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Rectification of enriched 1–categories

RUNE HAUGSENG

We prove a rectification theorem for enriched 1–categories: if V is a nice monoidal
model category, we show that the homotopy theory of 1–categories enriched in V

is equivalent to the familiar homotopy theory of categories strictly enriched in V .
It follows, for example, that 1–categories enriched in spectra or chain complexes
are equivalent to spectral categories and dg–categories. A similar method gives a
comparison result for enriched Segal categories, which implies that the homotopy
theories of n–categories and .1; n/–categories defined by iterated 1–categorical
enrichment are equivalent to those of more familiar versions of these objects. In the
latter case we also include a direct comparison with complete n–fold Segal spaces.
Along the way we prove a comparison result for fiberwise simplicial localizations
potentially of independent use.

18D2, 55U35; 18D50, 55P48

1 Introduction

In [13], David Gepner and I set up a general theory of “weakly enriched categories;”
more precisely, we introduced a notion of 1–categories enriched in a monoidal 1–
category, and constructed an 1–category of these objects where the equivalences are
the natural analogue of fully faithful and essentially surjective functors in this context.
In this paper we are interested in the situation where the monoidal 1–category we
enrich in can be described by a monoidal model category; this applies to many, if not
most, interesting examples of monoidal 1–categories. If V is a model category, then
inverting the weak equivalences W gives an 1–category V ŒW �1�; if V is a monoidal
model category, then V ŒW �1� inherits a monoidal structure, so our theory produces
an 1–category of V ŒW �1�–enriched 1–categories. On the other hand, there is also
often a model structure on ordinary V –enriched categories (cf Lurie [21], Berger and
Moerdijk [6], Stanculescu [34] and Muro [26]) where the weak equivalences are the
so-called DK–equivalences, namely the functors that are weakly fully faithful (ie given
by weak equivalences in V on morphism objects) and essentially surjective (up to
homotopy). Our main goal in this paper is to prove a rectification theorem in this
setting:
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Theorem 1.1 If V is a nice monoidal model category, then the homotopy theory of
1–categories enriched in V ŒW �1� is equivalent to the homotopy theory of ordinary
V –enriched categories with respect to the DK–equivalences.

In particular, V ŒW �1�–enriched 1–categories can be rectified to V –categories: every
V ŒW �1�–enriched 1–category is equivalent to one coming from a category enriched
in V . We will state and prove a precise version of this result in Section 5. The precise
meaning of “nice” required applies, for example, to the category of chain complexes
over a ring with the usual projective model structure, and certain model structures
on symmetric spectra. We can therefore conclude that the 1–category of spectral
categories is equivalent to that of spectral 1–categories, and the 1–category of
dg–categories to that of 1–categories enriched in the derived 1–category of abelian
groups.

If V is a nice Cartesian model category, ie a monoidal model category with respect
to the Cartesian product, then the theory of V –enriched Segal categories, as defined
by Lurie [22] and Simpson [32], gives an alternative notion of “weakly V –enriched
categories”. Using a similar proof strategy we also prove a comparison result in this
setting:

Theorem 1.2 If V is a nice Cartesian model category, then the homotopy theory of
1–categories enriched in V ŒW �1� is equivalent to the homotopy theory of V –enriched
Segal categories.

We will prove a precise version of this theorem in Section 6. From this we can
conclude that the homotopy theories of n–categories and .1; n/–categories constructed
in [13, Section 6.1] using iterated enrichment are equivalent to those constructed as
iterated Segal categories, starting with sets or simplicial sets, respectively. These are
due to Tamsamani and Pellissier, Hirschowitz and Simpson, and are constructed as
model categories in [32].

Our last main result, which we will prove in Section 7, is a more direct comparison
with .1; n/–categories, generalizing that between 1–categories enriched in spaces
and Segal spaces in [13, Section 4.4]:

Theorem 1.3 The homotopy theory of .1; n/–categories obtained by iterated 1–
categorical enrichment is equivalent to that of complete n–fold Segal spaces.

We now outline the proof of Theorem 1.1 and the organization of the paper. In [13]
we defined enriched 1–categories in a monoidal 1–category V as “many-object
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associative algebras” in V , or more precisely as algebras for a “many-object associative
operad” �

op
X

, where X is a space. In Section 2 we briefly review this definition and
the context in which it takes place, namely the theory of nonsymmetric 1–operads.

The first step in the proof of our rectification theorem is to show that for X a set
and V a nice monoidal model category, the 1–category Alg�

op
X
.V ŒW �1�/ of �

op
X

–
algebras in V ŒW �1� is equivalent to the 1–category obtained by inverting the weakly
fully faithful functors in the category CatX .V / of V –categories with a fixed set of
objects X . To see this, we first (in Section 3) review Lurie’s rectification theorem
for associative algebras (see [23, Theorem 4.1.4.4]) and observe that it generalizes to
associative algebras in certain nonsymmetric monoidal model categories.

Next, we wish to combine these equivalences to an equivalence of 1–categories
where the sets of objects are allowed to vary. In [13] we combined the 1–categories
Alg�

op
X
.V/ for all spaces X to an1–category Algcat.V/ of categorical algebras. Here,

we consider the 1–category Algcat.V/Set of categorical algebras with sets of objects.
We will prove that if V is a nice monoidal model category, then Algcat.V ŒW

�1�/Set is
equivalent to the 1–category obtained from the category Cat.V / of V –categories by
inverting those morphisms that are weakly fully faithful and bijective on sets of objects.
To see this we need a technical result about 1–categorical localizations of fibrations
of categories, which we prove in Section 4.

The “correct” 1–category of V–1–categories is not Algcat.V/, but rather the 1–
category obtained from this by inverting the fully faithful and essentially surjective
functors. One of the main results of [13] was that this is equivalent to the full subcategory
CatV1 of Algcat.V/ spanned by those V –1–categories that are complete in the sense
that their space of objects is equivalent to their classifying space of equivalences. We
also showed, in [13, Theorem 5.3.17], that inverting the fully faithful and essentially
surjective morphisms in Algcat.V/ is equivalent to inverting them in Algcat.V/Set . Since
the DK–equivalences in Cat.V /, if V is a nice monoidal model category, correspond
to the fully faithful and essentially surjective functors in Algcat.V ŒW

�1�/Set , we con-
clude that the 1–category obtained from Cat.V / by inverting the DK–equivalences
is equivalent to CatV ŒW

�1�
1 . We will give the details of the proof we have just sketched

in Section 5, after the technical preliminaries of Sections 3 and 4. We then prove the
comparison with Segal categories using a similar proof in Section 6 and the comparison
with n–fold Segal spaces in Section 7.

1.1 Notation

Much of this paper is based on work of Lurie in [23; 21]; we have generally kept his
notation and terminology. In particular, by an 1–category we mean a quasicategory,
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ie a simplicial set satisfying certain horn-filling properties. However, in the few cases
where the notation of [13] differs from that of Lurie we have kept that of the latter.
Here are some hopefully useful reminders.

� Generic categories are generally denoted by single capital boldface letters
(A;B ;C ) and generic 1–categories by single caligraphic letters (A;B; C ).
Specific categories and 1–categories both get names in the normal text font:
thus the category of small V –categories is denoted Cat.V / and the 1–category
of small V –1–categories is denoted CatV1 .

� � is the simplicial indexing category, ie the category with objects the nonempty
ordered sets Œn�D f0; 1; : : : ; ng and order-preserving maps as morphisms.

� A model category is tractable if it is combinatorial and there exists a set of
generating cofibrations that consists of morphisms between cofibrant objects.

� Set� is the category of simplicial sets, and SetC� is the category of marked
simplicial sets, ie simplicial sets equipped with a collection of 1–simplices
including the degenerate ones.

� If C is an 1–category, we write �C for the interior or underlying space of C , ie
the largest subspace of C that is a Kan complex.

� If f W C!D is left adjoint to a functor gW D! C , we will refer to the adjunction
as f a g .

� S is the1–category of spaces (in the sense of homotopy types or1–groupoids),
and Cat1 is the 1–category of 1–categories.

� If C is a model category, we write C cof for the full subcategory of C spanned
by the cofibrant objects.

Acknowledgements This paper is based on part of my PhD thesis. I thank Haynes
Miller for being a great PhD advisor in general; Clark Barwick for several very helpful
conversations, particularly regarding the material in Section 4; Chris Schommer-Pries
for the proof of Proposition 6.7; and David Gepner for discussions of this work and
enriched 1–categories in general. I also thank the American-Scandinavian Foundation
and the Norway-America Association for partially supporting me during the time most
of this work was carried out.

2 Brief review of nonsymmetric 1–operads and enriched
1–categories

To orient the reader, we begin with a brief review of the nonsymmetric version of
Lurie’s 1–operads and the definition of enriched 1–categories. We focus on the
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essential ideas and do not give complete technical details of definitions or results; for a
more detailed introduction we refer the reader to [13, Section 2].

The starting point for the theory of nonsymmetric 1–operads is the category of
operators of a nonsymmetric operad (originally introduced by May and Thomason for
symmetric operads):

Definition 2.1 Let O be a colored nonsymmetric operad (or in other words a multicat-
egory). Its category of operators O˝ has as objects lists (possibly empty) .X1; : : : ;Xn/

of objects of O , and a morphism .X1; : : : ;Xn/! .Y1; : : : ;Ym/ is given by a mor-
phism �W Œm�! Œn� in � and for each i D 1; : : : ;m a multimorphism in O from
.X�.i�1/C1; : : : ;X�.i// to Yi .

There is an obvious projection � W O˝!�op , with the following properties.

(i) Recall that a morphism �W Œn�! Œm� in � is inert if it is the inclusion of a
subinterval, ie if �.i/D �.0/C i for all i D 0; : : : ; n. For every inert morphism
�W Œn�! Œm� and every object X 2 O˝ with �.X / D Œm�, there exists a � –
cocartesian morphism X ! �!X over � .

(ii) Let �i W Œ1�! Œn� denote the inert morphism in � that sends 0 to i � 1 and 1

to i . The functors O˝
Œn�
!O˝

Œ1�
induced by the cocartesian morphisms over �i

combine to give an equivalence of categories

O˝
Œn�

�

�!

nY
iD1

O˝
Œ1�
:

(iii) Given objects X 2 O˝
Œn�

, Y 2 O˝
Œm�

and a morphism �W Œm�! Œn� in �, the
inert maps Y ! �i;!Y induce an isomorphism

Hom�
O˝

.X;Y /
�

�!

mY
iD1

Hom�iı�

O˝
.X; �i;!Y /;

where Hom�O˝.X;Y / denotes the set of morphisms X ! Y in O˝ that map
to � in �op .

It is not hard to see that these three properties characterize the categories of operators
of colored nonsymmetric operads:

Proposition 2.2 Any functor � W C !�op that satisfies (i)–(iii) determines a colored
nonsymmetric operad that has C as its category of operators. Moreover, under this
identification morphisms of operads correspond precisely to functors over �op that
preserve the cocartesian morphisms over the inert maps in �op .
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Properties (i)–(iii) have precise analogues in the theory of 1–categories, and a non-
symmetric 1–operad is precisely a functor of 1–categories O! �op with these
properties. If O and P are nonsymmetric 1–operads in this sense, it is also easy to
define the 1–category of O–algebras in P :

Definition 2.3 The 1–category AlgO.P/ of O–algebras in P is the full subcategory
of the functor 1–category Fun�op.O;P/ of functors from O to P over �op spanned
by those functors that preserve the cocartesian morphisms over inert maps in �op .

The simple definition of the homotopically correct category of algebras is one of the key
advantages of the theory of 1–operads over operads enriched in topological spaces or
simplicial sets.

An important source of nonsymmetric1–operads is nonsymmetric operads enriched in
simplicial sets or topological spaces: if O is a colored nonsymmetric operad enriched
in simplicial sets all of whose mapping spaces are Kan complexes, then its simplicial
category of operators (defined completely analogously to the set-based version discussed
above) is fibrant, and its coherent nerve NO˝!�op is an 1–operad; for operads
enriched in topological spaces, we simply take the singular simplicial sets of the
mapping spaces first. For example, the associative operad just gives the identity map
�op!�op , which is easily seen to be equivalent to the 1–operad associated to an
A1–operad. This should not be surprising: in the 1–categorical setting it does not
make sense to talk about “strict” associative algebras, the only meaningful notion is
that of an algebra associative up to coherent homotopies, and this notion is already
encoded in algebras for the associative 1–operad.

We can also recognize monoidal categories from the category of operators perspective:
they are precisely those categories of operators C ! �op that are Grothendieck
opfibrations. Analogously we can define a monoidal1–category to be a nonsymmetric
1–operad that is also a cocartesian fibration, but this can also be reformulated more
simply:

Definition 2.4 A monoidal 1–category is a cocartesian fibration V˝!�op such
that for each Œn�2� the functor V˝

Œn�
!
Qn

iD1 V
˝

Œ1�
which is induced by the cocartesian

morphisms over the inert maps �i W Œ1�! Œn� is an equivalence of 1–categories.

Using the correspondence between cocartesian fibrations and functors to the 1–
category Cat1 of 1–categories, we get an equivalence between monoidal 1–cate-
gories and associative monoids in Cat1 :
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Definition 2.5 Let C be an 1–category with products. An associative monoid in C
is a functor �W �op! C that satisfies the Segal condition: for any Œn� 2� the map
�.Œn�/!

