' IZ/.

Since the covering W � ! W sends zgj to 1, the image of fŒzlij � 2 H2.W
� IZ/ j

1 � i � r; 1 � j � tg in H2.W;MLIZ/ (via covering induced map) is exactly
f�.l1/; : : : ; �.lr /g where � W H2.W

'/!H2.W /!H2.W;ML/.

Since .W0IXL;XH / is a 1:5–solvable cobordism with ˇ2.W0;XL/D 2r , we have
that H2.W;ML/ŠH2.W0;XL/ is a free abelian group of rank 2r . Let

L.Z=q/�H2.W;MLIZ=q/Š .Z=q/
2r

be the Z=q–span of f�.li/ ˝Z 1Z=qg
r
iD1

. By the definition of a 2–Lagrangian,
f�.l1/; : : : ; �.lr /g generates a rank r –summand of H2.W;ML/ŠZ2r . In particular,
from the universal coefficient theorem, dimZ=q L.Z=q/D r .

To apply Theorem 2.3, we fit our notation with that used in Section 2. Define A D

Z=pi ˚Z=pj , G D �1.W /, K D �1.W
'/, C� D C�.W;MLIZŒ�1.W /�/, QDC ,

Q.H/DK , d D 1, ˛��W �1.W
'/!C��H and ˛0��0W �1.W /!GL.t;C/�H0 .

(As a ZK–module, C� is isomorphic to C�.W
' ;M

'
L
IZŒ�1.W

'/�/.) We remark that
we assumed in Section 2 that ˛jKer� factors through a q–group for some prime q .
This is automatically satisfied for ˛W �1.W

'/
�
�!Z=ql ,!C� .
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With this notation, apply Theorem 2.3 for the case I D∅ (that is, M D SM D 0) and
nD 0; 1 to obtain

dimK Hn.W
' ;M

'
J
IK/� dimZ=q Hn.W;MJ IZ=q/D 0

for nD 0; 1 and J DL or H . By duality and universal coefficient spectral sequence,
Hi.W

' ;M
'
L
IK/D 0 for i D 3; 4. From this,

dimK H2.W
' ;M

'
L
IK/D �K.W ' ;M

'
L
/D �Q.W ' ;M

'
L
/D 2r t:

The last equality is from ˇ2.W
' ;M

'
L
/D 2r t and the fact that .W ' IM

'
L
;M

'
H
/ is an

H1 –cobordism over Q–coefficients. These are proved in the proof of Claim 1.

Now, we apply Theorem 2.3 for the case nD 2, I Dfi j 1� i � rg and xi is a 2–cycle
in C� such that

Œ1K˝Z�
zli �D Œ1K˝ZK xi � 2H2.K˝ZK C�/DH2.W

' ;M
'
L
IK/ for i D 1; : : : ; r:

Recall zlij D zli � zgj , zgj 2 Cov.W � jW / is a lifting of gj 2 Cov.W ' jW /. Since
Cov.W ' jW / can be identified with the set of cosets of K in G , by the definition in
Theorem 2.3,

M D the K–span of fŒ1K˝Z�
zlij � j 1� i � r; 1� j � tg DL.K/:

Similarly, by the definition in Theorem 2.3, SM is the Z=q–span of fŒ1Z=q˝ZG xi �g
r
iD1

.
Since fŒ1Z=q˝ZG xi �g

r
iD1
D f1Z=q˝Z �.li/g

r
iD1

,

SM D the Z=q–span of f1Z=q˝Z �.li/ j 1� i � rg DL.Z=q/:

From the conclusion of Theorem 2.3 for the above case, we have the inequality

dimK H2.W
' ;M

'
L
IK/� dimK L.K/

� t � .dimZ=q H2.W;MLIZ=q/� dimZ=q L.Z=q//I

that is,

dimK L.K/� dimK H2.W;MLIK/�t � .dimZ=q H2.W;MLIZ=q/� dimZ=q L.Z=q//

D 2r t � r t C r t D r t:

On the other hand, dimK L.K/ � r t because L.K/ is the K–span of r t elements.
So, dimK L.K/ D r t D 1

