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Completed power operations for Morava E–theory

TOBIAS BARTHEL

MARTIN FRANKLAND

We construct and study an algebraic theory which closely approximates the theory of
power operations for Morava E–theory, extending previous work of Charles Rezk
in a way that takes completions into account. These algebraic structures are made
explicit in the case of K–theory. Methodologically, we emphasize the utility of flat
modules in this context, and prove a general version of Lazard’s flatness criterion for
module spectra over associative ring spectra.

55S25; 55S12, 13B35

1 Introduction

If E is a commutative ring spectrum, then the homotopy groups of any commutative
E–algebra A carry important extra structures known as power operations. Historically,
one of the first instances of power operations were the Dyer–Lashof operations, acting
on the mod p homology of infinite loop spaces, and more generally on the homotopy
of any commutative HFp –algebra A. The structure present on ��A is captured by
a monad on graded Fp –vector spaces, which can be described explicitly; see Bruner,
May, McClure and Steinberger [10, Section IX.2]. This provides an algebraic theory
of power operations for HFp .

A central object of study in the chromatic approach to stable homotopy theory is
Morava E–theory E DEh , which is a commutative ring spectrum associated with a
universal deformation of a height h formal group law over the field Fph . Since Ando’s
thesis [4], power operations for Morava E–theory have found various applications in
chromatic homotopy theory and it is an important problem to better understand this
structure. Generalizing the work of McClure and Bousfield for p–complete K–theory
E1 D K^p , Rezk [30] constructs for any height h a monad T W ModE� ! ModE�

which approximates the structure of power operations on the homotopy of commutative
Eh –algebras.
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Using this functor, the ring of (additive) power operations for Morava E–theory is
defined as

� D End.U W AlgT ! Ab/Š
M
k�0

coker
� M

0<j<pk

E^0 B.†j �†pk�j /!E^0 B†pk

�
;

where U denotes the degree-0 part of the forgetful functor, E^ is completed Morava
E–homology and the maps are induced by the inclusions †j �†pk�j !†pk . Rezk
then proves that � is Koszul in an appropriate sense, which allows for the construction
of small algebraic resolutions of � –modules.

However, the algebraic approximation functor T ignores an important piece of structure
present on the homotopy groups of commutative E–algebras: in order to get a well-
behaved theory of algebras, one has to work with K.h/–local algebras throughout, as
we shall explain in more detail in Section 2.1. The homotopy groups of a K.h/–local
commutative E–algebra then naturally take values not merely in ModE� , but rather
in the subcategory bModE� of L–complete E�–modules.

Motivated by this observation, our first goal in this paper is to construct, in a universal
way, an improved version of the algebraic approximation functor

yT W bModE� !
bModE�

that takes completions into account. It comes with a comparison map

˛W yT��LK M ! ��LK PM

for any E–module M , which is an isomorphism if M is flat as an E–module. This
should be contrasted with the fact that the uncompleted comparison map is an isomor-
phism when M is finitely generated and free, but rarely otherwise.

As our main theorem (Theorem 3.19), we prove that the completed algebraic approxi-
mation functor gives rise to an algebraic theory of completed power operations.

Theorem The completed algebraic approximation functor yT W bModE� !
bModE�

admits a natural monad structure, compatible with the one on LK P .

This result is important for our understanding of the theory of power operations for
Morava E–theory. Some of the potential applications are discussed in Section 3.3.

Interestingly, due to some peculiar properties of bModE� , the proof of monadicity of the
uncompleted functor T does not carry over to this setting. Since the proof relies heavily
on the algebraic and homological structure of this category, we survey the theory of
L–complete modules in an appendix; see Appendix A. This section also contains a
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number of new results which are of independent interest, and our hope is to convince
the reader that bModE� is a very natural category appearing in algebraic topology. One
technical novelty of our approach is the emphasis on flat modules in the study of
L–complete modules, for which we provide several equivalent characterizations. On
the topological side, we prove a general version of Lazard’s theorem for flat module
spectra over associative ring spectra, generalizing previous work by Lurie and Rezk.

Our second main objective is to make the structure on the completed algebraic approxi-
mation functor explicit in the height-1 case, ie for p–complete K–theory. At height 1,
the explicit structure of the power operations is understood, by earlier work [10, Sec-
tion IX] and Bousfield [8]. In contrast, few explicit formulas are known at higher
heights. The height-2 case has been calculated by Rezk at the prime 2 [28] and
Zhu at the prime 3 [42]; this seems to be the state of the art as of this writing. In
Section 7, we present an alternate, formula-based proof of the height-1 case, resting
on the identification of the algebraic approximation functors in Section 6.

Theorem At height hD 1, the monad T W ModE�!ModE� is the free Z=2–graded
� –ring over the ground � –ring Zp .

We then illustrate how one can take completions into account when doing computations
with the functors Tn , and in particular how the nonlinearity of Tn comes into play. The
point of view in Section 7 is complemented by a representation theoretic interpretation
in Appendix B.

Organization

We start in Section 2 with a brief recollection of free algebras over a commutative
ring spectrum in general, and then explain what is special in the case of K.h/–local
commutative E–algebras, where E denotes Morava E–theory. After that, we prove
a general version of Lazard’s characterization of flat module spectra over arbitrary
E1 –ring spectra. In Section 3, we introduce Rezk’s algebraic approximation functors
and construct our completed analogues, studying some of their properties along the
way. We formulate our main theorem, the proof of which is the subject of Section 4,
and mention some of the future applications.

Section 5 serves as an intermediate discussion of the compatibility between L–comple-
tions and certain algebraic structures. In particular, we recall facts about �– and
� –rings, which play an important role in the following two sections. Sections 6 and 7
contain the alternative proof of the main theorem at height 1, based on explicit formulas.

There are two appendices. Appendix A describes the construction and essential
properties of L–completion and the associated category of L–complete modules,
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summarizing and extending the results of Hovey and Strickland [22, Appendix A].
Finally, we return to the height-1 case in Appendix B, where we give a representation
theoretic interpretation of and argument for the proof of the main theorem.

Notation and conventions

For a fixed prime p and an integer h> 0, height-h Morava E–theory Eh is a K.h/–
local Landweber exact ring spectrum with coefficients

E� DW Fph ŒŒu1; : : : ;uh�1�� Œu;u
�1�;

where W Fph is the ring of (p–typical) Witt vectors on Fph , ui is in degree 0 for
all i , and u has degree 2. Note that E0 is a complete noetherian regular local ring
with maximal ideal m D .p;u1; : : : ;uh�1/, where we write u0 D p for notational
convenience. By a theorem of Goerss, Hopkins and Miller, Morava E–theory has the
structure of an E1–ring spectrum. For simplicity, the letter E will always denote
this theory. Furthermore, for an E–module M (or in fact any spectrum), denote the
K.h/–localization map by j W M ! LK M , writing LK for Bousfield localization
with respect to Morava K–theory K.h/. Note that, for any E -module M , LK M is
equivalent to the Bousfield localization of M with respect to K.h/ internal to ModE ;
see Hovey [21, 2.2].

Let †W ModE ! ModE be the usual suspension functor †X D S1 ^ X . Let
†W ModE�!ModE� denote the corresponding algebraic suspension functor †M WD

E�.S
1/˝E� M , which satisfies ��.†X /Š†.��X /. Although E is a 2–periodic

cohomology theory, periodicity will not play an essential role in this paper. Therefore,
we will not use the Z=2–graded formalism proposed in [30, Sections 1.5 and 2.6], but
rather view E� as a Z–graded ring and all E�–modules as Z–graded as well. As in
Rezk [29, Section 3], we will keep track of suspensions whenever necessary.

Throughout this paper, we will be mostly working on the level of homotopy categories,
and all our homotopical constructions are understood to be derived. In case we have
to carry out actual point-set level constructions, we can either work with S –modules
as given (see Elmendorf, Kriz, Mandell and May [12]) or within the 1–category of
spectra as developed in Lurie [26].

Moreover, we often abbreviate notation by omitting the subscripts of smash products,
tensor products and so on when the base ring (spectrum) is understood.

Acknowledgments We are very grateful to Charles Rezk for introducing us to the
problem that motivated this paper and thank him for many insightful conversations.
Furthermore, we would like to thank Omar Antolín Camarena, Dan Christensen, Paul
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Donald Yau for helpful discussions on the subject matter of this paper. We also thank
the referee for several useful comments.

The first author was partially supported by an ERP scholarship and Harvard University.
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2 Preliminaries and Lazard’s theorem

We will need the analogues in topology of familiar notions from algebra. For an
associative ring spectrum R, we introduce various categories of R–modules and,
if R is also commutative, commutative R–algebras, recall the construction of free
commutative R–algebras, and then specialize to Morava E–theory. In Section 2.2, we
prove Lazard’s characterization of flat modules in the setting of module spectra over
an arbitrary E1 –ring spectrum.

2.1 Free commutative algebras

Consider an E1–ring spectrum R.

Notation 2.1 Let ModR denote the category of R–modules, which is symmetric
monoidal with respect to the smash product ^R ; if the base ring is clear from context,
we simply write ^. Let AlgR denote the category of commutative R–algebra, ie
commutative monoid objects in .ModR;^R/.

The forgetful functor AlgR !ModR has a left adjoint P W ModR ! AlgR , the free
commutative R–algebra functor, given by P .M / D

W
n�0.M

^Rn/=†n . We also
denote the associated forget-of-free monad by P W ModR!ModR . We write P D PR

to specify the base ring spectrum R if needed. The adjunction is monadic; in fact, the
category AlgR is isomorphic to the category of P –algebras in ModR .

To describe the homotopical behavior of P , let us recall some facts about the EKMM
model of S –modules. First, E1–ring spectra and their modules can be functorially
replaced by weakly equivalent commutative S –algebras and their modules [12, II.3.6].
A commutative S –algebra R can be replaced by a weakly equivalent q–cofibrant
commutative S –algebra, with an equivalent derived category h ModR [12, III.4.2].
If R is a q–cofibrant commutative S –algebra, and M is a cell R–module, then
extended powers agree with symmetric powers: the map .M^n/h†n

! .M^n/=†n is
a homotopy equivalence [12, III.5.1], motivating the following definition.
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Definition 2.2 Let n � 0 be a nonnegative integer and M an R–module. The nth

extended power of M is the R–module

PnM D .

n times‚ …„ ƒ
M ^R � � � ^R M /h†n

;

where the symmetric group †n acts on the n–fold smash product by permuting the
factors, and the subscript denotes the homotopy orbit. This homotopy colimit can
be computed as PnM D .E†n/C ^†n

M^Rn , where E†n denotes the standard
contractible space with a free right †n –action [10, I Section 2].

Extended powers form a functor PnW ModR!ModR , which moreover passes to the
homotopy category. The symmetric algebra functor P W ModR!ModR induces a total
left derived functor, also denoted P W h ModR! h ModR , which is given by

PM D
_
n�0

PnM D
_
n�0

.M^Rn/h†n
:

This functor defines a monad on the homotopy category of R–modules. An algebra
structure on a spectrum Y for the monad P W h ModR ! h ModR is an H1 R–
algebra structure; the corresponding structure maps are denoted by �nW PnY ! Y . Any
commutative R–algebra naturally becomes (upon passing to the homotopy category
h ModR ) an algebra for the monad P .

Definition 2.3 An R–module M is called finitely generated if ��M is a finitely
generated R�–module. The module M is called finitely generated and free, or finite
free for short, if ��M is a finitely generated free R�–module. This holds if and
only if M is equivalent to a finite wedge

Wk
iD1†

di R. Let Modff
R denote the full

subcategory of ModR consisting of finite free R–modules, and h Modff
R its homotopy

category, viewed as a full subcategory of h ModR .

In general, Pn does not preserve finite free modules, but we will see shortly a version
of it which does, for the ring spectrum of interest here: Morava E–theory. Recall from
the introduction that we are going to fix a height h for the remainder of the paper and
agree to write E DEh .

Proposition 2.4 [30, 3.8] The functor PnW h ModE ! h ModE preserves K.h/–
homology isomorphisms. In particular, the natural transformation

LK Pn.j /W LK Pn!LK PnLK

is an isomorphism. The functor yP D LK P W h ModE ! h ModE admits a unique
monad structure with the property that j W P !LK P is a map of monads.
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In the context of E–modules, this completed free algebra functor yP is better behaved
than its uncompleted analogue, as the next proposition demonstrates.

Proposition 2.5 [30, 3.9] If M is a finite free E–module, then LK Pn.M / is also
finite free, for any n� 0.

Remark 2.6 Proposition 2.5 would fail without the completion. That is, if M is a
finite free E–module, then Pn.M / need not be finite free.

2.2 Lazard’s theorem for flat module spectra

The goal of this section is to generalize Lazard’s characterization of flat modules to
module spectra over an arbitrary E1 –ring spectrum, inspired by conversations with Sam
Raskin and Charles Rezk. All the modules and module spectra will be left modules,
unless otherwise stated.

First, recall Lazard’s theorem for ordinary rings.

Theorem 2.7 (Lazard’s theorem for flat modules) Let R be a unital and associative
ring; then the following conditions are equivalent for an R–module M .

(1) M is flat, ie the functor �˝R M from right R–modules to abelian groups is
exact.

(2) Every map C ! M with C finitely presented factors through some finitely
generated free left R–module F .

(3) M can be written as a filtered colimit of finitely generated free R–modules.

For the rest of this section, let R be an E1 –ring spectrum, and denote by ModR the cat-
egory of left R–module spectra. For technical convenience, in this subsection only, we
will freely use concepts from the theory of 1–categories, modeled as quasicategories
as developed in Joyal [23] and Lurie [25]. In particular, all constructions are considered
to be taking place within the setting of 1–categories, so that limits and colimits are
automatically derived and diagrams commute only up to homotopies witnessed by
higher simplices.

Recall that an 1–category C is filtered if and only if every map f W K! C from a
finite simplicial set K admits a cocone extension xf W KF! C .
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Lemma 2.8 Suppose pW D ,! C is a full subcategory of a filtered 1–category C . For
any c 2 C , let Dc= be the comma 1–category constructed as the pullback

Dc=
//

��

Cc=

��

D
p
// C:

If for every c 2 C there exists a map f W c! d with d 2 D , then Dc= is filtered.

Proof Let gW K!Dc= be a finite diagram, which is the same as a diagram gW K!Cc=

with all vertices in D . By adjunction, this is equivalent to a diagram hW GK! C with
initial vertex c and all but the initial vertices in D . Since C is filtered, h admits an
extension xh0W GKF! C with final vertex c0 2 C . The assumption implies the existence
of c0 ! d with d 2 D , giving another extension xhW GKF ! C with final vertex d .
Using adjunction again, we get the desired extension xgW KF ! Dc= of the given
diagram g .

The category Modperf
R

of perfect modules is by definition the smallest full stable
subcategory of ModR which contains R and is closed under retracts. By [26, 8.2.5.2],
it can be identified with the full subcategory of compact objects, and

Ind Modperf
R
DModR

ie every M 2 ModR is equivalent to the colimit of the canonical filtered diagram
.Modperf

R
/=M !ModR . Moreover, [26, 8.2.5.7] exhibits a perfect pairing between

perfect left R–modules and perfect right R–modules,

LModperf
R
�RModperf

R

�^R�
����! Sp

�1

���! TopI

in particular, if C 2Modperf
R

, we denote its dual by Hom.C;R/ 2Modperf
R

, viewed as
a right R–module.

Theorem 2.9 (Lazard’s theorem for flat module spectra) For M 2ModR , the fol-
lowing conditions are equivalent.

(1) ��M is flat as a graded ��R–module.