Qn
iD1 �.Œ1�/ induced by the maps �.�i/ is an equivalence.

There is also an equivalence between associative monoids in C and algebras for the
associative1–operad in C (equipped with the monoidal structure given by the Cartesian
product). In particular, we have:

Proposition 2.6 There are equivalences of1–categories between associative algebras
in Cat1 , associative monoids in Cat1 and monoidal 1–categories.

What we have discussed so far is the nonsymmetric variant of 1–operads. Lurie’s orig-
inal theory, developed in [23], concerns symmetric 1–operads. This has a completely
analogous motivation; the only difference is that in the definition of the category of
operators the category �op is replaced by the category �op of pointed finite sets. In the
1–categorical setting this leads to Lurie’s definitions of symmetric 1–operads and
symmetric monoidal 1–categories. As the nonsymmetric theory is the one relevant to
the present paper, we refer the reader to [23] for more details and do not discuss this
further here.

Instead, we turn to a brief summary of the theory of enriched 1–categories as intro-
duced in [13]. Recall that if V is a monoidal category, then V –enriched categories with
a fixed set X of objects can be regarded as the algebras for a certain nonsymmetric
colored operad OX :

Definition 2.7 If X is a set, the multicategory OX has X �X as its set of objects,
and the multimorphism sets are defined by

OX ..x0;y1/; .x1;y2/; : : : ; .xn�1;yn/I .y0;xn// WD

�
� if yi D xi , i D 0; : : : ; n,
∅ otherwise.

This suggests that if V is a monoidal 1–category then we can define V –enriched 1–
categories with set of objects X to be algebras in V for (the nonsymmetric 1–operad
associated to) OX . This is indeed a correct definition, but it turns out not to be the
most convenient to work with; for instance, we get a much better-behaved theory of
enriched 1–categories if we allow them to have spaces of objects, which is more
easily accomplished with an alternative definition.

We therefore consider generalized nonsymmetric1–operads; these are what we obtain
by relaxing condition (b) for a category of operators above to allow O˝

Œ0�
to not be just

a point, and instead require O˝
Œn�

to be an iterated fiber product of O˝
Œ1�

over O˝
Œ0�

.
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(The objects that have such categories of operators in the setting of ordinary categories
have been studied under the names fc –multicategories by Leinster and virtual double
categories by Cruttwell and Shulman.) For each set X we can define such a category
of operators whose algebras in a monoidal category (ie functors over �op that preserve
cocartesian morphisms over inert maps) are precisely enriched categories with set of
objects X :

Definition 2.8 Let X be a set. The category �
op
X

has objects lists .x0; : : : ;xn/ of
elements xi 2X , and a unique morphism .x0; : : : ;xn/! .x�.0/; : : : ;x�.m// for each
map �W Œm�! Œn� in �.

There is an obvious projection �
op
X
! �op , and if V is a monoidal category, then

�
op
X

–algebras in the category of operators V ˝ are precisely V –enriched categories
with set of objects X . This leads to our definition of enriched 1–categories:

Definition 2.9 If V˝ ! �op is a monoidal 1–category, then a V–enriched 1–
category with set of objects X is an algebra for the generalized nonsymmetric 1–
operad �

op
X

in V˝ .

The projection �
op
X
!�op is the Grothendieck opfibration associated to the functor

�op! Set that sends Œn� to X�.nC1/ and �W Œm�! Œn� in � to the map X�.nC1/!

X�.mC1/ that takes .x0; : : : ;xn/ to .x�.0/; : : : ;x�.m//. This has an obvious general-
ization where we let X be a space: we simply take the cocartesian fibration �

op
X
!�op

of the analogous functor �op! S that sends Œn� to X�.nC1/ .

When X is a set, both OX –algebras and �
op
X

–algebras in a monoidal category V are
equivalent to V –categories with X as their set of objects. Similarly, algebras for the
nonsymmetric 1–operad O˝

X
and the generalized nonsymmetric 1–operad �

op
X

are
equivalent, with the equivalence induced by a map of generalized 1–operads (this is a
special case of [13, Corollary 4.2.8]):

Proposition 2.10 Suppose X is a set. There is an obvious functor �X from �
op
X

to O˝
X

that sends the list .x0; : : : ;xn/ to the list ..x0;x1/; .x1;x2/; : : : ; .xn�1;xn//.
If V is a monoidal 1–category, then the functor from AlgOX

.V/ to Alg�
op
X
.V/ given

by composition with �X is an equivalence of 1–categories.

3 Rectifying associative algebras

In [23, Section 4.1.4] Lurie proves a rectification result for associative algebras: if V is
a nice symmetric monoidal model category, then the 1–category of (1–categorical)
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associative algebras in V ŒW �1�, ie the 1–category of algebras for the nonsymmetric
1–operad �op , is equivalent to that associated to the model category of (strictly)
associative algebras in V , as constructed by Schwede and Shipley [31]. This is proved
by showing that both sides are equivalent to the 1–category of algebras for the free
associative algebra monad on V ŒW �1�. In this section we review this result, and
observe that it generalizes slightly to the setting of nonsymmetric monoidal model
categories; we will apply this to enriched categories in Section 5.

3.1 Review of monoidal model categories

In this subsection we briefly review the construction of a monoidal 1–category from
a monoidal model category; the full details can be found in [23, Section 4.1.3].

If V is a simplicial model category, then one way of constructing an 1–category
from V is to regard the full subcategory V ı of fibrant–cofibrant objects as a simplicial
category. This is fibrant in the model structure on simplicial categories, and so its
coherent nerve NV ı is an 1–category. However, this construction does not work well
with respect to monoidal structures. We will therefore instead use a more general, but
less explicit, construction, that does not require V to have a simplicial enrichment:

Definition 3.1 Recall that there is a model structure (constructed in [21, Section 3.1.3])
on the category SetC� of marked simplicial sets that is Quillen equivalent to the Joyal
model structure on Set� . In this model category all objects are cofibrant and the fibrant
objects are precisely those marked simplicial sets .X;S/, where X is a quasicategory
and S is the collection of equivalences in X . If C is an 1–category and W is a
collection of morphisms in C , then a fibrant replacement for the marked simplicial
set .C;W / in this model structure gives the universal 1–category CŒW �1� obtained
from C by inverting the morphisms in W .

If V is a model category and W is the class of weak equivalences in V we can
therefore define the 1–category V ŒW �1� associated to the model category to be a
fibrant replacement for the marked simplicial set .NV ;W / in this model structure
on SetC� . Equivalently, we can restrict ourselves to cofibrant, fibrant or fibrant–cofibrant
objects and the weak equivalences between them. To get monoidal structures on the
localization it is convenient to consider the cofibrant objects; since this gives an 1–
category equivalent to V ŒW �1� we will use this notation also in this case, despite the
slight ambiguity this introduces.

Definition 3.2 Let V be a model category equipped with a biclosed monoidal structure.
We say that V is a monoidal model category if the unit of the monoidal structure is
cofibrant and the tensor product functor ˝W V �V ! V is a left Quillen bifunctor.
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Remark 3.3 Let V be a model category equipped with a biclosed monoidal structure
whose unit is cofibrant. If f W A!B and gW A0!B0 are morphisms in V , let f�g

be the induced morphism

A˝B0qA˝A0 B˝A0! B˝B0I

this is the pushout-product of f and g . Then V is a monoidal model category if and
only if f�g is a cofibration whenever f and g are both cofibrations, and a trivial
cofibration if either f or g is also a weak equivalence.

Lurie shows in [23, Proposition 4.1.3.2] that the functor that takes a pair .C;W /

consisting of an 1–category C and a collection of morphisms W to the localization
CŒW �1� preserves products. It follows that this functor preserves O–algebra structures
for any 1–operad O . If V is a monoidal model category with weak equivalences W ,
then .NV cof;W / is an associative algebra in the 1–category of such pairs, and so,
since a monoidal 1–category is the same thing as an algebra for the associative
1–operad in Cat1 , we obtain the following key special case of this result:

Proposition 3.4 [23, Example 4.1.3.6] Let V be a monoidal model category. Then
V ŒW �1� inherits the structure of a monoidal 1–category.

Remark 3.5 The requirement that the unit be cofibrant is often not taken as part
of the definition of a monoidal model category, as there are important examples of
model categories with monoidal structures where the unit is not cofibrant, but the other
requirements for a monoidal model category as we have defined it are satisfied. We
therefore point out that the assumption that V has a cofibrant unit is not essential for
Proposition 3.4 to hold. If we drop this assumption then .NV ;W / is still a nonunital
associative algebra, and so V ŒW �1� inherits a nonunital monoidal 1–category struc-
ture. It is easy to see that a cofibrant replacement for the unit of the monoidal structure
in V gives a quasiunit in the sense of [23, Definition 5.4.3.5]; roughly speaking, this is
an object I such that X ˝ I 'X ' I ˝X for every object X , but we are not given
coherent associativity data for combinations of multiple such equivalences. A nonunital
monoidal 1–category with a quasiunit can be extended to a full monoidal structure
with this as unit in an essentially unique way by [23, Theorem 5.4.3.8], and so a
monoidal model category without a cofibrant unit still induces a monoidal 1–category
structure on its associated 1–category.

3.2 Model categories of associative algebras

In this subsection we briefly recall the construction of a model structure on associative
algebras, due to Schwede and Shipley, and observe that it generalizes to nonsymmetric
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monoidal model categories satisfying an appropriate version of the monoid axiom. First
we recall an observation of Schwede and Shipley on model structures for algebras over
monads:

Definition 3.6 Let T be a monad on a model category C . We say that T is an
admissible monad if there exists a model structure on the category Alg.T / of T–
algebras where a morphism is a weak equivalence or fibration if and only if the
underlying morphism in C is a weak equivalence or fibration.

Write FT W C � Alg.T / WUT for the associated adjunction. If C is a combinatorial
model category with sets I and J of generating cofibrations and trivial cofibrations,
we say that T is combinatorially admissible if it is admissible and the model structure
on Alg.T / is combinatorial with FT .I/ and FT .J / as sets of generating cofibrations
and trivial cofibrations.

Remark 3.7 Given a monad T on C , a model structure on Alg.T / where a morphism
is a weak equivalence or a fibration if and only if its underlying morphism in C is one
is unique if it exists. Clearly, the existence of such a model structure implies certain
restrictions on T — for example, it must preserve weak equivalences between cofibrant
objects — but we will not attempt to describe these here, as we will only need the
following admissibility criterion of Schwede and Shipley:

Theorem 3.8 (Schwede and Shipley, [31, Lemma 2.3]) Suppose C is a combinatorial
model category and T is a filtered-colimit-preserving monad on C , and let J be a
set of generating trivial cofibrations for C . If the underlying morphism in C of every
morphism in the weakly saturated class generated by FT .J / in Alg.T / is a weak
equivalence, then T is combinatorially admissible.

Remark 3.9 Since weak equivalences in C are closed under retracts and transfinite
composites, the weakly saturated class generated by FT .J / will be contained in
the weak equivalences provided the pushout of any morphism in FT .J / along any
morphism in Alg.T / is a weak equivalence.

In [31], Schwede and Shipley analyze such pushouts in the case of associative algebras.
They show the pushout is a transfinite composite of pushouts of certain maps, as
follows:

Theorem 3.10 (Schwede and Shipley [31, Section 6]) Suppose C is a combinatorial
biclosed monoidal model category. Write Alg.C / for the category of associative
algebra objects of C and F W C � Alg.C / WU for the free algebra functor and forgetful
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functor. Let f W X ! Y be a morphism in C and gW F.X /! A be a morphism in
Alg.C /. If

F.X / F.Y /

A B

F.f /

g g0

f 0

is a pushout diagram in Alg.C /, then there is a sequence of morphisms in C

AD B0

�1
�! B1

�2
�! B2 � � �

such that B D colimt Bt and �t is a pushout of .j �f /�n�j , where j is the unique
morphism ∅!A.

Based on this result Schwede and Shipley give a condition — the monoid axiom — for
the hypothesis of Theorem 3.8 to hold, when the monoidal structure on the model
category C is symmetric, which is true in most of the interesting examples. However, in
the next section we wish to consider associative algebras in functor categories Fun.X �
X;V / (where X is a set), equipped with the nonsymmetric “matrix multiplication”
tensor product, for which associative algebras are precisely V –categories with X as
their set of objects. As noted by Muro [25], the following nonsymmetric version of the
monoid axiom applies in this context:

Definition 3.11 Suppose C is a monoidal model category, and let U be the set of
morphisms in C of the form f1� � � ��fn , where each fi is either a trivial cofibration
or of the form ∅!Xi for some cofibrant Xi 2C , with at least one fi being a trivial
cofibration. We say that C satisfies the monoid axiom if the weakly saturated class xU
generated by U is contained in the weak equivalences in C .

Remark 3.12 Since the pushout-product .∅ ! A/�f is just the tensor product
A˝f for any morphism f , the morphisms in U are all trivial cofibrations in C .

Remark 3.13 If C is symmetric monoidal, then we can use the symmetry to move
all the morphisms of the form ∅! A in an element of U to one side. Thus, since
the pushout product of trivial cofibrations in C is a trivial cofibration by Remark 3.3,
in the symmetric case the monoid axiom is equivalent to the corresponding statement
where U consists of morphisms of the form f ˝X with f a trivial cofibration and X

a cofibrant object of C . This is the original form of the monoid axiom, due to Schwede
and Shipley.
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Corollary 3.14 Let C be a combinatorial biclosed monoidal model category that
satisfies the monoid axiom. Then the free associative algebra monad on C is combina-
torially admissible.

