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On the slice-ribbon conjecture for pretzel knots

ANA G LECUONA

We give a necessary, and in some cases sufficient, condition for sliceness inside
the family of pretzel knots P .p1; : : : ;pn/ with one pi even. The 3–stranded case
yields two interesting families of examples: The first consists of knots for which
the nonsliceness is detected by the Alexander polynomial while several modern
obstructions to sliceness vanish. The second family has the property that the correction
terms from Heegaard–Floer homology of the double branched covers of these knots do
not obstruct the existence of a rational homology ball; however, the Casson–Gordon
invariants show that the double branched covers do not bound rational homology balls.

57M25

1 Introduction

Pretzel knots have been thoroughly studied since they were first introduced by Reide-
meister in [27]. In recent work, Greene and Jabuka have determined the order in the
smooth knot concordance group of 3–stranded pretzel knots P .p1;p2;p3/ with all pi

odd [12, Theorem 1.1]. A corollary of their result is that the slice–ribbon conjecture
proposed by Fox in [9] holds true for this family of knots. In this paper we address
the question of sliceness in the family of pretzel knots P .p1; : : : ;pn/ with one pi

even. Our main result, Theorem 1.1, gives a necessary condition for sliceness in this
family. The condition obtained is not sufficient, but we propose a conjecture of what
constraints should be added to Theorem 1.1 to obtain a complete characterisation of
ribbon pretzel knots.

As a byproduct of our research we have found two interesting families of pretzel knots.
The first one is a one-parameter family of knots for which most of the known slice
obstructions vanish: the signature, the determinant, the Arf invariant, the s–invariant
and the � invariant among others. However, by using the Alexander polynomial, one
can show that more than three quarters of the knots in this family are not slice. This
property makes this set of knots an excellent source to test future slice invariants. The
second interesting family consists of a set of pretzel knots whose double branched covers
do not bound rational homology balls. The nonexistence of these balls is determined
via the Casson–Gordon invariants which, for this particular family of 3–manifolds, turn
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out to be a more powerful tool than the d –invariants from Heegaard–Floer homology
in obstructing the existence of a rational ball.

A knot in S3 is said to be slice if it bounds a disc smoothly embedded in the 4–
ball. There are two other notions of sliceness directly related to this one. A knot is
topologically slice if it bounds a topologically flat disc in B4 and algebraically slice if it
is trivial in Levine’s algebraic concordance group [17; 18]. Every smoothly slice knot is
topologically slice and these knots are algebraically slice. The two inclusions between
these three sets are strict. Our aim is to understand which pretzel knots are slice, and a
natural starting point would be to pin down algebraically slice pretzels first, and from
there determine which ones are actually slice. However, this approach turns out to be
very difficult for pretzel knots with one even parameter. Indeed, even though Levine
constructed a complete set of invariants that establishes the algebraic concordance class
of a knot K , to determine their values one is required to find the irreducible symmetric
factors of the Alexander polynomial of K . As the question of whether or not a given
polynomial is irreducible is a difficult one in general, the task of determining all the
irreducible factors of a given symmetric polynomial can be quite intractable, more
so as the degree of the polynomial grows. This is exactly the case for pretzel knots
with one even parameter. Already inside the 3–stranded family P .2pC 1; 2qC 1; 2r/

the Alexander polynomials are of arbitrarily high degree (in contrast with the knots
P .2pC 1; 2qC 1; 2r C 1/ which all have degree two in an appropriate normalization).
Jabuka has determined the rational Witt classes of pretzel knots in [14], but which
3–stranded, one even parameter pretzels are algebraically slice is still an open question
(the algebraically slice knots of the form P .2p C 1; 2q C 1; 2r C 1/ are precisely
those whose determinant is a negative square; this is known byproduct the work of
Levine [17]). In Section 4 we will deal with a one-parameter family of 3–pretzels for
which we cannot determine in general if they are slice, since we do not even know if
they are algebraically slice. One last remark regarding the algebraically slice pretzels is
that, whereas in the smooth setting of this paper working with 3–stranded or n–stranded
pretzels does not make much of a difference, this generalization is a major difficulty
when dealing with algebraically slice pretzels. Again in [14], Jabuka looks for a set
of numerical conditions on the parameters defining a pretzel knot that would pinpoint
their order in the rational Witt group. As he explains, the obstacle to achieving this
is number-theoretic in nature and only conditions for the case of 3–strands and some
special cases for 4–strands are given.

The strategy we follow in this article is as follows: use different obstructions to rule
out the nonslice pretzel knots and show that the remaining knots are slice by explicitly
constructing the slice discs in B4 . The discs we find have the property of being ribbon,
that is they have no local maxima for the radial function in B4 . The slice–ribbon

Algebraic & Geometric Topology, Volume 15 (2015)



On the slice-ribbon conjecture for pretzel knots 2135

conjecture asserts that all slice knots are ribbon and the results in the present work
support this conjecture.

The first obstruction we compute comes from Donaldson’s theorem on the intersection
form of definite smooth 4–manifolds, which is further explained later in this introduc-
tion. A necessary assumption to use this obstruction is the smoothness of the discs
bounded by the pretzel knots, and therefore it rules out the possibility of studying the
case of topologically slice pretzel knots. Other obstructions we compute, such as the
signature, the Alexander polynomial or the Casson–Gordon invariants, do not need
the smoothness assumption. One could be tempted to start with these topological or
algebraic invariants in order to get stronger results, but the computations for general
families as the one under study are way too involved.

Given nonzero integers p1; : : : ;pn , the pretzel link P .p1; : : : ;pn/ is obtained by
taking n pairs of parallel strands, introducing pi half twists on the i th pair, with the
convention pi > 0 for right-handed crossings and pi < 0 for left-handed crossings,
and connecting the strands with n pairs of bridges. The convention used to define right-
and left-handed crossings is the one from Figure 1, where the first knot corresponds to
P .�5; 5;�3; 3; 7/. If more than one of the pi is even or if n is even and none of the pi

are even then P .p1; : : : ;pn/ is a link. In all other cases it is a knot. Pretzel knots were
the first examples of noninvertible knots (see Trotter [29]): a change of orientation
of the knot changes its isotopy class. However, as far as sliceness is concerned this
feature will not play any role, and thus we will ignore orientations all throughout this
paper. Inside the family of pretzel knots P .p1; : : : ;pn/ we limit our considerations to
those with one even parameter and moreover, from now on we fix n� 3 and jpi j> 1

for all i . Note that if n� 2 or if nD 3 and one of the pi satisfies pi D˙1, then the
pretzel knot is a 2–bridge, already studied by Lisca in [19; 20].

It is well known (see Burde and Zieschang [3, Theorem 12.19]; recall that pretzel
knots are a particular case of the more general family of Montesinos links) that among
the n! permutations of the parameters .p1; : : : ;pn/, the 2n of them which correspond
to cyclic permutations, order-reversing permutations and compositions of these leave
invariant the knot P .p1; : : : ;pn/. Two pretzel knots K and K� which are not isotopic
but share the same set of parameters are mutants, that is K� can be obtained from K

by a finite sequence of the following tangle surgeries: remove a 3–ball from S3 that
meets K in two proper arcs and glue it back via an involution � of its boundary S ,
where � is orientation preserving and leaves the set S \K invariant. All pretzel knots
defined by the same set of parameters p1; : : : ;pn have the same double branched
cover; see Bedient [2].

Our main result, Theorem 1.1, is stated for pretzel knots up to reordering of the
parameters because the obstructions to sliceness that we analyze live in the double
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branched cover of these knots. Up to reordering we are able to establish the sliceness
of pretzel knots with one even pi except for the set of parameter sets

E D
nn

a;�a� 2;�
.aC1/2

2
; q1;�q1; : : : ; qm;�qm

oo
;

where m � 0, jqi j � 3 odd, and a � 3 and a � 1; 11; 37; 47; 49; 59 .mod 60/. Our
main result is the following.

Theorem 1.1 Let KDP .p1; : : : ;pn/ be a slice pretzel knot with one even parameter
and such that fp1; : : : ;png 62 E . Then, the n–tuple of integers .p1; : : : ;pn/ can be
reordered so that it has the form

(1) .q1;�q1˙ 1; q2;�q2; : : : ; qn=2;�qn=2/ if n is even,

(2) .q0; q1;�q1; : : : ; q.n�1/=2;�q.n�1/=2/ if n is odd.

Remark 1.2 Ligang Long is independently working on this problem. He has several
partial results concerning the sliceness of pretzel knots with n D 5 and all parame-
ters odd.