(2) Every map C !M with C 2Modperf
R

factors through some F 2Modff
R .

(3) M can be written as a filtered colimit of finite free R–modules.

Note that conditions (2) and (2) are interpreted within the 1–category ModR .

The following argument also provides, with the obvious modifications, a proof of
Theorem 2.7.
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Proof (1) H) (2) Since every perfect module C is a retract of a finite cell R–
module, it follows by induction on the number of cells that the natural map of spectra

Hom.C;R/^M ! Hom.C;M /

is an equivalence for any M 2ModR . Assuming M satisfies (1), we claim that, for
every C 2Modperf

R
, the natural map

��Hom.C;R/˝��R ��M ! ��Hom.C;M /

is an isomorphism; this immediately implies (2). Because perfect modules are dual-
izable, taking P D Hom.C;R/, this is equivalent to the claim that f�W ��P ˝��R

��M ! ��.P ^M / is an isomorphism for any P 2Modperf
R

.

Denote by P the full subcategory of ModR on those perfect right modules P for
which f� is an isomorphism. It is clear that P contains R and is closed under finite
coproducts, shifts and retracts, so it suffices to show that it is closed under extensions.
To this end, let P 0! P ! P 00 be a fiber sequence of R–modules with P 0;P 00 2 P .
Since ��M is flat over ��R, we get a map between 5–term exact sequences of
��R–modules

��C1P 00

˝��R ��M //

�

��

��P
0

˝��R ��M //

�

��

��P
˝��R ��M //

�

��

)

��

��P
00

˝��R ��M //

�

��

���1P 0

˝��R ��M

�

��

��C1.P
00^M / // ��.P

0^M / // ��.P^M / // ��.P
00^M / // ���1.P

0^M /

and the five lemma gives the claim.

(2) H) (3) We will show that the canonical diagram .Modff
R/=M !ModR is filtered

and has colimit M . Every finitely generated free R–module is compact, so there is an
inclusion as a full subcategory

pW .Modff
R/=M ,! .Modperf

R
/=M:

Assumption (2) corresponds precisely to the condition in Lemma 2.8, so the comma
1–category ..Modff

R/=M /N= is filtered for every N 2 .Modperf
R
/=M , hence weakly

contractible by [25, 5.3.1.18]. Therefore, [25, 4.1.3.1] shows that p is final, thus the
colimit of

.Modff
R/=M

p
�! .Modperf

R
/=M !ModR

is M . Moreover, applying Lemma 2.8 to the special case N D 0 gives that this diagram
is filtered.

(3) H) (1) It is obvious that (1) is true for M D R, so the claim follows since
homotopy groups commute with filtered colimits.

Algebraic & Geometric Topology, Volume 15 (2015)



2074 Tobias Barthel and Martin Frankland

Definition 2.10 An E–module M is called flat if it satisfies the equivalent conditions
of Theorem 2.9. The full subcategory on the flat E–modules is denoted by Mod[E .

Remark 2.11 Theorem 2.9 is a generalization of both Lurie’s version of Lazard’s theo-
rem for connective modules over a connective associative ring spectrum R [26, 8.2.2.15]
and Rezk’s result [30, 3.7], which is the special case of the above for Morava E–theory.
Note, however, that Lurie’s definition of flatness differs slightly from ours, in that
he defines, for R connective, a flat module to be an R–module M with �0M flat
over �0R and such that the extra condition

��R˝�0R �0M
'
// ��M

holds. The proof given above can be adapted to this case as well.

3 Algebraic approximation functors

After a brief review of Rezk’s algebraic approximation functors, we study their com-
pleted analogues and state our main theorem. At the end of this section, we discuss
some future applications.

3.1 Rezk’s algebraic approximation functors

We recall Rezk’s construction of algebraic approximation functors in [30, Section 4],
along with their main properties. For this, we will make frequent use of:

Proposition 3.1 [30, 3.6] The functor ��W h Modff
E!Modff

E�
is an equivalence of

categories.

The algebraic approximation functors TnW ModE� ! ModE� are constructed so
as to capture the algebraic structure present on ��LK Pn . In particular, they will
satisfy Tn.��E/ Š ��LK Pn.E/ and a similar formula for finitely generated free
E�–modules.

Consider the diagram of categories

(1)

h Modff
E

�� �

��

i
// h ModE

��

��

LK Pn
// h ModE

��

��

Modff
E� j

// ModE� Tn

// ModE� ;
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where the left-hand square commutes (strictly), the functors i and j are inclusions
of full subcategories, and the downward arrow �� on the left is an equivalence of
categories, by Proposition 3.1. Note that the functor Tn constructed below does not
make the right-hand square commute.

In order to define the algebraic approximations functor T we have to briefly recall
the concept of (left) Kan extension; see Mac Lane [27, Section X.3] or Riehl [34, 1.1].
Let F W C ! E and KW C ! D be functors. The left Kan extension of K by F

consists, if it exists, of a functor LanK F W D! E together with a natural transformation
�W F ! LanK F ıK , which is the initial such pair:

C F
//

K ��

+ �

E

D
LanK F

??

Universality is in the following sense: if .GW D! E ; � W F !G ıK/ is another pair
as above, then there exists a unique natural transformation !W LanK F !G such that
� D !K ı�. In other words, if ED D Fun.D; E/ and similarly for EC , then universality
gives a bijection

ED.LanK F;G/D EC.F;GK/

for any G 2 ED .

Assuming that C is essentially small and E is cocomplete, the left Kan extension of F

along K always exists and can be computed pointwise using the following formula:

LanK F.d/D

Z c2C
HomD.Kc; d/ �Fc:

Here, the integral sign denotes the coend and

.� ��/W Set�E! E ; .S; e/ 7!
a
S

e

is the copower. Note that, if E is cocomplete and K is fully faithful, then � is a natural
isomorphism, so LanK F ıK D F .

Definition 3.2 [30, Section 4.2] For every n�0, the algebraic approximation functor
TnW ModE� !ModE� is defined as

Tn D Lan��i.��LK Pni/
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ie the left Kan extension of the functor ��LK Pni W h Modff
E ! ModE� along the

functor ��i D j��W h Modff
E!ModE� .

We define the functor T W ModE� !ModE� as the direct sum T D
L
n�0

Tn .

Note that this left Kan extension exists, so that Tn is well defined. Indeed, the category
h Modff

E is essentially small, being equivalent to the essentially small category Modff
E�

,
and the target category ModE� is cocomplete.

Notation 3.3 Using the universal property of left Kan extensions and Hom.iM;N /

D Hom.��iM; ��N / for M 2 hModff
E and N 2 h ModE , one obtains a natural

transformation
˛nW Tn.��M /! ��.LK PnM /;

called the approximation map in [30, Section 4.3], and likewise

˛ D
M
n�0

˛nW T .��M /! ��.LK PM /:

Warning 3.4 In [29, 3.2], the approximation map is defined as a natural transformation
T .��LK M /! ��.LK PM / for all E–modules M . We denote this version of the
approximation map by z̨ instead, to avoid ambiguity. However, z̨ can be thought of as
a special case of ˛ , namely for the E–module LK M , using the natural equivalence
LK P

�

�!LK PLK , as illustrated in the commutative diagram

T .��LK M /

˛LK M **

z̨M
// ��LK PM

Š
��

��LK PLK M:

Remark 3.5 The comparison map z̨W T��LK!��LK P induces a lifting of ��LK W

h ModE!ModE� to a functor

h AlgP
��LK

//

U
��

AlgT

U
��

h ModE
��LK

// ModE� ;

where the arrows labeled U are the natural forgetful functors. This allows the study of
power operations through the category of T –algebras.
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Proposition 3.6 [30, 4.4] If M is a finite free E–module, the map ˛nW Tn.��M /!

��.LK PnM / is an isomorphism.

Recall that a small category I is called sifted if colimits over I commute in Set with
finite products. A sifted colimit is a colimit of a diagram over a sifted category. For
example, filtered colimits and reflexive coequalizers are sifted colimits.

Theorem 3.7 [30, 4.5] The functor T W ModE�!ModE� defined in Definition 3.2
admits the structure of a monad, compatible with that of LK P .

Proof By definition, for any M 2ModE� ,

Tn.M /D Lan��i ��LK Pni.M /D

Z F2h Modff
E

Hom.��i.F /;M / ���LK Pni.F /

because the left Kan extension can be constructed pointwise. Since any F 2 h Modff
E

is small and projective in ModE� , Hom.��iF;�/ commutes with sifted colimits in
ModE� , or equivalently, it commutes with filtered colimits and reflexive coequalizers;
see Adámek, Rosický and Vitale [1, 2.1]. This implies that the left Kan extension Tn

also commutes with sifted colimits. Therefore, the monad structure on T D
L

n�0 Tn

is determined by its restriction to h Modff
E , where Tn coincides with ��LK P by

Proposition 3.6. By virtue of Propositions 2.4 and 2.5, the claim follows.

Moreover, T has the structure of a graded exponential monad. Roughly speaking, a
monad M on a category C is exponential, if it is symmetric monoidal with respect to two
symmetric monoidal structures on C . If, additionally, the monad admits a decomposition
MD

L
n�0 Mn into endofunctors Mn that is compatible with the symmetric monoidal

structure, then M is called graded exponential. The reader interested in the precise
definition is referred to [29, 2.2]; for our purposes, the following result will be sufficient.

Theorem 3.8 [30, 4.8] The monad T W .ModE� ;˚; 0/! .ModE� ;˝;E�/ is graded
exponential. In particular, if M;N 2 ModE� and n � 0, then there is a natural
isomorphism M

iCjDn

Ti.M /˝Tj .N /
Š
�! Tn.M ˚N /;

where the coproduct is taken over all pairs .i; j / of nonnegative integers which sum
to n.

The properties of the monad T imply that it preserves various subcategories of ModE� ,
which will become important in Section 4.
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Proposition 3.9 [30, 3.9, 4.4, 4.6] The algebraic approximation functor Tn preserves
the categories Modff

E�
and Mod[E� of finite free modules and flat modules, respectively.

Corollary 3.10 If F 2 ModE� is free, then so is T .F /. In particular, Tn.F / is
projective for all n� 0.

Proof A pointed module is a pair .M; f / consisting of a module M together with
a morphism f W E� ! M . If M is free and f is a split monomorphism (which
implies that cokerf is free, since E� is local), then .M; f / is called pointed free. Let
Mi D .Mi ; fi/ be a set of pointed free modules indexed by I , and considerO

i2I

Mi WD colim
O
i2I fin

Mi ;

where the colimit diagram is indexed by the finite subsets Ifin � I , and the maps in
the diagram are defined by inserting basepoints fi W E�!Mi . If fbi;j j j 2 Sig is a
basis of cokerfi , then fbi1;j1

˝ � � �˝ bik ;jk
j k � 0; it 2 I are distinct; jt 2 Sit

g is a
basis of

N
i2I Mi , which is therefore also free. In other words,

N
i2I Mi is pointed

free on the weak product of the pointed sets Si [f�g. Taking F D colimI Fi a free
E�–module written as a filtered colimit of finite free modules, then we get

T .F /D T

�
colim

M
i2I fin

E�

�
D colim T

�M
i2I fin

E�

�
D colim

O
i2I fin

T .E�/D
O

I

T .E�/;

using that T .M / is naturally pointed by E� D T .0/! T .M /. Since
N

I T .E�/ is
free by the above argument, the claim follows.

Remark 3.11 The construction and basic properties of T as well as the existence of
the approximation map ˛ are entirely formal. In fact, one can consider a functor on a
category of monads with certain finiteness conditions

Lan��i ��.�/i W Monads.h ModR/!Monads.ModR�/;

which exists for any appropriate ring spectrum R. Assuming R is E1 and satisfies
an analogue of Proposition 2.5, applying this functor to the free commutative R–
algebra monad PR we obtain an algebraic approximation TR for the theory of power
operations on R, together with an approximation map

˛R
W TR.��M /! ��.P

RM /
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satisfying the analogue of Proposition 3.6. In particular, this formalism can be applied
to the (Koszul dual) free Lie algebra monad LW ModE!ModE to obtain algebraic
approximation functors TL and a ring of additive Lie-type power operations �L .

3.2 Completed algebraic approximation functors

In this subsection, we construct an endofunctor yT W bModE� !
bModE� which better

approximates the algebraic structure found on ��LK P . More specifically, yT takes
into account the fact that ��LK PM is L–complete.

To begin, note that E� is L–complete, since E is K.h/–local, and thus all finite free
E�–modules are L–complete. In other words, the functor ��i D j��W h Modff

E !

ModE� lands in the full subcategory bModE� . Likewise, we will see in Corollary 3.14
that ��LK PM is L–complete for any E–module M , so the functor

��LK P W h ModE!ModE�

takes values in bModE� as well.

Proposition 3.12 (Hovey [21, 2.3]) For any E–module M 2ModE , there exists a
natural, conditional and strongly convergent spectral sequence of E�–modules

E2
s;t D .Ls��M /t ) �sCtLK M

with E
s;t
2
D 0 if s > h.

Remark 3.13 For any spectrum X , the completed E–homology of X is defined as

E^�X W D ��LK .E ^X /:

The spectral sequence Proposition 3.12 for the E–module M DE ^X can then be
written as

E2
s;t D .LsE�X /t )E^sCtX:

Note that E^� is not technically a homology theory, as it fails to preserve coproducts
and filtered homotopy colimits. Hovey shows in [21, 1.1, 2.4] how this failure can
be measured by the higher derived functors Ls for 1� s � h. Informally, completed
Morava E–theory is h derived functors away from being a homology theory.
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Corollary 3.14 An E–module M is K.h/–local if and only if ��M is an L–
complete E�–module. In particular, the functor ��LK P factors through bModE� :

h ModE
LK P

//

��

h ModE

��

��bModE� �
// ModE� :

Proof For the “only if” direction, the E2 –term of Proposition 3.12 consists of L–
complete modules, by Proposition A.6. Therefore the abutment is also L–complete,
since L–complete modules form an abelian subcategory of ModE� , by Theorem A.10.

Since ��.LK M / is L–complete, the map ��M ! ��.LK M / uniquely factors as

��M
�
�!L0.��M /! ��.LK M /;

where the second map is the (left) edge morphism in the spectral sequence. If ��M is
L–complete, then by Proposition A.6 we have Ls��M D 0 for all s > 0 and thus the
spectral sequence collapses to the isomorphism L0.��M /Š ��.LK M /. This proves
the “if” direction.

Remark 3.15 The special case where M is of the form E ^X for some spectrum
X is proved in [22, 8.4(a)] using a different argument.

Hence the construction of Tn as a left Kan extension in Definition 3.2 can be refined
as follows. Consider the following diagram of categories, in which only the diagram of
solid arrows is commutative:

(2)

h Modff
E

�� �

��

$$

i
// h ModE

��

��

��LK P

$$

LK P
// h ModE

��

��

bModE�

yTn

33

�
$$

bModE�

�
$$

Modff
E�

j 0

::

j
// ModE� Tn

// ModE�

Definition 3.16 For every n � 0, the completed algebraic approximation functor
yTnW

bModE� !
bModE� is defined as

yTn D Lanj 0��.��LK P i/
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ie the left Kan extension of the functor ��LK P i W h Modff
E!

bModE� along the functor
j 0��W h Modff

E!
bModE� , as illustrated in the diagram (2).

As in Definition 3.2, this Kan extension exists since h Modff
E is essentially small and

bModE� is cocomplete.