2
dimK H2.W

' IK/ and L.K/ is a Lagrangian of �K.W '/.
Therefore, Œ�K.W '/�D 0 2L0.K/.
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5 Solvable cobordism and abelian invariants of links

In this section, we study the abelian invariants of links (studied in [28; 30]) in the
context of Whitney tower/grope concordance using h–solvable cobordism. Throughout
this section, � is the fixed natural number. Denote ZŒt˙

1
; : : : ; t˙� � by ƒ� . The ring ƒ�

is endowed with the involution �W ti 7! t�1
i . Let S be the multiplicative set generated

by ft1 � 1; : : : ; t� � 1g. Denote the localization of ƒ� with respect to S by ƒ�S .
Let K be the quotient field of ƒ� .

5.1 Blanchfield form of �–component links

Let R be a unique factorization domain with an involution � and quotient field K (our
case is RDƒ�S ;K D K). We recall the definition of the Witt group W .K;R;�/.

A linking pairing over R is an R–module M with a sesquilinear pairing

bW M �M !K=R

such that for all x;y; z 2M and r 2R,

(1) b.x;yC z/D b.x;y/C b.x; z/,

(2) b.rx;y/D rb.x;y/D b.x; xry/,

(3) b.x;y/D b.y;x/.

(Here, the involution � on K=R is induced from the involution on R.) We denote
it by .M; b/ or just b when M is clearly understood. A linking pairing .M; b/ is
primitive (nonsingular) if the adjoint of b ,

Ad.b/W M ! HomR.M;K=R/

is an injection (an R–module isomorphism), respectively. The sum of linking pairings
.M; b/ and .M 0; b0/ is .M ˚M 0; b˚ b0/. A pairing .M; b/ is neutral if there is a
submodule N of M such that

N DN? D fm 2M j b.n;m/D 0 for all n 2N g:

Two pairings .M; b/ and .M 0; b0/ are Witt equivalent if there are neutral pairings
.N; c/ and .N 0; c0/ such that .M; b/˚ .N; c/Š .M 0; b0/˚ .N 0; c0/. Then, the set of
Witt equivalence classes of linking pairings over R with an involution � is an abelian
group, denoted by W .K;R;�/.

For an R–module M , following [28, Chapter 3], we define the R–torsion submodule
of M ,

tM D fm 2M j rmD 0 for some r ¤ 0 2Rg D Ker.M !M ˝R K/;
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the maximal pseudonull submodule of M ,

zM D Ker.tM ! Ext1R.Ext1R.tM;R/;R//;

ytM D tM=zM:

A torsion R–module M is pseudonull if Mp D 0 for every height-1 prime ideal p
of R where Mp is the localization of M with respect to the multiplicative set M � p.
Note that a submodule and a quotient module of a pseudonull module are pseudonull.

The following observation will be useful.

Lemma 5.1 Suppose that

A
f
�! B

g
�! C

h
�!D

is an exact sequence of R–modules and AD tA and D D tD . Then,

tA
f j
�! tB

gj
�! tC

hj
�! tD

is also exact. (Here, f j, gj, and hj are the restriction of f , g and h to their R–torsion
submodules, respectively.)

Proof Since tADA and A
f
�!B

g
�!C is exact, Imf jD Imf DKer g . Then, Ker gjD

Ker g\ tB D Imf j \ tB D Imf j since Imf j � tB .

Since B
g
�! C

h
�!D is exact, Ker hj D Ker h\ tC D Im g\ tC . Suppose that x 2 B

and g.x/ 2 tC . Then, there exists r 2R�f0g such that g.rx/D rg.x/D 0. Since
AD tA and D D tD , we have the commutative diagram

B
g

//

i

��

C

j

��

B˝R K
Š

g˝1K

// C ˝R K

where i and j are natural maps. Then, g˝1K ı i.rx/D j ıg.rx/D 0. Since g˝1K

is injective, rx 2 Ker i D tB . There exists s 2R�f0g such that srx D 0. Therefore,
g.x/ 2 Im gj and Ker hj D Im g\ tC � Im gj. Since h ıgD 0, Im gj �Ker hj. This
completes the proof.

