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Stable immersions in orbifolds

ALDEN WALKER

We prove that in any hyperbolic orbifold with one boundary component, the product
of any hyperbolic fundamental group element with a sufficiently large multiple of
the boundary is represented by a geodesic loop that virtually bounds an immersed
surface. In the case that the orbifold is a disk, there are some conditions. Our results
generalize work of Calegari–Louwsma and resolve a conjecture of Calegari.

20F65, 57M07; 57R42, 57R18

1 Introduction

It is an interesting and important problem to understand which curves on a surface bound
an immersed subsurface. This paper addresses a question in this area primarily motivated
by stable commutator length (scl) and quasimorphisms, and in this introduction, we
provide some background. However, the main theorems are concerned only with
immersions, so the reader can safely skim the portions of this introduction concerned
with scl and retain a logically complete (though less colorful!) picture. For a more
thorough scl background, especially as it relates to quasimorphisms and immersions,
see Calegari [2] and Calegari and Louwsma [5].

1.1 Orbifolds

Recall that an orbifold is a space locally modeled on Euclidean space modulo finite
groups of isometries. See Thurston [7] for background. In this paper, we will be
concerned only with good orbifolds with a hyperbolic structure. By a hyperbolic
orbifold †, we mean an orientable orbifold which arises as the quotient of hyperbolic
space H2 by a finitely generated discrete subgroup � � PSL.2;R/ such that � acts
properly on H2 and �nH2 is finite-volume. Thus, H2 is the universal orbifold cover
of †, and � is identified with �1.†/. We will use this notation throughout the paper.

Geometrically, a hyperbolic orbifold is a hyperbolic surface with finitely many cone
points and cusps. We will be interested in how the hyperbolic structure can inform
topological properties of †, so it is useful to also have a topological picture. Topologi-
cally, a hyperbolic orbifold is an orientable surface with finitely many points with a
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nontrivial structure (isotropy) group (which is always a finite cyclic group), and finitely
many points removed. The underlying space of an orbifold † is the topological space
�nH2 with the orbifold structure forgotten. A disk orbifold is a hyperbolic orbifold
whose underlying space is a disk; that is, † is topologically a sphere with cone points
and a single removed point. There are various notations for orbifolds, which we will
mostly avoid; however, following [5], we will refer to disk orbifolds with two cone
points of orders p and q (and one cusp) as .p; q;1/ orbifolds. We clarify that this
notation does not refer to a triangle group, which contains an orientation-reversing
reflection. As an example, if we set � D PSL.2;Z/, we get the modular orbifold,
which is a .2; 3;1/ orbifold.

While a hyperbolic orbifold technically has cusps instead of boundary, it still has
natural boundary elements of the fundamental group, as follows. A small loop around
a cusp gives a conjugacy class in the fundamental group �1.†/. In the identification
� D �1.†/, this class is identified with the (parabolic) stabilizers of the preimages
of the cusp in H2 . Abusing notation, we will use @† to mean either the union of the
small loops around the cusps of † or the union of the associated conjugacy classes
in � , and we will refer to the loops as boundary components, or boundary loops, of
†. As noted above, topologically, a hyperbolic orbifold is homotopy equivalent to an
orbifold in which the cusps have been replaced with honest boundaries, motivating this
nomenclature.

Remark 1.1 Just as in [5], the results and proofs in this paper apply equally well
to hyperbolic orbifolds with geodesic boundaries instead of cusps, in which case the
universal orbifold cover is not the entire hyperbolic plane. For simplicity, however, we
will always use the definition of hyperbolic orbifold above.

1.2 Immersions

Let S be a smooth surface, possibly with boundary and removed points, and let †
be a hyperbolic orbifold. If f W S ! † is a continuous map, then we say that f is
an immersion if there is a lift to a map between universal covers ef W eS ! e† DH2

which is an immersion. Note that this is equivalent to saying that f is an immersion
away from the preimages of the cone points of †, and at the preimages of a cone point
with angle 2�=n, f has branch points of order exactly n. We will only be interested
in orientation-preserving immersions, although the techniques in this paper apply to
orientation-reversing ones as well.

If † is a hyperbolic orbifold with fundamental group � , and g 2 � is a hyperbolic
element, then g is represented by a unique geodesic 
 2 †. We say that 
 (or g )
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bounds an immersed surface if there is an oriented surface S and an orientation-
preserving immersion f W S ! † such that f .@S/ D 
 (as oriented 1–manifolds).
We say that 
 (or g ) virtually bounds an immersed surface if there is an oriented
surface S and an orientation-preserving immersion f W S ! † such that f j@S is a
covering map @S ! 
 . There are examples of curves on surfaces which do not bound
an immersed surface but do virtually bound an immersed surface. We emphasize that
a group element g 2 � only (virtually) bounds an immersed surface if the surface
boundary maps to the geodesic representative of g .

1.3 scl and stability

One can make the analogous definition of virtually bounding an immersed surface for
any homologically trivial 1–chain C 2B1.�/, and in [2], Calegari shows the following
stability theorem, simplified slightly here.

Theorem [2, Theorem C] Let † be a compact, connected, orientable surface with
boundary and C 2 BH

1
.�/, where � D �1.†/. Then for all sufficiently large n, the

chain n@†CC virtually bounds an immersed surface.

This theorem applies to orbifolds via lifting. Here

BH
1 .�/D B1.�/=hg

n
Dng; hgh�1

Dgi

is the space of homogenized 1–chains, which is more natural from the perspective of
virtual immersions and scl. Stable commutator length is a norm on the vector space
BH

1
.�/ (see [3] for background), and in [4], Calegari shows that the scl norm ball

is polyhedral, in that its restriction to any finite-dimensional subspace is a rational
finite-sided polyhedron. In [2], Calegari shows that there is a distinguished codimension-
one so-called geometric face of the scl norm ball associated to the realization of the
abstract group � as the fundamental group of the orbifold †. This geometric face
is dual to the rotation quasimorphism on � induced by the circle action at infinity
coming from the identification of � D �1.†/� PSL.2;R/. The 1–chains projectively
contained in the geometric face are exactly those which virtually bound immersed
surfaces, so Theorem C is the main technical result showing that the geometric face is
codimension-one.

So [2] provides a fundamental connection between (virtual) immersions, scl, and
rotation quasimorphisms. Computer experiments led to the following conjecture:

Conjecture [2, Conjecture 3.16] Let F D ha; bi be a free group of rank 2. Let
w 2 ŒF;F � be any homologically trivial word. Then for sufficiently large n, wŒa; b�n

virtually bounds an immersed surface in the realization of F as the fundamental group
of the hyperbolic once-punctured torus with boundary Œa; b�.
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Note that [2, Conjecture 3.16] and [2, Theorem C] involve two similar, but definitely
distinct, notions of stability; in Theorem C, we are taking a formal sum with a multiple
of the boundary, and in Conjecture 3.16, we are multiplying by it.

In [5], Calegari and Louwsma prove the analog of [2, Conjecture 3.16] for .2;p;1/
orbifolds:

Theorem [5, Theorem 3.1] Let † be a .2;p;1/ orbifold with boundary loop b ,
and let w 2 �1.†/ be any hyperbolic element. Then for all sufficiently large n, wbn

virtually bounds an immersed surface in †.

There is a potential ambiguity here, in that the boundary loop b is not an element but
a conjugacy class. But note that if the theorem holds for some representative of this
conjugacy class, it holds for all of them, because the effect of changing representatives
is essentially to change the word w . This is also true of the next theorem.

1.4 Results

In this paper, we generalize [5, Theorem 3.1] (see Remark 4.7, which addresses the
issue of two vs three orbifold points) with the following theorem.

Theorem 4.1 Let † be a hyperbolic orbifold whose underlying topological space is a
disk and which has at least three orbifold points, of orders foj g

J�1
jD0

. Let w2�D�1.†/

be any hyperbolic element, and let b 2 � be the boundary loop of †. Then there exists
N 2N so that for all n� 0, the loop wbNCng virtually bounds an immersed surface,
where g D gcd.o0� 1; : : : ; oJ�1� 1/.

We also resolve [2, Conjecture 3.16], even in the presence of orbifold points:

Theorem 4.8 Let † be a hyperbolic orbifold with one boundary component and with
genus at least 1. Let � D �1.†/ with b D @† 2 � , and let w 2 � be hyperbolic so
that some power of w is homologically trivial. Then there exists N 2N so that for all
n� 0, the loop representing wbNCn virtually bounds an immersed surface.