Using the natural isomorphism L0�D idW bModE� !
bModE� , the functor .��LK P /W

h ModE!
bModE� can be written as the composite

h ModE

LK P
���! h ModE

��
��!ModE�

L0
��! bModE�

and likewise for the functor j 0��W h Modff
E!

bModE� :

j 0�� DL0�j
0�� DL0j��:

Hence, the diagram defining yTn can be rewritten as

h Modff
E

���

��

i
// h ModE

��

��

LK P
// h ModE

��

��

Modff
E� j

// ModE� Tn

//

L0

��

ModE�

L0

��

bModE�
yTn

// bModE�

which yields the following alternate description of yTn .

Proposition 3.17 The completed algebraic approximation functor satisfies the equa-
tion yTn DL0Tn�W bModE� !

bModE� .

Proof Recalling that L0 is left adjoint to �, we obtain natural isomorphisms

yTn D Lanj 0��.��LK P i/D LanL0j��.L0��LK P i/

D LanL0
Lanj��.L0��LK P i/

D Lanj��.L0��LK P i/�DL0 Lanj��.��LK P i/�DL0Tn�;

completing the proof.
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The completed algebraic approximation functor yTn resembles the structure on the
homotopy groups of K.h/–local commutative E–algebras more closely than Tn , as can
be seen by comparing the next lemma with Proposition 3.6; see also Proposition A.15.

Proposition 3.18 [30, 4.9] If M is a flat E–module, then the natural map yTn��M!

��LK PnM is an isomorphism for any n.

We are now ready to state the main theorem of this paper, which will be proved in
Section 4.

Theorem 3.19 The functor T W ModE�!ModE� preserves L0 –equivalences, which
means that the natural map

L0T .M /
L0T�
����!L0TL0.M /

is an isomorphism for all E�–module M .

By Theorems 3.19 and 5.1(5), we obtain the following.

Corollary 3.20 The completed algebraic approximation functor

yT DL0T �W bModE� !
bModE�

admits a natural monad structure, inherited from that of T .

Remark 3.21 Note that the argument given in the proof of Theorem 3.7 does not
work to show that the completed algebraic approximation functors yT form a monad.
Indeed, F 2 hModff

E is not small when viewed as an object of bModE� via L0��i ; see
Remark A.12. Thus

Hom.��iF;�/W bModE� ! Set

does not preserve filtered colimits, so we cannot reduce to finite free modules as before.
Instead, it is a consequence of our main theorem that yT commutes with sifted colimits.

Corollary 3.22 The functor yTn commutes with sifted colimits.

Proof We need to show that yTn commutes with reflexive coequalizers and filtered
colimits. The first part of the statement follows from the construction, since finite free
E�–modules are complete and hence projective in bModE� , by Proposition A.15.
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For the second claim, consider a filtered diagram DW C ! bModE� and denote by
colim �D the colimit of the corresponding diagram (via �) in ModE� ; then we have

yTn
1colimD DL0Tn�L0 colim �D DL0Tn colim �D

DL0 colim Tn�D

DL0 colim �L0Tn�D D1colimyTnD

by Theorem 3.19.

In view of Theorems 3.19 and 5.1(8), the homotopy of K.h/–local commutative
E–algebras takes values in yT –algebras, yielding the functor

��W bAlgE!
bAlgT Š Alg yT :

In [30, 4.12], it is shown that the forgetful functor U W AlgT !AlgE�
is plethyistic, ie

it reflects isomorphisms and has both a left adjoint and a right adjoint. The analogous
statement in the completed setting also holds.

Proposition 3.23 The forgetful functor yU W Alg yT !
bAlgE�

is plethyistic.

Proof This is proven exactly as in [30, 4.12], using Proposition A.13 to assure that
the adjoint functor theorem is applicable.

3.3 A word about applications

The usefulness of Theorem 3.19 becomes apparent in recent work of Rezk [32], where
calculations of power operations are carried out. Completion can now be dealt with
systematically, as it is built into the structure of yT –algebras, unlike T –algebras.
Moreover, the fact that yT is a monad allows the use of standard categorical and
homological machinery for algebras over monads, such as simplicial resolutions of
yT –algebras.

One application is the computation of �� yPM . The monad T W ModE� ! ModE�

was constructed to encode the algebraic structure present in ��LK PM D �� yPM for
any E–module M (which is K.h/–local, without loss of generality). The completed
monad yT D L0T �W bModE� !

bModE� provides a better approximation. As noted
in Proposition 3.18, the comparison map yT .��M / ! �� yPM is an isomorphism
whenever M is a flat E–module. However, the problem of describing the algebraic
structure of �� yPM for any M remains difficult.

There is a spectral sequence roughly of the form

E2
s;t D ..Ls

yT /.��M //t ) �sCt
yPM;
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where Ls
yT W bModE�!

bModE� denotes the sth left derived functor of the nonadditive
functor yT , and the comparison map yT .��M /! �� yPM is an edge morphism. We
hope that working with the completed monad yT instead of T will facilitate the
construction of this spectral sequence and its calculation.

At height hD 1, McClure provided an explicit description of �� yP .K ^S X / for any
spectrum X in terms of K–homology operations for X [10, IX Section 3]. It would
be interesting to relate those results to our proposed calculation.

Another application is in computing topological André–Quillen (co)homology of
(augmented) K.h/–local commutative E–algebras. This (co)homology appears no-
tably in work of Behrens and Rezk on the Bousfield–Kuhn functors [6]. Topological
André–Quillen homology of a commutative E–algebra A is the E–module TAQ.A/ of
“indecomposables” of A, in some suitable derived sense. When working K.h/–locally,
the object of interest is LK TAQ.A/. At the algebraic level, there is a correspond-
ing “indecomposables” functor F W AlgT ! ModE� and an L–completed version
yF DL0F �W Alg yT !

bModE� . There is a spectral sequence roughly of the form

E2
s;t D ..Ls

yF /.��A//t ) �sCtLK TAQ.A/;

where the E2 term can be thought of as André–Quillen homology for yT –algebras.
At height h D 1, yT –algebras are sometimes referred to as � –algebras, and their
André–Quillen (co)homology played an important role in work of Goerss and Hop-
kins [14, Section 2; 15].

Remark 3.24 There are other approaches for computing topological André–Quillen
homology from (algebraic) André–Quillen homology; see Richter [33].

4 Proof of the main theorem

The goal of this section is to give a proof of our main Theorem 3.19, for any prime p

and height h. An alternative, more explicit argument in the height-1 case will be the
subject of Section 7.

4.1 Reduction to the key property

Let n be a fixed nonnegative integer. The following result, the proof of which is
deferred to the next subsection, is the key technical property of the functors Tn .
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Proposition 4.1 There exists a positive integer k D k.n/ such that for all m� n and
all q 2 Z, the natural map

E�=m˝Tm.†
qE�/ �!E�=m˝Tm.†

qE�=m
k/

is an isomorphism. Note that if this holds, then the same conclusion holds for any
integer k 0 � k.n/ in place of k .

Note that if the functors Tm and E�=m˝� commuted, the proposition would be
automatic, in which case we could take any k . This holds if m < p , since then the
homotopy orbit spectral sequence collapses at the E2 –page. However, as we will see
in Section 7, it is wrong in general, so that Proposition 4.1 has content and we do need
k > 1; see Remark 7.9.

Corollary 4.2 There exists a positive integer k D k.n/ such that for all m � n and
M 2ModE� the natural map

E�=m˝Tm.M / �!E�=m˝Tm.E�=m
k
˝M /

is an isomorphism.

Proof First, let us assume M D †q1E� ˚ � � � ˚ †
qr E� is a finite free module

of rank r . Then, using that T is an exponential monad (Theorem 3.8) and since
E�=m˝E�=mŠE�=m, we get

E�=m˝Tn.M /Š
M

i1C���CirDn

.E�=m˝Ti1
.†q1E�//˝� � �˝ .E�=m˝Tir

.†qr E�//;

where the direct sum is indexed by all r –tuples of nonnegative integers .i1; : : : ; ir /
summing to n. By Proposition 4.1, this is isomorphic toM
i1C���CirDn

.E�=m˝Ti1
.†q1E�=m

k//˝ � � �˝ .E�=m˝Tir
.†qr E�=m

k//

ŠE�=m˝Tn.†
q1E�=m

k
˚ � � �˚†qr E�=m

k/

ŠE�=m˝Tn.E�=m
k
˝M /;

where the first isomorphism uses the exponential monad structure again. By Lazard’s
theorem, we can write any M 2Mod[E� as a filtered colimit of finite free modules Fj ,
M D colimJ Fj , thus

E�=m˝Tn.M /Š colimJ .E�=m˝Tn.Fj //

Š colimJ .E�=m˝Tn.E�=m
k
˝Fj //ŠE�=m˝Tn.E�=m

k
˝M /
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as both tensor products and Tn commute with filtered colimits. Here, the second
isomorphism uses the claim for finite free modules proven above. Finally, any module
can be written as a reflexive coequalizer of free modules, so the result follows.

We are now ready to prove our main result (Theorem 3.19).

Theorem 4.3 The algebraic approximation functor T W ModE� !ModE� preserves
L0 –equivalences.

Proof Since T D
L

n�0 Tn is a coproduct of the functors Tn , it suffices to show that
each Tn preserves L0 –equivalences. The statement then immediately translates into
the following claim: the natural transformation L0Tn

'
�!L0Tn�L0 is an isomorphism.

Because Tn , L0 and � all preserve reflexive coequalizers, we are reduced to showing
this for free modules.

Let M be a free E�–module and let k be as in Corollary 4.2. We have a commutative
diagram1

M //

��

L0M

��

M=mk
'
// L0M=mk

where the vertical arrows are the canonical quotient maps and the bottom one is the
induced isomorphism. Applying the functor E�=m˝Tn.�/ to this square, we obtain

E�=m˝Tn.M / //

��

E�=m˝Tn.L0M /

��

E�=m˝Tn.M=mk/ // E�=m˝Tn.L0M=mk/:

The bottom horizontal map is still an isomorphism, while the two vertical arrows are so
by Corollary 4.2. Therefore, the top horizontal map is an isomorphism as well. Since
TnL0M is flat by Propositions A.15 and 3.9, this furnishes the result by Lemma A.8.

1Note that, by Proposition A.6, .L0M /=mk DM=mk DL0.M=mk/ , so the notation L0M=mk is
unambiguous.
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4.2 Proof of the key property

We are left with the verification of Proposition 4.1. To this end, we will use an
observation from homotopy theory (Lemma 4.4), which is the only nonalgebraic input
to the proof of our theorem. The notation is as before; in particular, all smash products
are taken to be in ModE unless otherwise stated, and we will denote a morphism of
spectra by the same symbol as the induced map on homotopy groups. We have fixed a
nonnegative integer n and let m� n.

Recall that any element �2�iE gives rise to a multiplication by � map, �W †iM!M ,
for every M 2ModE , defined as the composite

S i
^M

�^1
���!E ^M

�M
��!M;

which can be inverted by forming the sequential colimit

��1M D colim M
†�i�
���!†�iM

†�2i�
����!†�2iM ! � � � :

To simplify notation, we will omit these suspensions from now on.

Lemma 4.4 Let � 2 ��E and m � 1, and let M be an E–module. If � acts
invertibly on M , then � acts invertibly on ��LK Pm.M /. This applies in particular to
M D ��1†qE for any q 2 Z.

Proof To start with, we show that � acts invertibly on ��Pm.M /. To see this,
note that � acts invertibly on M 2 ModE if and only if the natural map M D

E ^M ! ��1E ^M D ��1M is an equivalence. Since smash products commute
with homotopy colimits, the property of � acting invertibly is therefore preserved
under homotopy colimits. Moreover, the equivalence .��1E/^2 D ��1E implies
.��1X / ^ .��1Y / D ��1.X ^ Y / for any E–modules X and Y . Therefore, the
property of � acting invertibly is preserved under finite smash products. It follows
that � acts invertibly on the extended power Pm.M /D .M^m/h†m

.

Now recall that Proposition 3.12 and Theorem A.4 say that, for any N 2ModE , there
exists a strongly convergent spectral sequence of E�–modules

E2
s;t DLs.��N /t ) �sCtLK N

with E
s;t
2
D 0 if s > h. Taking N D Pm.M /, the previous step implies that the E2 –

term of the spectral sequence consists of E�–modules on which � acts invertibly. Since
this property is closed under kernels, cokernels and extensions, the claim follows.

As a consequence, we can show that elements in the maximal ideal of E� have to act
nilpotently on Tm.F / mod m for any finite free E�–module F .
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Corollary 4.5 Let � 2 m � E� , m � 1, and fix F 2 Modff
E�

; then there exists a
positive integer �D �.�;m/ such that the map

Tm.�/W Tm.F /! Tm.F /

satisfies Tm.�/
� � 0 mod m.

Proof Write F D ��M for some finite free E–module M . Since

��1M D colim .M
�
�!M

�
�! � � � /

and, by Proposition 3.9, the functor Tm ı �� preserves filtered colimits and finite
free modules both ��1M and Tm��.�

�1M / are flat by Lazard’s theorem. There-
fore, Proposition 3.18 gives an isomorphism L0Tm��.�

�1M /Š ��LK Pm.�
�1M /.

Putting this together with Proposition A.6(2), we get that

E�=m˝ colim .Tm��M
Tm���
�����! Tm��M

Tm���
�����! � � � /

is equivalent to

E�=m˝Tm��.colim M
�
�!M

�
�! � � � /DE�=m˝L0Tm��.�

�1M /

DE�=m˝��LK Pm.�
�1M /D 0;

where the last equality follows from Lemma 4.4. Since Tm.��M / has finite rank by
Proposition 3.9, Tm.�/ is nilpotent mod m.

Remark 4.6 Note that the integer �D �.�;m/ in the above corollary depends on the
module F .

We are now ready to prove Proposition 4.1, which we restate for convenience.

Proposition 4.1 There exists a positive integer k D k.n/ such that for all m� n and
all q 2 Z, the natural map

E�=m˝Tm.†
qE�/ �!E�=m˝Tm.†

qE�=m
k/

is an isomorphism for all.

Proof First we claim that it suffices to prove that, for fixed q 2 Z, there exists a
positive integer k D k.n; q/ such that for all m� n the map E�=m˝Tm.†

qE�/ �!

E�=m˝Tm.†
qE�=m

k/ is an isomorphism. Indeed, because E is 2–periodic, taking
k.n/Dmax .k.n; 0/; k.n; 1// then works for all q . Since the argument below is the
same for any q , we will assume q D 0 from now on.
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The statement is clear for mD 0, so assume m� 1. With notation as in Corollary 4.5,
taking the finite free E�–module FDE� , let �.�/Dmaxf�.�; 1/; : : : ; �.�; n/g and set
k D

Ph�1
iD0 �.ui/, the ui being the standard generators of m. Let r.k/D

�
hCk�1

k

�
be

the number of generators of mk and define Ik Dfg1D uk
0
;g2D uk�1

0
u1; : : : ;gr.k/D

uk
h�1
g to be the set of standard generators for this ideal, such that gi D

Qh�1
iD0 u

li

i ,
where, by choice of k , li � �.ui/ for at least one i .

We can write E�=m
k as a reflexive coequalizer

E�˚E
˚r.k/
�

.1;0;:::;0/
�����������!
�����������!
.1;g1;:::;gr .k//

E�!E�=m
k
! 0;

where the upper arrow is projection onto the first factor. Note that the extra copy of E�
is added only to make the coequalizer reflexive. By naturality, we obtain a commutative
diagram:

Tm.E�˚E
˚r.k/
� /

'
//

Tm.1;g1;:::;gr .k//

��

M
i0C���Cir .k/Dm

Ti0
.E�/˝Ti1

.E�/

˝ � � �˝Tir .k/
.E�/L

Ti0
.1/˝Ti1

.g1/

˝� � �˝Tir .k/
.gr .k//

��

Tm.E�/
D

// Tm.E�/

Observe that, by our choice of k and Corollary 4.5, for each summand of the right
vertical map we get

Ti0
.1/˝Ti1

.g1/˝ � � �˝Tir .k/
.gr.k//�

m

�
1 if i0 Dm; i1 D � � � D ir.k/ D 0;

0 otherwise.