As further explained in Section 2, not all possible orders of the parameters in Theorem 1.1
yield slice knots. In Corollary 2.2 we show that for certain orders of the parameters the
knots in the theorem above are actually slice. Moreover we conjecture that the orders
proposed in Conjecture 2.4 are all the possible orders of the parameters in Theorem 1.1
yielding slice knots.

As detailed in Section 4.2 most of the pretzel knots in the family P .a;�a�2;� .aC1/2

2
/,

a� 3 odd, are not slice. However establishing that none of them is slice is still an open
challenge. There is a great amount of evidence supporting the following conjecture

Conjecture 1.3 If fp1; : : : ;png 2 E then the pretzel knot P .p1; : : : ;pn/ is not slice.

Note that a pretzel knot of the form P .p1;p2;p3/ is independent of the order of the
parameters, since cyclic permutations, order reversing permutations and compositions
of these comprise all possible permutations of three elements. For 3–stranded pretzel
knots whose defining parameters are not in E , an easy corollary of Theorem 1.1 is the
validity of the slice–ribbon conjecture.

In the following Corollary 1.4 the results for P .p1;p2;p3/ with three odd parameters
were already proved in [12]. Our work proves the statement for 3–stranded pretzel
knots with one even parameter and leaves out the case P .a;�a� 2;�.aC 1/2=2/,
a� 3 odd and a� 1; 11; 37; 47; 49; 59 .mod 60/.
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Corollary 1.4 The slice–ribbon conjecture holds true for pretzel knots of the form
P .p1;p2;p3/, where p1;p2;p3 2 Z and fp1;p2;p3g 62 E .

In order to prove Theorem 1.1 we start using the approach of [19], which is also followed
in [12]: if a pretzel knot K is slice then its double branched cover Y is the boundary
of a rational homology ball W ; see Casson and Gordon [5, Lemma 2]. Moreover,
up to considering the mirror image of K , the 3–manifold Y is also the boundary
of a negative definite 4–manifold M obtained by plumbing together disc bundles
over spheres. We can build a closed, oriented, negative definite, 4–manifold X as
M[Y

.�W /. By Donaldson’s celebrated theorem [7], the intersection form QX of X

must be diagonalizable and therefore, since H2.M IZ/=TorsŠH2.X IZ/=TorsŠZn ,
there must exist a monomorphism �W Zn!Zn such that QM .˛; ˇ/D� Id.�.˛/; �.ˇ//
for every ˛; ˇ 2 Zn ŠH2.M IZ/=Tors.

The existence of � is enough to guarantee sliceness among 2–bridge knots [19]. In the
case of pretzel knots P .p1;p2;p3/ with all pi odd, this obstruction shows that there
must exist some � 2 Z such that �p3 D p1�

2C p2.�C 1/2 [12, Proposition 3.1].
However, not all these pretzel knots are slice. In fact, using the Ozsváth–Szabó
correction terms for rational homology spheres, Greene and Jabuka conclude that only
� D 0;�1 result in slice knots. In our case, for pretzel knots P .p1; : : : ;pn/ with
one even parameter, even in the case of three strands, the existence of � is a weaker
obstruction to sliceness than in the cases studied in [12; 19]. In fact, in our setting the
existence of � does not imply that the knot signature is zero. For example, the knot
P .3;�4;�13/ has signature 8, and therefore it is not slice, but � exists. The opposite
phenomenon also arrives: the knot P .�5;�5; 2; 7/ has vanishing signature but the
nonexistence of � obstructs sliceness. Some other interesting examples are the knots
P .3;�5;�12/ and P .3;�5;�8/. In both cases the signature vanishes and � exists,
however a Casson–Gordon invariant shows that the first knot is not slice while the
nonsliceness of the second example can be established by means of the Alexander
polynomial.

The proof of Theorem 1.1 has three main steps: first we determine the pretzel knots
with vanishing signature such that � exists. Not all the resulting knots are slice. In a
second step we use the correction terms from Heegaard–Floer homology to further
restrain the family of candidates to slice knots. This leaves us with two one-parameter
families to further study. The sliceness of one of these families is ruled out using
Casson–Gordon invariants while the other one is partially treated studying Alexander
polynomials.

The rest of the paper is organized as follows. The proof of Corollary 1.4 is carried out
in Section 2 assuming Theorem 1.1. An easy algorithm is given to detect ribbon pretzel
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knots and we show that many of the knots from Theorem 1.1 are actually slice. In
Section 3 we recall some properties of the Seifert spaces associated to pretzel knots and
of the knot signature. Section 4 deals with the two interesting families of pretzel knots
whose properties were described above. Finally, Sections 5 and 6 treat the general case
combining Donaldson’s theorem with the knot signature and the correction terms from
Heegaard–Floer homology.
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2 Slice pretzel knots

In this section we prove that, for certain orders of the parameters, the knots in
Theorem 1.1 are actually slice. Moreover, assuming this theorem we prove Corollary 1.4
which deals with the slice-ribbon conjecture for 3–stranded pretzel knots. We start
with the following proposition which explains an easy algorithm to determine whether
a pretzel knot is ribbon.

Proposition 2.1 (Ribbon algorithm) Let K D P .p1; : : : ;pn/ be a pretzel knot and
let pnC1 WD p1 . While for some j 2 f1; : : : ; ng, pj D�pjC1 , we reduce the number
of parameters to n� 2 and repeat with the knot P .p1; : : : ;pj�1;pjC2; : : : ;pn/. If at
the end of the sequence of reductions we are left with a pretzel knot with exactly one
parameter or with two parameters a and b satisfying aD�b� 1, then K is ribbon.

Proof On a pretzel knot K , whenever there are two adjacent strands p1 and p2 with
the same number of crossings but of opposite signs, we can perform the ribbon move
shown in Figure 1, which simplifies the pretzel knot yielding the disjoint union of an
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unknot and a new pretzel knot K0 . The knot K0 is equal to K without p1 and p2 .
Therefore, if n is odd and after the sequence of reductions the set of parameters
defining K consists of only one integer, we have that after performing .n�1/=2 ribbon
moves on K we obtain the disjoint union of .nC1/=2 unknots. Thus, K is ribbon. On
the other hand, if n is even and after the sequence of reductions the set of parameters
defining K consists of exactly two integers a and b satisfying b D�a� 1, then after
performing n=2� 1 ribbon moves on K , we obtain, since P .a;�a� 1/ is the unknot,
the disjoint union of n=2 unknots. Thus again, K is ribbon.

Corollary 2.2 Let K D P .p1; : : : ;pn/ be a pretzel knot satisfying the assumptions
of Theorem 1.1. Then the above ribbon algorithm shows that for certain orderings of
the parameters K is slice.

Proof of Corollary 1.4 Given K D P .p1;p2;p3/ as in the assumptions, if any
of p1;p2 or p3 equals ˙1, then K is a 2–bridge knot (see [12, Figure 2] for a
proof) and by [19, Corollary 1.3], the slice–ribbon conjecture holds in this case.
On the other hand, if jpi j � 2 for every i 2 f1; 2; 3g, then the parameters satisfy
either p1;p2;p3 � 1 .mod 2/ or there is exactly one even parameter. For the first
possibility [12, Theorem 1.1] holds and the statement follows. In the second case, if
KDP .p1;p2;p3/ is slice then Theorem 1.1 holds and we obtain that .p1;p2;p3/ is of
the form .p;�q; q/ for some ordering. Since 3–stranded pretzel knots are independent
from the ordering of the parameters, we have K D P .p; q;�q/ and Proposition 2.1
shows that K is ribbon.

Figure 1: On a pretzel knot, whenever there are two adjacent strands with the
same number of crossings but of opposite sign, we can perform the ribbon
move shown in this example obtaining the disjoint union of an unknot and
the original pretzel knot with two strands less.

Remark 2.3 The only 3–stranded pretzel knots for which the slice-ribbon conjecture
remains open are a subset of the family P .a;�a� 2;�.aC 1/2=2/. We conjecture
that none of these knots are slice and thus that the slice-ribbon conjecture holds for all
3–stranded pretzel knots.
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Given a pretzel knot P .p1; : : : ;pn/ with jpi j > 1 for all i and fp1; : : : ;png 62 E ,
the necessary condition for sliceness that we establish in this paper, namely that for
some permutation � of the parameters, the knot P .p�.1/; : : : ;p�.n// can be shown
to be ribbon using Proposition 2.1, is not sufficient. For instance, in [13, Section 11]
Herald, Kirk and Livingston show that the mutant K1DP .3; 5;�3;�5; 7/ of the slice
pretzel knot K2 D P .3;�3; 5;�5; 7/ is not slice. This result is proved using twisted
Alexander polynomials associated to a higher-dimensional metabelian representation
of the knot group. If a knot is slice, then these polynomials, which are elements
in QŒ�q � Œt˙1�, where �q is a primitive root of unity of prime order, must have a
particular factorization. Given a family of knots the computation of this obstruction is
very challenging and we have not attempted to pursue it in this paper. However, we
conjecture what constraints on the ordering of the parameters .p1; : : : ;pn/ need to
be added to Theorem 1.1 in order to obtain a sufficient condition for sliceness. For
all the examples we know (including in particular the knots K1 and K2 above) the
ribbon algorithm of Proposition 2.1 establishes that the knot K.p1; : : : ;pn/ is actually
ribbon. On the basis of these considerations we propose:

Conjecture 2.4 The pretzel knots P .p1; : : : ;pn/ with jpi j > 1 for all i that are
ribbon are precisely those detected by the algorithm in Proposition 2.1.