Proof By Remark 3.9 it suffices to show that if f W X ! Y is a trivial cofibration
in C , gW F.X /!A is a morphism in Alg.C /, and

F.X / F.Y /

A B

F.f /

g g0

f 0

is a pushout diagram in Alg.C /, then f 0 is a weak equivalence in C . Since C satisfies
the monoid axiom, it suffices to show that f 0 is contained in the weakly saturated
class xU generated by the class U from Definition 3.11.

By Theorem 3.10, the morphism f 0 is a transfinite composite of pushouts of morphisms
of the form .j �f /�n�j , where j is the unique morphism ∅!A, so to show that f 0

is contained in xU it suffices to observe that these morphisms are contained in U by
definition.

We will also need the following result of Schwede and Shipley which is also immediate
from Theorem 3.10:

Corollary 3.15 Let C be a combinatorial biclosed monoidal model category satisfying
the monoid axiom. Then the forgetful functor Alg.C /!C preserves cofibrant objects.

3.3 Rectifying algebras

We now observe that Lurie’s rectification result for associative algebras also holds
for nonsymmetric monoidal model categories. To state the result, we first make the
following definition:

Definition 3.16 Let C be a left proper tractable biclosed monoidal model category
that satisfies the monoid axiom. By Corollary 3.15, the forgetful functor from associa-
tive algebras in C to C preserves cofibrant objects, so we have a natural functor
Alg.C /cof ! Alg.C cof/. It is immediate from the construction of the monoidal
1–category structure on C ŒW �1� in Proposition 3.4, where W denotes the weak
equivalences in C , that there is a monoidal functor C cof!C ŒW �1�, which induces
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a functor of 1–categories Alg.C cof/! Alg�op.C ŒW �1�/. The composite functor
Alg.C /cof! Alg�op.C ŒW �1�/ clearly takes weak equivalences of algebras to equiva-
lences, and so induces a functor

Alg.C /Œ yW �1�! Alg�op.C ŒW �1�/;

where yW denotes the weak equivalences in the model structure on Alg.C /.

Theorem 3.17 (Lurie) Let C be a left proper tractable biclosed monoidal model
category that satisfies the monoid axiom. Then the functor of 1–categories

Alg.C /Œ yW �1�! Alg�op.C ŒW �1�/

defined above is an equivalence.

The proof is exactly the same as the proof of [23, Theorem 4.1.4.4]; in particular, the
key technical result [23, Lemma 4.1.4.13] generalizes to this context:

Definition 3.18 Suppose C is a left proper tractable biclosed monoidal model category
that satisfies the monoid axiom. Then the forgetful functor U W Alg.C /!C takes weak
equivalences to weak equivalences, by definition of the model structure on Alg.C /.
The composite functor of 1–categories Alg.C / ! C ! C ŒW �1� thus takes the
morphisms in yW to equivalences in C ŒW �1� and so factors through a unique functor
U1W Alg.C /Œ yW �1�!C ŒW �1�; this is the functor of 1–categories associated to the
right Quillen functor U .

Lemma 3.19 (Lurie) Suppose C is a left proper tractable biclosed monoidal model
category that satisfies the monoid axiom and I is a small category such that NI

is sifted. Then the forgetful functor U1W Alg.C /Œ yW �1�! C ŒW �1� preserves NI –
indexed colimits.

We omit the proof, as it is exactly the same as that of [23, Lemma 4.1.4.13]. We will
make use of Lemma 3.19 in the case of enriched categories, for which we have the
following observation:

Lemma 3.20 If V is a left proper tractable biclosed monoidal model category satis-
fying the monoid axiom and X is a set, then there is a combinatorial model category
structure on the category CatX .V / such that a morphism is a fibration or weak equiva-
lence if and only if its image in Fun.X �X;V / is. Moreover, if I is a small category
such that NI is sifted then the forgetful functor

CatX .V /ŒFF�1
X �! Fun.X �X;V /ŒW �1

X �

preserves NI –indexed colimits, where WX denotes the class of natural transformations
that are weak equivalences objectwise.
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Proof Recall that if V is a biclosed monoidal category and X is a set then there is a
monoidal structure on Fun.X �X;V /, given by

.F ˝G/.x;y/D
a
z2X

F.x; z/˝G.z;y/;

such that an associative algebra object in Fun.X�X;V / is precisely a V –category with
objects X . By [25, Proposition 10.3], if V is a monoidal model category satisfying
the monoid axiom, then so is Fun.X �X;V / equipped with this monoidal structure.
Applying Corollary 3.14 and Lemma 3.19 to Fun.X �X;V / then implies the result.

4 Fiberwise localization

Suppose we have a functor of ordinary categories F W C ! Cat together with a
collection WC of weak equivalences in each category F.C / that is preserved by
the functors F.f /. Then we have two ways to construct an 1–category over C

where these weak equivalences are inverted: on the one hand we can invert the weak
equivalences in each category F.C / to get a functor C ! Cat1 that sends C to
F.C /ŒW �1

C
�, which corresponds to a cocartesian fibration E!C . On the other hand,

if E ! C is a Grothendieck opfibration corresponding to F then there is a natural
collection W of weak equivalences in E induced by those in the fibers, and we can
invert these to get an 1–category E ŒW �1�. Our main goal in this section is to prove
that in this situation the natural map E ŒW �1�! E is an equivalence of 1–categories.

We will do this in two steps: in Section 4.1 we show that the 1–category E here is a
fibrant replacement in the cocartesian model structure on .SetC�/=NC for NE marked
by the edges in W , then in Section 4.2 we use an explicit model for E ŒW �1� to show
that this, equipped with a natural choice of marked edges, is also weakly equivalent
to .NE ;W /. In addition, we prove in Section 4.3 that when the weak equivalences
in each category F.C / come from a (combinatorial) model structure, then there is a
(combinatorial) model structure on E whose weak equivalences are the morphisms
in W .

Remark 4.1 Fiberwise localization has also recently been studied by Hinich in [17].
His approach is quite different from ours, but allows him to prove a comparison
analogous to ours also in the more general case where the base C is itself equipped
with a class of weak equivalences.

4.1 The relative nerve

Recall that a relative category is a category C equipped with a collection of “weak
equivalences”, ie a subcategory W containing all objects and isomorphisms. Write
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RelCat for the obvious category of relative categories; this has been studied as a model
for the theory of .1; 1/–categories by Barwick and Kan [4]. The usual nerve functor
from categories to simplicial sets extends to a functor LW RelCat! SetC� that sends
.C ;W / to .NC ;NW1/. In [21, Section 3.1.3] Lurie constructs a model structure
on SetC� where a fibrant replacement for L.C ;W / is precisely an 1–categorical
localization of C that inverts the morphisms in W (marked by the equivalences).

If C is a category, there is a model structure on .SetC�/=NC where a fibrant object is
a cocartesian fibration marked by its cocartesian morphisms, constructed in [21, Sec-
tion 3.1.3], and in [21, Section 3.5.2] Lurie describes a right Quillen equivalence NC

C

from the projective model structure on Fun.C ;SetC�/ to this model structure on
.SetC�/=NC . Given a functor F W C ! RelCat we therefore have two reasonable ways
of constructing a fibrant object of .SetC�/=NC .

(i) Find a fibrant replacement xF for the functor LF W C ! SetC� , then form NC
C
xF .

(ii) Construct a Grothendieck opfibration E ! C associated to F , regarded as
a functor to categories, and write S for the collection of 1–simplices in NE

that correspond to composites of (fiberwise) weak equivalences and cocartesian
morphisms. Then find a fibrant replacement in .SetC�/=NC for .NE ;S/! NC .

Our main goal in this subsection is to prove that these give weakly equivalent objects.
We begin by reviewing the definition of the functor NC

C
:

Definition 4.2 Let C be a category. Given a functor F W C ! Set� , we define NC F

to be the simplicial set characterized by the property that a morphism �I ! NC F ,
where I is a partially ordered set, is determined by

(i) a functor � W I !C ,

(ii) for every nonempty subset J � I with maximal element j , a map �J W �
J !

F.�.j //,

such that for all subsets K � J � I with maximal elements k 2K and j 2 J , the
diagram

�K F.�.k//

�J F.�.j //

�K

�J

commutes. This defines a functor NC W Fun.C ;Set�/! .Set�/=NC .
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The functor NC has a left adjoint, which we denote

FC W .Set�/=NC ! Fun.C ;Set�/:

Proposition 4.3 Let � W E ! C be a functor. Then FC NE is isomorphic to the
functor O� W C ! Set� defined by C 7! NE=C .

Proof We must show that there is a natural isomorphism Hom.NE ;NC .–// Š
Hom.O� ; –/; we will do this by defining explicit natural transformations

�W Hom.O� ; –/! Hom.NE ;NC .–//;

 W Hom.NE ;NC .–//! Hom.O� ; –/;

that are inverse to each other.

Given X W C ! Set� and a natural transformation �W O� !X , define �.�/W NE !

NC X to be the morphism that sends a simplex � W �I ! NE (which we can identify
with a functor I !E ) to the simplex of NC X determined by

� the composite functor I !E !C ,

� for J � I with maximal element j , the composite

�J
! NE=�.�.j//

��.�.j//
�����!X.�.�.j ///:

Conversely, given a map GW NE ! NC X of simplicial sets over NC , let  .G/ be
the natural transformation O� !X determined as follows: for C 2C , the morphism
 .G/C W NE=C ! X.C / sends a simplex � W �I ! NE=C , where I has maximal
element i , to the composite

�I �
�!X.��.i//

X .f /
���!X.C /;

where

� � is the I –simplex determined by the image under G of the I –simplex � 0 of
NE underlying � ,

� f is the morphism �.�.i//! C in C from � .

The remaining data in Gı� 0 implies that this defines a map of simplicial sets NE=C !

X.C /, and it is also easy to see that  .G/ is natural in C .

Both � and  are obviously natural in X , and expanding out the definitions we see
that � D id and  � D id, so we have the required natural isomorphism.
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Definition 4.4 Let C be a category. Given a functor xF W C!SetC� we define NC
C
xF to

be the marked simplicial set .NC F;M /, where F is the underlying functor C ! Set�
of xF , and M is the set of edges �1! NC F determined by

� a morphism f W C ! C 0 in C ,
� a vertex X 2 F.C /,
� a vertex X 0 2 F.C 0/ and an edge F.f /.X /!X 0 that is marked in xF .C 0/.

This determines a functor NC
C
W Fun.C ;SetC�/! .SetC�/=NC .

The functor NC
C

has a left adjoint, which we denote FC
C

.

Corollary 4.5 Let � W E !C be a functor, and let M be a set of edges of NE that
contains the degenerate edges. Then FC

C
.NE ;M / is isomorphic to the functor xO� de-

fined by C 7! .NE=C ;MC /, where MC is the collection of edges determined by E!

E0 in E and �.E/! �.E0/! C in C such that �.E0/Š C and E!E0 is in M .

Proof We must show that there is a natural isomorphism

Hom..NE ;M /;NCC .–//Š Hom. xO� ; –/:

Given xX W C ! SetC� , with underlying functor X W C ! Set� , and a morphism
GW NE!NC X , it is immediate from the definitions that G takes an edge � W E!E0

of NE lying over C ! C 0 in C to a marked edge of NC
C
xX if and only if �.G/C 0

takes � , regarded as an edge of NE=C 0 , to a marked edge of xX .C 0/. Thus the
natural isomorphism Hom.NE ;NC X /Š Hom.O� ;X / of Proposition 4.3 identifies
Hom..NE ;M /;NC

C
xX /, regarded as a subset of Hom.NE ;NC X /, with Hom. xO� ; xX /,

regarded as a subset of Hom.O� ;X /.

Theorem 4.6 (Lurie, [21, Proposition 3.2.5.18])

(i) The adjunction FC aNC is a Quillen equivalence between .Set�/=NC equipped
with the covariant model structure and Fun.C ;Set�/ equipped with the projec-
tive model structure.

(ii) The adjunction FC
C
aNC

C
is a Quillen equivalence between .SetC�/=NC equipped

with the cocartesian model structure and Fun.C ;SetC�/ equipped with the pro-
jective model structure.

Remark 4.7 By [21, Lemma 3.2.5.17], the functor FC
C

is naturally weakly equivalent
to the straightening functor defined in [21, Section 3.2.1], which takes a fibrant functor
C ! SetC� to the associated cocartesian fibration.
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Recall that if C is an 1–category we write C\ for the marked simplicial set given by C
marked by the equivalences, and that if E!NC is a cocartesian fibration we write E\

for the object of .SetC�/=NC given by E marked by the cocartesian morphisms.

Lemma 4.8 Let F W C ! Cat be a functor. Write � W E ! C for the Grothendieck
opfibration associated to F , so that E has objects pairs .C 2 C ;X 2 F.C // and a
morphism .C;X /! .D;Y / in E is given by a morphism f W C ! D in C and a
morphism F.f /.X /! Y in F.D/. Then:

(i) NC .NF /! NC is isomorphic to N� .

(ii) NC
C
.NF \/! NC is isomorphic to .NE/\! NC .