On the one hand, the colimit of the diagram

E�=m˝Tm.E�˚E
˚r.k/
� /

E�=m˝Tm.1;0;:::;0/
�������������������!
�������������������!

E�=m˝Tm.1;g1;:::;gr .k//

E�=m˝Tm.E�/

computes E�=m˝Tm.E�=m
k/. On the other hand, by the argument just given, this

diagram is equivalent to

E�=m˝
M

i0C���Cir .k/Dm

Ti0
.E�/˝Ti1

.E�/˝ � � �˝Tir .k/
.E�/� E�=m˝Tm.E�/;

where on each summand both maps are either the identity, namely precisely if i0 Dm,
or both 0; hence its colimit is E�=m˝Tm.E�/. Therefore, E�=m˝Tm.E�=m

k/Š
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E�=m˝Tm.E�/. The situation is summarized in the following diagram:

E�=m˝Tm.E�˚E
˚r.k/
� /

//
//

'��

E�=m˝Tm.E�/ //

D

��

E�=m˝Tm.E�=m
k/ //

) '

��

0

E�=m˝
M

i0C���Cir .k/Dm

Ti0
.E�/

˝ � � �˝Tir .k/
.E�/

//
// E�=m˝Tm.E�/ // E�=m˝Tm.E�/ // 0

For any integer k 0 � k.n/, the map E�=m˝Tm.†
qE�/!E�=m˝Tm.†

qE�=m
k0/

is also an isomorphism for all m� n and q 2Z. Indeed, it is an epimorphism since Tm

and E�=m˝� preserve epimorphisms, and it is a monomorphism because of the
factorization M !M=mk0 !M=mk.n/ and the assumption on k.n/.

Remark 4.7 The method used in the proof to turn a coequalizer into a reflexive
coequalizer works in any category with finite coproducts. Thus, a functor between
such categories which preserves reflexive coequalizers automatically preserves regular
epimorphisms, ie maps which are the coequalizer of some parallel pair. In particular,
the functor TnW ModE� !ModE� preserves regular epimorphisms, which in ModE�

are precisely the surjective maps.

5 Algebraic structures and completion

In this section, we consider the compatibility of various algebraic structures with L–
completion. After stating the general result in Section 5.1, we specialize to the familiar
context of rings and modules in Section 5.2. The example of interest for this paper are
the categories of �– and � –rings introduced and discussed in Sections 5.3 and 5.4,
which are used to give an alternative proof of the height-1 case of Theorem 3.19 in
Section 7.

5.1 Completed monads and their algebras

Categories of algebras for a monad transform nicely under the application of the
completion functor L0 , which will become relevant in our discussion of the completed
algebraic approximation functors at height 1 in the next section.

Theorem 5.1 Let C be a category and �W C0 ! C the inclusion of a reflective full
subcategory, with reflector LW C! C0 , and unit �W 1! �L.

(1) If a map of diagrams in C is objectwise an L–equivalence, then the map induced
on colimits (if they exist) is an L–equivalence.

(2) A retract of an L–equivalence is also an L–equivalence.
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Let D be another category and �W D0! D the inclusion of a reflective full subcategory,
with reflector LW D! D0 (by abuse of notation).

(3) Let F W C ! D be a functor obtained as a colimit of a diagram of functors
Fi W C! D . If each Fi preserves L–equivalences, then so does F .

(4) If a functor F W C ! D preserves L–equivalences, then any retract of F also
preserves L–equivalences.

Let MW C! C be a monad which preserves L–equivalences. Then the following hold.

(5) yMDLM�W C0! C0 naturally inherits a monad structure from that of M.

(6) Given an yM–algebra Y with structure map  W yMY ! Y , the composite

MY
�
�!LMY

 
�!Y

naturally makes Y into an M–algebra. This defines a functor Alg yM!
bAlgM .

Here Alg yM denotes the category of yM–algebras, and bAlgM denotes the full
subcategory of AlgM consisting of M–algebras whose underlying object is
in C0 .

(7) Let X be an M–algebra. Then LX is naturally an yM–algebra, in a unique
way that is compatible with the M–algebra structure of X , in the sense that
�W X !LX is a map of M–algebras. This defines a functor LW AlgM!Alg yM .

(8) The functor Alg yM
Š
�!bAlgM is an equivalence of categories, with inverse equiva-

lence the composite

bAlgM

�
// AlgM

L
// Alg yM :

Proof Parts (1)–(4) are straightforward.

(5) Consider the category Fun.C; C/ of endofunctors of C , which is monoidal with
respect to composition of functors. Let Funwe.C; C/ denote the full subcategory of
Fun.C; C/ consisting of functors that preserve L–equivalences; this is a monoidal
subcategory.

One readily checks that the functor L]�
] D �]L]W Funwe.C; C/! Fun.C0; C0/, which

associates to an endofunctor F W C ! C the endofunctor LF �W C0 ! C0 , is strong
monoidal, with structure map

.LF�/�1G�W .LF �/.LG�/
Š
�!L.FG/�:

Hence, a monad M on C , ie a monoid in Fun.C; C/, is naturally sent to a monoid
L]�

].M/DLM� in Fun.C0; C0/.
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(6) This part is straightforward.

(7) Let 'W MX!X be the structure map of X as an M–algebra; then the composite

LMLX LMX
LM�

Š

oo
L'
// LX

naturally makes LX into an yM–algebra.

Now we argue the compatibility and uniqueness claims. We are looking for a map
'1W M.LX /!LX satisfying '1 ı .M�/D � ı' , ie making the square in

MX

'

��

�

$$

M�
// M.LX /

'1

��

�

&&

L.MX /
LM�

Š

//

'3 %%

L.MLX /

'2xx

X
�

// LX

commute. Since LX is L–complete, a map '1 making the square commute corre-
sponds to a map '2W L.MLX /!LX making the outer pentagram commute.

By naturality of �, the upper parallelogram commutes, ie �ı .M�/D .LM�/ı� holds.
Moreover, LM� is an isomorphism by assumption. Therefore '2 makes the outer
pentagram commute if and only if the corresponding map '3 D '2 ıLM� makes the
lower left triangle commute.

Since LX is L–complete, such maps '3 correspond to maps MX ! LX that are
equal to � ı' . In other words, there exists a unique such '3 , and it is '3 DL' .

(8) This is a straightforward consequence of parts (6) and (7).

5.2 Completed rings and their modules

Now we specialize to the case of ModR with its reflective subcategory bModR of
L–complete modules. Here R is a commutative noetherian ring (not assumed to be
local) with a chosen ideal m�R. All tensor products will be over R unless otherwise
noted.

First, note that R itself might not be L–complete as an R–module. However, we will
see that replacing R by L0R is harmless.
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Proposition 5.2 (1) L0R admits a unique R–algebra structure compatible with
that of R, in the sense that �W R! L0R is a map of R–algebras. Moreover,
said R–algebra structure on L0R is natural in R, and is commutative.

(2) Let M be an R–module. Then L0M admits a unique L0R–module structure
such that its restriction along �W R!L0R is the original R–module structure
on L0M . Moreover, said L0R–module structure on L0M is natural in R

and M .

(3) Let A be an R–algebra. Then L0A admits a unique L0R–algebra structure
compatible with the R–algebra structure of A. Moreover, said algebra structure
is natural in A and R. The algebra L0A is commutative if A is.

Proof In all three cases, the induced structure maps arise from applying L0 to the
original structure maps and using the fact that L0W ModR!

bModR is strong monoidal,
ie the natural isomorphism

L0.�˝ �/W L0.M ˝N /
Š
�!L0.L0M ˝L0N /DL0M y̋L0N:

The compatibility claim follows from naturality of �W M ! L0M . The uniqueness
claim is proved as in Theorem 5.1(7).

Let us add some details about each point.

(1) Since R is a commutative monoid in .ModR;˝/, L0R is naturally a commutative
monoid in .bModR; y̋ /. Since L0R is L–complete, this structure is the same as that
of a commutative R–algebra.

(2) Since M is a module object over the monoid object R in .ModR;˝/, L0M is
naturally a module object over the monoid object L0R in .bModR; y̋ /.

(3) Statement (2) defines a functor L0W ModR !
bModL0R , which is still strong

monoidal, since �W R!L0R induces a natural isomorphism

L0.L0N ˝R L0N 0/
Š
�!L0.L0N ˝L0R L0N 0/:

Hence this functor sends monoids (resp. commutative monoids) in .ModR;˝/ to
monoids (resp. commutative monoids) in .bModL0R; y̋ /.

In the proof of Proposition 5.2, bModL0R denotes the full subcategory of ModL0R

consisting of L0R–modules which are L–complete when viewed as R–modules. We
now check that the other possible interpretation of the notation is in fact the same.
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Lemma 5.3 The diagram

ModL0R

��

��

yL0
// ModL0R

��

��

ModR
L0

// ModR

commutes (up to natural isomorphism), where the top horizontal functor yL0 is L–
completion with respect to the ideal ym WD .�.m//�L0R.

In particular, an L0R–module M is L–complete with respect to the ideal ym�L0R

if and only if the underlying R–module ��M is L–complete with respect to the ideal
m�R.

Proof Since the restriction functor ��W ModL0R ! ModR is exact, the compos-
ite �� yL0 is the 0th left derived functor of ��.�/^

ym
and likewise, the composite L0�

�

is the 0th left derived functor of .�/^m�
� . It therefore suffices to show that ��.�/^

ym
Š

.�/^m�
� is a natural isomorphism.

Let M be an L0R–module. By exactness of �� , we have

��.M^

ym /D �
�.lim

k
M=ymkM /D lim

k
��.M=ymkM /D lim

k
.��M /=.��.ymkM //;

.��M /^m D lim
k
.��M /=mk.��M /;

and those two towers of R–modules are in fact equal, given the equality of R–
submodules mk.��M /D ��.ymkM /.

Proposition 5.4 (1) The restriction functor ��W ModL0R ! ModR induces an
equivalence of categories

��W bModL0R
Š
�! bModR:

(2) The restriction functor ��W AlgL0R!AlgR induces an equivalence of categories

��W bAlgL0R

Š
�!bAlgR:
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Proof (1) Consider the commutative diagram of adjoint pairs

ModR

L0

��

L0R˝R�
// ModL0R

��
oo

L0

��

bModR

�

OO

// bModL0R;
��

oo

�

OO

where the right adjoints commute (on the nose) and therefore the left adjoints commute
(up to natural isomorphism). In other words, the functor L0W ModR !

bModL0R

coming from Proposition 5.2 is naturally isomorphic to the composite

ModR

L0R˝R�
// ModL0R

L0
// bModL0R:

One readily checks that

bModR

�
// ModR

L0
// bModL0R

is an inverse equivalence to �� .

(2) This proof is similar, using Proposition 5.2(3).

5.3 �–rings and � –rings

Definition 5.5 (Yau [40, Section 1.2]) A �–ring R is a commutative ring equipped
with operations �i W R!R for all i � 0, satisfying the following equations:

(1) �0.x/D 1 for all x 2R.

(2) �1.x/D x for all x 2R.

(3) �i.1/D 0 for all i � 2.

(4) �n.xCy/D
P

iCjDn �
i.x/�j .y/ for all x;y 2R.

(5) �n.xy/D Pn.�
1.x/; : : : ; �n.x/I�1.y/; : : : ; �n.y// for all x;y 2R.

(6) �m.�n.x//D Pm;n.�
1.x/; : : : ; �mn.x// for all x 2R.

Here Pn and Pm;n are certain polynomials with integer coefficients in 2n and mn

variables respectively, defined using elementary symmetric polynomials as in [40, Sec-
tions 1.1, 1.2]; the precise formulas will play no role in this paper. From the structure
of �–ring, one can construct for all i � 1 Adams operations  i W R!R, which are
�–ring homomorphisms, natural in R; see [40, Section 3.1] for details.
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Let R be a �–ring. An R–�–algebra S is a commutative R–algebra which is also a
�–ring, such that the two structures are compatible. The compatibility condition can be
equivalently defined as the R–algebra structure map R! S being a map of �–rings,
or by allowing x and y in the product formula (5) to be either in R or S .

Example 5.6 The integers Z, endowed with operations �i.n/D
�
n
i

�
, form a �–ring.

The Adams operations  i W Z!Z are all trivial, that is,  i.n/D n holds for all n2Z
and i � 1 [40, 3.4].

Example 5.7 The complex K–theory K0.X / of a paracompact Hausdorff space X

is naturally a �–ring, where the operation �i is induced by the i th exterior power of
vector bundles. In this case, the Adams operations  i are the classical operations
introduced by Adams.

In particular, the K–theory of a point K0.pt/ŠZ is the �–ring described in Example 5.6.

Notation 5.8 For a ground �–ring R, let �AlgR denote the category of R–�–
algebras. In particular, �AlgZ is the category of �–rings.

Definition 5.9 [8, 2.1] Let p be a prime. A �p –ring (or just � –ring if the prime p

is understood) R is a commutative ring together with a function �pW R! R (also
denoted � ) satisfying:

(1) �.xCy/D �xC �y �
Pp�1

iD1
1
p

�
p
i

�
xiyp�i .

(2) �.xy/D .�x/ypCxp.�y/Cp.�x/.�y/.

(3) �.1/D 0.

Let R be a � –ring. An R–� –algebra S is a commutative R–algebra which is also a
� –ring, such that the two structures are compatible.

Notation 5.10 Let p be a prime. For a ground � –ring R, let � AlgR denote the
category of R–� –algebras. In particular, � AlgZ is the category of � –rings.

For any prime p , any �–ring has an underlying �p –ring structure [8, 2.5], in which
the equation  p.x/D xpCp�p.x/ holds for all elements x . In light of this, given a
�p –ring R, one defines the associated Adams operation  pW R!R by  p.x/ WD

xpCp�p.x/.

The underlying �p –ring structure defines a forgetful functor �AlgZ! � AlgZ , and
more generally:

Lemma 5.11 For any ground �–ring R, there is a forgetful functor �AlgR!� AlgR .
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Example 5.12 The underlying �p –ring of the �–ring Z described in Example 5.6 is
equipped with the operation �p.x/D x�xp

p
.

For any �–ring R, the forgetful functor U �
R
W �AlgR!ModR from R–�–algebras

to R–modules has a left adjoint F�
R
W ModR! �AlgR . In fact, both forgetful steps,

first �AlgR ! AlgR to commutative R–algebras and then AlgR ! ModR to R–
modules, have left adjoints. Denote by T �

R
WD U �

R
F�

R
W ModR!ModR the associated

forget-of-free R–�–algebra monad, which naturally comes with a decomposition
T �

R
D
L1

nD0 T �
R;n

.

Likewise, for a � –ring R, let T �
R
W ModR!ModR denote the associated forget-of-free

R–� –algebra monad.

By Adámek, Rosický and Vitale [2, Chapters 2, 3], filtered colimits and reflexive co-
equalizers in �AlgR are computed in Set, or equivalently in the intermediate categories
ModR or AlgR . This implies the following result.

Proposition 5.13 The forgetful functor U �
R
W �AlgR!ModR preserves sifted colim-

its, and the composite T �
R
D U �

R
F�

R
W ModR!ModR does so also.

5.4 Completions and base change of �–rings

Proposition 5.14 Let R be a �–ring.