In the course of proving these theorems, we also give a useful combinatorial certificate
(Proposition 3.2) that a surface map into an orbifold † is homotopic to an immersion
with geodesic boundary, and hence a certificate that a collection of words in � bounds
an immersed surface.
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1.5 Outline

In Section 2, we review cyclic orders and realizations of a group as the fundamental
group of a hyperbolic orbifold. In Section 3, we give a combinatorial parametrization
of surface maps into orbifolds. In Section 4, we prove our main theorems.

Acknowledgments We wish to thank Danny Calegari, Joel Louwsma, Neil Hoffman,
and especially the anonymous referee, who made suggestions which greatly improved
the paper. Alden Walker was supported by NSF grant DMS 1203888.

2 Hyperbolic orbifolds as realizations

2.1 Cyclic orders

Informally, a cyclic order on a set S is an arrangement of S around a circle, and there
are several equivalent ways of formalizing this. We define a cyclic order on a set S to
be a function OW S �S �S ! f�1; 0; 1g which says whether a triple of elements is
positively or negatively ordered (or 0, if not all elements in the triple are distinct). A
cyclic order must satisfy a compatibility condition on all 4–tuples of elements; namely
if O.x;y; z/ D O.w;x; z/ D 1, then O.x;y; w/ D O.y; z; w/ D 1, the idea being
that if we know .x;y; z/ and .w;x;y/ are positively ordered, then we can conclude
that the four elements are arranged in the order Œx;y; z; w�, and the cyclic order O

must respect this. As a shorthand for the function O , we will write cyclic orders in
square brackets, as above, recording the (ordered) arrangement of the elements around
a circle. A cyclic order given in square brackets is invariant under cyclic permutations
of the list, and the function O.x;y; z/ can be computed by rotating the list so that x

is first; the value is then 1 if y comes before z and �1 otherwise.

If T � S and OT and OS are cyclic orders on T and S , respectively, then we say
that OT and OS are compatible if OS jT DOT . If T and S are finite and the orders
are written as cyclic lists with square brackets, then OT and OS are compatible if OT

is obtained from OS by simply removing the elements of S n T . For example, the
orders Œa; c; b� and Œa; c; d; b� are compatible. See [1, Chapter 2].

2.2 Realizations

Let † be a hyperbolic orbifold with one cusp, and let � D �1.†/ be its fundamental
group, so � � PSL.2;R/ is a group of isometries. We now find a nice generating set
for � . Let R be a fundamental domain for the action, which is a polygon in H2 with
some ideal vertices. The group � is a free product of cyclic groups, which we write
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� D .�I�1
iD0

Zi/� .�
J�1
jD0

Cj /, where each Zi is infinite cyclic (ie a copy of Z) and is
generated by zi , and each Cj is finite cyclic and is generated by cj with order oj . The
zi are hyperbolic, and the cj are elliptic. After conjugation, we may assume that the
axes of the zi all pass through R, and the fixed points of the cj are all vertices of R.
It is possible that there is more than one choice for the cj , since a single orbifold point
may appear multiple times as a vertex of R. Any of the options will work. We may
also assume that all the cj rotate counterclockwise. We will always write words in �
using positive powers of the cj . For a given word w in the given generators of � , we
will call a specific generator at a specific location in w a letter, and we’ll denote the
letter in w at position k by wk , with indices starting at 0.

We call the orbifold † together with the generating set fc0; : : : ; cJ�1; z0; : : : ; zI�1g

chosen as above a realization of the abstract group .�I�1
iD0

Zi/� .�
J�1
jD0

Cj /, and we
will always assume that our hyperbolic orbifolds come with such a generating set.

For each zi , mark the intersections of the hyperbolic axis of zi with the boundary of
R: the initial intersection with z�1

i and the terminal intersection with zi . Also mark
the elliptic fixed point of cj by cj . Reading the boundary of R counterclockwise, this
induces a cyclic order on the set of generators

S D fz0; z
�1
0 ; : : : ; zI�1; z

�1
I�1; c0; : : : ; cJ�1g:

Note that the set S contains each zi and its inverse, but only the positive power of cj .
We’ll denote the cyclic order on S by O† .

It may seem as though there is potential ambiguity in the cyclic order O† , because
some elliptic cj may have been associated with multiple vertices of R, and we chose
the vertex to be labeled arbitrarily. However, note that if we were to choose a different
vertex, that would correspond to choosing a different (conjugate) generator in � , so
while we would get a different cyclic order, it’s also a genuinely different identification
with .�I�1

iD0
Zi/� .�

J�1
jD0

Cj /.

Example 2.1 Figure 1 shows the fundamental domain R for a surface of genus one
with one boundary component and three orbifold points. Here all the orders oj are 4.
To illustrate how the generators act, we’ve numbered the images of the point marked
0 under the successive subwords of the boundary word c

0
z�1

0
z�1

1
c

1
c

2
z

0
z

1
. Recall �

acts on H2 on the left, so the successive subwords are suffixes of the boundary word.
The induced cyclic order O† can be read off counterclockwise from the boundary of
R, and it is Œc

1
; c

2
; z

0
; z�1

1
; c

0
; z�1

0
; z

1
�. Figure 2 shows what the orbifold looks like,

topologically. Note it is easy to read off the boundary word and the cyclic order from
Figure 2.
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z0

z1

c0

c1

c2
0

1

2

3

4

5

6

7

Figure 1: A fundamental domain for an orbifold, as described in Example 2.1

z0

z�1
0

z�1
1

z1

c0

c1

c2

Figure 2: The orbifold from Figure 1, topologically, with the loops represent-
ing the generators of � . Note the boundary word is easy to read off. The
cyclic order O† on generators is the cyclic order around the central part of
the surface. See Example 2.1.

2.3 Core graphs of realizations

Let † be a realization of � with generating set fc0; : : : ; cJ�1; z0; : : : ; zI�1g and
fundamental domain R, as above. We will use the choice of generators and fundamental
domain to define a graph on the orbifold †, as follows. Recall that as part of the
realization, we have points on the boundary of R labeled by the elements of S D

fz
0
; z�1

0
; : : : ; z

I�1
; z�1

I�1
; c

0
; : : : ; c

J�1
g. These points induce the cyclic order O†

on S .
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Let p be a point in the interior of R (a more central point makes a nicer picture, but
it doesn’t matter where it is). Construct a directed graph G0

†
on R with vertex set

fpg[S with edges as follows: for each vertex cj in S , there is an edge from p to cj .
For each vertex zi , there is an edge from p to zi , and for each vertex z�1

i , there is an
edge from z�1

i to p . These edges can be made all embedded and disjoint in R: R is
topologically a disk, so we can clearly connect an interior point to arbitrary points on
the boundary with a series of disjoint, embedded arcs. For example, we could make
them geodesic arcs.

Now let G† be the quotient of G0
†

, which is a graph in †. The graph G† is the core
graph of the orbifold † realizing � . We now describe G† and name its parts so we
can refer to them later. The quotient map from R to † is an embedding away from the
boundary, so to know what G† is, it suffices to consider what happens to the vertices
z˙1

i and cj . The cj vertices in G0
†

are each sent to one of the cone points. The pair of
vertices z˙1

i in G0
†

are identified into a single vertex in G† , which we will denote by
zi . So the vertex set of the core graph G† is fp; z0; : : : ; zI�1; c0; : : : ; cJ�1g. For each
i , there is an edge from p to zi and from zi to p , and for each j , there is an edge
from p to cj . Figure 3 shows the core graph for the orbifold given in Example 2.1.

z0

z1
z�1

0

z�1
1

c0

c1

c2

p c2

c0

c1

z0

z1

p

Figure 3: The core graph of the realization described in Example 2.1. Left,
the graph G0

†
is shown drawn in the fundamental domain R . Right, the core

graph G† is shown on the orbifold, drawn as in Figure 2.

Consider the vertex p in the graph G† . Since the graph G† comes with an embedding
in †, the vertex p has a cyclic order on the incident edges obtained by simply reading
the directed labels in counterclockwise order around p (where the incoming edge from
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zi to p is read as z�1
i ). Note that these labels are exactly S , and this cyclic order is

exactly O† .