3 Preliminaries

3.1 Double branched covers of pretzel knots

Let � be a plumbing graph, that is, a tree in which every vertex vi carries an integer
weight ai , i D 1; : : : ; n. Associated to each vertex vi is the 4–dimensional disc bundle
X ! S2 with Euler number ai . If the vertex vi has di edges connected to it in the
graph � , we choose di disjoint discs in the base of X ! S2 and call the disc bundle
over the j th disc Bij DD2 �D2 . When two vertices are connected by an edge, we
identify Bij with Bk` by exchanging the base and fiber coordinates and smoothing
the corners. This pasting operation is called plumbing (for a more general treatment we
refer the reader to Gompf and Stipsicz [11]), and the resulting smooth 4–manifold M�

is said to be obtained by plumbing according to � .

The group H2.M� IZ/ has a natural basis represented by the zero-sections of the
plumbed bundles. We note that all these sections are embedded 2–spheres, and they
can be oriented in such a way that the intersection form of M� will be given by the
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matrix Q� D .qij /i;jD1;:::;n with the entries

qij D

8<:
ai if i D j ;

1 if i is connected to j by an edge,
0 otherwise:

We will call .Zn;Q�/ the intersection lattice associated to � .

A star–shaped graph is a connected tree with a distinguished vertex v0 (called the
central vertex) such that the degree of any vertex other than the central one is less than
or equal to 2 (see Figure 3 for two different examples). A leg of a star–shaped graph
is any connected component of the graph obtained by removing the central vertex.
The boundaries of the 4–manifolds obtained by plumbing according to star shaped
graphs are Seifert manifolds (see Neumann and Raymond [24, Section 5] for further
references).

Proposition 3.1 (von Randow [26]) If � is a star–shaped graph then the boundary
Y� WD @M� is a Seifert space with as many singular fibers as legs of the graph � .

Given a pretzel knot K D P .p1; : : : ;pn/, let Y .p1; : : : ;pn/ denote the 3–manifold
obtained as the 2–fold cover of S3 branched along K .

Theorem 3.2 (Montesinos [21]) The 3–manifold Y .p1; : : : ;pn/ is a Seifert fibered
space with n singular fibers.

The Seifert manifold Y .p1; : : : ;pn/ can be described as the boundary of the 4–
manifold obtained by plumbing according to the graph in Figure 2.

p1 0 pn

p2

Figure 2: Plumbing graph of a 4–manifold with boundary Y .p1; : : : ;pn/

The order of the first homology group of Y .p1; : : : ;pn/ can be computed via the
incidence matrix of any graph � such that Y� D Y .p1; : : : ;pn/D @M� and we have
(see [24])

(1) jH1.Y�/j D jdet Q� j D

nX
iD1

1

pi

nY
iD1

pi :

It will be of particular interest to describe the Seifert manifold Y .p1; : : : ;pn/ as
the boundary of a plumbing M� such that the matrix Q� is negative definite. The
following result establishes when is this possible.
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Theorem 3.3 [24, Theorem 5.2] The Seifert space Y .p1; : : : ;pn/ can be written as
the boundary of a negative definite plumbing as long as

(2) 1

p1
C � � �C

1

pn
> 0:

If the inequality in this last theorem holds, there is a canonical negative plumbing tree,
which from now on will be denoted ‰ , satisfying Y .p1; : : : ;pn/D @M‰ and M‰ is
negative definite. All the vertices in ‰ have weight less than or equal to �2 except for
the central vertex which has weight less than or equal to �1. The tree ‰ is obtained
as follows. Take the graph in Figure 2: For every pi such that pi > 1 substitute its
corresponding length-one leg with a .�2/–chain with pi � 1 vertices and subtract 1

from the weight of the central vertex. In this way, we obtain a new 4–manifold, which
is negative definite and has the same boundary as before the substitutions. Formally this
is done by a series of blow downs and blow ups (see Neumann [23]). An example is
shown in Figure 3. We call Ci the .�2/–chain corresponding to the parameter pi>1.

�4 0 5

�7 3

�9

�4 �2 �2 �2 �2 �2

�7
�2

�9 �2

Figure 3: After a series of blow ups/downs we achieve the canonical negative
plumbing of the pretzel knot P .�4;�7;�9; 3; 5/ .

Recall that if a knot K is slice then its mirror image xK is also slice. In the case
of pretzel knots we have that for K D P .p1; : : : ;pn/ the mirror image satisfies
xK D P .�p1; : : : ;�pn/. Therefore, when studying sliceness of pretzel knots, up to

taking mirror images, we can always suppose that the double branched cover is the
boundary of a negative definite plumbing or equivalently that the defining parameters
satisfy inequality (2).

From now on we will only consider pretzel knots satisfying (2) and with one pi even.
We shall divide them in the following three families:

(p1) n is even and all except one of the pi are odd.

(p2) n is odd, all except one of the pi are odd and the only even parameter is positive.

(p3) n is odd, all except one of the pi are odd and the only even parameter is negative.

Since the Seifert space Y DY .p1; : : : ;pn/ does not depend on the order of p1; : : : ;pn ,
from now on we adopt the following convention for the ordering and notation of the
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parameters. We write

Y D Y .a1; : : : ; asI c1; : : : ; ct /; s; t � 0; nD sC t;

where a1; : : : ; as < �1 and c1; : : : ; ct > 1. Note that the central vertex in ‰ has
weight �t .

We label the vertices of the graph ‰ as follows: the central vertex will be called v0 ; the
vertices corresponding to the negative parameters a1; : : : ; as will be called v1; : : : ; vs ;
the vertices of the .�2/–chain Ck , k 2 f1; : : : ; tg, will be called v1;k ; : : : ; vck�1;k ,
where v0 is connected to v1;k and vj ;k is connected to vjC1;k for all j 2f1; : : : ; t�1g.
The number of vertices in ‰ , which will be called m, coincides with the rank of
H2.M‰IZ/. It is immediate that

mD j‰j D sC 1C

tX
iD1

.ci � 1/:

Let .Zm;� Id/ be the standard negative diagonal lattice with the m elements of a
fixed basis B labeled as fek

j gj ;k (the convenience of the double script labeling of
the basis vectors will become apparent later). As an abbreviation in notation let us
write ek

j � e
`
i to denote � Id.ek

j ; e
`
i /. If the intersection lattice .Zm;Q‰/ admits an

embedding � into .Zm;� Id/, then we will omit the � in the notation: instead of writing
�.v/D

P
j ;k xk

j ek
j we will directly write v D

P
j ;k xk

j ek
j . If � exists we will call, for

every S �‰ ,
US WD fe

k
j 2B j ek

j � v ¤ 0 for some v 2 Sg:

3.2 Signature of pretzel knots

It is well known (see Murasugi [22]) that slice knots have vanishing signature. For our
purposes it will be convenient to express the signature of pretzel knots in terms of the
associated plumbings described in the previous subsection. Indeed, in Section 5, we will
find constraints on the parameters defining the Seifert spaces Y , which arise as double
branched covers over slice pretzel knots, combining the signature with Donaldson’s
obstruction to sliceness.

Let K D P .p1; : : : ;pn/ be a pretzel knot and let Y� D @M� be its double branched
cover. Since K is a knot the determinant of the intersection form Q� is odd and the
equation

(3) Q�.w;x/�Q�.x;x/ .mod 2/ for all x 2H2.M� IZ/

has exactly one solution in H2.M� IZ2/. This solution admits a unique integral lift
w 2H2.M� IZ/ such that its coordinates are 0 or 1 in the natural basis of H2.M� IZ/
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given by the vertices v1; : : : ; vm of the graph � . The homology class w is called the
Wu class. There is a well-defined subset J � f1; : : : ;mg such that

w D
X
j2J

vj 2H2.M� IZ/

and we define the Wu-set as fvj 2 � j j 2 J g.