Let L be a �–component link and XL be the link exterior of L. From Alexander
duality, the Hurewicz map becomes �1.XL/! H1.XL/ D Z� . We have the exact
sequence

H1.@XLIƒ�/!H1.XLIƒ�/!H1.XL; @XLIƒ�/!H0.@XLIƒ�/
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whose extremal terms are
Q�

iD1
.ti�1/–torsion (in particular, S –torsion) because Z�–

cover of @XL is a disjoint union of S1�R or R�R. From this observation, by localizing
the above sequence with respect to S , we obtain H1.XLIƒ�S /ŠH1.XL; @XLIƒ�S /.
It follows from the (localized) Blanchfield duality [1] (as in [28, page 36]) that we have
the following primitive linking pairing:

bLW ytH1.XLIƒ�S /�ytH1.XLIƒ�S /! K=ƒ�S :

Here, to define bL , we need the fact that K=ƒ�S contains no nontrivial pseudonull
submodule, [28, Theorem 3.9(2)].

In this setting, Hillman [28, Theorem 2.4] proved ŒbL� 2W .K; ƒ�S ;�/ is a concor-
dance invariant of L. Here is our theorem which generalizes [28, Theorem 2.4].

Theorem B Suppose L0 and L1 are �–component links. If two link exteriors XL0

and XL1
are 1–solvable cobordant, then ŒbL0

�D ŒbL1
� 2W .K; ƒ�S ;�/. In particular,

the conclusion holds if L0 and L1 are height-3 Whitney tower/grope concordant.

Proof We proceed similarly to Hillman’s proof of [28, Theorem 2.4], using a 1–
solvable cobordism instead of a concordance exterior. For this purpose, we need the
following fact from [8]. Suppose W is a 1–solvable cobordism between XL0

and XL1
.

Lemma 5.2 (A special case of [8, Corollary 4.14]) The sequence

tH2.W; @W Iƒ�/
@
�! tH1.@W Iƒ�/

i�
�! tH1.W Iƒ�/

is exact.

In fact, Lemma 5.2 is obtained from [8, Corollary 4.14] by setting nD 1, G D Z� ,
�W �1.W /!H1.W /D Z� , and RD Z.

Using Lemma 5.2 in place of the exact sequence in [28, page 39], we can carry out the
arguments in [28, page 39–40] for a 1–solvable cobordism W . For convenience of the
readers, we present details below.

Note that
@W DXL0

[�.S1
�S1

� I/[�XL1

and Z� DH1.XLi
/

inc�
��!H1.W / is an isomorphism for i D 0; 1.

By the (ƒ�S –coefficient) Mayer–Vietoris sequence of the triple .@W;XL0
;XL1

/,

H1.@W Iƒ�S /ŠH1.XL0
Iƒ�S /˚H1.XL1

Iƒ�S /;
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since Hi.�.S
1 �S1 � I/Iƒ�/ is S –torsion for i D 0; 1. From this, the (localized)

Blanchfield form

b@W W ytH1.@W Iƒ�S /�ytH1.@W Iƒ�S /! K=ƒ�S

is the direct sum bL0
˚ .�bL1

/. If we show b@W is neutral, then ŒbL0
� D ŒbL1

� 2

W .K; ƒ�S ;�/ because bL0
˚ .bL1

˚ .�bL1
//D bL1

˚ b@W . Therefore, it suffices
to find a submodule P0 of ytH1.@W Iƒ�S / such that P0 D P?

0
.

Let I@W and IW be ƒ�S –coefficient intersection forms of @W and W , respectively.
We have Blanchfield form,

bW W ytH1.W Iƒ�S /�ytH2.W; @W Iƒ�S /! K=ƒ�S :

Let � W tH1.@W Iƒ�S /!ytH1.@W Iƒ�S / be the quotient map. Let

i#W C�.@W Iƒ�S /! C�.W Iƒ�S / and i�W tH1.@W Iƒ�S /! tH1.W Iƒ�S /

be the inclusion induced maps. Let

P D Im.tH2.W; @W Iƒ�S /
@
�! tH1.@W Iƒ�S /

�
�! ytH1.@W Iƒ�S //:

By Lemma 5.2, P D �.Ker i�/. We will prove that P? D P?? .