2.4 Covering trees of core graphs

The core graph of the hyperbolic orbifold † realizing � is a graph G† embedded in
†. The preimage eG † of G† in the universal cover e† DH2 is a graph in H2 . We
call this graph the covering tree of G† . We will verify momentarily that it is, in fact, a
tree. In G† , each vertex cj has just a single incoming edge. In the covering tree, the
preimages of the vertex cj have oj incoming edges, where recall oj is the order of the
generator cj . This is quite natural, since the covering map H2!† branches at the
preimages of the cone points. See Figure 4.

Figure 4: The covering tree of the core graph in Figure 3

Since G† is embedded in †, the preimage eG † is embedded in H2 . The fact thateG † is a tree is quite straightforward to see intuitively, since H2 is the universal cover
of †, and G† carries part of the fundamental group, but we go through it carefully. To
see that it is a tree, suppose that we have a loop 
 in eG † . Now, 
 must pass through
a preimage of the vertex p since the vertices zi and cj are connected only to p in G† .
Reading the vertex labels around 
 gives a word in � taking a preimage of p to itself
(where each time we pass through a preimage of cj , we must choose the appropriate
power of cj to obtain the desired angle, and each time we pass through zi , we record
zi or z�1

i , depending on whether we crossed the edges adjacent to zi respecting the
direction). Any word in � taking a preimage of p to itself is trivial, so it must be (a
conjugate of) the word c

noj

j for some n. But this word produces a trivial path, so 
 is
a trivial loop, and we see that eG † must be a tree.
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3 Cyclic fatgraphs and immersions in orbifolds

3.1 Cyclic fatgraphs

Our proofs will build surface immersions using cyclic fatgraphs over � , which are
combinatorialized surface maps into †. A cyclic fatgraph over � is a surface which is
built out of pieces, which are rectangles, polygons, and group polygons, and where the
pieces are glued along edges. We now define all these terms.

A rectangle is a 2–cell whose boundary is an oriented simplicial loop with four 1–
simplices. We think of a rectangle as a rectangular strip. It is labeled on one long side
by an infinite order generator zi and on the other by its inverse z�1

i . The notation for
such a rectangle is r.zi/. The short 1–simplices of the rectangle r.zi/ are rectangle
edges, and a rectangle edge is denoted by re.zi/ or re.z�1

i / depending on which long
labeled side comes after the rectangle edge. See Figure 5.

zi

re.z�1
i /

z�1
i

re.zi/

Figure 5: A rectangle, with two labeled sides and two edges (bold)

A group polygon is a 2–cell whose boundary is an oriented simplicial loop with
simplices alternating between labeled sides and group polygon edges. The labeled sides
are all labeled by the same finite order generator, and there must be exactly as many
labeled sides as the order oj of cj . Every group polygon edge in such a group polygon
is denoted by ge.cj /. The notation for this group polygon is g.cj /. See Figure 6.

cj

ge.cj /

cjcj

cj

cj

Figure 6: A group polygon in the case that oj D 5

A polygon is a 2–cell whose boundary is an oriented simplicial complex whose simplices
are all polygon edges. A polygon edge can be one of pe.cj /, pe.zi/, or pe.z�1

i /. There
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is a restriction that a polygon must be locally reduced, which means that pe.zi/ cannot
immediately follow pe.zi/, and similarly for the inverses. A nondegenerate polygon
can have two or more edges. We will often refer to polygons with the name appropriate
to their number of edges, for example bigon, triangle, square, etc. See Figure 7.

pe.z0/

pe.c0/

pe.z1/

pe.z�1
0
/

Figure 7: A polygon. All the sides are edges. This square appears in the
cyclic fatgraph shown in Figure 10.

For technical reasons, it is convenient to allow polygons with a single edge (a monogon).
Such polygons may only have edges of the form pe.cj / (a finite-order generator).
Monogons are needed to allow repeated copies of cj to appear on the boundary of a
cyclic fatgraph. Figure 10 contains an example.

When dealing with these pieces, we will often refer to finite-order or infinite-order
edges, meaning rectangle, group polygon, and polygon edges, as appropriate.

A cyclic fatgraph over � is a surface with a simplicial structure such that every 2–cell
has the structure of a rectangle, polygon, or group polygon. If a 1–simplex is the
boundary of two 2–cells, then one of the 2–cells must be a polygon and the other must
be a rectangle or group polygon, and the simplex of intersection must be an edge in
both, and the labels must match, eg pe.zi/ is glued to re.zi/. That is, a cyclic fatgraph
over � is a surface built out of rectangles and group polygons by gluing them together
around polygons along edges. See Figure 8.

In our drawings, including Figure 8, note that where the rectangles and group polygons
appear to attach directly to each other, there is technically a bigon (polygon with two
sides) joining them. This technicality is useful to avoid special cases in the definition
and for some definitions to follow.

3.2 Spines of cyclic fatgraphs

Given a cyclic fatgraph Y , we define the spine GY of Y , which is a directed graph on
Y , to be the graph dual to the cellulation of Y by the polygons, rectangles, and group
polygons in Y . Since there is a vertex for each piece, we call the vertices polygon,
rectangle, or group polygon vertices as appropriate. Orient the edges of GY so that
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z0

z�1
0

c0

c0
c0

c0

z�1
1

z1

z�1
0

z0

z1

z�1
1

c1c1

c1 c1

z0

z�1
0

z1

z�1
1

Figure 8: A cyclic fatgraph over the group � from Example 2.1. Recall that
oj D 4 for all j , so each group polygon has four sides. This fatgraph has
boundary z

0
c

0
z�1

1
c

0
z�1

0
c

1
z

0
c

1
z�1

1
c

0
z�1

0
z�1

1
c

1
z�1

0
c

1
z

1
Cz

0
z

1
Cz

1
c

0
. There

are seven bigons and two triangles.

every edge between a polygon vertex and a group polygon vertex is directed away from
the polygon vertex. Orient the two edges incident to a rectangle vertex so that their
orientation agrees with the orientation on the side of the rectangle labeled by zi (and
against the orientation on the side labeled by z�1

i ). Note that Y deformation retracts
to its spine. See Figure 9.

c1

c1c1

c1c0

c0c0

c0

z�1
1

z1

z�1
0

z0
z0

z�1
0

z1

z�1
1

z0

z�1
0

Figure 9: The spine of a cyclic fatgraph. The polygon vertices are drawn
larger to differentiate them from the rectangle and group polygons vertices.
Note there are four polygon vertices in the (invisible) bigons.
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3.3 Immersed surfaces in orbifolds

Let † be an orbifold realizing the group � with core graph G† , and suppose that
we have a cyclic fatgraph Y over � , as defined above. There is a natural simplicial
map from the spine GY of Y to the core graph G† defined by sending the polygon,
rectangle, and group polygon vertices of GY to the p , zi , and cj vertices of G† ,
and by mapping the edges so as to preserve orientation. Let fY W Y !† be the map
deformation retracting Y to its spine, and then mapping GY to G† as above. We call
this map the fatgraph map induced by Y . Note that fY is a map of a surface with
boundary into the orbifold †. Though we will not need it, we remark that every map
of a surface factors through a fatgraph map:

Lemma 3.1 [8, Lemma 4.4] After compression and homotopy, every surface map
f W S !† factors as fY ı i , where i W S ! Y is a homeomorphism between S and a
cyclic fatgraph over � , and fY is the fatgraph map.

In [8], the lemma is not stated exactly in this way, but it follows from the proof. In the
case of free groups, this lemma is due to Culler [6].

The main result of this section is that there is a local combinatorial certificate that the
map fY is homotopic to an immersion with geodesic boundary. We now describe this
certificate.

Recall that S is the set of generators fz
0
; z�1

0
; : : : ; z

I�1
; z�1

I�1
; c

0
; : : : ; c

J�1
g of � ,

and O† is the cyclic order on S determined by the realization †. Let us be given a
polygon P in a cyclic fatgraph over � . The edges of P have an intrinsic cyclic order,
so the set of labels on the edges of P is a cyclically ordered multiset. The cyclically
ordered multiset of labels of the edges of P will be denoted by @P . For example, if
the edges of P are Œ pe.z�1

0
/; pe.c0/; pe.c1/; pe.z�1

1
/; pe.c0/�, then the set of labels is

the cyclically ordered multiset @P D Œz�1
0
; c

0
; c

1
; z�1

1
; c

0
�. We call a polygon small if

@S is actually a set; ie if each label appears at most once in @P . Notice that if P is
small, then @P � S , so there are two cyclic orders on @P : its intrinsic cyclic order
and the cyclic order given by O† .