(1) L0R is naturally a �–ring, in a unique way that is compatible with the �–ring
structure of R, in the sense that �W R!L0R is a map of �–rings.

(2) Let A be an R–�–algebra. Then L0A is naturally an L0R–�–algebra, in a
unique way that is compatible with the R–�–algebra structure of A.

Proof (1) Since the structure of �–ring is monadic over ModZ , the statement follows
from Theorems 5.1(7) and 7.8.

(2) Similar to Proposition 5.2.

Remark 5.15 Proposition 5.14 is closely related to [40, 3.62, 3.63]. The latter consid-
ers metric completions of �–rings. When restricted to the p–adic topology, the former
statement is more general.

Proposition 5.16 Let R be �–ring. Then the restriction functor ��W �AlgL0R !

�AlgR induces an equivalence of categories

��W �bAlgL0R! �bAlgR:

Proof The proof is similar to Proposition 5.4.
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We want to obtain a result over the ground �–ring Zp starting from an analogous result
over the ground �–ring Z. Let us discuss change of �–rings more generally.

As for ordinary commutative algebras, if R is any ground �–ring, and A and B

are R–�–algebras, their tensor product A˝R B is naturally an R–�–algebra, and
this construction makes the tensor product ˝R into the coproduct of R–�–algebras.
Indeed, the forgetful functor from R–�–algebras to R–algebras is comonadic [40, 2.26]
and thus creates colimits; this holds more generally for any plethory; see Borger
and Wieland [7, 1.10]. Consequently, one can restrict or extend scalars just as for
commutative rings. Let f W R!S be a map of �–rings. Then extension of scalars f!D

S˝R� is left adjoint to restriction of scalars f � at the level of modules, commutative
algebras and �–algebras. More precisely, there is a diagram of adjoint pairs

(3)

�AlgR

��

S˝R�
//
�AlgS

f �
oo

��

AlgR

OO

��

S˝R�
// AlgS

f �
oo

OO

��

ModR

OO

S˝R�
// ModS

f �
oo

OO

where the downward maps are forgetful functors, and the upward maps are their left
adjoint (“free” functors). In each square, the right adjoints commute (on the nose), and
thus the left adjoints commute (up to natural isomorphism).

Consider the associated free �–algebra monads TR WD T �
R
W ModR ! ModR and

TS WD T �
S
W ModS ! ModS respectively. The map f W R ! S induces a natural

comparison map
Tf W TRf

�
! f �TS

of functors ModS !ModR .

Proposition 5.17 Let R be a �–ring and assume TR preserves L0 –equivalences. Let
f W R! S be a map of �–rings.

(1) If the natural transformation Tf is an L0 –equivalence, then TS preserves L0 –
equivalences.
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(2) If the unit of the adjunction f! a f
� is an L0 –equivalence, ie if for all R–

modules M the natural map

M DR˝R M ! S ˝R M D f �.S ˝R M /

is an L0 –equivalence, then Tf is an L0 –equivalence, and therefore TS pre-
serves L0 –equivalences.

Proof (1) Let M be an S –module. Applying the natural transformation Tf to the
map �W M !L0M and then applying L0 yields a commutative diagram

L0TR.f
�M /

L0Tf Š

��

L0TRf
��
//

L0TR�

Š

))

L0TR.f
�L0M /

L0TfŠ

��

L0TR.L0f
�M /

L0f
�TSM

L0f
�TS�

// L0f
�TS .L0M /

f �L0TSM
f �L0TS�

)Š
// f �L0TS .L0M /

in bModR . The top map is an isomorphism since TR preserves L0 –equivalences and
the downward maps are isomorphisms since Tf is an L0 –equivalence. Hence the
bottom map f �L0TS� is an isomorphism, and so is L0TS� (since the restriction
functor f � reflects isomorphisms).

(2) First, let us show that Tf is an L0 –equivalence when applied to extended S –
modules, ie those of the form N D S ˝R M for some R–module M .

By the commutativity of left adjoints in diagram (3), for any R–module M , we have

TS .S ˝R M /D USFS .S ˝R M /D US .S ˝R FRM /

D S ˝R URFRM D S ˝R TRM:

Let N D S ˝R M be an extended S –module. Applying L0 to Tf yields the natural
map

L0TR.f
�N /!L0f

�TSN

whose right-hand side is

L0f
�TSN DL0f

�TS .S ˝R M /ŠL0f
�.S ˝R TRM /ŠL0TRM

Algebraic & Geometric Topology, Volume 15 (2015)



2100 Tobias Barthel and Martin Frankland

since the unit map TRM ! f �.S ˝R TRM / is an L0 –equivalence by assumption.

Consider the unit map M ! f �.S ˝R M /D f �N and apply L0TR to obtain the
isomorphism

L0TRM
Š
�!L0TR.f

�N /:

One readily checks that this is the desired inverse of the map

L0TR.f
�N /!L0f

�TSN ŠL0TRM:

Now, note that free S –modules are extended from R–modules. Moreover, the func-
tors f �W ModS !ModR and L0W ModR !

bModR preserve all colimits, while the
functors TR and TS preserve reflexive coequalizers and filtered colimits. Hence, the
collection of S –modules for which Tf is an L0 –equivalence is closed under reflexive
coequalizers and filtered colimits. Since every S –module is a reflexive coequalizer of
free S –modules, it follows that Tf is an L0 –equivalence for all S –modules.

Corollary 5.18 Let R be a �–ring. If T �
R

preserves L0 –equivalences, then T �
L0R

also preserves L0 –equivalences.

Proof The coaugmentation �W R!L0R is a map of �–rings, by Proposition 5.14.
By Proposition 5.4, the unit and counit of the adjunction �! a �

�

M ! ��.L0R˝R M /;

L0R˝R .�
�N /!N;

are L0 –equivalences and thus Proposition 5.17 applies.

6 Operations on p–complete K–theory

The main goal of this section is to show that at height 1, the monad T W ModE� !

ModE� is the free Z=2–graded Zp –� –algebra monad (Theorem 6.14). This result
is certainly known to experts (see eg Hopkins [17]) and follows from [10, IX], as
mentioned for instance in [30, 1.1]. We claim no novelty in that respect. What we
do provide is a detailed proof, based on a careful study of the power operation Q

introduced by McClure, and how this relates to work of Bousfield [8].

6.1 The Milnor sequence for completed E–homology

Recall that the periodicity theorem (see Hopkins and Smith [19]) allows the construction
of generalized Moore spectra MI of type h for certain sequences of positive integers
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I D .i0; : : : ; ih�1/, which are finite spectra of type h with

BP�.MI /D BP�=.pi0 ; : : : ; v
ih�1

h�1
/:

These generalize the ordinary Moore spectra M.pr /D cofib.S0
pr

��!S0/. Moreover,
by choosing appropriate cofinal sequences Ij of length n, one obtains a tower of type n

generalized Moore spectra

� � � !MIjC1
!MIj

! � � �

with the property that
LK X D lim

Ij

MIj
^LhX

for any spectrum X . In the following, we will fix such a tower and simplify notation
by omitting the index j .

Let X be spectrum. By smashing the tower .MI /I with E ^X , the resulting tower
gives rise to a Milnor sequence

0 // lim1
I E�C1.X ^MI / // E^� .X /

// limI E�.X ^MI / // 0;

where Kh;�.X /D limI E�.X ^MI / is also known as the Morava module of X , as
introduced by Hopkins, Mahowald and Sadofsky [18]. Some authors, eg Goerss, Henn,
Mahowald and Rezk [13], use completed E–homology in the outer terms of the Milnor
sequence; that this makes no difference is the content of the next result.

Lemma 6.1 If MI is a type–h generalized Moore spectrum, then

LK .X ^MI /DLn.X ^MI /

holds for any spectrum X . In particular: E^� .X ^MI /DE�.X ^MI /.

Proof Consider the chromatic pullback square for X ^MI :

Ln.X ^MI / //

��

LK .X ^MI /

��

Lh�1.X ^MI / // Lh�1LK .X ^MI /:

Since MI is Eh�1 –acyclic, the lower left corner is contractible and it suffices to show
the same for LK .X ^MI /. To this end, note that by exactness every localization
functor preserves smashing with a finite spectrum, thus LK .X ^MI /DLK .X /^MI .
This is clearly Eh�1 –acyclic, so the claim follows.
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In fact, the lim1 term in the Milnor sequence vanishes in many cases, as has been
observed for example in Strickland [38] and [13].

Proposition 6.2 The lim1 term in the Milnor sequence for the completed E–homology
of a spectrum X vanishes, ie lim1

I E�C1.X ^MI / D 0, if X satisfies one of the
following conditions.

(1) E^� .X / is pro-free. In particular, this holds if K�.X / is evenly concentrated.

(2) X is dualizable in the K–local category.

Proof Since the references quoted above do not provide a proof, we sketch the
argument, based on [22]. For (1), if E^� .X / is pro-free, the sequence .p; : : : ;uh�1/ acts
regularly on it, and so does .pi0 ; : : : ;u

ih�1

h�1
/ for any I D .i0; : : : ; ih�1/. Consequently,

we get
E^� .X ^MI /DE^� .X /=.p

i0 ; : : : ;u
ih�1

h�1
/:

This implies that the tower E�.X ^MI / satisfies the Mittag–Leffler condition, so we
have that lim1

I E�C1.X ^MI /D 0. Furthermore, if K�.X / is concentrated in even
degrees, [22, 8.4(f)] shows that E^� .X / is pro-free.

In case (2), note that E^� .X ^MI / is finite as an abelian group for all indices I ,
by [22, 8.6] and an inductive argument. Hence the tower is Mittag–Leffler and the
claim follows.

Remark 6.3 As Strickland remarks at the end of [38], for X D
W

I MI we get
lim1

I E�C1.X ^MI / ¤ 0. Taking PX and considering the degree-1 part gives an
H1–ring spectrum counterexample.

6.2 The operation Q

We now specialize to height 1 for the rest of the section. Recall that at height hD 1,
Morava E–theory is p–completed complex K–theory: E1 DK^p . Its coefficient ring
is E� D Zp Œu

˙� with juj D 2, where Zp denotes the p–adic integers. The maximal
ideal is mD .p/�E� . Completed E–homology at height 1 is given by

E^� .X /D ��LK.1/.K
^
p ^X /D ��.K

^
p ^X /^p D ��.K ^X /^p :

We will compare Rezk’s construction of T to the work of McClure, a seminal reference
for explicit computations at height 1. To use his results, we start with his operation Q on
the K–homology (with coefficients) of H1–ring spectra, and turn it into an operation
on the homotopy of p–complete H1 K–algebras (Proposition 6.8).
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Let Y be an H1–ring spectrum. We use the notation Kr WD K ^M.pr / and
K�.Y IZ=pr /D ��.Kr ^Y /. The operations QW K�.Y IZ=pr /!K�.Y IZ=pr�1/

described in [10, IX 3.3] are compatible with the natural projection maps, ie the diagram

K�.Y IZ=prC1/
Q
//

�

��

K.Y IZ=pr /

�
��

K�.Y IZ=pr /
Q

// K�.Y IZ=pr�1/

commutes; hence they induce natural operations on inverse limits and lim1 terms as
illustrated in the diagram

(4)

0 // lim1
r K�C1.Y IZ=p

r /

Q
��

// K^� .Y /

?

��

// limr K�.Y IZ=pr /

Q

��

// 0

0 // lim1
r K�C1.Y IZ=p

r / // K^� .Y /
// limr K�.Y IZ=pr / // 0;

where each row is the Milnor sequence for Y . We will show below that Q induces a
natural operation QW K^� .Y /!K^� .Y / making the right-hand square of the diagram
(4) commute. Said operation will be constructed using universal examples, namely,
extended powers of spheres.

As a warmup, assume that Y is an H1–ring spectrum satisfying one of the conditions
of Proposition 6.2. The Milnor sequence for the p–complete K–theory of Y then
simplifies to yield a commutative square

K^� .Y /
'
//

Q

��

limr K�.Y IZ=pr /

Q

��

K^� .Y /
'
// limr K�.Y IZ=pr /;

where the left vertical arrow is the induced morphism.

Corollary 6.4 For Y as above, there exists a unique operation QW K^� .Y /!K^� .Y /

compatible with McClure’s operation Q.

To treat the case of an arbitrary H1–ring spectrum Y , we require the following result,
whose proof was provided by Jim McClure. By abuse of notation, we use the same
name for a class and its image under the natural map K^� .Y /!K�.Y IZ=pr /.
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Proposition 6.5 Let j D 0 or 1, and let x 2K^j .P
S .Sj // be the fundamental class,

ie the image of the generator x 2K^j .S
j /DZp under the unit map Sj D PS

1
.Sj /!

PS .Sj /. For any integer r � 1, K�.PS .S0/IZ=pr / is the free strictly2 commutative
Z=2–graded algebra over Z=pr on generators fQix j i � 0g.

Explicitly: For an even degree generator, we obtain the Z=2–graded polynomial algebra

K�.P
S .S0/IZ=pr /D Z=pr Œx;Qx;Q2x; : : :�

while for an odd degree generator, we obtain the Z=2–graded exterior algebra

K�.P
S .S1/IZ=pr /DƒZ=pr Œx;Qx;Q2x; : : :�:

Note that the elements Qix are well defined here, since x 2 Kj .PS .Sj /IZ=pr / is
defined as the image of x 2 limr Kj .PS .Sj /IZ=pr /.

Proof First consider j D 0. In the notation of [10, IX Section 2], our PS .Sj /

corresponds to C.S0 _Sj /, and [10, IX 3.10] provides the desired isomorphism

K�.P
S .S0/IZ=p/D Z=pŒx;Qx;Q2x; : : :�

for r D 1. The K–homology Bockstein spectral sequence for PS .S0/, with E1 term

E1
s DKs.P

S .S0/IZ=p/

and differentials dr W Er
s !Er

s�1
collapses at E1 , since the E1 term is concentrated in

even degrees. Therefore each K�.PS .S0/IZ=pr / is a free Z=pr –module. Moreover,
the generators of Z=pr Œx;Qx;Q2x; : : :� map to a basis of the Er term, which implies
the desired isomorphism

K�.P
S .S0/IZ=pr /D Z=pr Œx;Qx;Q2x; : : :�

of algebras.

The proof is similar for PS .S1/, again using [10, IX 3.3]: the collapsing of the
Bockstein spectral sequence in that case follows from [10, IX 3.3(v)]; while that
K�.PS .S1/IZ=pr / is strictly graded commutative follows from [10, IX 3.3(x)].

Corollary 6.6 There is an isomorphism

K^� .P
S .S0//DL0.Zp Œx;Qx;Q2x; : : :�/

and similarly for a generator in odd degree.

2A graded ring R is called strictly commutative if x2 D 0 holds for all x of odd degree, which is not
automatic if R has 2–torsion.
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Proof We have
.K ^PS .S0//^p D limr .Kr ^PS .S0//

and the homotopy of each stage of this tower is K–homology with coefficients ��.Kr^

PS .S0//DK�.PS .S0/IZ=pr /. We now invoke Proposition 6.5 to prove the corollary.
Indeed, the tower

fK�.P
S .S0/IZ=pr /gr

satisfies the Mittag–Leffler condition, so that the lim1 term in the Milnor exact sequence
vanishes, yielding the isomorphism

K^� .P
S .S0//D lim

r
K�.P

S .S0/IZ=pr /

D lim
r
.Z=pr Œx;Qx;Q2x; : : :�/

D Zp Œx;Qx;Q2x; : : :�^p DL0.Zp Œx;Qx;Q2x; : : :�/;

which gives the claim.

We now prove the claims made at the beginning of this section.