Proof It is clear from the definition of NC that there is a natural isomorphism between
n–simplices of NC .NF / and n–simplices of NE , which proves (i). By definition,
an edge of NC

C
.NF \/ is marked if it is given by f W C ! C 0 in C , X 2 F.C /, and

F.f /.X /! X 0 an isomorphism in F.C 0/. Under the identification with edges of
NE , such edges precisely correspond to the cocartesian edges. This proves (ii).

Proposition 4.9 Given F W C !RelCat, the counit map FC
C

NC
C

LF !LF is a weak
equivalence in Fun.C ;SetC�/.

Proof Since Fun.C ;SetC�/ is equipped with the projective model structure, it suf-
fices to show that for all C 2 C the morphism FC

C
NC

C
LF.C /! LF.C / is a weak

equivalence in SetC� . Let F0 be the underlying functor C ! Cat, and let E !C be
the canonical Grothendieck opfibration associated to F0 . Then by Lemma 4.8 we can
identify NC

C
NF

\
0

with NE \ , and so by Corollary 4.5 we can identify FC
C

NC
C

NF
\
0
.C /

with NE=C , marked by the set MC of cocartesian morphisms E ! E0 such that
�.E0/D C .

The adjunction FC
C
a NC

C
is a Quillen equivalence, so since NF

\
0

is fibrant and every
object of .SetC�/=NC is cofibrant, the counit FC

C
NC

C
NF

\
0
!NF

\
0

is a weak equivalence
in Fun.C ;SetC�/. In particular, .NE=C ;MC /! NF0.C /

\ is a weak equivalence.

Let M 0
C

be the set of edges of NE=C corresponding to weak equivalences in F.C /.
Then we have a pushout diagram

.NE=C ;MC / NF0.C /
\

.NE=C ;MC [M 0
C
/ LF.C /;
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since both vertical maps are pushouts along f̀ 2M 0
C
�1 ,! f̀ 2M 0

C
.�1/] . As the

model structure on SetC� is left proper, it follows that .NE=C ;MC [M 0
C
/!LF.C /

is a weak equivalence.

By Corollary 4.5 we can identify FC
C

NC
C

LF.C / with the simplicial set NE=C , marked
by the set M 00

C
of morphisms E!E0 with �.E0/D C such that given a cocartesian

factorization E! xE!E0 the morphism xE!E0 is a weak equivalence in LF.C /.
The obvious map .NE=C ;MC [M 0

C
/! FC

C
NC

C
LF.C / is therefore marked anodyne,

since the edges in M 00
C

are precisely the composites of edges in MC and M 0
C

. In
particular this is also a weak equivalence, and so by the 2-out-of-3 property the map
FC

C
NC

C
LF.C /!LF.C / is a weak equivalence, as required.

Corollary 4.10 Given F W C ! RelCat, let LF ! xF be a fibrant replacement in the
projective model structure on Fun.C ;SetC�/. Then NC

C
LF ! NC

C
xF is a cocartesian

equivalence in .SetC�/=NC .

Proof The adjunction FC
C
a NC

C
is a Quillen equivalence, so since xF is fibrant

and every object of .SetC�/=NC is cofibrant, the morphism NC
C

LF ! NC
C
xF is a weak

equivalence if and only if the adjunct morphism FC
C

NC
C

LF! xF is a weak equivalence.
This follows by the 2-out-of-3 property, since in the commutative diagram

FC
C

NC
C

LF LF

xF

the morphism LF ! xF is a weak equivalence by assumption, and FC
C

NC
C

LF !LF

is a weak equivalence by Proposition 4.9.

Using Lemma 4.8 we can equivalently state this as:

Corollary 4.11 Given F W C ! RelCat, suppose � W E ! C is a Grothendieck
opfibration corresponding to the underlying functor C ! Cat. Let M be the set
of morphisms f W E ! E0 in E such that given a cocartesian factorization E !

�.f /!E ! E0 , the morphism �.f /!E ! E0 is a weak equivalence in F.�.E0//.
Then if LF ! xF is a fibrant replacement in Fun.C ;SetC�/, there is a cocartesian
equivalence .NE ;M /! NC

C
xF .
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4.2 The hammock localization

Consider a functor F W C ! RelCat, and let � W E !C be an opfibration associated
to the underlying functor C ! Cat. Our main goal in this subsection is to prove that
inverting the collection W of fiberwise weak equivalences in E gives a cocartesian
fibration E ŒW �1�! C . As a corollary, we will also see that E ŒW �1� is the total
space of the cocartesian fibration associated to the functor obtained from F by inverting
the weak equivalences in the relative categories F.C /. We will prove this result by
analyzing an explicit model for E ŒW �1� as a simplicial category, namely the hammock
localization. We begin by recalling the definition of this, specifically the version defined
by Dwyer, Hirschhorn, Kan and Smith in [7, Section 35], and its basic properties:

Definition 4.12 A zigzag type ZD.ZC;Z�/ consists of a decomposition f1; : : : ; ngD
ZCqZ� . The zigzag category ZZ is the category with objects zigzag types and
morphisms Z!Z0 given by order-preserving morphisms f W f1; : : : ; ng!f1; : : : ; n0g
such that f .ZC/�Z0C and f .Z�/�Z0� . If Z is a zigzag type, the associated zigzag
category jZj is the category with objects 0; : : : ; n and

jZj.i; j /D

8<:
� i � j , k 2ZC for k D i C 1; : : : ; j ;

� i � j , k 2Z� for k D j C 1; : : : ; i ;

∅ otherwise:

This clearly gives a functor j–jW ZZ ! Cat. If n is an odd integer, we abbreviate

hni WD .f2; 4; : : : ; n� 1g; f1; 3; : : : ; ng/

and if n is an even integer we abbreviate

hni WD .f1; 3; : : : ; n� 1g; f2; 4; : : : ; ng/:

Definition 4.13 Suppose .C ;W / is a relative category. For x;y 2C and Z 2ZZ

we define LW CZ .x;y/ to be the subcategory of Fun.jZj;C / whose objects are the
functors F W jZj ! C such that F.0/ D x , F.n/ D y and F.i ! .i � 1// is in W

for all i 2 Z� , and whose morphisms are the natural transformations �W F ! G

such that �0 D idx , �n D idy and �i is in W for all i . We write LW CZ .x;y/ WD

NLW CZ .x;y/.

This construction gives a functor ZZ op
! Cat; we let LW C .x;y/! ZZ be the

fibration associated to it by the Grothendieck construction. Using concatenation of
zigzags we get a strict 2–category LW C with the same objects as C and with mapping
categories LW C .x;y/; taking nerves, this gives a simplicial category LW C whose
mapping spaces are LW C .x;y/ WD NLW C .x;y/. This simplicial category is the
hammock localization of .C ;W /.
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Theorem 4.14 (Dwyer and Kan) Let .C ;W / be a relative category. Then:

(i) The diagram

W LW W

C LW C

is a homotopy pushout square in simplicial categories.

(ii) If LW W ! xLW W is a fibrant replacement in simplicial categories, then
NxLW W is a Kan complex and NW ! NxLW W is a weak equivalence of
simplicial sets.

Proof Part (i) follows by combining [7, Proposition 35.7], [9, Proposition 2.2] and [8,
Section 4.5] (observe that a cofibration in the model structure on simplicial categories
with a fixed set of objects described in [8, Section 7] is also a cofibration in the model
structure on simplicial categories).

To prove (ii), we first observe that it follows from [8, Section 9.1] that LW W is a
simplicial groupoid. If LW W !xLW W is a fibrant replacement in simplicial categories,
then NxLW W is the nerve of a fibrant simplicial groupoid, hence a Kan complex by
[10, Theorem 3.3]. Let G denote the left adjoint to the nerve of simplicial groupoids,
as defined in [10, Section 3.1]; by [10, Theorem 3.3] the morphism NW !NxLW W is
a weak equivalence if and only if the adjunct GNW ! xLW W is a weak equivalence
of simplicial groupoids. This follows from [8, Section 5.5], since this implies that the
mapping spaces in both are the appropriate loop spaces of NW .

Corollary 4.15 Let .C ;W / be a relative category. Suppose LW C ! xLW C is a
fibrant replacement in the model category of simplicial categories. Then

L.C ;W /! NxLW C \

is a weak equivalence in SetC� .

Proof We must show that for every 1–category D , the induced map

MapSetC�
.NxLW C \;D\/!MapSetC�

.L.C ;W /;D\/

is a weak equivalence of simplicial sets. Observe that

MapSetC�
.L.C ;W /;D\/'MapCat1.NC ;D/�MapCat1 .NW ;D/ MapCat1.NW; �D/
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and MapCat1.NW; �D/'MapS.NW ; �D/'MapCat1.NW ;D/, where NW ! NW

denotes a fibrant replacement in the usual model structure on simplicial sets, so this is
equivalent to requiring

NW NW

NC NxLW C

to be a homotopy pushout square. Theorem 4.14(i) implies that

NW NxLW W

NC NxLW C

is a homotopy pushout square, since N is a right Quillen equivalence and all the
objects are fibrant. By Theorem 4.14(ii) we also have that NW !NxLW W is a fibrant
replacement in the usual model structure on simplicial sets, so the result follows.

We now fix a functor F W C!RelCat, and let � W E!C be a Grothendieck opfibration
associated to the underlying functor C ! Cat. We say a morphism xf W X ! Y in E

lying over f W A!B in C is a weak equivalence if f is an isomorphism and f!X!F

is a weak equivalence in F.B/; write W for the subcategory of E whose morphisms
are the weak equivalences. Our goal is to show that the nerve of LW E ! C is
(equivalent to) a cocartesian fibration. To prove this we need a technical hypothesis on
the relative categories F.C /:

Definition 4.16 A relative category .C ;W / satisfies the two-out-of-three property if
given morphisms r W A! B and sW B! C such that two out of r; s; s ı r are in W ,
then so is the third.

Definition 4.17 We say that a relative category xC D .C ;W / is a partial model
category if xC satisfies the two-out-of-three property and xC admits a three-arrow
calculus, ie there exist subcategories U;V �W such that:

(i) For every zigzag A0
u
 �A

f
�!B in C with u2U , there exists a functorial zigzag

A0
f 0

�! B0
u0

 � B

with u0 2 U such that u0f D f 0u and u0 is an isomorphism if u is.
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(ii) For every zigzag X
g
�!Y 0

v
 �Y in C with v 2V , there exists a functorial zigzag

X
v0

 �X 0
g0

�! Y

with v0 2 V such that gv0 D vg0 and v0 is an isomorphism if v is.

(iii) Every map w 2W admits a functorial factorization w D vu with u 2 U and
v 2 V .

Remark 4.18 If M is a model category (with functorial factorizations), then the
relative category obtained by equipping M with the weak equivalences in the model
structure is a partial model category. Similarly, the relative categories obtained from
the full subcategories M cof of cofibrant objects, M fib of fibrant objects and M ı of
fibrant–cofibrant objects together with the weak equivalences between these objects
are all partial model categories. The term “partial model category” is taken from
Barwick and Kan [3], but we use the more general definition of [7, 36.1] since the
more restrictive definition of Barwick and Kan does not include what is for us the key
example, namely M cof for M a model category.

Theorem 4.19 (Dwyer and Kan) Suppose .C ;W / is a partial model category. Then
for every pair of objects X;Y 2C , the morphism LW Chni.X;Y /! LW C .X;Y / is
a weak equivalence of simplicial sets for all n� 3.

Proof For nD 3 this is [9, Proposition 6.2(i)]; the general case follows similarly.

Proposition 4.20 Suppose F W C ! RelCat is a functor such that F.C / is a partial
model category for each C 2 C . Let �W A! B be a morphism in C , and let X

and Y be objects of EA and EB , respectively. Write LW E.X;Y /� for the subspace
of LW E.X;Y / over � . The morphism

x��W LW EB.�!X;Y /! LW E.X;Y /�

given by composition with a cocartesian morphism x�W X ! �!X is a weak equivalence
of simplicial sets.

Proof It is easy to see that E is also a partial model category. It therefore follows
from Theorem 4.19 that the maps

LW Eh4i.X;Y /�! LW E.X;Y /� and LW .EB/h4i.�!X;Y /! LW EB.�!X;Y /

are weak equivalences. Since composition with x� gives a functor

x��W LB WDLW .EB/h4i.�!X;Y /!LW Eh4i.X;Y /� DWL

it therefore suffices to prove that this gives a weak equivalence upon taking nerves.
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We will prove this in two steps. Let L1 denote the full subcategory of L spanned by
objects

X DX0

f1
�!X1

f2
 �X2

f3
�!X3

f4
 �X4 D Y

such that Xi 2EB for i � 1 and fi lies over idB in C for i � 2; then x�� factors as

LB

f
�!L1 i

�!L:

We will show that each of these functors induces a weak equivalence of nerves.

First we consider f W LB!L1 , given by composition with x� . Define qW L1!LB

by sending a zigzag

X
g
�!Z Z0! Y 0 Y

in L1 to

�!X
g0

�!Z Z0! Y 0 Y;

where X
x�
�!�!X

g0

�!Z is the cocartesian factorization of g (which exists since the other
maps lie over idB ). Then it is clear that qf ' id and f q ' id, so f is an equivalence
of categories.