There is a special polygon, the standard † polygon, which is the polygon such that
@P DO† , ie every outgoing edge appears exactly once, and in the cyclic order O† .
The standard † polygon is the largest polygon whose boundary is compatibly ordered
with O† .

Proposition 3.2 Let Y be a cyclic fatgraph over � with induced surface map fY W Y!

†. Suppose that every boundary component of Y is realized in † by a geodesic loop
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(is not finite order or parabolic). If every polygon P in Y has the property that P is
small and the cyclic order on @P is compatible with O† , then fY is homotopic to an
immersion with geodesic boundary.

Remark 3.3 Cyclic orders are useful for many geometric things; see [1, Chapter 2]
and [3, Section 4.2.5]. Proposition 3.2 is essentially a generalization of the ideas in [3,
Section 4.2.5] to orbifolds.

Remark 3.4 Consider Figure 9, the spine of a fatgraph and Figure 4, the covering tree
of the core graph of a realization. The map fY retracts the fatgraph to the spine and
then sends the spine inside the core graph. In the universal cover, then, the covering
map ffY sends the universal cover of the spine inside the covering tree of the core
graph. The hypothesis of Proposition 3.2 makes sure that this covering map preserves
the cyclic orders of the edges around each vertex and is thus an embedding. Since
the universal cover of the fatgraph retracts to the spine and the spine is embedded,
Proposition 3.2 is quite natural. The proof is a formalization of this.

Proof of Proposition 3.2 In order to prove that fY is homotopic to an immersion,
we must show that the lift ffY W

eY ! e† is homotopic to an immersion, where the
homotopy of ffY must be equivariant with respect to �1.Y /.

Write ffY D g ı h, where h is the deformation eY !eGY , and g is the simplicial
graph map eGY !

eG† . Let us consider what happens to the stars of the vertices under
the graph map g . There are three kinds of vertices in eGY , covering rectangle, group
polygon, and polygon vertices. The stars of rectangle vertices are 2–valent and map to
the 2–valent stars of the zi vertices in eG† . A group polygon vertex v corresponding
to cj has valence oj and maps to a vertex w covering a torsion vertex cj of the core
graph. The vertices v and w each have oj incoming edges, and because the star of
v covers the 1–valent star of the projection of w with degree oj , the oj –valent star
of v is identified with the oj –valent star of w . This uses the fact that the graphs are
embedded in the surfaces Y and †; there is no angle structure on an abstract graph,
but there is for the graphs GY and G† , so we know how the cone points are covered.

Finally, consider the star of a polygon vertex v in eGY , which maps to a vertex w
covering p in G† . By assumption, the multiset of incident edge labels at v is a subset
of the incident edges at w (the polygon is small), and they are compatibly cyclically
ordered (the cyclic order on the polygon is compatible with O† ). Therefore, the star
of v is embedded in the star of w .

We conclude that the map g embeds the tree eGY inside the tree eG† in a way that
preserves the cyclic order on every vertex. If the reader is familiar with pleated surfaces
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(see [7]), it is enough now to note that this fact about graphs implies that the pleated
surface representative of the map fY has only positive simplices and is therefore an
immersion. If not, we explain. Give Y a hyperbolic structure with geodesic boundary
and decompose it into ideal triangles (which will necessarily be spun around some
closed geodesics in Y ). These ideal triangles lift to ideal triangles in the universal
cover eY . Because h is a deformation retraction to a tree, the image of an ideal triangle
T under h is an infinite tripod h.T /, and because g embeds the tree eGY inside eG† ,
the image of T under g ı h D ffY is an infinite tripod g.h.T //. Now, g sends the
three ideal points at the ends of h.T / to the three ideal points at the ends of g.h.T //.
And because g preserves the cyclic order on every vertex, the cyclic orders on these
triples of points are the same.

Therefore, the image of T under ffY is an infinite tripod whose ends have the same
cyclic order as the ends of T . There is a geodesic ideal triangle T 0 in e† with the
same ends as ffY .T /, and we can homotope ffY on T to map T to T 0 . Because the
order on the ends is preserved, this map is orientation-preserving.

Do this homotopy on lifts of each ideal triangle in Y , and extend the homotopy
equivariantly over eY . The result is an equivariant homotopy of ffY to a map which
takes ideal triangles to ideal triangles in an orientation-preserving way; that is, it is an
immersion taking geodesic boundary to geodesic boundary.

Example 3.5 While Proposition 3.2 may seem technical, it is straightforward to apply
in practice. Consider the orbifold † from Example 2.1 with fundamental group � .
Figure 9 shows a cyclic fatgraph Y over � . A simple check at the polygons shows
that the cyclic orders are Œc

1
; z

0
; c

0
; z�1

0
�, Œc

1
; z

0
; z�1

0
�, Œc

0
; z

0
; z�1

1
�, Œc

1
; z�1

0
�, Œc

1
; z

1
�,

Œc
0
; z�1

1
�, and Œc

0
; z

1
�, which are all compatible with O† . Thus, the map fY can be

straightened to an immersion with geodesic boundary, and in particular, the boundary
loops bound an immersed surface.

3.4 Building immersed surfaces

Given a fatgraph, it is easy to check using Proposition 3.2 whether the induced surface
map is homotopic to an immersion with geodesic boundary. Our goal in this paper is
to build fatgraphs (1) which are homotopic to immersions with geodesic boundary and
(2) which have some given word in the generators as a boundary. In this section, we
show that relaxing either of these conditions makes the problem trivial. This section is
mainly background and introduction to the methods we will use later.
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3.4.1 Cyclic fatgraphs which satisfy Proposition 3.2 Constructing fatgraphs which
satisfy the hypotheses of Proposition 3.2 is quite straightforward. The proposition
requires that the fatgraph be built using only small polygons whose intrinsic cyclic order
on edges is compatible with O† . So if we simply enumerate all possible polygons
satisfying this hypothesis, and all rectangles and group polygons, then we can take
any subset of these pieces such that each edge occurs the same number of times in
polygons as it does in rectangles and group polygons and then glue these pieces together
arbitrarily.

3.4.2 Cyclic fatgraphs over � with given boundary w The boundary 
 of Y has
a simplicial structure, and every (oriented) 1–simplex in 
 is labeled by a generator
inherited from the labels on the pieces of Y . If we simply read off the labels as we
follow 
 , that tells us the image word fY .
 / in � .

c0

c0

z0

z0z�1
1

z�1
0

c0

c0

z1 z�1
0

c0

c0

z0

z0z�1
1

z�1
0

c0

c0

z1 z�1
0

c0

c0

z0

z0
z�1

1

z�1
0

c0

c0

z1
z�1

0

Figure 10: To pinch the loop c2
0
z2

0
z�1

1
z�1

0
c2

0
z

1
z�1

0
into a cyclic fatgraph, we

can pair up the letters arbitrarily into rectangles and group polygons. The
group polygon has two group polygon edges which are glued to monogons,
which allows c2

0
to be part of the boundary.

To build a surface map into † with a desired boundary loop w , which must of course be
homologically trivial, we can start with an oriented simplicial circle, with each simplex
labeled by a generator, such that the circle reads off w . Because w is homologically
trivial, there are as many instances of zi as there are of z�1

i , so we can pair them
arbitrarily into rectangles. Similarly, the cj must come in groups of oj , so we can
group them together to form group polygons. Placing polygons at the junctions of the
group polygons and rectangles to fill in the holes, we produce a cyclic fatgraph Y over
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� , which comes with the surface map fY W Y !†. By construction, the boundary of
Y maps to w . This construction yields a surface map bounding any homologically
trivial word, or words, in � . See Figure 10.

3.4.3 Summary We have seen that building a fatgraph satisfying Proposition 3.2 is
easy, and building a fatgraph with a given boundary is easy. However, the methods
to accomplish each goal are very different, and note that if we glue pieces as in
Section 3.4.1, it is quite difficult to control what the boundary is, and if we pinch a
boundary loop as in Section 3.4.2, it is quite difficult to control what polygons appear.

The proofs of Theorems 4.1 and 4.8 use Section 3.4.1, but done carefully in a way
which controls the boundary.