In Figure 4 the encircled vertices form the Wu-set of the canonical negative plumbing
graphs associated to pretzel knots in the families (p1), (p2) and (p3). In the family (p2)
we assume that the only even parameter is ct , while in the family (p3) the only even
parameter is a1 . We have determined the Wu-set in each of these families via the
following algorithm.

Algorithm 3.4 (Computation of the Wu-set Theorem 7.1 [24]) Reduce the graph �
to a collection (possibly empty) of isolated points with odd weights by a sequence of
moves of type 1 and 2 below. Consider a leaf v 2 � connected to the vertex u 2 � .

Move 1 If the weight on v is even, then erase v and u from � .

Move 2 If the weight of v is odd, then erase v and change the parity of the weight
on u.

In order to determine which vertices belong to the Wu-set we undo the sequence of
movements starting with the isolated vertices until we reobtain � , taking the following
into account.
� All the isolated vertices with odd weight obtained in the final step of the reduction

of � belong to the Wu-set.
� If we undo move 1, then the vertex u does not belong to the Wu-set whereas

the vertex v will belong to the Wu-set only if the weight on the vertex u and
the number of adjacent vertices to u which already belong to the Wu-set do not
have the same parity.

� If we undo move 2, then the vertex v will belong to the Wu-set if and only if u

does not belong to the Wu-set.

The formula in the following theorem, due to Saveliev [28, Theorem 5], expresses the
signature of a pretzel knot, �.P .p1; : : : ;pn//, in terms of the intersection form Q�

and the Wu class w 2H2.M� IZ/.

Theorem 3.5 (Saveliev) Let P .p1; : : : ;pn/ be a pretzel knot and Y� D @M� its
double branched cover where � is a tree. The equality

(4) �.P .p1; : : : ;pn//D sign.Q�/�w �w

holds, where w �w stands for Q�.w;w/.
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a1

a2

as

�t
�2
�2

�2

�2 �2 �2

�2

�2

�2

C1

C2

Ct.p1/

a1

a2

as

�t
�2
�2

�2

�2 �2 �2

�2

�2

�2

�2

�2

C1

C2

Ct ; ct � 0 .mod 2/

.p2/

a1 � 0 .mod 2/

a2

as

�t
�2
�2

�2

�2 �2 �2

�2

�2

�2

C1

C2

Ct.p3/

Figure 4: Wu-set on canonical negative plumbing graphs corresponding to
the pretzel knots in families (p1), (p2) and (p3).

Remark 3.6 Notice that the expression sign.Q�/�w �w equals x�.Y�/, where x� is
Neumann’s invariant.

4 Two interesting families of pretzel knots

In this section we study the sliceness of two subfamilies of pretzel knots of type (p3).
Both of them stem from the detailed general study of pretzel knots developed in the
remaining sections, but specific arguments are needed to prove that the knots in these
families are not slice. In the first subsection we study the family P .a;�a� 2;�a�

.a2C 9/=2/ with a� 3 odd. We shall prove that the double branched covers of these
knots do not bound rational homology balls, in spite of the fact that the obstruction given
by the d –invariants from Heegaard–Floer homology (see Section 6.1) vanishes. The
main tool we use is the Casson–Gordon invariants. The second subsection deals with
the family P .a;�a�2;�.aC1/2=2/ with a� 3 odd. A major difficulty presented by
this family is that the double branched covers of these knots are all integer homology
spheres. As further explained in Section 4.2, many of the recent obstructions to knot
sliceness defined from Heegard–Floer homology or Khovanov homology vanish for
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this family, while the Alexander polynomial is able to detect the nonsliceness of many
(perhaps all) the knots in this family.

4.1 Casson–Gordon invariants and the family P.a; �a � 2 ; �a �
a2C9

2
/

In 1975 Casson and Gordon introduced some knot invariants that were used to show
that not all algebraically slice knots are smoothly slice. The invariants depend on a knot
K � S3 and on the choice of a character � defined on the first homology group of
the double branched cover of K . In [5] two different invariants, denoted �.K; �/ and
�.K; �/, are defined from the difference of the twisted signatures of some 4–manifolds
associated to the couple .K; �/. We shall only deal with the properties of a specific
version of �.K; �/ that suits our purposes.

Since they were introduced, Casson–Gordon invariants have been thoroughly studied
and generalized. In particular work of Kirk and Livingston shows that they can
be interpreted as twisted Alexander polynomials [15], and they have been used to
distinguish concordance classes among pretzel knots [16]. A complete study of pretzel
knots from the perspective of these invariants is certainly of interest, however we will
limit ourselves to the family in this subsection. Unfortunately, the general computation
is out of reach with our current techniques.

Consider a slice knot K � S3 with double branched cover Y . Let p be a prime,
r 2 N and �W H1.Y IZ/ ! Z=pr be a character of order pr . Suppose that the
covering zY induced by the character satisfies H1. zY IQ/D 0. Let WD be the double
cover of B4 branched over a slicing disc for K and V be the kernel of the map
i�W H1.Y IZ/!H1.WD IZ/ induced by the inclusion.

Theorem 4.1 (Casson and Gordon) With the above assumptions, for every charac-
ter � of prime power order vanishing on V we have j�.K; �/j � 1.

We shall compute the Casson–Gordon invariants of some of the pretzel knots in the
family (p3) via the formula given by Cimasoni and Florens in [6, Theorem 6.7]. This
formula computes �.K; �/ from a surgery presentation of Y regarded as a colored
link and the term �L.!/ stands for the colored signature of L.

Theorem 4.2 (Cimasoni and Florens) Let Y be the 3–manifold obtained by surgery
on a framed link L with m components and linking matrix Q. Let �W H1.M IZ/!
Z=pr be the character mapping the meridian �i of the i th component of L to ni

with 1 � ni < pr and ni coprime to p . Consider L as an m–colored link and set
! D .n1; : : : ; nm/. Then

(5) �.K; �/D �L.!/�
X
i<j

Qi;j � sign QC
2

p2r

X
i;j

.pr
� ni/nj Qij :
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In order to use this formula to compute the Casson–Gordon invariants for the pretzel
knots Ka D P .a;�a � 2;�a � .a2 C 9/=2/, a > 1 odd, we will use the surgery
presentation of the Seifert space Ya D Y .a; a � 2;�a � .a2 C 9/=2/ given by the
framed link La in Figure 5. It is obtained from the diagram associated to the canonical
negative plumbing tree by blowing down the central vertex and subsequently blowing
down every new .�1/–framed unknot.

�a� a2C9
2

�a� 2

�1
a� 1

�2 �2
�2

blow downs

�
a2C9

2

�1

a

�2
�2

DWLa

Figure 5: The diagram on the left corresponds to the negative definite
plumbing manifold bounded by the Seifert space Ya D Y .a;�a� 2;�a�

.a2C 9/=2/ . After a series of blow downs we obtain the diagram on the
right that we shall use to compute the Casson–Gordon invariants. In the
diagram La the two meridians, generators of H1.S

3 nLaIZ/ , are depicted
in red and the box labeled a stands for a right handed full twists between the
strands entering the box.

From this surgery presentation of Ya we can read the following presentation of its first
homology group:

H1.YaIZ/D
D
�1; �2

ˇ̌̌
�

a2C9

2
�1Ca�2; a�1�2�2

E
D

D
�1; �2

ˇ̌̌
aC9

2
�1��2; 9�1

E
:

It follows that H1.YaIZ/Š Z=9 with �1 being a generator of the group and �2 D
1
2
.aC 9/�1 . We now proceed to define a character on H1.YaIZ/ vanishing on the

subgroup V , which is cyclic of order 3 generated by 3�1 (cf Remark 6.1). The
character �W H1.YaIZ/! Z=3 such that �.�1/D 1, where 1 is a generator of Z=3,
has the desired properties.

We have all the necessary ingredients to compute �.Ka; �/ via the formula (5). Notice
however that if a� 0 .mod 3/ then the above setting yields �.�2/D 0 which is not a
valid value for n2 in the hypothesis of Theorem 4.2. Therefore we shall first compute
�.Ka; �/ for a 6� 0 .mod 3/ and later we will use yet another surgery presentation
of Ya to deal with this remaining case.

The linking matrix for the link La in Figure 5 is given by

Qa D

 
�

a2C9
2

a

a �2

!
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and formula (5) yields

�.Ka; �/D�La
.1; n2/�aC2C

2

9

�
�

a2C9

2
2Ca2n2Ca.3�n2/�2.3�n2/n2

�
(6)

D �La
.1; n2/� aC 2C 2

9
.�a2

� 13C a.n2C 3//;

where the second equality is obtained substituting the two possible values of n2 ,
namely 1 and 2, and then rewriting a common formula for both possibilities.