Next we want to define a functor pW L!L1 . Given a zigzag

X
g
�!Z0 Z

h
�! Y 0 Y

in L, this lies over

A! C 0

 � C ! B0

ˇ
 � B;

where  and ˇ are isomorphisms, since weak equivalences in E map to isomorphisms
in C . Thus the cocartesian maps Z0! �1

!
Z0 and B0! ˇ�1

!
B0 are isomorphisms,

and our zigzag is isomorphic to the zigzag

X ! �1
! Z0 Z! ˇ�1

! Y 0 Y:

To define p we may therefore assume that ˇ and  are identities, in which case p

sends

X
f
�!Z0 Z

g
�! Y 0 Y

lying over

A
˛
�! C

id
 � C

 
�! B

id
 � B

to
X !  !Z

0
  !Z! Y 0 Y
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in L1 ; this is clearly functorial.

We wish to prove that p gives an inverse to i after taking nerves. It is obvious that
pıi' id, so it suffices to show that i ıp is homotopic to the identity after taking nerves.
To see this we consider the natural transformation �W L! Fun.Œ1�;LW Eh6i.x;y/�/

that sends our zigzag to the diagram

X Z0 Z  !Z  !Z Y 0 Y

X Z0 Z0  !Z
0  !Z Y 0 Y:

id

id

id id id id id

After composing with the inclusion LW Eh6i.x;y/�!LW E.x;y/� the functor �0

is clearly linked to the inclusion L!LW E.x;y/� by a sequence of natural transfor-
mations, and similarly �1 is linked to the composite of i ıp with this inclusion. Since
natural transformations give homotopies of the induced maps between nerves it follows
from Theorem 4.19 that the morphism on nerves induced by i ıp is homotopic to the
identity. This completes the proof.

Theorem 4.21 Suppose F W C!RelCat is a functor such that F.C / is a partial model
category for each C 2 C . There is an 1–category E ŒW �1� such that L.E ;W /!

E ŒW �1�\ is a weak equivalence in SetC� , and E ŒW �1�!NC is a cocartesian fibration.

Proof Let LW E ! xLW E ! C denote a factorization of LW E ! C as a trivial
cofibration followed by a fibration in the model category of simplicial categories. Then
.NxLW E/\ is a fibrant replacement for L.E ;W / in SetC� . By [21, Proposition 2.4.4.3]
to prove that NxLW E ! NC is equivalent to a cocartesian fibration it suffices to show
that for each morphism f W C ! D in C and each X in EC we have a homotopy
pullback square of simplicial sets

LW E.f!X;Y / LW E.X;Y /

C .D;B/ C .C;B/

xf �

f �

for all B 2C and Y 2EB , where xf W X ! f!X denotes a cocartesian morphism in E

over f .
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Since the inclusion of a point in a discrete simplicial set is a Kan fibration and the
model structure on simplicial sets is right proper, given gW D! B the fibers at fgg
and fgıf g in this diagram are homotopy fibers. To see that the diagram is a homotopy
pullback square it thus suffices to show that composition with xf induces a weak
equivalence

LW E.f!X;Y /g! LW E.X;Y /gf

for all gW D! B . But by Proposition 4.20, in the commutative diagram

LW EB..gf /!X;Y /

LW E.f!X;Y /g LW E.X;Y /gf

the diagonal morphisms are both weak equivalences, hence by the 2-out-of-3 property
so is the horizontal morphism.

Corollary 4.22 Suppose F W C ! RelCat is a functor such that F.C / is a par-
tial model category for each C 2 C . Let LF ! xF be a fibrant replacement in
Fun.C ;SetC�/. Then there is a weak equivalence L.E ;W /! .NC

xF /\ in SetC� .

Proof By Theorem 4.21, there exists a cocartesian fibration E ŒW �1�! NC with a
map

�W L.E ;W /!E ŒW �1�\

that is a weak equivalence in SetC� . The map � is also a weak equivalence when
regarded as a morphism in the over-category model structure on .SetC�/=NC \ . Let

p!W .SetC�/=NC \ � .SetC�/=NC ] Wp�

be the adjunction where p! is the identity on the underlying marked simplicial sets,
and p� forgets the marked edges that do not lie over isomorphisms in C . If we
equip .SetC�/=NC \ with the over-category model structure and .SetC�/=NC ] with the
cocartesian model structure, then this is a Quillen adjunction by [21, Proposition B.2.9],
since these functors clearly come from a map of categorical patterns. Since all objects
in .SetC�/=NC \ are cofibrant, the functor p! preserves weak equivalences, and so � is
also a weak equivalence when regarded as a morphism of .SetC�/=NC ] .

Let M 0 be the set of edges of NE corresponding to cocartesian morphisms in E ,
and let E ŒW �1�C denote the marked simplicial set obtained from E ŒW �1�\ by also
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marking the morphisms in the image of M 0 . We have a pushout diagram

L.E ;W / E ŒW �1�\

.NE ;NW1[M 0/ E ŒW �1�C;

as both vertical maps are pushouts along f̀ 2M 0 �
1 ,! f̀ 2M 0.�

1/] . Since the model
structure on .SetC�/=NC ] is left proper, it follows that .NE ;NW1[M 0/!E ŒW �1�C

is a weak equivalence.

Let E ŒW �1�� denote E ŒW �1�, marked by the cocartesian morphisms. These are
composites of equivalences and morphisms in the image of M 0 , so E ŒW �1�C !

E ŒW �1�� is marked anodyne. Moreover, it follows as in the proof of Lemma 4.8
that NE marked by the composites of morphisms in NW1 and M 0 is precisely NC

C
LF ,

so .NE ;NW1[M 0/!NC
C

LF is also marked anodyne. By the 2-out-of-3 property we
therefore have a weak equivalence NC

C
LF !E ŒW �1�� . Thus E ŒW �1�� and NC

C
xF

are both fibrant replacements for NC
C

LF , and so are linked by a zigzag of weak
equivalences between fibrant objects.

This implies that the underlying 1–categories E ŒW �1� and NC
xF are equivalent, and

so by the 2-out-of-3 property the map .NE ;W /! .NC
xF /\ is a weak equivalence in

SetC� , as required.

4.3 Total space model structures

As before we consider a functor F W C ! RelCat and let E ! C be an opfibration
associated to F . Although not strictly necessary for the applications we are interested
in below, in this subsection we show that if the functor F is obtained from a suitable
functor from C to the category of combinatorial model categories, then the relative
category structure on E considered above also comes from a combinatorial model
category.

Definition 4.23 Let ModCatR be the category of model categories and right Quillen
functors. A right Quillen presheaf on a category C is a functor C op ! ModCatR .
A right Quillen presheaf is combinatorial if it factors through the full subcategory of
combinatorial model categories.

Definition 4.24 Suppose C is a �–accessible category. A right Quillen presheaf
on C is �–accessible if for each �–filtered diagram i W I ! C with colimit X , the
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category F.X / is the limit of the categories F.i.˛//, and the model structure on
F.X / is induced by those on F.i.˛// in the sense that a map f W A! B in F.X /

is a (trivial) fibration if and only if F.g˛/.f / is a (trivial) fibration in F.i.˛// for
all ˛ 2 I , where g˛ is the canonical morphism i.˛/! X . We say a right Quillen
presheaf F on an accessible category C is accessible if there exists a cardinal � such
that C and F are �–accessible.

Proposition 4.25 Suppose C is a complete and cocomplete category and F is a right
Quillen presheaf on C . Let � W E !C be the Grothendieck fibration corresponding
to F . Then there exists a model structure on E such that a morphism �W X ! Y with
image f W A! B in C is:

(W) A weak equivalence if and only if f is an isomorphism in C and the morphism
f!X ! Y is a weak equivalence in F.b/.

(F) A fibration if and only if X ! f �Y is a fibration in F.a/.

(C) A cofibration if and only if f!X ! Y is a cofibration in F.b/.

Moreover, if C is a presentable category and F is an accessible and combinatorial
right Quillen presheaf, then this model structure on E is combinatorial.

Remark 4.26 If f W A!B is an isomorphism in C , then f � D F.f / is an isomor-
phism of model categories with inverse f! . Thus if �W X ! Y is a morphism in E

such that f D �.�/ is an isomorphism in C , then f!X ! Y is a weak equivalence
in EB if and only if X ! f �Y is a weak equivalence in EA .

Remark 4.27 This model category structure is a particular case of that constructed
by Roig [29] (and corrected by Stanculescu [33]), though he does not consider the
combinatorial case. Roig’s construction has also recently been significantly generalized
by Harpaz and Prasma [15]. We include a proof for completeness.

Proof Limits in E are computed by first taking Cartesian pullbacks to the fiber over
the limit of the projection of the diagram to C , and then taking the limit in that fiber.
Since all the fibers EB have limits, it is therefore clear that E has limits. Similarly,
since each functor �� for � in C has a left adjoint, and each of the fibers EB has all
colimits, it is clear that E has colimits.

To show that E is a model category we must now prove that the weak equivalences
satisfy the 2-out-of-3 property, and the cofibrations and trivial fibrations, as well as the
trivial cofibrations and fibrations, form weak factorization systems. We check the 2-out-
of-3 property first: suppose we have morphisms xf W X !Y and xgW Y !Z in E lying
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over f W A!B and gW B!C in C . If two out of the three morphisms xf , xg and xg xf
are weak equivalences, it is clear that f and g must be isomorphisms. Thus g! is an
isomorphism of model categories, and g!f!X ! g!Y is a weak equivalence in EC if
and only if f!X !Y is a weak equivalence in EB . Combining this with the 2-out-of-3
property for weak equivalences in EC gives the 2-out-of-3 property for E .

We prove the cofibrations and trivial fibrations form a weak factorization system:

Any morphism has a factorization as a cofibration followed by a trivial fibration Given
xf W X ! Y in E lying over f W A! B in C , choose a factorization f!X !Z! Y

of f!X ! Y as a cofibration followed by a trivial fibration in EB . Then by definition
X !Z is a cofibration and Z! Y is a trivial fibration in E .

A morphism that has the left lifting property with respect to all trivial fibrations is a
cofibration Suppose xf W X ! Y , lying over f W A! B in C , has the left lifting
property with respect to all trivial fibrations. In particular there is a lift in all diagrams

X X 0

Y Y 0

where X 0! Y 0 is a trivial fibration in EB . By the universal property of cocartesian
morphisms, this clearly implies that f!X ! Y has the left lifting property with respect
to trivial fibrations in EB , and so is a cofibration in EB . Thus xf is a cofibration.

Cofibrations have the left lifting property with respect to trivial fibrations Suppose
xf W X ! Y , lying over f W A!B in C , is a cofibration, and xgW X 0! Y 0 , lying over

gW A0! B0 , is a trivial fibration. Given a commutative diagram

X X 0

Y Y 0

x̨

xf xg

x̌

lying over

A A0

B B0

˛

f g

ˇ

we must show there exists a lift Y ! X 0 . Since xg is a trivial fibration, g is an
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isomorphism. Pulling back along g�1 and pushing forward along g˛ D f̌ and ˇ
gives a diagram

X ˇ!f!X .g�1/�X 0 X 0

Y ˇ!Y Y 0 Y 0:

Here ˇ!f!X ! ˇ!Y is a cofibration in EB0 since f!X ! Y is a cofibration in EB

and ˇ! is a left Quillen functor, and .g�1/�X 0! .g�1/�g�Y 0DY 0 is a trivial fibration
in EB0 since X 0! g�Y 0 is a trivial fibration in EA0 and .g�1/� is a right Quillen
functor. Thus there exists a lift ˇ!Y ! .g�1/�X 0 which gives the desired lift Y !X 0 .

A morphism that has the right lifting property with respect to all cofibrations is a trivial
fibration Suppose xgW X 0 ! Y 0 , lying over gW A0 ! B0 in C , has the right lifting
property with respect to all cofibrations. Then in particular there exists a lift in all
diagrams

X X 0

Y Y 0

where X!Y is a cofibration in EA0 . By the universal property of Cartesian morphisms,
this clearly implies that X 0 ! g�Y 0 has the right lifting property with respect to
cofibrations in EA0 , and so is a trivial fibration in EA0 . On the other hand, there exists
a lift in the diagram

X 0 X 0

g!X
0 Y 0

and projecting this down to C we see that g must be an isomorphism. Thus xg is a
trivial fibration in E .

The proof that trivial cofibrations and fibrations form a weak factorization system is
dual to that for cofibrations and trivial fibrations, so we omit the details. This completes
the proof that E is a model category.

Now suppose the right Quillen presheaf F is combinatorial and accessible. It follows
from Makkai and Paré [24, Theorem 5.3.4] that the category E is accessible, and the
functor � is accessible, thus E is a presentable category since we already proved that
it has small colimits.
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Let � be a cardinal such that C is �–accessible and EX is �–accessible for each �–
compact object X in C . For X 2C , let IX and JX be sets of generating cofibrations
and trivial cofibrations for EX . Let I and J be the unions of IX and JX , respectively,
over all �–compact objects X 2C ; then I and J are sets.

Suppose a morphism xf W X ! Y , lying over f W A! B in C , has the right lifting
property with respect to the morphisms in J ; then X ! f �Y is a fibration in EA :
to see this let K !C , ˛ 7!A˛ , be a �–filtered diagram of �–compact objects with
colimit A, and let ˛W A˛ ! A be the canonical morphism. Then  �˛X !  �˛ f

�Y

has the right lifting property with respect to a set of generating trivial cofibrations
in EA˛ , and hence this is a fibration in EA˛ . Since the right Quillen presheaf F is
�–accessible, this implies that X ! f �Y is a fibration in EA . This means xf is a
fibration in E , so J is a set of generating trivial cofibrations.