4 Stability

4.1 Disk orbifolds

In this section, we prove our main result, which says that, under some conditions, the
product of any word in � with a sufficiently high multiple of the boundary word of †
is a loop which bounds an immersed surface with geodesic boundary in †. First, we
state and prove the version for orbifolds whose underlying topological space is a disk.

Theorem 4.1 Let † be a hyperbolic orbifold whose underlying topological space is a
disk and which has at least three orbifold points, of orders foj g

J�1
jD0

. Let w2�D�1.†/

be any hyperbolic element, and let b 2 � be the boundary loop of †. Then there exists
N 2N so that for all n� 0, the loop wbNCng virtually bounds an immersed surface,
where g D gcd.o0� 1; : : : ; oJ�1� 1/.

Remark 4.2 As mentioned in the introduction, the boundary of the orbifold is actually
associated to a conjugacy class in � , not a specific word, so taking wbNCng is not well-
defined. However, if we can prove that the theorem holds for any specific representative
word in the conjugacy class, then the theorem holds for any representative, because the
effect of conjugating b is actually just to change the word w .

Proof As discussed in Section 3.4, our strategy will be to carefully piece together
a fatgraph using only polygons allowed by Proposition 3.2. In this proof, a partial
fatgraph will be a fatgraph with some edges left unattached. That is, a 2–complex
whose cells are fatgraph pieces and whose boundary, an oriented simplicial 1–complex,
is allowed to contain 1–simplices which are fatgraph edges.
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In the first step, we build a partial fatgraph whose boundary contains the desired word
w , plus some unglued edges. In the second step, we describe how taking multiple
copies of the partial fatgraph allows us to glue the unglued edges to complete the
fatgraph in such a way the there is an integer m so that the boundary is multiple
loops of the form .wbm/k for integers k . This shows that wbm virtually bounds an
immersed surface for some m. In the final step, we describe how to vary the power m

to arrive at the result.

Let w D w0 � � �wm . Without loss of generality, we can assume that w has no cyclic
cancellation with b . For if it does, we can prepend and append copies of b to w until
there is no longer cyclic cancellation (b has no cancellation with itself), and take w to
be this word. These extra copies of b are subsumed into the N in the theorem.

Recall that the standard † polygon is the polygon P such that @P D O† . Be-
cause the underlying space of † is a disk, the boundary word is the product of the
finite-order generators. By relabeling, we may assume without loss of generality that
b D c0c1 � � � cJ�1 ; this implies that the standard † polygon has (cyclically ordered)
boundary Œc0; c1; : : : ; cJ�1�. This relabeling doesn’t affect the proof, but it is simpler
to think about. Note that when we start to add infinite-order generators, it will not be
true that the arrangement of generators around the standard † polygon has the same
cyclic order as the boundary word.

Step 1 Start with a horizontal polygonal line oriented to the left and labeled by w ,
so the leftmost simplex is labeled by the final letter in w . Break w into runs of a
single generator. Since w is reduced, any run of cj will have length less than oj . Let
W1; : : : ;WK denote these runs. For each run Wk , which will be of the form Wk D c

ek

j ,
build a group polygon which is labeled on top by Wk , and on the bottom by oj � ek

copies of cj . This group polygon has ek � 1 edges on top in between letters in Wk ;
these will be glued to monogons so that c

ek

j appears on the boundary. There are two
edges on the left and right between the ends of Wk and the first and last new copies
of cj . These will be glued to other parts of the cyclic fatgraph. Finally, there are
oj � ek � 1 edges on the bottom in between the new copies of cj . Onto all of these
edges, we attach a copy of the standard † polygon. These polygons have many edges
remaining unglued, and we will return to them later. See Figure 11.

We have one partial fatgraph for every run Wk , and now we will insert a polygon
between successive Wk to glue them together. The key is to do this in a way that only
uses polygons allowed by Proposition 3.2 and will also allow us to ensure that the
boundary other than w is copies of b . To glue Wk to WkC1 (recall Wk is to the right
of WkC1 ), suppose that Wk is a run of generator cj and WkC1 is a run of generator
cl . Let Pk be the polygon whose boundary @Pk is the interval in O† between cl
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c1

c1

c1

c2 c0

c2

c2

c2

c0

c1 c0

c2

c1

c1

c1

c1 c0

c0 c0

c1 c2

Figure 11: Building a partial cyclic fatgraph for every run Wk in w D

c0c2
1c2c1 . For this example, we let the generators of � be c0; c1; c2 of orders

3 , 3 , and 4 , respectively, and we take the cyclic order to be O† D Œc0; c1; c2� .
These partial fatgraphs are not glued together yet. For clarity, we have labeled
the unglued polygon edges with a single letter, so eg pe.cj / has label cj .

and cj . That is, @Pk is a piece of the cyclically ordered set S , and Pk is simply the
standard † polygon with some edges removed so that cj is followed by cl . If cl is
immediately followed by cj in O† , then Pk will be a bigon.

Now glue every Wk to WkC1 using Pk in the middle. The result is a partial cyclic
fatgraph, and observe that along the top, we have the word w . On the far left and right
ends, there remain two unglued group polygon edges. On the left, build the polygon
PK whose boundary is the interval in O† between c0 and wm ; that is, the first edge
of PK is pe.c0/, and the last edge is pe.wm/. For example, if c0Dwm , then PK will
be degenerate (a monogon). If c0 follows wm in O† , then PK will be a bigon, and
so on. Similarly, build the polygon P0 whose boundary is the interval in O† between
w0 and cJ�1 . Glue PK and P0 on the left and right, respectively. Call the resulting
partial fatgraph Y 0 . See Figure 12.

c0

c1

c1

c2 c0

c1
c2

c0

c1
c2 c0

c2

c1

c2

c1 c1

c0
c1 c2

c0

c1 c2

c0 c0

c1

c2

Figure 12: The partial cyclic fatgraph Y 0 . Again pe.cj / is labeled by cj .

Step 2 (the covering trick) At this point, we have the fatgraph Y 0 , which is composed
of group polygons attached around polygons, with some of the polygon edges unglued.
Also, all of the polygons have boundary which is an interval in the cyclic order O† ,
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so in particular all the polygons are small and have boundary cyclic order compatible
with O† . In this step, we show how taking multiple copies of Y 0 makes it possible to
glue up all the unglued edges.

Consider what the boundary of Y 0 is. It is an oriented simplicial 1–complex whose
simplices are either labeled sides of group polygons or unglued edges from polygons.
We claim the following (see Figure 12):

Lemma 4.3 If we read each polygon edge pe.cj / as the generator cj , then @Y 0Dwbm

for some m.

Proof This lemma is really just by construction. Recall that the boundary of the
standard † polygon is the same as the boundary word of †, and every polygon in Y 0

is an interval in O† . Therefore, for any simplex in @Y 0 which is not part of w and is
labeled pe.cj / or cj , the next simplex must be pe.cjC1/ or cjC1 , with indices modulo
J . If the simplex in @Y 0 is part of w , then by construction it is a labeled side and is
followed by the correct next letter. The special cases of the last letter of w and the
last letter of b before w are also correct by construction. Therefore, @Y 0 D wbm , as
desired.

Lemma 4.3 shows that if each unglued polygon edge pe.cj / is read as cj , then the
boundary is wbm for some m. But of course this isn’t enough — we need to produce
a complete fatgraph with real boundary. The trick is to take multiple copies of Y 0 and
attach group polygons in such a way that the unglued polygon edges are effectively
replaced by labeled group polygon sides. We now explain this trick.

Let L be the least common multiple of the oj , and take L copies of Y 0 . Let Y 00

be these L copies of Y 0 , and think of Y 00 as an L–sheeted cover of Y 0 . The fiber
over a single unglued edge pe.cj / in Y 0 is L copies of pe.cj /. Attach L=oj group
polygons to the L unglued edges in Y 00 in the fiber over a single unglued edge in Y 0 .
Each group polygon can be glued to arbitrary edges within the fiber. Do this for every
unglued edge in Y 0 . We have attached many group polygons to the partial fatgraph
Y 00 . Call the result of attaching these group polygons Y . We claim:

Lemma 4.4 The result Y is a complete fatgraph whose boundary maps to wbm ,
covering it L times, and contains only small polygons whose boundary is compatible
with O† .