First, we prove P � P? . Choose relative 2–cycles Q and R in C2.W; @W Iƒ�S /

representing the classes in tH2.W; @W Iƒ�S /. Denote the boundaries of Q and R by
q; r 2C1.@W Iƒ�S /, respectively. The corresponding classes Œq�; Œr � in ytH1.@W Iƒ�S/

are actually in P . There exists a2ƒ�S�f0g such that aq is the boundary of a 2–chain
u 2 C2.@W Iƒ�S /. Then

b@W .Œq�; Œr �/D a�1I@W .u; r/D�a�1IW .i#.u/;R/D�bW .Œi#.q/�; ŒR�/ .modƒ�S /:

Since q is the boundary of the relative 2–cycle Q, Œi#.q/� D 0 2 ytH1.W Iƒ�S /.
Therefore

b@W .Œq�; Œr �/D 0 for all Œq�; Œr � 2 P:

This shows that P � P? .

Suppose that x 2 C1.@W Iƒ�S / represents a class in tH1.@W Iƒ�S / and Œx� 2 P? .
That is,

b@W .Œx�; Œy�/D 0

for all y which is the boundary of a relative 2–cycle Y 2C2.W; @W Iƒ�S /. Therefore

bW .Œi#.x/�; ŒY �/D�b@W .Œx�; Œy�/D 0 for all ŒY � 2 ytH2.W; @W Iƒ�S /:
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By Blanchfield duality for .W; @W /, the adjoint of bW ,

Ad.bW /W ytH1.W Iƒ�S /! Homƒ�S
.ytH2.W; @W Iƒ�S /;K=ƒ�S /

is injective. Therefore, Œi#.x/�D 0 2 ytH1.W Iƒ�S / or i#.x/ represents a homology
class in zH1.W Iƒ�S /. The above argument shows i�.�

�1.P?// is pseudonull as
a submodule of zH1.W Iƒ�S /. Since P D �.Ker i�/ � P? , Ker i� � �

�1.P?/.
Thus, ��1.P?/=Ker i� Š i�.�

�1.P?// is pseudonull, and therefore, P?=P D

�.��1.P?//=�.Ker i�/ is also pseudonull. Since K=ƒ�S has no nontrivial pseudonull
submodule and P?=P is pseudonull,

P? D fx j b@W .x;y/D 0 for all y 2 Pg D fx j b@W .x;y/ for all y 2 P?g D P??:

This completes the proof.

5.2 Multivariable Alexander polynomial of links

In this subsection, we prove Theorem C which generalizes [30, Theorems A, B]
concerning the Fox–Milnor condition for the Alexander polynomial of links.

First, we recall some definitions of [30]. Since ƒ� is Nötherian, for a finitely generated
ƒ�–module M , we can choose a presentation matrix P of M from an exact sequence

ƒm
�

P
�!ƒn

�!M ! 0:

Moreover, for all k , one can choose a m� n presentation matrix P with n> k and
m� n� k . In this situation, define the k th Alexander polynomial of M , denoted by
�k.M /, to be the greatest common divisor of the size .n�k/� .n�k/ minors of P .
(It is well known that �k.M / is well defined up to a unit of ƒ� which is proved by
Crowell and Fox in [20].)

Remark 5.3 (1) From [1, Theorem 4.10], if d D rankƒ� M , then �d .M / D

�0.tM /.

(2) From [30, Lemma 2.4], if 0!M 0!M !M 00! 0 is a short exact sequence
of ƒ�–torsion modules, then �0.M /D�0.M

0/�0.M
00/. More generally, if

0!M1!M2! � � � !Mr ! 0

is exact, then
Qr

iD1�0.Mi/
.�1/r D 1.

(3) Suppose that M1

f1
�!M2

f2
�!M3

f3
�!M4 is an exact sequence of ƒ�–torsion

modules. Then 0! Imf1!M2!M3! Imf3! 0 is exact. By (2),

�0.M2/�0.Imf3/D�0.M3/�0.Imf1/:

Here �0.Imf1/ and �0.Imf3/ divide �0.M1/ and �0.M4/, respectively.
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Recall that L is a �–component link in S3 and the meridian map is �1.XL/! Z� .
We define the torsion Alexander polynomial of L by �T

L
WD�0.tH1.XLIƒ�//. Now

we state our theorem.