Similarly, if xf has the right lifting property with respect to the morphisms in I , then
X ! f �Y is a trivial fibration in EA . To find a set of generating cofibrations we
consider also the set I 0 of morphisms ∅∅! ∅C and ∅CqC ! ∅C where C is a
�–compact object of C and ∅C denotes the initial object of EC . We claim that if
xf W X ! Y in E , with image f W A! B in C , has the right lifting property with

respect to the morphisms in I 0 , then f is an isomorphism in C . To prove this it suffices
to show that for every object C 2 C the map f�W HomC .C;A

0/! HomC .C;B
0/

induced by composition with f is a bijection; since C is �–presentable it is enough
to prove this for C a �–compact object. Since xf has the right lifting property with
respect to ∅∅! ∅C and every morphism C ! B induces a morphism ∅C ! Y ,
there exists a lift in the diagram

∅ A

C B

f

for every map C!B ; this shows that f� is surjective. Moreover, given two morphisms
C !A such that the composites C ! B are equal, we get a lift in the diagram

C qC A

C B

f

since xf has the right lifting property with respect to ∅CqC ! ∅C ; thus the two
morphisms C !A must be equal and so f� is injective. It follows that if a morphism
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in E has the right lifting property with respect to the union I q I 0 then it is a trivial
fibration, so IqI 0 is a set of generating cofibrations for E . Hence E is a combinatorial
model category.

Remark 4.28 Let F be a right Quillen presheaf on a category C , and let E ! C

be an opfibration associated to the underlying functor to categories. Write G for
the associated “left Quillen presheaf” obtained by passing to left adjoints, and let
GcofW C ! RelCat be the functor to relative categories obtained by restricting to
cofibrant objects. Then the full subcategory E cof of cofibrant objects in E , with the
model structure defined above, is the total space of the opfibration associated to Gcof ,
and the weak equivalences in E cof are precisely those considered above.

5 Rectifying enriched 1–categories

Our goal in this section is to prove the main result of this paper: the homotopy theory
of categories enriched in a nice monoidal model category V (with respect to the DK–
equivalences) is equivalent to the homotopy theory of 1–categories enriched in the
monoidal 1–category V ŒW �1�. We will do this in three steps.

(i) We first apply the results of Section 3 to get an equivalence between the 1–
category obtained by inverting the weakly fully faithful morphisms in the category
CatX .V / of V –categories with a fixed set of objects X and the 1–category
Alg�

op
X
.V ŒW �1�/ of �

op
X

–algebras.

(ii) Next, using the results of Section 4, we see that this induces an equivalence
between the 1–category obtained by inverting those morphisms in the cate-
gory Cat.V / of small V –categories that are weakly fully faithful and bijective
on objects and the 1–category Algcat.V ŒW

�1�/Set of categorical algebras in
V ŒW �1� whose spaces of objects are sets.

(iii) Finally, from this we deduce that the 1–category obtained by inverting the
DK–equivalences in Cat.V / is equivalent to the 1–category CatV ŒW

�1�
1 of

V ŒW �1�–1–categories.

For the first step, the map we wish to prove is an equivalence is defined as follows:

Definition 5.1 Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom, and let X be a set. The map of generalized 1–operads
�X W �

op
X
!O˝

X
defined in Proposition 2.10 gives an equivalence

CatX .V /' AlgOX
.V /

�

�! Alg�
op
X
.V /:
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As in Definition 3.16 the monoidal functor V cof!V ŒW �1� induces, since the forgetful
functor CatX .V /! Fun.X �X;V / preserves cofibrant objects by Corollary 3.15, a
functor

CatX .V /cof
! Alg�

op
X
.V ŒW �1�/:

Let FFX denote the class of morphisms in CatX .V /cof that are weakly fully faithful,
ie given by weak equivalences on all morphism objects. It is clear that these are taken
to equivalences in Alg�

op
X
.V ŒW �1�/ by this functor, and so there is an induced functor

�X W CatX .V /ŒFF�1
X �! Alg�

op
X
.V ŒW �1�/:

Moreover, it is clear that this is natural in X .

Proposition 5.2 Suppose V is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom, and let X be a set. The natural map

�X W CatX .V /ŒFF�1
X �! Alg�

op
X
.V ŒW �1�/

is an equivalence.

Proof of Proposition 5.2 We apply [23, Corollary 4.7.4.16] as in the proof of [23, The-
orem 4.1.4.4]: we have a commutative diagram

CatX .V /ŒFF�1
X
� Alg�

op
X
.V ŒW �1�/

Fun.X �X;V ŒW �1�/;

�X

U V

where U1 is the functor of 1–categories associated to the forgetful functor

U W CatX .V /! Fun.X �X;V /;

which is a right Quillen functor, and V is given by restricting �
op
X

–algebras to the fiber
.�

op
X
/Œ1� 'X �X . Then we observe:

(i) The 1–category CatX .V /ŒFF�1
X � is presentable by [23, Proposition 1.3.4.22],

and the 1–category Alg�
op
X
.V ŒW �1�/ is presentable by [13, Corollary A.5.7]

since V ŒW �1� is presentable by [23, Proposition 1.3.4.22] and the induced tensor
product on V ŒW �1� preserves colimits in each variable by [23, Lemma 4.1.4.8].

(ii) The functor V admits a left adjoint G by [13, Theorem A.4.6].

(iii) The functor U1 also admits a left adjoint F1 since it arises from a right Quillen
functor.
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(iv) The functor V is conservative by [13, Lemma A.5.5] and preserves sifted colimits
by [13, Corollary A.5.4].

(v) The functor U1 is conservative by the definition of the weak equivalences in
Alg.V /, and preserves sifted colimits by Lemma 3.20.

(vi) The canonical map V ıG! U1 ıF1 is an equivalence since both induce, on
the level of homotopy categories, the free V –category monad

ˆ 7!
a
n�0

a
x0;:::;xn2X

ˆ.x0;x1/˝ � � �˝ˆ.xn�1;xn/I

this is obvious for U1 ıF1 and for V ıG it follows by [13, Proposition A.4.9].

The hypotheses of [23, Corollary 4.7.4.16] thus hold, which implies that the morphism
in question is an equivalence.

For the second step, let us first define the class of maps in Cat.V / that we will invert:

Definition 5.3 We say that a functor F W C ! D of V –categories is weakly fully
faithful if for all objects X;Y 2C the morphism C .X;Y /!D.FX;FY / is a weak
equivalence in V . We denote the class of morphisms in Cat.V / that are weakly fully
faithful and given by bijections on sets of objects by FFB.

The map �X W CatX .V /ŒFF�1
X �! Alg�

op
X
.V ŒW �1�/ is natural in X , so it induces a

natural transformation of functors Set! SetC� . Applying Corollary 4.22 we therefore
get the required comparison of “prelocalized” homotopy theories:

Theorem 5.4 The natural transformation � induces a functor

Cat.V /ŒFFB�1�! Algcat.V ŒW
�1�/Set

and this is an equivalence.

Remark 5.5 Using Proposition 4.25 we can combine the (fiberwise) model structures
on CatX .V / to get a model structure on Cat.V /. Explicitly, if V is a left proper
tractable biclosed monoidal model category satisfying the monoid axiom, then there is
a model structure on Cat.V / such that a morphism F W C !D is a weak equivalence
if and only if F is weakly fully faithful and a bijection on objects, and a fibration
if and only if C .x;y/!D.Fx;Fy/ is a fibration in V for all x;y 2 ob C . Thus
Cat.V /ŒFFB�1� is the 1–category associated to this model category.
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The weakly fully faithful functors that are bijective on objects are clearly not the
right weak equivalences between V –categories; just as for ordinary categories the
equivalences are the functors that are fully faithful and essentially surjective, here they
should be the functors that are weakly fully faithful and essentially surjective up to
homotopy, in the following sense:

Definition 5.6 Let V be a monoidal model category. Then the projection V ! hV

to the homotopy category is a monoidal functor; this therefore induces a functor
Cat.V /! Cat.hV /. A functor of V –categories is homotopically essentially surjective
if its image in Cat.hV / is essentially surjective, and a DK–equivalence if it is weakly
fully faithful and homotopically essentially surjective (or equivalently if it induces an
equivalence of hV –categories). We write DK for the class of DK–equivalences in
Cat.V /.

The DK–equivalences in Cat.V / clearly correspond to the fully faithful and essentially
surjective functors in Algcat.V ŒW

�1�/Set , as defined in [13, Section 5.3]. Theorem 5.4
therefore immediately implies the following:

Corollary 5.7 Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. Then Cat.V /ŒDK�1� is equivalent to the localization of
Algcat.V ŒW

�1�/Set with respect to the fully faithful and essentially surjective functors.

Combining this with [13, Theorem 5.3.17] we get our main result:

Theorem 5.8 Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. The functor �W Cat.V /ŒFFB�1�! Algcat.V ŒW

�1�/Set

induces an equivalence

Cat.V /ŒDK�1�
�

�! CatV ŒW
�1�

1 :

Proof By [13, Theorem 5.3.17], for any monoidal 1–category V the localization
of Algcat.V/Set at the fully faithful and essentially surjective functors is equivalent to
the corresponding localization of Algcat.V/, which is CatV1 by [13, Theorem 5.6.6].
The result then follows by combining this, in the case where V is V ŒW �1�, with
Corollary 5.7.

Remark 5.9 Under the hypotheses of Theorem 5.8 there is a model structure on the
category Cat.V / whose weak equivalences are the DK–equivalences; the construction
of Muro [26] requires slightly weaker hypotheses on V than our theorem. Therefore
we have shown that CatV ŒW

�1�
1 is the 1–category associated to this model category.

See [21; 6; 34] for other general constructions of model structures on enriched categories
and see [6, Section 1] for a historical discussion.
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Example 5.10 The stable model structure on the category Sp† of symmetric spec-
tra, as described by Hovey, Shipley and Smith in [20], satisfies the hypotheses of
Theorem 5.8. The associated monoidal 1–category is the 1–category of spectra with
the smash product monoidal structure. Thus we have an equivalence

Cat.Sp†/ŒDK�1�
�

�! CatSp
1

between spectral categories and spectral 1–categories.

Example 5.11 The projective model structure on the category Ch�0.ModR/ of non-
negatively graded chain complexes of modules over a commutative ring R, as described
for example by Dwyer and Spaliński in [12], satisfies the hypotheses of Theorem 5.8.
The same is true of the projective model structure on the category Ch.ModR/ of
unbounded chain complexes of R–modules described by Hovey in [19, Section 2.3].
The associated monoidal 1–categories are the bounded and unbounded derived 1–
categories D�0

1 .ModR/ and D1.ModR/ of R–modules, as described in [23, Sec-
tion 1.3.2]. (These are equivalent to the 1–categories Mod�0

HR
and ModHR of con-

nective modules and all modules over the Eilenberg–Mac Lane ring spectrum HR,
respectively.) Thus we have equivalences

Cat.Ch�0.ModR//ŒDK�1�
�

�! CatD
�0
1 .ModR/
1 ' Cat

Mod�0
HR

1 ;

Cat.Ch.ModR//ŒDK�1�
�

�! CatD1.ModR/
1 ' CatModHR

1 ;

between 1–categories of (two versions of) dg–categories and the appropriate corre-
sponding enriched 1–categories.

6 Comparison with Segal categories

Segal categories are a model for the theory of .1; 1/–categories where composition is
only associative up to coherent homotopy, inspired by Segal’s model of A1–spaces.
They first appeared in papers of Schwänzl and Vogt [30] and Dwyer, Kan and Smith [11],
though not with this name; they were later rediscovered by Hirschowitz and Simp-
son [18], who used them as a model for .1; n/–categories. A generalization to Segal
categories enriched in a Cartesian model category (ie a monoidal model category
where the tensor product is the Cartesian product) was first given by Pellissier [27],
further developed by Lurie [22], and finally extensively studied by Simpson [32]. In
this section we will show that, for V a nice Cartesian model category with weak
equivalences W , the homotopy theory of Segal categories enriched in V is equivalent
to that of 1–categories enriched in V ŒW �1�. We will first carry out the comparison
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in the case of a fixed set of objects, and then apply the results of Section 4 to prove the
general comparison.

Definition 6.1 A model category is Cartesian if it is a monoidal model category with
respect to the Cartesian product. If V is a Cartesian model category, a V –enriched
Segal category (or Segal V –category) with set of objects S is a functor C W �

op
S
! V

such that for every object .x0; : : : ;xn/ of �
op
S

the Segal morphism C .x0; : : : ;xn/!

C .x0;x1/�� � ��C .xn�1;xn/ induced by the projections .x0; : : : ;xn/! .xi ;xiC1/ is
a weak equivalence. We say the Segal category C is fibrant if the objects C .x0; : : : ;xn/

in V are fibrant for all x0; : : : ;xn 2 S , and strictly unital if the objects C .x/ are final
objects in V for all x 2 S .

Remark 6.2 We can regard V –categories as those Segal categories where the Segal
morphisms are isomorphisms, rather than just weak equivalences.