Proof Every polygon in Y is a polygon in Y 0 , which contained only small polygons
with boundary compatible with O† , so the last two conclusions are immediate. Also, Y
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pe.c1/ pe.c2/

c1 c1

c1

c1 c1

c1

c1

c1

c1c1

c1

c1

c2 c2

c2 c2 c2 c2

c2 c2 c2 c2
c2

c2

Figure 13: Performing the covering trick on part of the partial fatgraph Y 0

in Figure 12. We take 12 copies of Y 0 and glue group polygons within the
fibers. This figure shows what happens to the group polygon on the lower
right of Figure 12. The polygon (shown on left) is covered by 12 copies. If
we glue in group polygons, note that the boundary has changed from many
copies of � � � pe.c1/pe.c2/ � � � to many copies of � � � c1c2 � � � .

is created by gluing group polygons to all the unglued edges in Y 00 , so it is a complete
fatgraph. So the only question is what the boundary of Y is. By Lemma 4.3, the
boundary of Y 0 is wbm when we read an unglued edge pe.cj / as the generator cj , so
since Y 00 is an L–sheeted cover, the same thing is true for each sheet. Now consider
Y . It is obtained from Y 00 by gluing in group polygons within fibers over each unglued
polygon edge in Y 00 . So by construction, the boundary of Y is obtained from @Y 00

by taking the boundary loops in Y 00 and replacing each unglued polygon edge pe.cj /

with a group polygon side labeled by cj which runs between sheets of Y 00 . Thus @Y
consists of an L–degree cover of the loop wbm .

Remark 4.5 The L–sheeted cover Y 00 of Y 0 has L separate boundary components.
When we glue on group polygons to obtain Y , each occurrence of an unglued edge
pe.cj / is replaced by the labeled side cj , as we desire. However, this labeled side
transits between two different sheets of Y 00 . Therefore, the final boundary of Y will
look locally as if we simply replaced pe.cj / with cj , but some of the boundary loops
may have been joined together. The total degree remains L.

For example, to perform this “covering trick” on the partial fatgraph Y 0 in Figure 12,
we would compute the least common multiple of the oj 3, 3, and 4, which is 12. Take
12 copies of the partial fatgraph to get Y 00 . Now for any unglued polygon edge in Y 0 ,
glue group polygons to the unglued edges in Y 00 in the fiber. See Figure 13.
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Because Y contains only polygons which are compatible with the cyclic order O† , we
can apply Proposition 3.2 to show that fY is homotopic to an immersion with geodesic
boundary, so wbm virtually bounds an immersed surface. This completes Step 2.

Step 3 We need more than the fact that wbm virtually bounds an immersed surface:
Theorem 4.1 is a stability result, and we need to show that there is N such that
for all n > 0, we have that wbNCng virtually bounds an immersed surface, where
gD gcd.o0�1; : : : ; oJ�1�1/. In Step 2, we showed that for some m, wbm virtually
bounds an immersed surface. In this step, we show that we can actually achieve any
desired m, as long as it is large enough and g jm.

Consider again the partial fatgraph Y 0 from Step 2. By Lemma 4.3, if we read the
unglued polygon edge pe.cj / as cj , then the boundary of Y 0 is wbm for some m.
For the current step, we need there to be some unglued polygon edge. This is almost
certainly the case, but if not, append a copy of b onto w , which forces some unglued
edges. So without loss of generality, we assume there is an unglued polygon edge, and
also without loss of generality, we assume it is pe.c0/. We will now re-use notation
and define a new Y 00 for this step. Let Y 00 be the partial fatgraph obtained from Y 0

by attaching a c0 –group polygon onto the unglued polygon edge pe.c0/ and attaching
standard † polygons onto all unglued edges of this new group polygon.

Note that we have added o0� 1 new polygons, and, reading unglued edges pe.cj / as
cj , the boundary of Y 00 is wbmC.o0�1/ . Also note that the newly attached standard †
polygons have every edge unglued except c0 . So for any j except jD0, we can repeat
this procedure to obtain a fatgraph whose boundary is wbmC.o0�1/C.oj�1/ (when
unglued edges are read as generators). See Figure 14.

Therefore, by repeating this procedure, we can obtain a partial fatgraph whose boundary
(with pe.cj / read as cj ) is wbM, where M is any integer of the form mC

PK
kD1.oik

�

1/, where the successive ik are distinct. By Lemma 4.6, there is some N such that for
all n � 0, every integer N C ng is of this form. Now take this partial fatgraph with
boundary wbM and perform Step 2 (the covering trick) to get a real, complete fatgraph
satisfying Proposition 3.2. This shows that wbM virtually bounds an immersed surface,
and completes the proof.

The following lemma is required by the proof of Theorem 4.1, but it is independently
interesting.

Lemma 4.6 Given integers fxig
k
iD1

with k � 3 and with g D gcdi xi , there is some
N 2N so that for all n 2N , there is an integer sequence fij gJjD1

such that ij ¤ ijC1

for all j and
PJ

jD1xij DN C ng .
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c0

c0

c1

c1

c1

c2

c0

c0

c1

c1

c2

c2

c2 c0
c1c1

c2

c0

c1

c2 c0

c1

c1

c2

c0

c2

c0

c1

c2 c0 c1 c2 c0

c2

c0

c1

c1

c2

Figure 14: Adding group polygons to add copies of b to the boundary. Notice
that upon adding the first group polygon, the newly introduced standard †
polygons have every possible unglued edge except e.c0; c0/ , to which we
attached the first group polygon.

Proof We call the sequence 1; 2; : : : ; k a run. The idea in constructing the sequence ij
is to start with a repeating sequence of runs 1; 2; : : : ; k; 1; 2; : : : ; k; : : : and take away a
single number from every other run. The resulting list will have distinct adjacent pairs.

We can write gD
Pk

iD1 aixi . Let sD
Pk

iD1 xi , and let M Dmaxi ai and mDmini ai .
Let N D 2ks.s=g/.M �m/. Now, given C >N such that g j C , write C D csC r ,
where r < s . Notice that

� c � 2k.s=g/.M �m/, and
� g j r because g j s , so
� r D dg , where d < s=g .

Therefore, we can rewrite

C D csC dg D csC d

kX
iD1

aixi D csC dM

kX
iD1

xi � d

kX
iD1

.M � ai/xi

D .cC dM /s�

kX
iD1

d.M � ai/xi ;

where every term M � ai is non-negative. Start with a sequence of .cC dM / runs.
If we could remove d.M � ai/ copies of i from the sequence, for each i , then
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P
j xij for the resulting sequence fij gj would have the correct value C . But we

must be certain that when these copies of i are removed, the adjacent elements in the
sequence remain distinct. To accomplish this, we can remove a single i from every
other run. We need to know that we have enough runs available, ie we need at least
2d.M � ai/� 2d.M �m/� 2.s=g/.M �m/ runs for every i . But from our bound
on c , we have at least c � 2k.s=g/.M �m/ runs, so we can remove the indices as
desired, and the proof is complete.

Remark 4.7 Theorem 4.1 generalizes [5, Theorem 3.1]. The situation of interest in [5]
is .2;p;1/ orbifolds, which have only two orbifold points, and as stated, Theorem 4.1
requires 3 orbifold points. However, in the special case of two orbifold points with
one point of order 2, Lemma 4.6 can be avoided, and Theorem 4.1 still goes through.
The proof of Theorem 4.1 is essentially a combinatorialization of the argument in [5].

4.2 Orbifolds with genus

We now prove an analog of Theorem 4.1 in the case that the orbifold has genus at
least 1. In this case, we can avoid any number-theoretic issues.

Theorem 4.8 Let † be a hyperbolic orbifold with one boundary component and with
genus at least 1. Let � D �1.†/ with b D @† 2 � , and let w 2 � be hyperbolic so
that some power of w is homologically trivial. Then there exists N 2 N so that for
all n � 0, the loop representing wbNCn virtually bounds an immersed surface with
geodesic boundary.

Proof As with the disk orbifold proof, in Step 1, we construct a partial fatgraph with
some unglued polygon edges. The proof becomes different in Step 2: We cannot use a
covering trick to fill in unglued polygon edges for infinite-order generators. Therefore,
we exhibit small partial fatgraph modules which can be inserted to fill in these edges.
Then we use the covering trick to fill in all the finite-order edges.