Theorem C Suppose L0 and L1 are �–component links. If two link exteriors XL0

and XL1
are 1–solvable cobordant, then:

(1) rankƒ� H1.XL0
:ƒ�/D rankƒ� H1.XL1

Iƒ�/.

(2) �T
L0
f0
xf0
�
D�T

L1
f1
xf1

for some fi.t1; : : : ; t�/ 2ƒ� , with i D 0; 1 and with jfi.1; : : : ; 1/j D 1.

In particular, the conclusion holds if L0 and L1 are height-3 Whitney tower/grope
concordant.

To prove Theorem C, we need to prove the following generalization of [30, Lemma 2.1].

Lemma 5.4 Let X be a finite connected CW–complex with an epimorphism


 W �1.X /! Z�:

Let X0 be a subcomplex of X . For some fixed k , if Hk.X;X0IZ/D Zl and

rankƒ� Hk.X;X0Iƒ�/D l

then the l th Alexander polynomial AD�l.Hk.X;X0Iƒ�//D�0.tHk.X;X0Iƒ�//

satisfies jA.1; : : : ; 1/j D 1.

Remark For the l D 0 case (see [30, Lemma 2.1]), we only need to assume that
Hk.X;X0IZ/D 0 because from our proof, we can deduce

rankƒ� Hk.X;X0Iƒ�/� 0:

In this sense, Lemma 5.4 is a generalization of [30, Lemma 2.1].

Proof of Lemma 5.4 Since X0 is a subcomplex of X , for all q , we fix a basis for
the qth (cellular) chain complex Cq.X;X0IZ/Š Zsq . By lifting each element in the
chosen bases, we also fix a ƒ�–basis for the Cq.X;X0Iƒ�/ for all q . With these
chosen bases, we can write @qW Cq.X;X0Iƒ�/!Cq�1.X;X0Iƒ�/ as a matrix .˛q

ij /,
˛

q
ij 2ƒ� .

With respect to the chosen basis of C�.X;X0IZ/, @qW Cq.X;X0IZ/!Cq�1.X;X0IZ/
is represented by the integral matrix .˛

q
ij .1; : : : ; 1//. Let zrq D rank.˛q

ij /, rq D

rank.˛q
ij .1; : : : ; 1//. Then rq � zrq . Since Hk.X;X0IZ/D Zl ,

l D rankZ Ker @k � rankZ Im @kC1 D sk � rk � rkC1:
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Similarly, from rankƒ� Hk.X;X0Iƒ�/D l ,

l D sk �zrk �zrkC1:

Since rq � zrq for all q ,

l D sk �zrk �zrkC1 � sk � rk � rkC1 D l

which implies that rk D zrk ; rkC1 D zrkC1 .

Since Coker @kC1 D Ck.X;X0Iƒ�/= Im @kC1 and Im @k Š Ck.X;X0Iƒ�/=Ker @k ,
we have the short exact sequence

0!Hk.X;X0Iƒ�/! Coker @kC1! Im @k ! 0:

As a submodule of a free module, Im @k is a ƒ�–torsion free module of rank zrk D rk .
Then tHk.X;X0Iƒ�/D t Coker @kC1 and dimK Coker @kC1˝ƒ� KD l C rk :

�l.Hk.X;X0Iƒ�//D�0.tHk.X;X0Iƒ�//D�0.t Coker @kC1/

D�lCrk
.Coker @kC1/:

The first and last equalities follow from Remark 5.3(1). Similarly, we have the short
exact sequence

0!Hk.X;X0IZ/! Coker @Z
kC1! Im @Z

k ! 0:

(Here, to avoid confusion, we denote the differential on C�.X;X0IZ/ by @Z
� .) As a

subgroup of a finitely generated free abelian group, Im @Z
k

is a free abelian group of
rank rk . Therefore

Coker @Z
kC1 DHk.X;X0IZ/˚Zrk D ZlCrk :

(Here we used the assumption that Hk.X;X0IZ/DZl .) Note that the matrices .˛kC1
ij /

and .˛kC1
ij .1; : : : ; 1// are presentation matrices of Coker @kC1 and Coker @Z

kC1
, re-

spectively. Therefore

j�l.Hk.X;X0Iƒ�//.1; : : : ; 1/j D j�lCrk
.Coker @kC1/.1; : : : ; 1/j D 1:

This completes the proof.