We can describe fibrant Segal categories with a fixed set S of objects as the fibrant
objects in a Bousfield localization of the projective model structure on Fun.�op

S
;V /:

Definition 6.3 If X is an object of �
op
S

, let iX W � ! �
op
S

denote the functor with
image X , write i�

X
W Fun.�op

S
;V /! V for the functor given by composition with iX ,

and let iX ;!W V ! Fun.�op
S
;V / be its left adjoint, given by left Kan extension along iX .

Then iX ;! is a left Quillen functor with respect to the projective model structure on
Fun.�op

S
;V /. A functor C W �

op
S
! V is a fibrant Segal category if and only if it is

projectively fibrant and local with respect to the morphisms

i.x0;x1/;!A
a
� � �

a
i.xn�1;xn/;!A! i.x0;:::;xn/;!A

for all x0; : : : ;xn in S and all A in a set of objects that generates V under colimits.
If V is a left proper combinatorial Cartesian model category, then we can define a
model structure whose fibrant objects are fibrant Segal categories by taking the left
Bousfield localization of the projective model structure on Fun.�op

S
;V / with respect

to these morphisms; this exists under these hypotheses on V by a theorem of Smith
(a proof can be found in Barwick [2, Theorem 4.7]). We refer to this model structure
as the Segal category model structure on functors and write Fun.�op

S
;V /Seg for the

category Fun.�op
S
;V / equipped with this model structure.

To obtain a well-behaved model structure, it turns out to be better to consider only strictly
unital Segal categories. This leads to considering the category of V –precategories:
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Definition 6.4 Let V be a left proper combinatorial Cartesian model category. A
V –precategory with set of objects S is a functor C W �

op
S
! V such that C .x/ is a

final object for all x 2 S . Write PrecatS .V / for the full subcategory of Fun.�op
S
;V /

spanned by the V –precategories and u�W PrecatS .V /! Fun.�op
S
;V / for the inclusion.

Then u� has a left adjoint, which we denote u! .

There is a model structure on PrecatS .V / analogous to that for Fun.�op
S
;V / we

described above:

Proposition 6.5 (Simpson [32, Propostion 13.4.3]) Suppose V is a left proper com-
binatorial Cartesian model category. There exists a (projective) model structure on
PrecatS .V / where a morphism is a weak equivalence or fibration if it levelwise is one
in V . The functor u�W PrecatS .V /! Fun.�op

S
;V / is a right Quillen functor.

Definition 6.6 Suppose V is a left proper combinatorial Cartesian model category. The
(projective) Segal category model structure on precategories is the left Bousfield local-
ization of this (projective) model structure on PrecatS .V / with respect to the morphisms
u!.i.x0;x1/;!A

`
� � �
`

i.xn�1;xn/;!A/! u!i.x0;:::;xn/;!A for all .x0; : : : ;xn/ in S and
all A in a set of objects that generates V under colimits. We write PrecatS .V /Seg for
the category PrecatS .V / equipped with this model structure.

Under mild hypotheses these two model categories in the fixed-objects case are equiva-
lent:

Proposition 6.7 Suppose V is a left proper combinatorial Cartesian model category
where monomorphisms are cofibrations. Then the adjunction u! a u� gives a Quillen
equivalence

Fun.�op
S
;V /Seg � PrecatS .V /Seg:

Proof It is obvious that u� is a right Quillen functor, so this is a Quillen adjunction.
Since u� is fully faithful, the counit u!u

�F ! F is an isomorphism in PrecatS .V /
for all F . By [32, Lemma 14.2.1] the functor u! only changes the values of a functor
at the constant sequences .x; : : : ;x/ for x 2S , in which case u!F is given by forming
the pushout

F.x/ �

F.x; : : : ;x/ u!F.x; : : : ;x/;

F.�/
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where � W .x/ ! .x; : : : ;x/ is the map over the unique map sW Œ0� ! Œn� in �op .
If d is any map Œn�! Œ0� in �op , then ds D id, hence F.�/ is a monomorphism.
By assumption it is therefore a cofibration, and so as V is left proper, the map
F.x; : : : ;x/!u!F.x; : : : ;x/ is a weak equivalence if F.x/!� is a weak equivalence.
Thus F ! u�u!F is a levelwise weak equivalence if the map F.x/! � is a weak
equivalence in V for every x 2 S . Since every object of Fun.�op

S
;V /Seg is weakly

equivalent to one for which this is true, it is clear that the Quillen adjunction u! a u�

gives an equivalence of homotopy categories, and so is a Quillen equivalence.

Next, we compare the 1–category associated to Fun.�op
S
;V /Seg to Alg�

op
S
.V ŒW �1�/.

The 1–category associated to the projective model structure on Fun.�op
S
;V / is

equivalent to the 1–categorical functor category Fun.�op
S
;V ŒW �1�/. The Bousfield-

localized model category Fun.�op
S
;V /Seg can therefore be identified with the full

subcategory of Fun.�op
S
;V ŒW �1�/ spanned by the objects that are local with respect

to certain maps. We can identify this with the 1–category of �
op
S

–monoids:

Definition 6.8 Recall that if V is an 1–category with finite limits and M is a
generalized nonsymmetric 1–operad, an M–monoid in V is a functor M! V such
that for every object m 2MŒn� , if m!mi (i D 1; : : : ; n) are cocartesian morphisms
corresponding to the inert maps �i W Œ1� ! Œn� in �, then the induced morphism
F.m/! F.m1/ � � � � � F.mn/ is an equivalence. We write MonM.V/ for the full
subcategory of Fun.M;V/ spanned by the monoids. There is a natural equivalence
MonM.V/' AlgM.V/ (by [13, Proposition 3.5.3]).

Definition 6.9 Suppose V is a presentable 1–category and M is a generalized
nonsymmetric 1–operad. For m 2M, write imW � !M for the inclusion of this
object, and let im;! denote left Kan extension along im . Then for any functor F WM!V
and X 2 V we have Map.im;!cX ;F /'Map.cX ; i

�
mF /'MapV.X;F.m//, where cX

is the functor �! V with image X .

Lemma 6.10 Suppose V is a presentable 1–category such that the Cartesian product
preserves colimits separately in each variable, and M is a small generalized nonsym-
metric 1–operad. Then the 1–category MonM.V/ is the localization of Fun.M;V/
with respect to the morphisms im1;!X q� � �q imn;!X ! im;!X for all m 2M with X

ranging over a set of objects that generates V under colimits.

Proof A functor F WM! V is a monoid if and only if it is local with respect to these
morphisms.

Since MonM.V/ is equivalent to AlgM.V/, we have proved the following:
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Proposition 6.11 Suppose V is a left proper combinatorial Cartesian model category,
and let WSeg;S denote the class of weak equivalences in Fun.�op

S
;V /Seg . Then the

natural map ˛S W Fun.�op
S
;V /ŒW �1

Seg;S �!Alg�
op
S
.V ŒW �1�/ is an equivalence. If more-

over monomorphisms in V are cofibrations, then we also have a natural equivalence
PrecatS .V /ŒW �1

Pre;X � ! Alg�
op
S
.V ŒW �1�/, where WPre;X denotes the class of weak

equivalences in PrecatS .V /Seg .

Having dealt with the fixed-objects case, we will now allow the set of objects to vary:

Definition 6.12 Let SegFun.V / denote the total space of the right Quillen presheaf
given by S 7! Fun.�op

S
;V /Seg and let Precat.V / denote the total space of the right

Quillen presheaf given by S 7! PrecatS .V /Seg . The adjunction u! a u� is natural and
so gives a natural transformation between these right Quillen presheaves.

Proposition 6.13 Let V be a left proper combinatorial Cartesian model category.
There exist combinatorial model structures on the categories SegFun.V / and Precat.V /
where a morphism F W C ! D is a weak equivalence if and only if the induced
morphism f on objects is a bijection and C ! f �D is a weak equivalence in
Fun.�op

ob C
;V /Seg or Precatob C .V /Seg and a fibration if and only if C ! f �D is a

fibration in Fun.�op
ob C

;V /Seg or Precatob C .V /Seg . The adjunction

u!W SegFun.V /� Precat.V / Wu�

induced by the natural transformations u! and u� is a Quillen equivalence.

Proof This is immediate from Proposition 4.25.

Now combining Corollary 4.22 and Proposition 6.11 we get the following comparison
of “algebraic” homotopy theories:

Theorem 6.14 Suppose V is a left proper combinatorial Cartesian model category.
The natural transformation ˛ induces a functor SegFun.V /ŒW

�1
Fun �!Algcat.V ŒW

�1�/Set

and this is an equivalence, where WFun denotes the weak equivalences in the model
structure on SegFun.V /. If moreover monomorphisms in V are cofibrations, then we
also have an equivalence Precat.V /ŒW �1

Precat�' Algcat.V ŒW
�1�/Set .

The weak equivalences in SegFun.V / are difficult to describe in general; however, a mor-
phism f W C !D between fibrant objects, ie Segal categories, is a weak equivalence if
and only if it is bijective on objects and a levelwise weak equivalence; in fact, given the
Segal conditions, it suffices for f to give a weak equivalence C .x;y/!D.f x; fy/
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for all objects x;y in C . To obtain the correct homotopy theory we clearly also need to
invert the morphisms that are fully faithful and essentially surjective in the appropriate
sense:

Definition 6.15 Composition with the projection V ! hV induces a functor

SegFun.V /! SegFun.hV /:

This takes Segal categories to categories enriched in hV . We say a morphism between
Segal categories in SegFun.V / is weakly fully faithful and homotopically essentially
surjective if its image in SegFun.hV / corresponds to a fully faithful and essentially
surjective functor of hV –categories.

This definition extends to give a notion of weak equivalence in SegFun.V /, and similarly
in Precat.V /; we will refer to these as Segal equivalences, and denote the class of
them as SE (in both SegFun.V / and Precat.V /). There are three model structures on
Precat.V / with the Segal equivalences as weak equivalences, namely the projective,
injective and Reedy model structures, constructed in [32].

The Segal equivalences between Segal categories clearly correspond to the fully faithful
and essentially surjective functors between categorical algebras, so we get the following:

Proposition 6.16 Suppose V is a left proper combinatorial Cartesian model category.
Then there is an equivalence

SegFun.V /ŒSE�1�
�

�! Algcat.V ŒW
�1�/SetŒFFES�1�:

If moreover monomorphisms in V are cofibrations, then there is an equivalence

Precat.V /ŒSE�1�
�

�! Algcat.V ŒW
�1�/SetŒFFES�1�:

Combining this with [13, Theorem 5.3.17] gives our comparison result:

Theorem 6.17 Suppose V is a left proper combinatorial Cartesian model category.
There is an equivalence of 1–categories

SegFun.V /ŒSE�1�
�

�! CatV ŒW
�1�

1 :

If moreover monomorphisms in V are cofibrations, then there is an equivalence

Precat.V /ŒSE�1�
�

�! CatV ŒW
�1�

1 :
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Corollary 6.18 Let V be a left proper tractable Cartesian model category that is a
presheaf category such that the monomorphisms are the cofibrations. Then for all n� 0

there are equivalences of 1–categories

Precatn.V /ŒSE�1�
�

�! CatV ŒW
�1�

.1;n/
:

Proof We wish to apply Theorem 6.17 inductively. To do this we must check
that if V satisfies the given hypotheses, then so does a suitable model structure on
Precat.V /. By [32, Theorem 21.3.2], if V is a left proper tractable Cartesian model
category then the same is true of the Reedy model structure on Precat.V /. Moreover,
by [32, Proposition 15.7.2] if V is a presheaf category such that the monomorphisms are
the cofibrations, then the injective and Reedy model structures on Precat.V / coincide,
so the Reedy cofibrations are the monomorphisms, since these are clearly the injective
cofibrations. Finally Precat.V / is also a presheaf category by [32, Proposition 12.7.6].

By induction it therefore follows that the Reedy model structure on Precatn.V / satisfies
the hypotheses of Theorem 6.17 for all n. Moreover, since the monoidal structures on
both Precat.V / and CatV ŒW

�1�
1 are given by the Cartesian product, the equivalence

between them is automatically an equivalence of symmetric monoidal 1–categories,
hence induces an equivalence

CatPrecat.V /
1

�

�! CatV ŒW
�1�

.1;2/
;

etc. By induction we thus get a sequence of equivalences

Precatn.V /ŒSE�1�' CatPrecatn�1.V /ŒSE�1�
1 ' CatPrecatn�2.V /ŒSE�1�

.1;2/
' � � � ' CatV ŒW

�1�

.1;n/
;

completing the proof.

Example 6.19 If we take V to be the category Set� of simplicial sets, with the usual
model structure, we get an equivalence

Precatn.Set�/ŒSE�1�
�

�! Cat.1;n/;

where the left-hand side is the 1–category of the .1; n/–categories of Pellissier,
Hirschowitz and Simpson and the right-hand side is the 1–category of .1; n/–
categories defined by iterated 1–categorical enrichment.

Example 6.20 We would like to take V to be the category Set of sets, equipped
with the trivial model structure, but of course this does not satisfy the hypothesis
that cofibrations are monomorphisms. We therefore need to consider instead a model
category M , Quillen equivalent to Set, that does satisfy the hypotheses of the theorem.
For example, following [32, Section 22.1] we can let M be an appropriate localization
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of the Reedy model structure on Precat2.�/, or we can take M to be the Bousfield
localization of the usual model structure on Set� with respect to the morphisms
@�n!�0 for all n� 2. We then get an equivalence

Precatn.Set/ŒSE�1�
�

�! Precatn.M /ŒSE�1�
�

�! CatM ŒW �1�

.1;n/

�

�! Catn;

where the left-hand side is the 1–category of Tamsamani’s n–categories [35] and the
right-hand side is the 1–category of n–categories defined by iterated 1–categorical
enrichment.