Our aim is to show that the knots Ka are not slice and to do so it suffices to esti-
mate j�.Ka; �/j in (6) and show it is greater than 1. Indeed, all the assumptions of
Theorem 4.1 are satisfied since H1.YaIZ/ is cyclic and the character � is of order 3,
which implies that the first rational homology of the induced covering vanishes; see
Casson and Gordon [4, Lemma 4.4]. The term �La

.1; n2/ is the coloured signature
of the link La and it is defined as the signature of an n� n hermitian matrix, where
n is the rank of the first homology group of a C –complex for La (see [6] for the
definitions and details). The C –complex for La depicted in Figure 6 allows us to
determine �La

.1; n2/ 2 f�aC 1; a� 1g.

Figure 6: This figure presents a C –complex for L3 with a basis of its first
homology depicted in red. The evident generalization to the links La shows
that the order of the first homology of the C –complex is a� 1 and therefore
�La 2 f�aC 1; a� 1g .

In the case at hand, the term �a2� 13C a.n2C 3/ attains its maximum value, �26
9

,
for aD 5 and n2 D 2. Since �La

.1; n2/� aC 2� 1 we have the estimate

j�.Ka; �/j �
2
9
.a2
C 13� a.n2C 3//� 1� 26

9
� 1> 1

for all a> 1 odd, a 6� 0 .mod 3/. This last inequality shows that the knots Ka with
a 6� 0 .mod 3/ are not slice.

To deal with the remaining case, the knots Ka with a� 0 .mod 3/, we shall use the
surgery presentation of Ya given in Figure 7.

It is obtained from the diagram in Figure 5 by sliding the left handle over the handle
with framing �2. The new framings are obtained by applying the rules of Kirby
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�
a2C9

2 �2 �
.aC2/2C9

2
�2

�
.aC2/2C9

2
�2
�
.aC2/2C9

2 �2

a a �a a�2
handle
slide

isotopy isotopy
WD zLa

Figure 7: Starting with the link La , in which the thin curve represents the
framing of the right component, we perform the indicated handle slide to
obtain the second diagram. After a series of isotopies we obtain the link zLa ,
which is a suitable surgery presentation of Ya to compute the Casson–Gordon
invariants of Ka when a � 0 .mod 3/ . Again the red curves in the last
diagram are the meridians generating H1.S

3 n zLaIZ/ .

calculus (see [11] for details). This surgery diagram yields the following presentation
of the first homology group of Ya :

H1.YaIZ/D
D
�1; �2

ˇ̌̌
�
.aC2/2C9

2
�1� .aC 2/�2;�.aC 2/�1� 2�2

E
D

D
�1; �2

ˇ̌̌
a�7

2
�1C�2; 9�1

E
:

As before H1.YaIZ/Š Z=9 is generated by �1 and this time we have �2 D
7�a

2
�1 .

We choose the character �W H1.YaIZ/! Z=3 defined by �.�1/D 1 which satisfies
the assumptions of Theorem 4.1 and since �.�2/D 2 we can use the formula (5) to
compute �.Ka; �/. This time the link zLa of the surgery presentation in Figure 7 has
linking matrix

Qa D

 
�
.aC2/2C9

2
�a� 2

�a� 2 �2

!
and the formula reads

�.Ka; �/D � zLa
.1; 2/C aC 2C 2C

2

9

�
�
.aC2/2C9

2
2� .aC 2/4� .aC 2/� 4

�
D � zLa

.1; 2/C aC 4� 2
9
.27C 9aC a2//:

Similar arguments to the ones used before allow us to estimate

j�.Ka; �/j � �2a� 5C 6C 2aC
2a2

9
D

2a2

9
C 1> 1

and therefore by Theorem 4.1 we have the following statement.

Theorem 4.3 For all odd a> 1 the knots in P .a;�a� 2;�a� a2C9
2
/ are not slice.
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Remark 4.4 In fact, we have shown something stronger than the nonsliceness of the
pretzel knots in the family P .a;�a� 2;�a� .a2C 9/=2/; the arguments in the proof
of Theorem 4.1 imply that the Seifert spaces Ya D Y .a;�a� 2;�a� .a2C 9/=2/ do
not bound rational homology balls.

4.2 Alexander polynomials and the family P.a; �a � 2 ; �
.aC1/2

2
/

This section is devoted to the study of the sliceness of the pretzel knots of the form

Pa D P .a;�a� 2;�.aC 1/2=2/

with a� 3 odd. All the knots in this family have determinant 1 and therefore the double
branched covers Ya are integer homology spheres. It follows that the Casson–Gordon
invariants cannot be used to study the existence of rational homology balls bounded by
the Seifert manifolds Ya . We will pursue the study of the sliceness of the knots Pa

leaving open the question of the existence of rational homology balls bounded by their
double branched covers.

There are several well-known obstructions to sliceness that we have computed for the
knots of the form Pa but all of them vanished. In the sequel we shall not use any of the
following facts but we have decided to include them for completeness. In the remaining
sections we will show that each knot Pa has vanishing signature, its determinant is
a square and Donaldson’s theorem does not obstruct sliceness. Moreover, we have
checked that the only d –invariant of their double branched covers, which are homology
spheres, vanishes. The hat version of the knot Floer homology of pretzel knots is
known. The family Pa lies within the hypothesis of Eftekhary [8, Theorem 2] which
combined with the Alexander polynomials computed below suffices to determine that
the Ozsváth–Szabó � invariant is zero for all the knots in this family. Moreover, the
Rasmussen s–invariant of the knot

P .3;�5;�4/D 12n475

is known to be zero and a crossing change argument implies that the first knot in our
family, namely the knot P .3;�5;�8/, also has vanishing Rasmussen invariant.

Given all this vanishing of obstructions one might be tempted to think that the knots in
the family Pa are actually slice. However, we conjecture that this is not the case for
any parameter a and we will show that indeed for a 6� 1; 11; 37; 47; 49; 59 .mod 60/

the knot Pa does not bound a disk embedded in the 4–ball. The invariant capable of
detecting the nonsliceness of these knots is the Alexander polynomial.
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We have postponed the tedious computation of the Alexander polynomials �a.t/ of
the knots Pa to the Appendix. In it we show that

�a.t/
:
D

taC2C1

tC1

taC1

tC1
�
.aC1/2

4
ta�1.t � 1/2

D

Y
d jaC2
d¤1

ˆd .�t/
Y
ıja
ı¤1

ˆı.�t/�
.aC1/2

4
ta�1.t � 1/2;

where ˆn stands for the nth cyclotomic polynomial, and :
D means equality up to

multiplication by ˙tk with k 2 Z.

If the knots in family Pa were slice then it would follow, by Fox and Milnor’s theo-
rem [10], that �a.t/

:
D f .t/f .t�1/ for some polynomial f .t/. Our goal is to show

that this is not the case and to this end several strategies are possible. If we showed
that the polynomials �a.t/ are irreducible in ZŒt �, we would be done. Stepan Orevkov
has kindly taken a look at this problem and informed us that he checked with the
computer and up to aD 1597 the polynomials �a.t/ are in fact irreducible. However
we have not found a proof to show the irreducibility of every polynomial in our family.
Another possible approach is to look at these polynomials modulo p for some prime
and study their irreducibility in Fp Œt �. However, by Ahmadi and Vega [1, Theorem 12]
the number of irreducible factors of �a.t/ .mod p/ is even for every odd p , which
implies that many (perhaps all) the polynomials �a.t/ are irreducible over the integers
but reducible over Fp for every p .

We are not able to show that none of the polynomials �a.t/ satisfy the Fox–Milnor
factorization but there is a lot of evidence indicating that this might be the case. Taking
advantage of the rich literature on the reducibility of cyclotomic polynomials, we will
prove the following statement.

Theorem 4.5 For a 6� 1; 11; 37; 47; 49; 59 .mod 60/ the polynomials �a.t/ do not
have a Fox–Milnor factorization.

Corollary 4.6 For a 6� 1; 11; 37; 47; 49; 59 .mod 60/ the pretzel knots Pa are not
slice.