Proof of Theorem C (1) Let W be a 1–solvable cobordism between XL0
and XL1

.
In particular, the inclusion induces Z� D H1.XL0

/ Š H1.W / and H1.W;XL0
/ D

H1.W;XL1
/D 0. By Poincaré duality and the universal coefficient theorem,

H2.W;XL0
/ŠH 2.W;XL1

/Š HomZ.H2.W;XL1
/;Z/D Z2r :
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(Since W is a 1–solvable cobordism between XL0
and XL1

, rankZ H2.W;XL1
/ is

even.) Let C� D C�.W;XL0
Iƒ�/. Then

Hi.C�˝ƒ� Z/DHi.W;XL0
IZ/D 0 for i D 0; 1:

Since ƒ� D ZŒZ�� and Z� is a poly-torsion-free-abelian group, then by [15, Proposi-
tion 2.10],

Hi.C�˝ƒ� K/DHi.W;XL0
Iƒ�/˝ƒ� KD 0 for i D 0; 1:

Similarly, Hi.W;XL1
Iƒ�/˝ƒ� KD 0 for i D 0; 1. From duality and the universal

coefficient theorem, Hi.W;XL0
Iƒ�/˝ƒ� KD 0 for i D 3; 4. So

rankƒ� H2.W;XLi
Iƒ�/D �.C�/D�.C�.W;XLi

IZ//D rankZ H2.W;XLi
IZ/D2r

for i D 0; 1. As in Lemma 5.2, the existence of a 1–Lagrangian and 1–duals implies
that the following is exact for i D 0; 1:

tH2.W;XLi
Iƒ�/!H1.XLi

Iƒ�/!H1.W Iƒ�/! tH1.W;XLi
Iƒ�/:

(Note that H1.W;XLi
Iƒ�/ D tH1.W;XLi

Iƒ�/ for i D 0; 1.) In particular, (1) is
proved because

rankƒ� H1.XL0
Iƒ�/D rankƒ� H1.W Iƒ�/D rankƒ� H1.XL1

Iƒ�/:

(2) For i D 0; 1, applying Lemma 5.1 to the exact sequence

tH2.W;XLi
Iƒ�/!H1.XLi

Iƒ�/!H1.W Iƒ�/! tH1.W;XLi
Iƒ�/;

the following is also exact:

tH2.W;XLi
Iƒ�/! tH1.XLi

Iƒ�/! tH1.W Iƒ�/! tH1.W;XLi
Iƒ�/:

Denote the 0th Alexander polynomial of these modules and tH1.@W Iƒ�/ by

�2;i ; �T
Li
; �W ; �1;i and �@W

respectively.

In (1), we proved rankƒ� H1.W;XLi
Iƒ�/D 0 using the fact that H1.W;XLi

/D 0.
Using an Euler characteristic argument, we also proved rankƒ� H2.W;XLi

Iƒ�/D 2r

where H2.W;XLi
/ D Z2r . Applying Lemma 5.4 to .X;X0/ D .W;XLi

/ for the
cases .k; l/ D .2; 2r/ and .1; 0/, we obtain j�2;i.1; : : : ; 1/j D j�1;i.1; : : : ; 1/j D 1.
Using Remark 5.3(3), there exist gi and g0i in ƒ� which divide �2;i and �1;i ,
respectively and they satisfy �T

Li
gi D�W g0i . Since jgi.1; : : : ; 1/j and jg0i.1; : : : ; 1/j

are nonnegative integers which divide 1, they are 1. Let g D g0g0
1

and g0 D g0
0
g1 .