Lemma 6.7 Let 'W .K ^PS .Sj //^p ! .K ^PS .Sk//^p be an H1 K–algebra map.
Then ' is compatible with the operation Q, in the sense that the diagram

K^i .P
S .Sj //

Q

��

�i'
// K^i .P

S .Sk//

Q
��

K^i .P
S .Sj //

�i'
// K^i .P

S .Sk//

commutes.

Proof Let F be an H1–ring spectrum and e 2Fm.PS
q .S

n//. Consider the (internal)
Dyer–Lashof operation QeW FnY !FmY on the F –homology of H1 ring spectra Y

constructed in [10, IX 1.1]. It follows from the construction that Qe is natural with
respect to H1 F –algebra maps.

Next the construction of these operations readily adapts to completed homology. This
follows from the fact that smash products and extended powers preserve homol-
ogy isomorphisms for any homology theory. To conclude, note that the operation
QW K^i .P

S .Sk//!K^i .P
S .Sk// is an instance of this construction, taking F DK^p ,

nDmD i , q D p , and the class e DQx 2K^i .P
S
p .S

i//.
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Proposition 6.8 There is a unique operation QW ��A! ��A acting on the homotopy
of any p–complete H1 K–algebra A such that Q is natural with respect to H1
K–algebra maps and agrees with the operation

QW K^� .P
S .Sk//!K^� .P

S .Sk//

from the proof of Corollary 6.6 in the case AD .K ^PS .Sk//^p .

In particular, Q induces an operation QW K^� .Y /! K^� .Y / on the completed K–
homology of any H1–ring spectrum Y , natural with respect to H1 K–algebra maps
.K ^Y /^p ! .K ^Y 0/^p .

Proof Note that a p–complete K–algebra is the same as a p–complete K^p –algebra.
The result follows from the fact that .K ^ PS .Sj //^p is the free p–complete H1
K–algebra on one generator in degree j .

Explicitly: let A be a p–complete H1 K–algebra and a 2 �j A be represented by a
map f W Sj ! A. Then there is a unique (up to homotopy) H1 K–algebra map zf
making the diagram

Sj

��

f
// A

PS .Sj /

�K^1 ��

55

PK .†j K/DK ^PS .Sj /

��

::

.K ^PS .Sj //^p

zf

@@

commute (up to homotopy). Here �K W S
0!K denotes the unit map. By construction,

the map induced on homotopy

��. zf /W ��.K ^PS .Sj //^p ! ��A

sends the fundamental class x (represented by the downward composite on the left)
to a 2 �j A. Setting Q.a/ D Q.��. zf /.x// WD ��. zf /.Qx/ constructs the desired
operation Q, which moreover is determined by its effect on the universal examples
��.K ^PS .Sj //^p .

This operation agrees with the original Q when A is of the form .K ^PS .Sk//^p , by
naturality of the original Q with respect to H1 K–algebra maps.
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Remark 6.9 Hopkins [17] gives a direct construction of the operation QW ��A!��A

for any K.1/–local H1–ring spectrum A, using the K.1/–local splitting †1CB†p D

S0 _S0 and the total power operation. By Proposition 6.8, his operation coincides
with ours by uniqueness.

Proposition 6.10 The operation QWK^� .Y /!K^� .Y / on the completed K–homology
of H1–ring spectra Y constructed in Proposition 6.8 is compatible with reduction of
coefficients, in the sense that the diagram on the left

K^� .Y /

��

Q
// K^� .Y /

��

K�.Y IZ=pr/
Q
// K�.Y IZ=pr�1/

K^� .Y /

��

Q
// K^� .Y /

��

limr K�.Y IZ=pr/
Q
// limr K�.Y IZ=pr/

commutes for all r � 2. Consequently, the diagram on the right also commutes.

Proof Let y 2 K^j .Y / and let zf W .K ^ PS .Sj //^p ! .K ^ Y /^p be an H1 K–
algebra map as in the proof of Proposition 6.8, satisfying �j . zf /.x/Dy , where x 2

K^j .P
S .Sj // is the fundamental class. Consider the cube

K^j .Y /

��

Q
// K^j .Y /

��

K^j .P
S .Sj //

��

Q
//

zf�
88

K^j .P
S .Sj //

��

zf�
77

Kj .Y IZ=pr /
Q

// Kj .Y IZ=pr�1/

Kj .PS .Sj /IZ=pr /
Q
//

zf�
88

Kj .PS .Sj /IZ=pr�1/:

zf�
77

The left and right faces commute, by naturality of reduction of coefficients, induced by
the natural map X^p !X=pr for any spectrum X . The top and bottom faces commute,
by naturality of Q with respect to H1 K–algebra maps. The front face commutes,
because of the natural isomorphism K^j .P

S .Sj // D limr Kj .PS .Sj /IZ=pr /, in
other words, the lim1 term vanishes in this case. Therefore the back face commutes
when restricted to the image of �j . zf /.
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Remark 6.11 It seems likely, though not obvious, that the operation QW K^� .Y /!

K^� .Y / constructed in Proposition 6.8 would also be compatible with the lim1 term of
the Milnor sequence, ie make the left-hand square of the diagram (4) commute. We
leave this as a question to the reader.

6.3 K–theory of H1–ring spectra

Applying the results of the previous section, we now turn to the description of the
structure found on the completed K–theory of any H1–ring spectrum Y .

Definition 6.12 [8, 2.3] Let p be a prime. A Z=2–graded � –ring is a strictly
commutative Z=2–graded ring R equipped with an operation � W R0!R0 making
R0 into a � –ring, and a group homomorphism  W R1!R1 , such that the following
conditions hold:

(1)  .ax/D  .a/ .x/ for all a 2R0 and x 2R1 .

(2) �.xy/D  .x/ .y/ for all x;y 2R1 .

Here,  W R0!R0 denotes the associated Adams operation  .a/D apCp�.a/.

Lemma 6.13 Let Y be an H1–ring spectrum. Then the operations

� WDQW K^0 .Y /!K^0 .Y /;

 WDQW K^1 .Y /!K^1 .Y /;

make K^� .Y / into a Z=2–graded � –ring, in fact a Z=2–graded Zp –� –algebra.

Proof The statement follows from [10, IX 3.3]; we will refer to its parts numbered in
lowercase Roman numerals (i)–(x).

We first check that � makes K^
0
.Y / into a � –ring. That � satisfies the three conditions

in Definition 5.9 follows from parts (vi), (vii) and (ii), respectively. Note that this holds
also for p D 2.

K^� .Y / is a commutative Z=2–graded ring, and strict commutativity follows from
part (x). By part (vi),  W K^

1
.Y /!K^

1
.Y / is a group homomorphism.

For a 2K^
0
.Y / and x 2K^

1
.Y /, part (vii) yields

 .ax/D ap .x/Cp�.a/ .x/D .ap
Cp�.a// .x/D  .a/ .x/:

For x;y 2K^
1
.Y /, the condition �.xy/D  .x/ .y/ also follows from part (vii).
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The structure map of K^
0
.Y / as Zp –algebra is

Zp DK^
0
.S0/

e�
// K^

0
.Y /

where eW S0! Y denotes the unit map of Y , which is an H1 map [10, I 3.4(i)]. By
part (i), Q is natural with respect to H1 maps and thus e� commutes with Q. It
remains to check that Q induces the usual � –ring structure on K^

0
.S0/D Zp . Let

u 2K^
0
.S0/ be the unit. For any k 2 Z, parts (vi) and (ii) yield

Q.ku/D kQ.u/�
1

p
.kp
� k/up

D�
1

p
.kp
� k/uD

k�kp

p
u

as in Example 5.12.

Finally, we are ready to identify the monad T at height 1, where Morava E–theory is
E DK^p .

Theorem 6.14 At height hD 1, the monad T W ModE� !ModE� is the free Z=2–
graded � –ring over the ground � –ring Zp , as defined in [8, 2.3]. In particular, the
degree-0 part of T is the free Zp –� –algebra monad T �

Zp
W ModZp

!ModZp
.

Proof Let gT �
Zp
W ModE� ! ModE� denote the free Z=2–graded Zp –� –algebra

monad. Since both T and gT �
Zp

preserve filtered colimits and reflexive coequalizers, it
suffices to show that they agree on the subcategory Modff

E�
of finite free E�–modules.

Moreover, both functors send finite direct sums to tensor products, hence it suffices to
show that they agree on E� and †E� , the free E�–modules on one generator, in a
way that is compatible with the respective unit maps of the two monads 1! gT �

Zp

and 1! T .

By [8, 2.6, 3.1], the free Z=2–graded Zp –� –algebra on one generator x in degree 0

is the Z=2–graded polynomial ring

gT �
Zp
.E�/D Zp Œx; �x; �2x; : : :�;

whereas on one generator y in degree 1, we get the Z=2–graded exterior algebra

gT �
Zp
.†E�/DƒZp

Œy;  py; . p/2y; : : :�:

We omit the Z=2–grading from the notation.

Let us focus on the case of a generator in degree 0. Starting from the definition of the
functor T , one obtains

T .E�/D
M
n�0

��LK.1/P
E
n .E/D

M
n�0

��LK.1/.E^SB†nC/D
M
n�0

��.K^SB†nC/
^
p
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and similarly for T .†E�/.

Note that even though Tn.E�/ Š ��LK P .E/ holds for each n, T .E�/ becomes
��LK P .E/ only after applying L–completion:

��LK P .E/ŠL0T .E�/DL0

�M
n�0

Tn.E�/

�
;

in which m–adically decaying infinite sums are allowed.

Each Tn.E�/ picks up the elements of weight n, where x has weight 1 and Qix has
weight pi . In particular, Tn.E�/ is a finitely generated free Zp –module. For example,

T0.E�/D Zph1i;

T1.E�/D Zphxi;

:::

Tp�1.E�/D Zphx
p�1
i;

Tp.E�/D Zphx
p;Qxi:

Therefore, T .E�/ is the uncompleted Z=2–graded polynomial algebra

T .E�/D Zp Œx;Qx;Q2x; : : :�;

using Corollary 6.6. The case of T .†E�/ is proved similarly.

Remark 6.15 At the prime p D 2, the statement is also found in Laures [24, 2.1],
where the free H1–ring spectrum on one generator PS .S0/D

W
n�0 B†nC is denoted

by TS0 .

7 The height-1 case

The main result of this section is that the monad T , identified as the free Z=2–graded
Zp –� –algebra monad in Theorem 6.14, preserves L0 –equivalences. Since the 2–
periodic grading does not play a crucial role here, we will focus on the degree-0 part,
which coincides with the free Zp –� –algebra monad T �

Zp
W ModZp

!ModZp
.

While this can be viewed as the height-1 case of Theorem 3.19, the methods in this
section make the structure present on the completed algebraic approximation functors
explicit for p–complete K–theory.

We first prove the analogous result for �–rings over Z (Theorem 7.8), using the com-
binatorics of �–rings. Then we obtain the result for �–rings over Zp (Corollary 7.10)
by a change of �–rings argument (Corollary 5.18). From there we deduce the result
for � –rings over Zp .
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In this section, the ground ring will usually be Z with maximal ideal mD .p/�Z. In
that case, L0 can be described as “Ext–p–completion” of abelian groups, given by

L0M D Ext1Z.Z=p
1;M /

as explained in Theorem A.4 or Bousfield and Kan [9, VI Section 2], or as “analytic
p–completion”, given by

L0M DM ŒŒx��=.x�p/M ŒŒx��

as described in Remark A.5 or Rezk [31]. Analogous descriptions also hold for the
ground ring Zp with its maximal ideal m D .p/ � Zp . For more details on L–
completion, see Appendix A.

7.1 Computations in �–rings

Since the notion of � –ring depends on the choice of a prime p , it will be more
convenient to work with �–rings, whose definition does not involve a chosen prime.
Recall that a �–ring has underlying �p –rings for all primes p (Lemma 5.11).

Proposition 7.1 The free lambda-ring on generators feigi2I indexed by a set I is the
polynomial ring

F�Z.Zhei j i 2 Ii/D ZŒ�k.ei/ j i 2 I; k � 1�:

In particular, its underlying abelian group T �
Z.Zhei j i 2 Ii/ is a free abelian group. The

group T �
Z;n picks up the weight n piece, where elements are weighted by j�k.x/jDk .

Proof The case of one generator is explained in [40, Section 1.3]. The general case
follows from the fact that the free �–ring functor Set! �AlgZ preserves coproducts,
and coproducts of �–rings are computed as in commutative rings.

Example 7.2 Applying T �
Z;n to a free abelian group on one generator e yields the

free abelian group with basis described as follows:

T �
Z;n.Ze/D Zh�k1.e/�k2.e/ � � ��kj .e/ j k1 � k2 � � � � � kj and k1C � � �C kj D ni:

For example, we have

T �
Z;1.Ze/D Zh�1.e/i;

T �
Z;2.Ze/D Zh�2.e/; �1.e/�1.e/i;

T �
Z;3.Ze/D Zh�3.e/; �2.e/�1.e/; �1.e/�1.e/�1.e/i;

and more generally, the rank of T �
Z;n.Z/ is the number of partitions of n.
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Remark 7.3 The formulas

T �
R;n.M ˚N /Š

M
iCjDn

T �
R;iM ˝R T �

R;j N

come from the fact that F�
R
W ModR! �AlgR preserves colimits, thus (finite) coprod-

ucts, which in �AlgR are the usual tensor products. In fact, T �
R

is exponential and in
particular satisfies

T �
R.M ˚N /Š T �

RM ˝R T �
RN:

Proposition 7.4 Let M be an abelian group. Then T �
Z;2M can be expressed in terms

of generators and relations as

T �
Z;nM D Zh�k1.x1/�

k2.x2/ � � ��
kj .xj / j xi 2M and k1C � � �C kj D ni=�;

where the relations � are generated by the following:

� Terms �k1.x1/�
k2.x2/ � � ��

kj .xj / that differ by a permutation of the factors are
the same, eg �1.x/�1.y/D �1.y/�1.x/.

� Using �k.x C y/ D
P

k0Ck00Dk �
k0.x/�k00.y/ and formally multiplying by

factors so that the total degree is n, eg �1.x C x0/�1.y/ D �1.x/�1.y/ C

�1.x0/�1.y/.

Example 7.5 We have

T �
Z;2M D Zh�2.x/; �1.y/�1.z/ j x;y; z 2M i=�

where the relations � are generated by the following:

� �2.xCy/D �2.x/C�1.x/�1.y/C�2.y/ for all x;y 2M .
� The expression �1.x/�1.y/ is bilinear and symmetric.

Lemma 7.6 In the notation of Proposition 7.4, the following equalities hold.

(1) �k.0/D 0 for all k � 1.

(2) For any n 2 Z and x 2M , we have

�2.nx/D n�2.x/C

�
n

2

�
�1.x/�1.x/

with the convention
�
n
2

�
D n.n� 1/=2 in the case n< 0.

Proof (1) The equality �1.0/D 0 holds since �1.x/ is linear in x . The general case
follows from

�k.0C 0/D
X

k0Ck00Dk

�k0.0/�k00.0/D �k.0/C�k.0/:
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(2) The formula clearly holds for nD 1. The equality

�2..nC 1/x/D �2.nx/C�1.nx/�1.x/C�2.x/

and induction on n yields the result for n � 1. The equality �2.0/ D 0 is the case
nD 0 of the formula. For negative integers, the equality

0D �2.0/D �2.nx� nx/

D �2.nx/C�1.nx/�1.�nx/C�2.�nx/

gives the result.

Proposition 7.7 Let m be a positive integer. Then we have

T �
Z;2.Z=m/'

�
Z=m˚Z=m if m is odd,
Z=2m˚Z=.m=2/ if m is even.