Proof of Theorem 4.5 Since the Alexander polynomial �a.t/ is a self reciprocal
polynomial, ie �a.t/D tdeg�a�a.t

�1/, its irreducible factors are all self reciprocal
or come in reciprocal pairs, that is if gj�a and g is not self reciprocal then g�.t/ WD

tdeg gg.t�1/ is also a factor of �a . Suppose that there exists a polynomial f such that
�a.t/D tdegf f .t/f .t�1/; then we have that the irreducible self reciprocal factors of
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�a all have even multiplicity. The idea of the proof is to show that the reduction mod
p , for suitable primes p , of �a has an odd number of self reciprocal irreducible factors.
We start with a prime number p dividing .aC 1/2=4 and consider the polynomial

(7) x�p
a .t/ WD�a.t/ .mod p/D

Y
d jaC2
d¤1

x̂p

d
.�t/

Y
ıja
ı¤1

x̂p

ı
.�t/:

Notice that since gcd.p; a/ Dgcd.p; aC 2/ Dgcd.a; aC 2/ D 1 all the irreducible
factors of the polynomials x̂p

d
and x̂p

ı
in Fp Œt � appearing in (7) have multiplicity one

and are all distinct. Since cyclotomic polynomials are self reciprocal, if �a satisfies
the Fox–Milnor condition, it follows that every cyclotomic polynomial in (7) has an
even number of irreducible factors. It is well known that the number of irreducible
factors of x̂p

d
equals the quotient between '.d/ and the order of p mod d , where '

is Euler’s totient function. Let us call this quotient N
p

d
. It follows that if �a has a

Fox–Milnor factorization, then for every p dividing .aC 1/2=4 and every d jaC 2,
d ¤ 1, and every ıja, ı¤ 1, the numbers N

p

d
and N

p

ı
are even. The rest of the proof

will consist of suitable choices of p and a that force N
p

d
or N

p

ı
to be odd.

Let us consider the odd parameter a modulo 12. If a� 3; 7 .mod 12/, then 3 divides
either a or aC 2 and .aC 1/2=4 is even. We obtain N 2

3
D 1. Moreover, if a �

9 .mod 12/ then 3 divides a and we choose p dividing .aC 1/2=4 such that p �

2 .mod 3/. This choice is always possible since under these assumptions .aC1/2=4D

.6nC 5/2 , n 2N and 6nC 5� 2 .mod 3/. Again in this case we obtain N
p
3
D 1. It

follows that for a� 3; 7; 9 .mod 12/ the polynomial �a does not have a Fox–Milnor
factorization.

We can push the same argument further to study the cases a� 1; 11 .mod 12/ with less
success. If aD 12nC11 for some n then .aC1/2=4 is even and we choose pD 2. The
difficulty comes in the choice of d , since in this case there is not a common divisor for
all a or aC2. Adding the hypothesis n� 1; 2 .mod 5/ we obtain that d D 5 divides a

or aC 2 and N 2
5
D 1. Similarly, if a D 12nC 1 and n � 1; 2 .mod 5/ then again

d D 5 divides either a or aC2. We choose a prime p dividing .aC1/2=4D .6nC1/2

such that p � 2; 3 .mod 5/. This choice is always possible since under the current
assumptions 6nC 1� 2; 3 .mod 5/. In this case it follows that N

p
5
D 1. Summing

up we have shown that for a� 13; 23; 25; 35 .mod 60/ the polynomial �a does not
factor as tdegf f .t/f .t�1/.

The last case we shall study is aD 12nC 5. This case requires a different argument.
We shall prove that in this case the polynomial t2C t C 1 is a reducible factor of the
mod 2 reduction of �a and it has multiplicity 1. Instead of working with the previ-
ous normalization of the Alexander polynomial we shall use the Laurent polynomial
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t� deg�a=2�a which we will keep calling �a to ease the notation. The irreducible
factor we shall be looking at is then t C 1C t�1 . It is not difficult to check that we
have the following identities:

x�2
5 D t5

C t3
C 1C t�3

C t�5;

x�2
12nC5.t/D

x�2
12.n�1/C5.t/C

6X
iD1

.t12.n�1/C5C2i
C t�.12.n�1/C5C2i//:

Since these polynomials verify, in F2 ,

t5
C t3
C 1C t�3

C t�5
� .t C 1C t�1/.t4

C t3
C t2
C 1C t�2

C t�3
C t�4/;

6X
iD1

.txC2i
C t�.xC2i//� .t C 1C t�1/

� 2X
iD0

.txC11�i
C t�.xC11�i/

�
C

� 2X
iD0

.txC5�i
C t�.xC5�i/

�
;

an easy induction argument shows that t C 1C t�1 is an irreducible factor of x�2
12nC5

for all n 2 N . However .t C 1C t�1/2 � t2C 1C t�2 .mod 2/ is never a factor of
x�2

12nC5
. Indeed, one can easily check that t2C 1C t�2 does not divide x�2

5
, but on

the other hand we have
6X

iD1

.txC2i
C t�.xC2i//D .t2

C 1C t�2/.txC10
C txC4

C t�.xC4/
C t�.xC10//:

Again and easy induction argument yields the claim and the theorem is proved.

Remark 4.7 The first knot in the family Pa that is not covered by Theorem 4.5 is
P11 D P .11;�13;�72/. However it is immediate to check that in this case N 2

11
D 1

and therefore P11 is not slice. It is frustrating to accept the fact that for every single
knot we have checked we have found an argument to determine its nonsliceness but
that all attempts to generalize the proof to the whole family have miserably failed.

5 The general case: First obstructions to sliceness

We start now the study of slice pretzel knots with one even parameter in full generality.
A necessary condition for a pretzel knot K WD P .p1; : : : ;pn/ to be slice is that the
intersection lattice associated to its canonical negative plumbing graph .Zm;Q‰/

admits an embedding into the standard diagonal negative lattice of the same rank. This
follows, as explained in the introduction, from the fact that if K is slice, the associated
Seifert space Y smoothly bounds a rational homology ball. As remarked in Section 3
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up to considering mirror images we can suppose that
Pn

iD1 1=pi > 0 and thus the
canonical negative plumbing graph ‰ exists. Moreover, K being slice implies that the
invariant �.K/ vanishes. In this section, imposing these two conditions, the existence
of the embedding and the vanishing of the knot signature, we get important information
on p1; : : : ;pn and on the embedding

.Zm;Q‰/ ,! .Zm;� Id/:

The conclusions differ depending on whether the parameters satisfy the conditions
(p1), (p2) or (p3) defined in Section 3. In fact, the existence of the embedding and
the condition �.K/D 0 totally determine Y for the families (p1) and (p2) and they
determine Y up to one parameter for the family (p3).

Given ‰ , we are interested in whether an embedding into the standard negative lattice
exists. With the notation established in Section 3 in the following lemma we prove that,
up to a change of basis, the images under the embedding of the .�2/–chains and of
the central vertex are totally determined.

Lemma 5.1 Let Y WD Y .a1; : : : ; asI c1; : : : ; ct / be a Seifert manifold which is the
boundary of a negative definite canonical plumbing M‰ , whose associated intersection
lattice .Zm;Q‰/ admits an embedding into .Zm;� Id/. Moreover, suppose that the
associated pretzel link is a knot. Then, up to a change of basis, we have the following.

(1) For every k 2 f1; : : : ; tg, the image of the vertices v1;k ; : : : ; vck�1;k of the
.�2/–chain Ck is vi;k D ek

i � ek
iC1

, for every i 2 f1; : : : ; ck � 1g. In particular,
UCk
\UC`

D∅ for every k; ` 2 f1; : : : ; tg with k ¤ `.

(2) The central vertex satisfies v0 D�e1
1
� e2

1
� � � � � et

1
, with ek

1
defined in .1/.

(3) s � t � 1.

Proof We start by proving .1/ using the same argument as in [12]. The only linear
combinations of the fek

i gi;k which yield vectors of square �2 are of the form ˙ek
i ˙e`j .

Since v1;k has square �2, up to reindexing the basis of Zm and up to scaling by �1, we
must have v1;k D ek

1
�ek

2
. If ck > 2, then there exists v2;k , which has also square �2,

and since v1;k �v2;k D 1, one of the vectors appearing in v2;k must be either �ek
1

or ek
2

.
Thus, again up to reindexing and rescaling, we are forced to define v2;k D ek

2
� ek

3
. So

far we have proved .1/ for ck D 2 or ck D 3. In the proof of [12, Lemma 3.1] it is
explained how to proceed by induction to show that (up to a change of basis) we are
forced to make the assignment vi;k D ek

i � ek
iC1

for all i 2 f1; : : : ; ck � 1g, provided
ck � 5. Therefore, we are left with the case ck D 4. It is easy to check that this time
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there is a second possibility for the embedding of the .�2/–chain Ck , namely

v1;k D ek
1 � ek

2 ;

v2;k D ek
2 � ek

3 ;

v3;k D�ek
1 � ek

2 :

However, since v1;k �v0D 1 we must have fek
1
; ek

2
g\Uv0

¤∅, which is not compatible
with v0 � v3;k D 0.