Then, �T
L0

g
�
D�W g0

0
g0

1

�
D�T

L1
g0 with jg.1; : : : ; 1/j D jg0.1; : : : ; 1/j D 1.
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Since ƒ� is a unique factorization domain, we can split �T
Li
D uivi and �@W D uv

uniquely (up to units of ƒ� ) so that v0; v1; v consist of all irreducible factors f 2ƒ�
with jf .1; : : : ; 1/j ¤ 1 in �T

L0
; �T

L1
; �@W . Now, �T

L0
g
�
D�T

L1
g0 becomes u0v0g

�
D

u1v1g0 . Since g;g0;u0 and u1 are factors with jf .1; : : : ; 1/j D 1, v0
�
D v1 .

From the Mayer–Vietoris sequence,

H1.@XL0
Iƒ�/!H1.XL0

Iƒ�/˚H1.XL1
Iƒ�/!H1.@W Iƒ�/!H0.@XL0

Iƒ�/

is exact. Since the extremal terms are
Q�

iD1
.ti � 1/–torsion, we can apply Lemma 5.1

to get the following exact sequence:

tH1.@XL0
Iƒ�/! tH1.XL0

Iƒ�/˚ tH1.XL1
Iƒ�/! tH1.@W Iƒ�/

! tH0.@XL0
Iƒ�/:

By Remark 5.3(3), �@W �
�
D�T

L0
�T

L1
�0 for some factors �; �0 of

Q�
iD1

.ti � 1/. By
the reciprocity of Blanchfield pairing [1],

�T
Li

�
D�T

Li
for i D 0; 1:

In particular, u0 D xu0 . Now, we have

u
�
D u0u1

�
D xu0u1:

Recall that a linking pairing .M; b/ is neutral if M has a submodule N such that
N DN? . By Theorem B, we proved that the Blanchfield form of @W is neutral. This
implies that �@W D hxh for some h 2ƒ� by [28, Lemma 3.26]. In particular,

u
�
D f xf for some f 2ƒ� with jf .1; : : : ; 1/j D 1:

Combining all these observations,

�T
L0
f xf

�
D u0v0uD u0xu0u1v0

�
D u0xu0u1v1

�
D�T

L1
u0xu0:

Here, f and u0 satisfy the conditions jf .1; : : : ; 1/j D 1, ju0.1; : : : ; 1/j D 1. This
completes the proof.

Remark It should be noted that Theorem C is not a direct consequence of Theorem B.
From Theorem B without Lemma 5.4, one may deduce that if XL0

and XL1
are

1–solvable cobordant, then

(1) rankƒ� H1.XL0
Iƒ�/D rankƒ� H1.XL1

Iƒ�/,

(2) �T
L0
f0
xf0
�
D�T

L1
f1
xf1

for some f0; f1 2ƒ�S �f0g. Lemma 5.4 is crucial to obtain the stronger conclusion
that we can choose f0; f1 2ƒ� such that jf0.1; : : : ; 1/j D jf1.1; : : : ; 1/j D 1.
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Finally, we mention what can be deduced from Theorems B and C for the special case
of 2–component links with linking number 1. Note that by the work of Levine [33], the
Blanchfield form (without localization) bLW tH1.XLIƒ2/� tH1.XLIƒ2/!K=ƒ2 is
nonsingular.

Corollary D Suppose L is a 2–component link with linking number 1. If XL

and XH are 1–solvable cobordant, then:

(1) ŒbL�D 0 2W .K; ƒ2;�/.

(2) ˇ.L/D 0.

(3) �0.L/
�
D f xf for some f 2ƒ2 such that jf .1; 1/j D 1.

In particular, the conclusion holds if L and H are height-3 Whitney tower/grope
concordant.

Proof Let L be a 2–component link with linking number 1. Assume XL and XH

are 1–solvable cobordant. Since XH D S1 �S1 � I and the Z˚Z cover of XH is
R�R� I , ŒbH �D 0; ˇ.H /D 0 and �0.H /D 1. This shows (1) and (2). With the
notation in the proof of Theorem C (applied to L0 DH and L1 DL), u0 D 1 and

�0.H /f xf
�
D�0.L/u0xu0

for some f 2ƒ2 such that jf .1; 1/jD1. Since �0.H /D1 and u0D1, �0.L/Df xf

for some f 2ƒ2 such that jf .1; 1/j D 1. This completes the proof of (3).
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