When m is odd, the generators can be taken to be �1.1/�1.1/ and �2.1/. When m is
even, the generators can be taken to be �2.1/ and �1.1/�1.1/C 2�2.1/, respectively.

Proof Consider the exact sequence

Z
m
// Z // // Z=m // 0

and turn it into the reflexive coequalizer diagram

Z˚Z
d0D.1;0/

//

d1D.1;m/

// Zoo // // Z=m:

Applying T2 WD T �
Z;2 yields the (reflexive) coequalizer diagram

T2.Z˚Z/
T2d0

//

T2d1

// Z // // T2.Z=m/:

Let aD .1; 0/ and bD .0; 1/ be the generators of Z˚Z. Then T2.Z˚Z/ is the free
abelian group

T2.Z˚Z/Š Zh�1.a/�1.a/; �1.a/�1.b/; �1.b/�1.b/; �2.a/; �2.b/i;

whereas T2ZŠZh�1.1/�1.1/; �2.1/i is free on two generators. The equality d0.a/D

d1.a/D 1 implies that the maps T2d0 and T2d1 agree on generators involving only a
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but not b , yielding no relations in T2.Z=m/. The remaining generators are sent to the
values

.T2d0/�
1.a/�1.b/D �1.d0a/�1.d0b/D �1.1/�1.0/D 0;

.T2d1/�
1.a/�1.b/D �1.d1a/�1.d1b/D �1.1/�1.m/Dm�1.1/�1.1/;

.T2d0/�
1.b/�1.b/D �1.d0b/�1.d0b/D �1.0/�1.0/D 0;

.T2d1/�
1.b/�1.b/D �1.d1b/�1.d1b/D �1.m/�1.m/Dm2�1.1/�1.1/;

.T2d0/�
2.b/D �2.d0b/D �2.0/D 0;

.T2d1/�
2.b/D �2.d1b/D �2.m/;

which implies

T2.Z=m/D Zh�1.1/�1.1/; �2.1/i=fm�1.1/�1.1/D 0; �2.m/D 0g:

Using �2.m/Dm�2.1/C
�
m
2

�
�1.1/�1.1/, we can rewrite this as

T2.Z=m/DZh�1.1/�1.1/; �2.1/i=fm�1.1/�1.1/D0; m�2.1/D�

�
m

2

�
�1.1/�1.1/g:

We now distinguish two cases.

Case m odd In this case,
�
m
2

�
Dm.m� 1/=2 is a multiple of m, so that the relation

on �2.1/ is m�2.1/D 0 and we conclude

T2.Z=m/Š Z=m˚Z=m

with generators �1.1/�1.1/ and �2.1/.

Case m even In this case,
�
m
2

�
is a multiple of m� 1 and the relation on �2.1/ is

m�2.1/D�

�
m

2

�
�1.1/�1.1/D

m

2
.1�m/�1.1/�1.1/

D
m

2
�1.1/�1.1/

which implies that �2.1/ has order 2m. Note that �1.1/�1.1/C 2�2.1/ has order
m=2. One readily checks that the map

Z=2m˚Z=.m=2/� T2.Z=m/;

.1; 0/ 7! �2.1/;

.0; 1/ 7! �1.1/�1.1/C 2�2.1/;

is an isomorphism.
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Theorem 7.8 The functor T �
Z W ModZ!ModZ preserves L0 –equivalences.

Proof By Theorem 5.1(3), it suffices to show that each functor T �
Z;nW ModZ!ModZ

preserves L0 –equivalences.

Note that T �
Z satisfies the same formal properties as T , namely it is a graded exponential

monad which preserves filtered colimits and reflexive coequalizers, and sends finite free
modules to finite free modules. Hence, the reduction step in the proof of Theorem 4.3
holds, and it suffices to show the analogue of Proposition 4.1 for T �

Z . Explicitly: there
exists a positive integer k D k.n/ such that the natural map

(5) Z=p˝T �
Z;n.Z/ �! Z=p˝T �

Z;n.Z=p
k/

is an isomorphism.

The cases nD 0 and nD 1 are trivial; one may take k.0/D 1 and k.1/D 1. Moreover,
surjectivity is automatic, since both T �

Z;n and Z=p ˝ � preserve surjectivity, by
Remark 4.7.

To illustrate the main ideas, we focus on the special case nD 2; the general result is
proved similarly.

Case nD 2 Let us show that k.2/D 2 works. Writing T2 WD T �
Z;2 , the domain of

(5) is
Z=p˝T2ZD Z=ph�2.1/i˚Z=ph�1.1/�1.1/i

whereas the target is computed using Proposition 7.7. If p is odd, we have

Z=p˝T2.Z=p
2/D Z=p˝ .Z=p2

h�2.1/i˚Z=p2
h�1.1/�1.1/i/

D Z=ph�2.1/i˚Z=ph�1.1/�1.1/i

and in the case p D 2, we have

Z=2˝T2.Z=4/D Z=2˝ .Z=8h�2.1/i˚Z=2h�1.1/�1.1/C 2�2.1/i/

D Z=2h�2.1/i˚Z=2h�1.1/�1.1/i:

The map (5) sends the generators where their names suggest, and is in particular an
isomorphism of 2–dimensional Z=p–vector spaces.

Remark 7.9 The previous proof shows that k.2/ must be greater than 1, hence
that Tn does not commute with E�=m˝� in general. Furthermore, the results of
Appendix B imply that k.n/ can be taken to be p.n/, the number of partitions of a set
with n elements, independent of the chosen prime. More generally, at height h, k.n/

is bounded above by the rank of E0.B†n/ as computed by Strickland [37].
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Taking RD Z, Theorem 7.8 and Corollary 5.18 yield the following.

Corollary 7.10 The functor T �
Zp
W ModZp

!ModZp
preserves L0 –equivalences.

7.2 From �–rings to � –rings

Proposition 7.11 Let R be a �–ring. Consider the monads T �
R

and T �
R

on ModR ,
and the natural transformation 'W T �

R
! T �

R
. If R is p–local, then ' is a split

monomorphism, ie admits a retraction.

Proof Let U �
AlgW �AlgR ! AlgR denote the forgetful functor, F�Alg its left adjoint,

and G�
Alg its right adjoint.To show the claim, it suffices to show that the canonical map

T �
Alg WD U �

AlgF�Alg! U �
AlgF�Alg DW T

�
Alg

of monads on AlgR is a split monomorphism. By adjunction, such natural transforma-
tions T �

Alg! T �
Alg correspond to maps

U �
AlgG�

Alg! U �
AlgG�

Alg

ie natural transformations C �! C � of the comonads, in the reverse direction. Under
that correspondence, a map T �

Alg! T �
Alg is a split monomorphism if and only if the

corresponding map C �! C � is a split epimorphism, ie admits a section.

The comonad C � D U �
AlgG�

AlgW AlgR ! AlgR associated to �–rings is naturally
isomorphic to the Witt vectors comonad W [40, 4.16], while the comonad C � D

U �
AlgG�

Alg associated to � –rings is naturally isomorphic to the p–typical Witt vectors
comonad Wp [7, 2.13, 3.3].

Since R is p–local, any R–algebra A is p–local and in that case the canonical map
W .A/!Wp.A/ admits a section

Wp.A/
sn

�!W .A/

for each natural number n coprime to p , ie .n;p/D 1, as explained in [3, 4.4.9, 4.4.10]
and [11, Chapter III]. Taken together, these sections exhibit a natural isomorphism of
rings

W .A/Š
Y

.n;p/D1

Wp.A/;

and hence a splitting of C �! C � .

Theorem 7.12 The free Zp –� –algebra monad T �
Zp
W ModZp

! ModZp
preserves

L0 –equivalences.
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Proof By Corollary 7.10, the monad T �
Zp
W ModZp

!ModZp
preserves L0 –equiva-

lences. By Proposition 7.11, T �
Zp

is a retract of T �
Zp

since Zp is p–local. By
Theorem 5.1(4), T �

Zp
preserves L0 –equivalences.

Appendix A: L–completion

For the convenience of the reader, we survey the essential structural features of the
category of complete modules we are working with. Our exposition is inspired by and
extends the treatments in [22, Appendix A; 21] and Hovey [20], as well as the original
source, Greenlees and May [16]. More recently, Rezk [31] has offered a different
perspective on completion, extending the theory to simplicial modules and algebras.

A.1: m–adic completion and its derived functors

Most statements in this section hold true for a noetherian commutative ring R and an
ideal I �R which is generated by a regular sequence or, more generally, nonnoetherian
rings with some weaker finiteness conditions with respect to I ; cf [16]. For simplicity
and with an eye towards our applications, however, we will restrict ourselves to the
case of a regular local noetherian ring R and take I D m, the maximal ideal of R.
The number of generators of I will be denoted by h. In the special case RDE� , this
is consistent with our earlier convention.

For M any R–module, completion with respect to m is defined to be M^
m D lim

 ��
M=mk ,

and M is called m–complete if the canonical map M ! M^
m is an isomorphism.

By the Artin–Rees lemma, m–adic completion .�/^m is an exact functor on the full
subcategory of ModR of finitely generated modules, and the m–adic completion of
a finitely generated module M can be constructed as R^m˝M . In particular, R^m is
flat over R. However, viewed as a functor on all of ModR , .�/^m is badly behaved
homologically: in general, it is neither left nor right exact. This can be used to show that
the full subcategory of m–complete modules is not abelian; in fact, because the coimage
is not necessarily complete, there exists an example (see the Stacks Project [36, 74.6.1])
of a map f between complete modules with im.f /© coim.f /.

Since the modules coming from topology are often not finitely generated, Greenlees
and May [16] propose to work with the 0th left derived functor of m–adic completion
instead.
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Definition A.1 Let Ls be the sth left3 derived functor of the m–adic completion
functor .�/^m , where s�0. For any M 2 ModR , the natural map M!M^

m fac-
tors canonically as M

�M
��!L0M !M^

m , and M is called L–complete if �M is an
isomorphism.

In [16], Greenlees and May initiated the study of these functors. In particular, they
establish a duality between the Ls and Grothendieck’s local cohomology, and prove
their basic properties. To start with, derived completion can be related to ordinary
completion via higher Tor–functors, as follows.

Proposition A.2 For any s � 0 and M 2ModR there is a short exact sequence

0! lim
 ��

1
k

TorR
sC1.R=m

k ;M /!LsM ! lim
 ��k

TorR
s .R=m

k ;M /! 0:

Remark A.3 In fact, this result is true for any commutative ring R and the left derived
functors of I –adic completion for any ideal I �R (see [16, 1.1]); it does not rely on
the identification of Ls with local homology.

Theorem A.4 (Greenlees–May duality) The sth left-derived functor of m–adic com-
pletion can be computed by local cohomology, ie for M 2ModR ,

LsM D Exth�s
R .H h

m.R/;M /;

where H i
m.R/ Š R=m1 noncanonically if i D h, and 0 otherwise. In particular,

Ls D 0 if s > h.

Remark A.5 In [31], Rezk gives a different model for L–completion with respect to a
maximal ideal m generated by elements u1; : : : ;uh . He shows that the L–completion
of a module M 2ModR can be identified with analytic completion,

L0M DM ŒŒx1; : : : ;xh��=.x1�u1; : : : ;xh�uh/:

The properties of L–complete modules can then be developed in this context as well,
and this other point of view turns out to be useful in many situations.

We can now list the salient features of the derived completion functors Ls that are
relevant for our applications; see [22, A.4, A.6].

Proposition A.6 Let M 2ModR .

(1) If M is of the form N ^m or LsN for s � 0, then the natural map M !L0M

is an isomorphism and LtM D 0 for all t > 0. In particular, L0 is idempotent.

3The right derived functors of m–adic completion can be shown to vanish; see [16].
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(2) The natural map

R=mk
˝M !R=mk

˝L0M

is an isomorphism.

(3) L0M D 0 if and only if R=m˝M D 0.

Remark A.7 Both I –adic and derived completion are idempotent for noetherian
rings; see Yekutieli [41, 3.6] and [31]. However, I –adic completion need not be
idempotent in general [41]. We do not know whether the 0th derived functor L0 is
always idempotent.

We end this section with a useful criterion for when a morphism between L–complete
modules is an isomorphism. Since we do not know of a published reference for this
probably well-known fact, we include a proof.

Lemma A.8 Suppose f W M !N is a map of R–modules with N flat. If R=m˝f

is an isomorphism, then so is L0f W L0M !L0N .

Proof We first prove surjectivity. To this end, consider the exact sequence

M
f
�!N ! C ! 0:

Since L0 is right exact, L0M
L0f
���!L0N !L0C! 0 is also exact. Reducing mod m

yields the exact sequence

R=m˝M
R=m˝f
�����!R=m˝N !R=m˝C ! 0:

So, by assumption, R=m˝C D 0, which implies L0C D 0 by Proposition A.6. The
claim follows.

Injectivity is proved similarly: let K be the kernel of L0f ; using the first part of the
lemma, we get an exact sequence

0!K!L0M !L0N ! 0:

Since N is flat, so is L0N by Proposition A.15 and hence TorR
1 .L0N;R=m/ D 0.

Therefore, tensoring with R=m yields the exact sequence

0!R=m˝K!R=m˝M !R=m˝N ! 0

and we get R=m˝K D 0 by assumption. Since K is L–complete, Proposition A.6
implies K D 0.
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A.2: The category of L–complete modules

The category of L–complete E�–modules plays a pivotal role in the algebraic theory
of power operations for Morava E–theory, since it is the natural target of completed
E–homology; see Corollary 3.14. As it turns out this category has many good and
some exotic properties, which we review in this section.

For simplicity, let R be a regular noetherian ring with a fixed maximal ideal m, usually
assumed to be m–complete.

Notation A.9 Let bModR denote the full subcategory of ModR that consists of L–
complete modules, with the natural embedding �W bModR ,!ModR .

The embedding � has left adjoint L0W ModR!
bModR , which is also its left-inverse, ie

L0 ı �D id. It follows from this and the properties (Proposition A.6) of the completion
functor L0 that bModR is bicomplete: while limits are computed in ModR via �,
colimits in bModR , denoted by 1colim , are constructed as L0 colim, the latter colimit
being taken in ModR .

Unlike the category of m–complete modules, bModR is an abelian subcategory of
ModR closed under extensions and Ext�R , see [22, A.6]. In particular, HomR.M;N /

is L–complete for L–complete modules M and N , as are all extensions between M

and N . Using this and defining the L–completed tensor product � y̋�DL0.�˝�/,
it is easy to verify that bModR is closed symmetric monoidal under y̋ . Furthermore,
Proposition A.15 implies that bModR has enough projectives, although no nonzero
injective objects. To see the latter claim, let I 2 bModR be injective. Applying
Hom.�; I/ to the monomorphism

0!R
x
�!R

for any x 2m shows that mI D I and hence I D 0 by Proposition A.6(3). In summary:

Theorem A.10 The category of L–complete modules bModR is a bicomplete closed
symmetric monoidal category with enough projectives. The adjunction

L0W ModR � bModRW �

exhibits the category of L–complete modules as a full abelian subcategory of all
R–modules, closed under limits and extensions.

Remark A.11 In fact, in the language of Salch [35], bModR is the best reflective
abelian approximation to the category of m–complete R–modules.
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As a consequence, we note that � preserves reflexive coequalizers; this will become
important in the proof of our main theorem. To show this, recall that the coequalizer
of a pair .f;g/W A � B in an abelian category can be computed as the cokernel of
f �g . Conversely, every cokernel diagram

A
f
�! B! C ! 0

can be written as a coequalizer diagram .f C idB; idB/W A˚B � B!C ! 0, which
is reflexive4 with the natural inclusion sW B!A˚B as section. Since bModR is an
abelian subcategory of ModR , � preserves cokernels and thus reflexive coequalizers.