After relabeling, we can assume that the cyclic order on the infinite order generators
is such that the boundary has the standard form Œz0; z1� � � � ŒzI�2; zI�1� (if there are
finite-order generators, they are inserted within this cyclic boundary word). Therefore,
the cyclic order is Œz

0
; z�1

1
; z�1

0
; z

1
; � � � ; z

I�2
; z�1

I�1
; z�1

I�2
; z

I�1
� (with finite-order gen-

erators inserted at appropriate positions). Note that the cyclic order isn’t the same as
the boundary word. It will be useful to be able to refer to the letters in w and the
boundary word b , but their lengths will not matter. Therefore, we use w0 and w�1 to
refer to the first and last letters in w , and similarly for b .
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Step 1 Perform Step 1 as in the proof of Theorem 4.1 to get a partial cyclic fatgraph
Y 0 which has boundary w along the top and many unglued polygon edges. There are
two situations not covered by those instructions, as follows. First, each infinite order
generator zi is in a run Wk by itself, and the fatgraph piece we use for this run is
simply a rectangle. Second, when building the polygon to be glued onto the far left, we
use the polygon which is the interval in O† between b0 and w�1 , and the polygon
for the far right is the interval between w0 and b�1 . In the proof of Theorem 4.1, we
used c0 and cJ�1 in place of b0 and b�1 because in the disk orbifold case we know
that the boundary word is exactly c0 � � � cJ�1 . See Figure 15 for an example of Y 0 .

z0
c0

z�1
0c0

z0

z�1
1 c0

z�1
0

z1 z0

z�1
1

c0z�1
0

z1

z0
z1

z0

z�1
1 c0

z�1
0

z1 z0

z�1
1

c0 z�1
0 z�1

1

c0

z�1
0

z1

Figure 15: The partial fatgraph Y 0 for the word w D z
0
c

0
z�1

0
c

0
in an

orbifold of genus 1 with one orbifold point of order 3 , with cyclic order
Œz

0
; z�1

1
; c

0
; z�1

0
; z

1
� and thus boundary b D z

0
z

1
c

0
z�1

0
z�1

1
. For simplicity,

we denote the edges pe.zi/ and pe.cj / by zi and cj , respectively. This
picture omits the replacement of w by wb2 , as described at the end of Step 1 ,
because it is not necessary to do that to have enough unglued polygon edges
in this example.

For reasons which become apparent in Step 3, we need for there to be sufficiently
many unglued polygon edges. Therefore, we assume that we have appended a copy
of b2 onto w . Since the polygon inserted between letters in b is a complete standard
† polygon, and b has length at least 4, we ensure that there are at least four polygon
edges pe.zi/ and four polygon edges pe.z�1

i / for each i . For simplicity, we will not
show this in our example pictures.

Step 2 In this step, we describe how to fill in the unglued polygon edges associated with
the infinite-order generators. We do this by building small partial fatgraph “modules”
which can be glued in to complete Y 0 .

It will be convenient to be able to refer to subwords of the boundary word b . Denote
by bi;C and bi;� the subword of the (cyclic) word b between (not including) zi

and z�1
i , and z�1

i and zi , respectively. For example, if b D z
0
z

1
c

0
z�1

0
z�1

1
, then

b0;C D z1c0 and b
0;�
D z�1

1
.
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Now let P be the standard † polygon, whose boundary is O† . For each infinite-order
generator zi , attach the rectangle r.zi/ to both polygon edges pe.zi/ and pe.z�1

i /.
Call this partial fatgraph A. Note that if we read unglued finite-order polygon edges
pe.cj / as cj , then @AD b ; ie the boundary of A is the boundary word of †.

For each i , define a partial fatgraph Ai as follows. Detach one edge of the rectangle
r.zi/ from the polygon P , and glue a duplicate copy of r.zi/ to the polygon edge
which is now unglued. That is, instead of there being a single rectangle with both edges
glued to P , there are now two rectangles, each of which is glued to one of the two
edges pe.zi/ and pe.z�1

i / in P . See Figure 16.

z0

z�1
0

re.z0/

z1

z�1
1

re.z�1
0
/

z0

z�1
0 c0

c0
z0z1 z1

z�1
0

z�1
1

z�1
1

re.z1/
re.z�1

1
/

Figure 16: The partial fatgraph modules A0 and A1 in the example from Figure 15

Lemma 4.9 The partial fatgraph Ai has two boundary components. When finite-order
polygon edges pe.cj / are read as cj , the 1–simplices in the boundary are labeled
pe.zi/zibi;Cz�1

i and pe.z�1
i /z�1

i bi;�zi . Consequently, there are no infinite-order
unglued polygon edges, and there are exactly the two unglued rectangle edges re.zi/

and re.z�1
i /.

Proof This is just by construction; Figure 16 illustrates it. Suppose we build a fatgraph
B by attaching the bigon Œ pe.zi/; pe.z�1

i /� to the two unglued rectangle edges in Ai .
Then we have effectively taken A and replaced the rectangle r.zi/ with two rectangles
glued end-to-end. Therefore, the boundary of B is b with zi and z�1

i duplicated. So
the boundary of B is z2

i bi;Cz�2
i bi;� . Now remove the bigon to get Ai back from B ,

which cuts the boundary in two at the z2
i and z�2

i and inserts the rectangle edges as
claimed.

The partial fatgraphs Ai are the small modules which we will glue onto Y 0 to fill in
the unglued polygon edges. Each Ai has the two rectangle edges re.zi/ and re.z�1

i /.
So we must verify that Y 0 contains the same number of pe.zi/ as pe.z�1

i / for each i .

Lemma 4.10 For every i , Y 0 contains the same number of unglued polygon edges
pe.zi/ and pe.z�1

i /.
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Proof The purpose of the this lemma is to verify that we can attach the partial
fatgraphs Ai to Y 0 to fill in all the unglued polygon edges. So it is interesting that
to prove this lemma, we will attach different partial fatgraphs to Y 0 and then make
some observations about the result. It is also possible to prove the lemma with some
technical combinatorial counting, but this method is more intuitive.

Note that the infinite-order generators naturally come in pairs, one for each genus. For
each i , let i 0 denote the index with which i is paired. So i 0 D iC1 if i � 0 mod 2,
and i 0 D i�1 if i � 1 mod 2.

Consider the partial fatgraph Ai . It has two unglued rectangle edges re.zi/ and re.z�1
i /.

Because the fundamental group of Ai embeds in � , we will refer to elements of �1.Ai/

by their images in � . Because we have assumed the standard form for the generators,
a loop freely homotopic to zi0 in Ai is separating, and the two boundary components
of Ai are in different connected components of the complement of the loop zi0 . See
Figure 17.

z0

z1

z�1
1

z0

re.z�1
0
/

z�1
0 c0

z�1
0

re.z0/

z1
c0

z�1
0

z0
z1

z�1
1

z�1
1

re.z1/
re.z�1

1
/

A0;� A0;C A1;� A1;C

Figure 17: The fatgraph modules A0 and A1 as in Figure 16, get cut into the
modules A0;˙ and A1;˙ in the proof of Lemma 4.10

Thus the loop zi0 cuts Ai into two surfaces, which we will refer to as Ai;C and Ai;� .
The surface Ai;C has two boundary components, the loops re.zi/zibi;Cz�1

i and z˙1
i0 ,

and Ai;� has the boundaries re.z�1
i /z�1

i bi;�zi and z
�1
i0 . We use the symbols z˙1

i0

and z
�1
i0 to refer to the positive and negative powers of zi0 because which power goes

with Ai;C and Ai;� depends on the parity of i . This doesn’t matter; the key fact is
that Ai;C and Ai;� each have a zi0 boundary loop, and the loops on Ai;C and Ai;�

have opposite signs.