7 Comparison with iterated Segal spaces

We saw in the previous section that the 1–category Cat.1;n/ of .1; n/–categories,
obtained by iterated enrichment, is equivalent to that associated to the model category
of n–fold Segal categories, which is another model for the homotopy theory of .1; n/–
categories. Since this model is known to satisfy the axioms of Barwick and Schommer-
Pries [5], it follows that Cat.1;n/ is equivalent to all the usual models for .1; n/–
categories. However, this comparison was somewhat indirect. Our goal in this section
is to give a more direct comparison between Cat.1;n/ and another established model
of .1; n/–categories, namely the iterated Segal spaces of Barwick [1].

We will deduce this comparison from a slightly more general result: we will prove that
if X is an absolute distributor, in the sense of [22], then categorical algebras in X are
equivalent to Segal spaces in X , and complete categorical algebras are equivalent to
complete Segal spaces. We begin with a brief review of the notion of distributor:

Definition 7.1 A distributor consists of an 1–category X together with a full sub-
category Y such that we have the following.

(i) The 1–categories X and Y are presentable.

(ii) The full subcategory Y is closed under small limits and colimits in X .

(iii) If X ! Y is a morphism in X such that Y 2 Y , then the pullback functor
Y=Y ! X=X preserves colimits.

(iv) Let O denote the full subcategory of Fun.�1;X / spanned by those morphisms
f W X ! Y such that Y 2 Y , and let � W O ! Y be the functor given by
evaluation at 1 2 �1 . Since X admits pullbacks, the evaluation-at-1 functor
Fun.�1;X /! X is a Cartesian fibration, hence so is � . Let �W Yop! cCat1
be a functor that classifies � . Then � preserves small limits.
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Definition 7.2 An absolute distributor is a presentable 1–category X such that the
unique colimit-preserving functor S ! X that sends � to the final object is fully
faithful, and S � X is a distributor.

Now we can recall the definition of a Segal space in an absolute distributor:

Definition 7.3 Suppose C is an 1–category with finite limits. A category object in C
is a simplicial object F W �op! C such that for each n the map

Fn! F1 �F0
� � � �F0

F1

induced by the inclusions fi; i C 1g ,! Œn� and fig ,! Œn� is an equivalence.

Definition 7.4 Let X be an absolute distributor. A Segal space in X is a category
object F W �op! X such that F.Œ0�/ is in S � X .

Our goal is now to prove the following:

Theorem 7.5 Suppose X is an absolute distributor. There is an equivalence

Algcat.X /
�

�! Seg.X /;

given by sending a �
op
S

–algebra C to the left Kan extension �!C0 of the composite

C0W �op
S

C
�! X�! X

along � W �op
S
! �op , where the second map (which sends .S1; : : : ;Sn/ 2 X�

Œn�
to

S1 � � � � �Sn ) comes from a Cartesian structure in the sense of [23, Definition 2.4.1.1].

For the proof we need some more technical results:

Proposition 7.6 [22, Corollary 1.2.5] Suppose Y � X is a distributor. Let K be a
small simplicial set, and let x̨W xp! xq be a natural transformation between functors
xp; xqW KF! X . If xq is a colimit diagram in Y and ˛ D x̨jK is Cartesian, then x̨ is
Cartesian if and only if xp is a colimit diagram.

Lemma 7.7 Suppose X is an absolute distributor. Then for every space X 2 S , the
map

X W Fun.X;X /! X=X

that sends a functor F W X ! X to its colimit is an equivalence of 1–categories.
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Proof Let �W X ! X be the constant functor at the final object � 2 S � X . Since X

is a space, a functor F W X ! X sends every morphism in X to an equivalence in X ,
and so the unique natural transformation F ! � is Cartesian.

Write x�W XF! X for a colimit diagram extending � . Then X factors as

Fun.X;X /' Fun.X;X /=�
�1
�! Fun.XF;X /

=x�

�2
�! X=X ;

where �2 is given by evaluation at the cone point. The functor �1 gives an equivalence
between Fun.X;X /=� and the full subcategory E1 of Fun.XF;X /=x� spanned by the
colimit diagrams. On the other hand, the restriction of �2 to the full subcategory E2

spanned by the Cartesian natural transformations to x� is also clearly an equivalence.
By Proposition 7.6 the subcategories E1 and E2 coincide, and so the composite X is
indeed an equivalence.

Proposition 7.8 Let O be an 1–category, and let F W O ! S be a functor; write
� W OF !O for the left fibration associated to F . Suppose X is an absolute distributor.
Then left Kan extension along � gives an equivalence

Fun.OF ;X /
�

�! Fun.O;X /=F :

Proof By [14, Proposition 7.3] the 1–category Fun.OF ;X / is equivalent to the
1–category of sections of the Cartesian fibration E ! O whose fiber at X 2 O is
Fun.F.X /;X /. Since X is an absolute distributor, by Lemma 7.7 the 1–category E
is equivalent over O to the total space E 0 of the Cartesian fibration associated to the
functor sending X to X=F.X / . Then E 0 is the pullback along F of the Cartesian
fibration Fun.�1;X / ! X given by evaluation at 1, so we have an equivalence
between the 1–category FunO.O; E 0/ of sections and the fiber of Fun.O��1;X /'
Fun.�1;Fun.O;X //! Fun.O;X / at F . This is clearly equivalent to Fun.O;X /=F ,
which completes the proof.

Proposition 7.9 Let S be a space, and let � W �op
S
!�op be the usual projection. Let

�!W Fun.�op
S
;X /! Fun.�op;X / be the functor given by left Kan extension along � .

Then a functor F W �
op
S
! X is a �

op
S

–monoid if and only if �!F is a Segal space.

Proof It is clear that �!F.Œ0�/ is equivalent to S . We must thus show that the Segal
morphism

�!F.Œn�/! �!F.Œ1�/�S � � � �S �!F.Œ1�/DW .�!F /
Seg
Œn�

is an equivalence if and only if F is a �
op
S

–monoid. Since � is a cocartesian fibration,
we have an equivalence �!F.Œn�/' colim�2S�.nC1/ F.�/. It thus suffices to show that
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.�!F /
Seg
Œn�

is also a colimit of this diagram if and only if F is a �
op
S

–monoid. There is
a natural transformation

.S�.nC1//F! Fun.�1;X /

that sends

� 2 S�.nC1/ to F.�/! � and 1 to .�!F /
Seg
Œn�
! S�.nC1/:

Since X is an absolute distributor, by Proposition 7.6 the colimit is .�!F /
Seg
Œn�

if and only
if this natural transformation is Cartesian. Since S�.nC1/ is a space, this is equivalent
to the square

F.�/ .�!F /
Seg
Œn�

� S�.nC1/

being a pullback square for all � , so we are reduced to showing that the fiber of
.�!F /

Seg
Œn�
! S�.nC1/ at � is F.�/ if and only if F is a �

op
S

–monoid. Since limits
commute, if � is .s0; : : : ; sn/ this fiber is the iterated fiber product

.�!F Œ1�/.s0;s1/ �.�!F Œ0�/.s1/
� � � �.�!F Œ0�/.sn�1/

.�!F Œ1�/.sn�1;sn/:

But using Proposition 7.6 again it is clear that the natural maps F.x;y/! .�!F Œ1�/.x;y/
and � ' F.x/! .�!F /.x/ are equivalences for all x;y 2 S . Thus the map F.�/!

.�!F /
Seg
Œn�;�

is equivalent to the natural map

F.�/! F.s0; s1/� � � � �F.sn�1; sn/:

By definition this is an equivalence for all � 2�
op
S

if and only if F is a �
op
S

–monoid,
which completes the proof.

Definition 7.10 Let i W �!�op denote the inclusion of the object Œ0�. Then composi-
tion with i gives a functor i�W Seg.X /! S with left and right adjoints i! and i� , given
respectively by left and right Kan extension. Observe that by definition �

op
X
!�op is

the left fibration associated to i�X 2 Seg.S/.

Corollary 7.11 Let S be a space, and let � W �op
S
!�op denote the canonical projec-

tion. By Proposition 7.8 the functor

�!W Fun.�op
S
;X /! Fun.�op;X /=i�S

given by left Kan extension is an equivalence.

Algebraic & Geometric Topology, Volume 15 (2015)



1978 R Haugseng

Under this equivalence, the full subcategory Mon�
op
S
.X / of �

op
S

–monoids corresponds
to the full subcategory of Fun.�op;X /=i�S spanned by the Segal spaces Y� such that
Y0 ' S and the map Y�! i�S is given by the adjunction unit Y�! i�i

�Y� ' i�S .

Proof It is clear that �! takes Mon�
op
S
.X / into the full subcategory of Fun.�op;X /=i�S

spanned by simplicial spaces Y� with Y0 ' S and the map Y�! i�S given by the
adjunction unit Y�! i�i

�Y ' i�S . The result therefore follows by Proposition 7.9.

Corollary 7.12 Let S be a space, and let � W �op
S
!�op denote the canonical projec-

tion. The functor �!W Fun.�op
S
;X /!Fun.�op;X / given by left Kan extension along �

gives an equivalence of the full subcategory Mon�
op
S
.X / of �

op
S

–monoids with the
subcategory Seg.X /S of Segal spaces with 0th space S and morphisms that are the
identity on the 0th space.

Proof of Theorem 7.5 If V is an 1–category with finite products, pulling back the
monoid fibration Mon.V/!Opdns

1 of [13, Remark 3.6.3] along �
op
.–/ gives a Cartesian

fibration Moncat.V/ with an equivalence

Algcat.V/
�

�!Moncat.V/

over S . Taking left Kan extensions along the projections �
op
S
!�op for all S 2 S we

get (using Proposition 7.9) a commutative square:

Moncat.X / Seg.X /

S

ˆ

evŒ0�

By [16, Corollary 5.27] it is clear that evŒ0�W Seg.X /! S is a Cartesian fibration,
and the functor ˆ preserves Cartesian morphisms by Proposition 7.6. It thus suffices
to prove that for each S 2 S the functor on fibers Mon�

op
S
.X / ! Seg.X /S is an

equivalence, which is the content of Corollary 7.12.

Our goal is now to deduce that the equivalence of Theorem 7.5 induces an equivalence
between complete categorical algebras and complete Segal spaces. We will first review
the definition of the latter:

Definition 7.13 Write Gpd.S/ for the full subcategory of Seg.S/ spanned by the
groupoid objects, ie the simplicial objects X such that for every partition Œn�D S [S 0
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where S \S 0 consists of a single element, the diagram

X.Œn�/ X.S/

X.S 0/ X.S \S 0/

is a pullback square. Let X be an absolute distributor, and let ƒW X ! S denote the
right adjoint to the inclusion S ,! X . The inclusion Gpd.S/ ,! Seg.S/ ,! Seg.X /
admits a right adjoint �W Seg.X /! Gpd.S/, which is the composite of the functor
ƒW Seg.X /! Seg.S/ induced by ƒ, and �W Seg.S/!Gpd.S/. We say a Segal space
F W �op! X is complete if the groupoid object �F is constant.

Remark 7.14 By [13, Lemma 5.2.8], a Segal space F is complete if and only if the
map

�F.s0/W �F Œ0�! �F Œ1�

is an equivalence.

Definition 7.15 Let En denote the Segal space i�f0; : : : ; ng. If X is an absolute
distributor we also write En for En regarded as a Segal space in X via the inclusion
S ,! X .

Proposition 7.16 Suppose X is an absolute distributor. Then a Segal space F in X
is complete if and only if it is local with respect to the morphism E1!E0 .

Proof It is clear that F is local with respect to E1!E0 , considered as a morphism
in Seg.X /, if and only if the Segal space ƒF in S is local with respect to E1!E0 ,
considered as a morphism in Seg.S/. On the other hand, F is complete if and only
if ƒF is complete, so it suffices to prove this for Segal spaces in S . This case is part
of [28, Proposition 6.4].

Definition 7.17 Let CSS.X / denote the full subcategory of Seg.X / spanned by the
complete Segal spaces; by Proposition 7.16 this is the localization of Seg.X / with
respect to the morphism E1!E0 .

Theorem 7.18 Let X be an absolute distributor. The equivalence Algcat.X /
�

�!

Seg.X / induces an equivalence CatX1
�

�!CSS.X /.

Proof It is clear that En
X 2 Algcat.X / corresponds to En 2 Seg.X / under this equiv-

alence. Both sides are therefore the localization with respect to E1!E0 .
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Definition 7.19 By [22, Corollary 1.3.4], if X is an absolute distributor, then CSS.X /
is also an absolute distributor. We therefore have absolute distributors CSSn.X / of
n–fold complete Segal spaces in X .

Applying Theorem 7.18 inductively, we get:

Corollary 7.20 Let X be an absolute distributor. Then CatX.1;n/ ' CSSn.X /.

In particular, taking X to be the 1–category S of spaces, we obtain the desired
comparison with iterated Segal spaces:

Corollary 7.21 There is an equivalence Cat.1;n/ ' CSSn.S/.
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