As mentioned above, colimits of complete modules in ModR are not necessarily
complete and thus need to be completed. But L0 is not exact, whence neither are
direct sums5 and filtered colimits in bModR , so bModR is not a Grothendieck abelian
category. However, Hovey [21, 1.1] shows that for D a discrete or filtered diagram, the
sth left derived functor of 1colimD is given by Ls colimD . Moreover, if D is discrete,
then Lh colimD D 0.

Remark A.12 Another noticeable feature of bModR is its lack of small objects: since R

itself is L–complete, so are all finite free modules, but these are not small in bModR .
Indeed, if R˚r was small for some finite r > 0, the Freyd–Mitchell theorem would
produce an equivalence bModR 'ModEnd.R˚r /op 'ModR , since R˚r 2 bModR is a
projective generator.

This remark should be compared with the following result that informally speaking
states that R 2 bModR , while not being small, is not too large either.

Proposition A.13 The category bModR is �–presentable for � any regular cardinal
larger than @0 .

Proof Let � be a regular cardinal larger than @0 ; then it suffices to show that R is
�–small. To this end, we use Rezk’s construction of the L–completion of M 2ModR ,

L0M DM ŒŒx1; : : : ;xh��=.x1�u1; : : : ;xh�uh/;

as in Remark A.5. Since �–filtered colimits commute with limits of size �0 < � in Set,
the same holds in ModR . In particular, countable products commute with �–filtered

4In fact, every coequalizer diagram in a category with direct sums is equivalent to a reflexive one,
by simply adding an extra copy of the codomain to the domain and using the obvious morphisms; see
Remark 4.7.

5For a natural example, see [21, 1.3].
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colimits, hence L0 preserves �–filtered colimits. Therefore, for a �–filtered colimit
diagram M W I ! bModR , we get

Hom bModR
.R;1colim Mi/D HomR.R;L0 colim Mi/

D HomR.R; colim Mi/

D colim HomR.R;Mi/D colim Hom bModR
.R;Mi/:

This gives the claim.

Remark A.14 Using Proposition A.13 and [31, 9.3(1)], one can show that Rezk’s
model structure on the category Ch.bModR/ of (unbounded) chain complexes of L–
complete R–modules coincides with the one created from the Quillen model structure
on Ch.ModR/ through �. Consequently, this model structure is cofibrantly generated
and monoidal. The associated derived category of L–complete modules has been
studied independently in recent work of Valenzuela [39].

A.3: Flat modules

Let Mod[R be the full subcategory of ModR on the flat R–modules. By Lazard’s
Theorem 2.7, M 2 ModR is flat if and only if the comma category .Modff

R/=M is
filtered, which implies that M can be written canonically as a filtered colimit of finite
free modules. We will use this fact frequently throughout this document.

While flat modules are not necessarily complete, as for example R˚! , there is the
following characterization of flat and L–complete R–modules.

Proposition A.15 The following properties of an L–complete R–module M are
equivalent.

(1) M is projective in bModR .

(2) M is pro-free, ie it is of the form L0F for some free F 2ModR .

(3) M is flat as an object in ModR .

Furthermore, if N 2Mod[R , then L0N is pro-free and hence flat as an R–module.

Proof The equivalence of (1) and (2) is [22, A.9]. Now assume (2) and let M DR˚I

be a free module. By [22, A.13], the canonical map L0.R
˚I /!

Q
I R exhibits L0M

as a retract of
Q

I R. Because R is noetherian, products of flat modules are flat, which
in particular applies to

Q
I R, so (3) follows. Conversely, assume M is flat; then

TorR
s .R=m;M /D 0 for all s > 0. Applying [22, A.9] once more gives (2).
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The last assertion is due to Hovey and can be found in his unpublished notes [20, 1.2];
for completeness, we sketch the argument. By [22, A.9], it suffices to show that
TorR

1 .R=m;L0N /D 0 for all s > 0. To this end, let F�!R=m! 0 be a resolution
of R=m by finite free modules. Using [22, A.4], the claim then reduces to HsL0.F�˝

N /D 0. Denoting the image of Fi in Fi�1 by Ki , flatness of N yields short exact
sequences

0!Ki ˝N ! Fi ˝N !Ki�1˝N ! 0:

Therefore, again using flatness of N , we get for s > 0 and all i

LsC1.Ki�1˝N /ŠLs.Ki ˝N /

as well as an exact sequence

0!L1.Ki�1˝N /!L0.Ki ˝N /!L0.Fi�1˝N /!L0.Ki�1˝N /! 0:

Note that K0˝N DR=m˝N is m–complete, hence L–complete, and thus satisfies
Ls.K0˝N /D 0 for s > 0. It follows inductively that Ls.Ki˝N /D 0 holds for all
s > 0 and all i , yielding the short exact sequence

0!L0.Ki ˝N /!L0.Fi�1˝N /!L0.Ki�1˝N /! 0;

hence HsL0.F�˝N /D 0 for s > 0.

An L–complete module M is said to be L–flat if it is a flat object in bModR . In
contrast to the previous result, there are very few L–flat modules.

Proposition A.16 If R has dimension 1, then M 2 bModR is L–flat if and only if it
is pro-free. If dim R� 2, then being L–flat is equivalent to being finite free.

Proof Let bTor1.M;�/ be the first left derived functor of M y̋ �; on finitely generated
modules, this functor agrees with the usual Tor functor. Since M is L–flat and R=m

is finitely generated, we obtain

0DbTor
R

1 .M;R=m/D TorR
1 .M;R=m/;

so M is pro-free by [22, A.9]. If dim RD 1, the converse holds since coproducts are
exact on bModR in this case.

If dim R� 2, consider the monomorphism of L–complete modules

f W K D
Y
k�1

.uk
1 ; : : : ;u

k
h/ ,!

�M
k�1

R

�^
m

DN:
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If M is an L–flat module, it is pro-free by the above, so we can write M DL0

�L
I R

�
for some indexing set I . Applying M y̋ � to f gives the morphism L0

�L
I K

�
!

L0

�L
I N

�
which we will show to be injective if and only if I is finite. Finiteness

is clearly sufficient. For the converse it is enough to consider the case of countable
infinite I , because retracts of flat objects are flat. It is then easy to check that the
argument given by Baker in [5, Appendix B] generalizes to dim R � 2, giving that
L1.N=K/¤ 0. Therefore, M DL0

�L
I R

�
cannot be L–flat for infinite I .

Remark A.17 Consequently, projective objects are generally not flat in bModR , which
implies that the derived functors of y̋ are not balanced; this issue is discussed further
in [20, Section 1.5].

In fact, the last part of Proposition A.15 shows that �L0 restricts to an endofunctor
of Mod[R . Informally speaking, passage to L–complete modules has the effect of
identifying the free R–modules with the flat ones.

Corollary A.18 When restricted to Mod[R , L0 coincides with m–adic completion,
and Ls D 0 for s > 0.

Proof This is an immediate consequence of Proposition A.2.

The situation is summarized in the following commutative diagram, in which the
superscript proj indicates the full subcategory of projective objects:

Modff
R
� � //

�

��

Ind Modff
R Mod[R

� � //

L0D.�/
^
m
��

ModR

L0

��

bMod
ff
R
� � // bMod

proj
R
� � //

�

OO

bModR

�

OO

Appendix B: Representation theory

In this appendix, we prove a representation-theoretic integral analogue of Corollary 4.5
at height h D 1, one of the key ingredients to our main theorem. We include this
curious result not only because it provided some motivation for the general proof, but
also because it might shed some additional light on the inner workings of the algebraic
approximation functors Tn .
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To this end, note that the multiplication by p map can be lifted to homotopy theory as

S0 �
�!

p_
iD1

S0 r
�! S0;

where � is the diagonal and r is the fold map. Applying K.E†mC ^†m
�/ to this

diagram yields the map

t.m;p/W Rep.†m/
Res
��!

M
i1C���CipDm

Rep.†i1
� � � � �†im

/
Ind
��! Rep.†m/

which is an integral version of Tm.p/W K.B†m/! K.B†m/. Here, Res and Ind
denote the direct sums of restriction and induction for the corresponding subgroups,
respectively.

Remark B.1 We will keep the notation from before, but emphasize that the param-
eter p does not have to be a prime in this section. Therefore, Proposition B.5 is a
generalization of Corollary 4.5.

B.1: A few examples

Before we discuss the general result in the next section, we give three explicit examples.

Example B.2 For all integers p , the map t.2;p/W Rep.†2/! Rep.†2/ is nilpotent
mod p .

Proof Note that the cases p > 2 or p D 1 are straightforward, so consider p D 2.

Recall that Rep.†2/ D ZŒ� �=.�2 � 1/, where � the sign representation; also, if �
denotes the regular representation, �D 1C � . Now Ind on the three factors is either
the identity or induction from the trivial group, ie �˝�. After these recollections, we
are now ready to compute the composite Ind ıRes on the basis elements 1; � of the
representation ring:

Ind ıRes.1/D Ind.1†2
C 1†1

C 1†2
/D 1C �C 1D 1C 1C � C 1D 3C �;

Ind ıRes.�/D Ind.� C 1†1
C �/D � C �C � D � C 1C � C � D 1C 3�:

Therefore, the matrix corresponding to t.2; 2/ in terms of the basis .1; �/ is

t.2; 2/D

�
3 1

1 3

�
with characteristic polynomial �t.2;2/.x/D .x� 2/.x� 4/�2 x2 . Thus t.2; 2/2 � 0

mod 2.
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Example B.3 Likewise, using the basis of Rep.†3/ given by the irreducible represen-
tations 1; �;V with V the standard representation, one computes t.3; 3/W Rep.†3/!

Rep.†3/ is given by the matrix

t.3; 3/D

0@10 1 8

1 10 8

8 8 19

1A :
Therefore, �t.3;3/.x/D .x� 27/.x� 9/.x� 3/�3 x3 , so t.3; 3/ is nilpotent mod 3.
The remaining cases of t.3;p/ for p ¤ 3 are easy.

Finally, to convince the reader that our proof below works for positive integers p that
are not prime, we give one more example.

Example B.4 The representation ring Rep.†4/ has a basis of irreducible representa-
tions .1; �;T;V;W /, where V is the standard representation, W D V ˝ � and T is
the irreducible 2–dimensional representation coming from the standard representation
of †3 via the exact sequence

0! Z=2�Z=2!†4!†3! 0:

With respect to this basis,

t.4; 4/D

0BBBB@
35 1 20 45 15

1 35 20 15 45

20 20 56 60 60

45 15 60 115 81

15 45 60 81 115

1CCCCA ;
which has characteristic polynomial

�t.4;4/.x/D .x� 44/.x� 43/.x� 42/.x� 42/.x� 4/:

Consequently, t.4; 4/5 � 0 mod 4.

B.2: The general result

In this section we give a proof of the following claim, which generalizes Corollary 4.5
in the height-1 case.

Proposition B.5 For any pair of positive integers m and p , the map

t D t.m;p/W Rep.†m/
Res
��!

M
i1C���CipDm

Rep.†i1
� � � � �†ip /

Ind
��! Rep.†m/

is nilpotent mod p .
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Proof Let ƒ be the free Z–module on the basis given by characteristic functions on the
conjugacy classes of †m . Since all characters of symmetric groups are integer-valued,
we get an injection

Rep.†m/ ,!ƒ

which sends a representation to its character. We can therefore extend the map t to an
endomorphism of Q˝ƒ which stabilizes the lattices ƒ and Rep.†m/ inside of it. It
follows that the characteristic polynomial �t of t can be computed mod p with respect
to either ƒ or Rep.†m/, since both are of maximal rank in Q˝ƒ. In other words,
it is enough to show that �t restricted to the lattice ƒ is �t .x/ � xp.m/ mod p ,
where p.m/ denotes the number of partitions of m.

To this end, let ıc be the characteristic function on the conjugacy class c of †m ,
determined by a specific cycle class Cc with type k D k.c/ D .k1; : : : ; kl/. Fix an
ordered p–tuple i1; : : : ; ip with i1C � � �C ip Dm, let

H D†i1
� � � � �†ip

denote the corresponding subgroup of †m , and consider Ind†m

H
ıRes†m

H
. In general,

the formula for inducing a class function f from a subgroup K �G is IndG
K .f /.g/DP

s2KnG f0.s
�1gs/ where is f0.x/D f .x/ for x 2K and 0 otherwise. Specializing

to our situation we see that

Ind†m

H
ıRes†m

H
.ıc/Dmc.H / � ıc

where mc.H / is some nonnegative integer. It follows from this description thatX
i1C���CipDm

Ind†m

†i1
�����†ip

ıRes†m

†i1
�����†ip

.ıc/D
X

i1C���CipDm

mc.†i1
� � � � �†ip / � ıc

so the matrix of t on ƒ with respect to the basis given by characteristic functions on the
conjugacy classes is diagonal with eigenvalues mcD

P
i1C���CipDm mc.†i1

�� � ��†ip /.
We claim that, if the cycle type of c is kD .k1; : : : ; kl/, then mcDpl . The proposition
follows immediately.

So let us prove this claim. In fact, we will identify mc with the number of functions
from a set Kc with l elements to f1; : : : ;pg. To this end, note that it is enough to
evaluate the above formula on a fixed element g 2 c D cg . If H D †i1

� � � � �†ip ,
then any element s 2 Hn†m has Res†m

H
.ıc/.s

�1gs/ ¤ 0 if and only if it permutes
the cycles in the cycle representation of cg such that they are compatible with the
cycle structure of H D†i1

� � � � �†ip . Therefore, we can label the cycles in the cycle
representation of cg by the numbers j 2 f1; : : : ;pg corresponding to which factor †ij
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of H they belong to after conjugation by s . This induces a bijection between pairs
.H; s 2Hn†m/ that contribute to

P
i1C���CipDm mc.†i1

� � � � �†ip /, ie such that

Res†m

H
.ıc/.s

�1gs/¤ 0;

and all possible labelings of the l cycles in cg by numbers f1; : : : ;pg, ie functions
from Kc to f1; : : : ;pg: surjectivity is clear, while injectivity uses the fact that the
ordered tuple .i1; : : : ; ip/ is determined by the labeling, and the coset representative s

can be recovered from the given permutation of the cycles in the cycle representation
of c , up to conjugation in H D†i1

� � � � �†ip . This completes the proof.

Remark B.6 In fact, the argument shows more, namely that the eigenvalues of t D

t.m;p/, thought of as an endomorphism of Rep.†m/ or ƒ, are precisely all the plc ,
where c runs through the conjugacy classes of †m and lc denotes the length of the
cycle representation of c .

Alternative proof of Proposition B.5 We sketch another argument, due to Charles
Rezk, which is closer to the perspective in Section 7. Defining AmDHom.Rep.†m/;Z/,M

m

Am DƒŒx�;

the free �–ring on one generator x of degree 1; note that the map

t.p/D
M

m

t.m;p/W ƒŒx�!ƒŒx�

is given by x 7!px . Let xkD k.x/, where  k are the Adams operations, and consider
the subring ADZŒx1;x2; : : :��ƒŒx� with xk of degree k . Since A˝QŠƒŒx�˝Q,
we can compute the eigenvalues of t.p/ in terms of the monomial basis given by
the xk :

t.p/.xk1
� � �xkn

/D  k1
.px/ � � � kn

.px/D pn k1
.x/ � � � kn

.x/D pnxk1
� � �xkn

:

So the monomial basis in the xk provides a basis of eigenvectors for t.p/, with the
eigenvalues as above.
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