In order to complete the proof of .1/ suppose by contradiction that for two different
indices k; ` 2 f1; : : : ; tg there exist i; j and er

s such that er
s 2 Uvi;k

\Uvj ;`
. Since

vi;k � vj ;` D 0, there must exist some other basis vector, say ex
u , in Uvi;k

\ Uvj ;`

and since vi;k � vi;k D vj ;` � vj ;` D �2, we have Uvi;k
D Uvj ;`

D fer
s ; e

x
u g. By

assumption P .a1; : : : ; as; c1; : : : ; ct / is a knot, which implies in particular that at
most one parameter among c1; : : : ; ct is equal to 2 and therefore, at least one of the
chains Ck and C` has length strictly greater than one; say it is Ck . It follows from
the above arguments that exactly one basis vector between er

s and ex
u belongs to

either Uvi�1;k
or UviC1;k

. Let us fix, without loss of generality, that er
s 2 UviC1;k

;
then we have that viC1;k � vj ;` ¤ 0. This contradiction proves .1/.

Next, all the .�2/–chains C1; : : : ;Ct are connected to the central vertex and therefore
jUv0
\UCk

j � 1 for every k . Since there are exactly t .�2/–chains and the weight of
the central vertex is �t , we have jUv0

\UCk
j D 1 for every k . Hence, up to reindexing

and scaling by �1, we have that for every k 2 f1; : : : ; tg the vector �ek
1

is a summand
in the expression of v0 . Thus, .2/ is proved.

We are left with .3/, which follows from a straightforward computation. In fact,
from .1/ we know that for each k 2 f1; : : : ; tg, the image of the chain Ck is contained
in the span of ck vectors of the basis fek

i gi;k . Moreover, for every k; ` 2 f1; : : : ; tg,
k ¤ `, the images of Ck and C` are disjoint. Therefore, the rank of the image of the
embedding, which in the statement is called m, must be at least equal to

Pt
kD1 ck .

On the other hand, since ‰ the canonical negative plumbing graph, we know that

mD sC 1C

tX
kD1

.ck � 1/:

Hence, s � t � 1 and .3/ holds.

Once established in Lemma 5.1 the convention on the embedding of the .�2/–chains
and the central vertex, we study in Lemmas 5.3, 5.4 and 5.5 the embedding of the
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whole lattice associated to ‰ . In the three lemmas we will assume the following slice
conditions:

(SC) nD sC t � 3, Y WD Y .a1; : : : ; asI c1; : : : ; ct / is a Seifert manifold, boundary
of a negative definite canonical plumbing M‰ , whose associated intersection lattice
.Zm;Q‰/ admits an embedding into .Zm;� Id/ and �.P‰/ D 0, where P‰ is the
associated pretzel knot.

Remark 5.2 Notice that, with the notation that we have fixed for Seifert spaces, the
condition (p1) reads sC t even and among a1; : : : ; as; c1; : : : ; ct there is exactly one
even integer; the condition (p2) asks sCt odd and all a1; : : : ; as; c1; : : : ; ct odd except
for one ci ; finally, (p3) forces sC t odd and all a1; : : : ; as; c1; : : : ; ct odd except for
one ai .

Lemma 5.3 Assume (SC) and that a1; : : : ; as; c1; : : : ; ct satisfy (p1). Then s D t ,

Y D Y .�c1;�c2; : : : ;�ct � 1I c1; : : : ; ct /

and the embedding into the diagonal standard negative lattice is, up to a change of basis,
the one in Figure 8.

Proof The homology Wu class w , depicted in Figure 4, is w D
Ps

iD1 vi and hence
w � vi D ai for all i 2 f1; : : : ; sg. The assumption �.P‰/D 0 together with the fact
that M‰ is negative definite imply, by (4), that w �w D�m. Since the determinant
of Q‰ is odd, we can consider the equation (3) defining w in .Zm;Q‰/ in the lattice
.Zm;� Id/ via �:

� Id.�.w/;x/�� Id.x;x/ .mod 2/ for all x 2H2.X IZ/;

where X is the smooth closed 4–manifold obtained glueing M‰ to a rational homology
ball. Taking as x in the above formula each of the basis vectors ek

j , we see that the
embedding of w into .Zm;� Id/ must be of the form w D

P
j ;k ˇ

k
j ek

j with all ˇk
j

odd. Since w �w D�m we conclude that ˇk
j 2 f˙1g.

Let us write the embedding of the vi as vi D
P

j ;k x.i/kj ek
j , where x.i/kj 2 Z. The

equation w � vi D vi � vi implies

�

X
j ;k

ˇk
j x.i/kj D�

X
j ;k

.x.i/kj /
2:

Thus, ˇk
j x.i/kj 2 f0; 1g and for every i , the vector vi is a linear combination of exactly

jai j vectors of the basis fek
j gj ;k with coefficients ˙1. Moreover, since for every i; j 2

f1; : : : ; sg with i¤j , we have vi �vj D0 from the equality wD
Ps

iD1 viD
P

j ;k ˇ
k
j ek

j
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Figure 8: Up to a change of basis the embedding of the canonical negative
plumbing graph for the family (p1): the basis of Zm is fe0

1
; ek

j g , where
k 2 f1; : : : ; tg and j 2 f1; : : : ; ckg .

we deduce easily that Uvi
\Uvj

D ∅. Furthermore, it follows that for each .�2/–
chain Ck , k 2 f1; : : : ; tg, there must exist one and only one i.k/2 f1; : : : ; sg such that
Uvi.k/

\UCk
¤∅. Notice that we do not yet exclude the possibility i.k/D i.k 0/ for

k ¤ k 0 . Since Ck is orthogonal to vi.k/ , it follows that UCk
� Uvi .k/ , which implies

in particular that ck � jai.k/j for every k .

Consider the set � WD fvi � w j Uvi
\UCk

D∅ for all kg. Observe that s � j�jC t .
By Lemma 5.1(1), it holds that

jUwn�j �

tX
kD1

ck ;

and therefore, since Uvi
\Uvj

D∅ for every vi ; vj � w , i ¤ j , we have

jU�j �m�

tX
kD1

ck D sC 1C

tX
kD1

.ck � 1/�

tX
kD1

ck D sC 1� t:

Since, for every i; ` 2 f1; : : : ; sg with i ¤ ` it holds ai � �2, Uvi
\Uv`

D ∅ and
jx.i/kj j � 1 for every j ; k , it follows that the embedding in the statement is possible
only if 2j�j � jU�j. Hence, only if s � t C 1. On the other hand, the embedding
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of the .�2/–chains requires, by Lemma 5.1(3), that s � t � 1. Since, by assumption
(p1), we have n D s C t � 0 .mod 2/ it follows that s D t . Furthermore, this last
equality implies that �D∅ and that for each i 2 f1; : : : ; sg, there exists at most one
k 2 f1; : : : ; tg such that Uvi

\UCk
¤∅. In fact, assume by contradiction that there

exist i; k; k 0 , with k ¤ k 0 , such that UCk[Ck0
� Uvi

; then j�j � s � t C 1 and the
inequality 2j�j � jU�j gives s � t � 1. This contradiction shows that if k ¤ k 0 , then
i.k/ ¤ i.k 0/ and also that s 2 ft; t C 1g. From now on, we assume without loss of
generality that i.k/D k for every k .

Equality s D t forces

1C

tX
kD1

ck DmD� sign.Q‰/D��.P‰/„ ƒ‚ …
D0

�w �w D

tX
kD1

jak j:

Since ck � jak j, we must have ck D jak j for all parameters except one. Without
loss of generality we fix that ak D �ck for k 2 f1; : : : ; t � 1g and at D �ct � 1.
Notice that, by assumption (p1), either at or ct is the only even parameter among
a1; : : : ; at ; c1; : : : ; ct . At this point, after fixing the embedding of the .�2/–chains
and the central vertex applying Lemma 5.1, it is straightforward to check that the
embedding is as claimed.

Lemma 5.4 Assume (SC) and that a1; : : : ; as; c1; : : : ; ct satisfy (p2). Then sD t �1,

Y D Y .�c1; : : : ;�ct�1I c1; : : : ; ct /

and the embedding into the diagonal negative lattice is, up to a change of basis, the one
in Figure 9.

Proof By assumption, the parameters defining Y verify (p2) and therefore there is
exactly one even parameter and moreover, it is positive. Without loss of generality, we
fix it to be ct . The homology Wu class w , depicted in Figure 4, is

w D v1;t C v3;t C � � �C vct�1;t C

sX
iD1

vi ;

where vi is the vertex in the graph ‰ with weight ai and v2j�1;t 2 Ct for all j 2

f1; : : : ; ct=2g.