So for each i , we have the partial fatgraphs Ai;C and Ai;� , which have the single
unglued rectangle edge re.zi/ and re.z�1

i /, respectively. Build a new fatgraph X by
attaching a copy of Ai;˙ to every unglued infinite-order polygon edge pe.z˙1

i / in
Y 0 . Each Ai;˙ has only a single unglued rectangle edge, so there is no obstruction
to attaching them to every unglued edge. Because the Ai;˙ have no unglued infinite-
order polygon edges, there are no infinite-order unglued polygon edges in X , so X
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contains only labeled sides of rectangles and unglued finite-order polygon edges. And
by the construction of Y 0 (because every polygon in Y 0 is an interval in O† ), if we
read each finite-order edge pe.cj / as cj , the boundary of X is of the form wbmCPI�1

iD0 Mizi Cmiz
�1
i for integers m, Mi , and mi . The z˙1

i boundary components
arise from the small boundary loops in the Ai;˙ . Because the only unglued edges in
X are finite-order edges, the boundary of X has a finite power which is homologically
trivial. And since w and b both have finite powers which are homologically trivial, the
sum

PI�1
iD0 Mizi Cmiz

�1
i must be homologically trivial, so it must be that mi DMi

for each i . But these integers count the number of copies of Ai;C and Ai;� which we
attached to Y 0 , so we conclude that the number of unglued edges pe.zi/ is equal to
the number of unglued edges pe.z�1

i /, as desired.

By Lemma 4.10, the partial fatgraph Y 0 contains the same number of edges pe.zi/ as
pe.z�1

i / for each i . Call this number mi . Therefore, it is possible to attach mi copies
of Ai to Y 0 for each i . Call the resulting fatgraph Y 00 . By construction, Y 00 has a
single boundary component, which, if pe.cj / is read as cj , is wbm for some m. By
applying Step 2 of Theorem 4.1, the covering trick, to Y 00 we can produce a complete
fatgraph Y whose boundary covers wbm . By construction Y contains only polygons
whose boundaries are intervals of O† , so they are small and compatible with O† .
Therefore, the existence of Y shows that wbm virtually bounds an immersed surface
in †. Figure 18 shows the result Y 00 of attaching all the Ai to the partial fatgraph Y 0

shown in Figure 15. This completes Step 2.

Step 3 As with the proof of Theorem 4.1, we have shown that wbm virtually bounds
an immersed surface for some m, but we need to show the stability result that there is
an N such that for all n� 0, wbNCn virtually bounds an immersed surface.

To prove this, we will construct some new partial fatgraph “modules” which can replace
some of the Ai and have the effect of increasing the power of b in the boundary. As it
turns out, it is quite simple to increase the power of b by two, which would prove the
theorem for even n. It is more complicated to increase the power by one; this requires
taking a cover.

First, we show how to increase the power of b by (a multiple of) two. This requires
exhibiting a new kind of partial fatgraph, which we will denote by Ai;k . Recall that i 0

is the generator paired with i , so that Œzi ; zi0 �
˙1 appears in b , possibly with finite-order

generators inserted. Given k even, build Ai;k as follows (See Figure 19): take kC 1

copies of the standard † polygon, indexed by P` for `D 0 : : : k . For every infinite-
order generator zt with t ¤ i and t ¤ i 0 , add k C 1 copies of the rectangle r.zt /,
each one connected at both edges to a single polygon P` . Next, add kC 2 copies of
r.zi/. One copy has rectangle edge re.zi/ connected to P0 ; one copy has rectangle
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Figure 18: The result of attaching the Ai to the partial fatgraph in Figure 15.
For clarity, two regions of the fatgraph are drawn separately, and dotted lines
indicate where they should be placed. Patience reveals that the boundary is,
in fact, wb14 .

edge re.z�1
i / connected to Pk ; and the remaining copies connect P` to P`C1 . Finally,

add kC 1 copies of r.zi0/, as follows: for each ` divisible by 2, add two copies of
r.zi0/ which connect P` to P`C1 . The boundary of Ai;k has two components by
construction, with the labels re.z�1

i /z�1
i bkbi;�zi and re.zi/zibi;Cz�1

i . Note the power
bk in the first boundary component is the cyclic word bk ; it may be cyclically rotated
from the original choice of a cyclic representative that we called b . This is correct,
since if we insert a copy of b in the middle of a power of b , we must cyclically shift
the inserted copy, depending on the location it is inserted, so that it aligns correctly.
See Figure 19.

Note that the boundary of Ai;k is exactly that of Ai , except one of the boundaries has
k copies of b inserted. Thus, if we replace one of the copies of Ai for some i with
Ai;k in Step 2, the resulting fatgraph Y has boundary wbmCk . The fact that we can
insert a copy of Ai;k requires that we have at least two unglued polygon edges. Recall
we ensured this in Step 1. This shows that wbmCk virtually bounds an immersed
surface for any even k .

Finally, we show how to build a fatgraph with boundary wbmCkC1 for any even k .
Consider again Y 0 , and recall that Y 0 has at least four unglued polygon edges pe.z0/

and pe.z�1
0
/ (it has these unglued edges for every i ; we choose 0 arbitrarily). Glue

copies of Ai to all unglued polygon edges for every index except 0, and glue a copy
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z�1
0

z�1
0

z�1
0

z�1
0

z0 z0
z0 z0

re.z�1
0
/

c0 c0
c0

re.z0/

z1

z1

z1

z�1
1

z�1
1

z�1
1

Figure 19: The partial fatgraph A0;2 . The boxed area is duplicated as desired
to produce A0;k . Note that replacing one of the A0 with A0;k increases the
power of b in the boundary by k .
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e3z�1
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1
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1
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z1
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z�1

0
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z0

z1

c0
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0
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z1
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0
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0

z�1
1
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0z�1
1

z0

e02

z0

z1

c0
z�1

0

Figure 20: Two copies of the partial fatgraph module B , with rectangle edges
labeled as they should be attached to X 0 in the proof of Theorem 4.8

of A0 to one of the four pairs of unglued edges for index 0, leaving three pairs. Next,
attach a copy of A0;k to one of the pairs, leaving two pairs. Call the resulting fatgraph
X . Note X has exactly four unglued polygon edges: two pe.z0/, which we denote
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by e1 and e2 and two pe.z�1
0
/, which we denote by e3 and e4 . Let X 0 be the partial

fatgraph which is two copies of X , and think of X 0 as a double cover of X . Each es

has two edges covering it, which we denote by es and e0s .

We are going to attach two copies of a fatgraph module B to the unglued edges in X 0 .
The module B is similar to A0;2 , and is created from A0;2 by removing the r.z0/

rectangle between polygons 0 and 1 in the construction of A0;2 and replacing it with
two rectangles, one glued to polygon 0 and one glued to polygon 1. This leaves four
unglued rectangle edges. It is far easier to understand by consulting Figure 20. Though
this picture is for a specific example, B in any other case is formed by just adding
finite-order edges and genus loop pairs at locations on the standard polygons; it doesn’t
actually change the form of the module.

Take two copies of B , as shown in Figure 20, and attach the edges to X 0 as labeled to
produce a fatgraph X 00 . Note X 00 has no unglued infinite-order polygon edges, and
reading pe.cj / as cj , we find that the boundary of X 00 is two copies of wbmCkC1 .

e1

e3 e4

e2

e01 e03 e04 e02

Figure 21: A schematic showing the boundary of X 00 after attaching two
copies of B to X 0 . The two levels indicate the two sheets of X 0 as a cover
of X . This picture shows why this particular way of attaching the edges adds
one copy of b in the same place on both boundaries of the cover.

Figure 21 shows a schematic of how the boundary behaves after attaching the two
copies of B . The exact arrangement of edges used in attaching B to X 0 is important:
we need a fatgraph whose boundary is two copies of wbmCkC1 . Were we to attach
differently, we would have a fatgraph whose boundary contained two copies of w
and many copies of b , but the powers of b in between the w might not be the same.
Attaching as instructed places the extra copy of b in the same place on both sheets of
the cover X 0 .

Now performing the covering trick on X 00 produces a fatgraph Y whose boundary
covers wbmCkC1 , and by construction Y satisfies Proposition 3.2. We have now
shown that wbmCk and wbmCkC1 virtually bound immersed surfaces for every even
k , so this completes the proof.
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Remark 4.11 Theorem 4.8 applies in the case of a hyperbolic surface with a single
boundary (and no orbifold points), so it resolves [2, Conjecture 3.16].

Remark 4.12 When a loop 
 virtually bounds an immersed surface, it means there
is an immersed fatgraph with geodesic boundary whose boundary covers 
 with
some degree, which we call the covering degree of 
 . The proofs of Theorems 4.1
and 4.8 show that the covering degree of wbn depends on the orders of the finite-order
generators and is independent of w and n. In particular, if there are no orbifold points,
then the covering degree is either 1 or 2 depending on the parity of n.
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