From the assumptions �.P‰/D 0 and the existence of an embedding of the intersection
lattice associated to ‰ into the standard negative diagonal lattice of rank m, it follows,
exactly as in the proof of Lemma 5.3, that for every i; ` 2 f1; : : : ; sg with i ¤ `, the
vector vi is the linear combination of exactly jai j vectors from the basis ek

j with
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Figure 9: Up to a change of basis the embedding of the canonical negative
plumbing graph for the family (p2), where ct > 0 is the only even parameter:
the basis of Zm being fek

j g where k 2 f1; : : : ; tg and j 2 f1; : : : ; ckg .

coefficients ˙1 and that Uvi
\Uv`

D∅. Since wD
P

j ;k ˇ
k
j ek

j , where ˇk
j 2 f˙1g, it

follows that UCt
\Uvi

D∅ for every i . Moreover, we deduce that for each .�2/–chain
Ck , k 2 f1; : : : ; t � 1g, there must exist one and only one i.k/ 2 f1; : : : ; sg such that
Uvi.k/

\UCk
¤∅. Notice that we do not yet exclude the possibility i.k/D i.k 0/ for

k ¤ k 0 . Since Ck is orthogonal to vi.k/ , it follows that UCk
� Uvi .k/ , which implies

in particular that ck � jai.k/j for every k 2 f1; : : : ; t � 1g.

Following the proof of Lemma 5.3, define � WD fvi � w j Uvi
\UCk

D∅ for all k 2

f1; : : : ; t�1gg. Observe that this time we have j�j� s�tC1. Arguing as in Lemma 5.3
we obtain the condition 2j�j � jU�j, which gives s � t � 1. On the other hand, the
embedding of the .�2/–chains requires, by Lemma 5.1(3), that s � t � 1. Moreover,
sD t �1 implies that for every i 2 f1; ::; sg, there exists at most one k 2 f1; : : : ; t �1g

such that Uvi
\ UCk

¤ ∅ (hence � D ∅). Indeed, if this were not the case, then
j�j � s�tC2 and the inequality 2j�j � jU�j would lead to the contradiction s� t�3.
Therefore, from now on, we assume without loss of generality that i.k/D k for every
k 2 f1; : : : ; t � 1g.

We have the following equalities:

(8)
t�1X
kD1

ck C ct DmD��.P‰/„ ƒ‚ …
D0

�w �w D�

t�1X
kD1

ak C ct D

t�1X
kD1

jak jC ct :
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Recall that, for every k 2 f1; : : : ; t �1g, it holds ck � jak j. Then, (8) forces ck D jak j

for every k 2 f1; : : : ; t � 1g, while ct , the only even parameter, has no constraints. In
this way we have proved the relationship among the parameters a1; : : : ; at�1; c1; : : : ; ct

claimed in the statement. The embedding of the .�2/–chains and of the central vertex
follows from Lemma 5.1 and at this point it is immediate to check that the rest of the
embedding must be as suggested in Figure 9.

Lemma 5.5 Assume (SC) and that a1; : : : ; as; c1; : : : ; ct satisfy (p3). Then sD tC1

and
Y D Y .�c1��

2
� .c1��/

2;�c1� 2;�c2; : : : ;�ct I c1; : : : ; ct /

for some � 2 Z. Moreover, the embedding into the diagonal negative lattice is, up to a
basis change, the one in Figure 10.
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Figure 10: Up to a change of basis the embedding of a plumbing graph in the
family (p3): the basis of Zm is fe0

1
; e0

2
; ek

j g where k 2 f1; : : : ; tg and j 2

f1; : : : ; ckg .

Proof By assumption (p3), among a1; : : : ; as; c1; : : : ; ct there is exactly one even
parameter and this parameter is negative. Without loss of generality we fix it to be a1 .
The homology Wu class w , depicted in Figure 4, is w D

Pt
iD2 vi .

We start with the same argument of Lemma 5.3. From the assumptions �.P‰/D 0

and the existence of an embedding of the intersection lattice associated to ‰ into the
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standard negative diagonal lattice of rank m, it follows that for every i; ` 2 f2; : : : ; sg

with i ¤ `, vi is the linear combination of exactly jai j vectors from the basis ek
j with

coefficients ˙1 and that Uvi
\Uv`

D∅.

Next, by Lemma 5.1(3) the embedding of the .�2/–chains is possible only if s � t �1.
On the other hand, being ‰ the canonical negative plumbing graph, it holds v0 �v0D�t .
This implies, since for every i; j 2 f2; : : : ; sg with i ¤ j we have vi � v0 D 1 and
Uvi
\Uvj

D∅, that s� 1� t . Hence, s 2 ft � 1; t; t C 1g. Moreover, by assumption
(p3), we know sC t � 1 .mod 2/, which forces s 2 ft � 1; t C 1g.

We assume first s D t � 1. In this case the Wu-set of ‰ consists of the t � 2 vertices
v2; : : : ; vt�1 . These vertices are connected to the central vertex, which has weight �t .
Recall that for every i; j 2 f2; : : : ; t � 1g with i ¤ j , we have Uvi

\Uvj
D ∅ and

that mD jUwj. It follows that either

(1) there exist two different indices i; j 2 f2; : : : ; t � 1g such that jUvi
\Uv0

j D

jUvj
\Uv0

j D 2, or

(2) there exists exactly one i 2 f2; : : : ; t � 1g such that jUvi
\Uv0

j D 3.

We will show that both (1) and (2) lead to contradiction. In fact, if (1) holds, call ek
r ; e

`
s

the two basis vectors in Uvj
\Uv0

. Then, the equalities jek
r �vj j D je

k
r �v0j D je

`
s �vj j D

je`s �v0j D 1 are incompatible with vj �v0D 1. Suppose now that (2) holds and consider
the vertex v1 . Since v1 �v0D 1, there exists h2 f2; : : : ; t�1g and k 2 f1; : : : ; tg such
that Uvh

\UCk
\Uv1

¤ ∅. Moreover, Since v1 and vh are orthogonal to Ck , we
have that UCk

� Uv1
\Uvh

. The index h must be the index i in the statement of (2);
otherwise we would have Uvh

DUCk
, which leads vh � v1 ¤ 0. At this point, there are

two possibilities.

� jUv1
\Uvi

\Uv0
j D 2: in this case there are two .�2/–chains, say Ck and

C` , such that UCk[UC`
� Uv1

. Since v1 � v0 D 1 and v1 is orthogonal to Ck

and C` , there must exist some � 2 Z such that

v1 D��ek
1 � � � � ��ek

ck
C .�C 1/e`1C � � �C .�C 1/e`c`

;

where we use the convention fixed in Lemma 5.1 for the embedding of the .�2/–
chains. Since by assumption the parameters a1; : : : ; at�1I c1; : : : ; ct satisfy (p3),
we have that a1 is even and ck ; c` are odd. However, v1�v1D��

2ck�.�C1/2c` ,
which is in contradiction with a1 being even.

� jUv1
\Uvi

\Uv0
jD 3: this time we have three .�2/–chains, say Ck ;C` and Cp ,

such that

v1 D �ek
1 C � � �C�ek

ck
C �e`1C � � �C �e`c`

C ıe
p
1
C � � �C ıep

cp
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for some �; �; ı 2 Z. Since a1 is even and ck ; c` and cp are odd, there are two
possibilities for the coefficients �; � and ı : the three of them are even or two of
them are odd and one is even. In both cases we have v1 � v0 D �C �C ı ¤ 1.

After this final contradiction we conclude that, under the assumptions of the statement,
it is not possible to have s D t � 1.

We are only left with analyzing the case sD tC1. Since mD jUwj and since for every
i; j 2 f2; : : : ; t C 1g with i ¤ j , we have Uvi

\Uvj
D ∅, we deduce that for each

.�2/–chain Ck , k 2 f1; : : : ; tg, there must exist one and only one i.k/ 2 f2; : : : ; sg

such that Uvi.k/
\UCk

¤ ∅. Moreover, since there are t vertices in the Wu-set and
the central vertex has weight �t , it also holds that if i.k/D i.k 0/, then k D k 0 . We
fix, without loss of generality, that i.k/D kC 1 for every k 2 f1; : : : ; tg. Since Ck

is orthogonal to vkC1 , it follows that UCk
� UvkC1

, which implies in particular that
ck � jakC1j for every k .

The assumption s D t C 1 and Lemma 5.1(1) imply that

mD sC 1C

tX
kD1

.ck � 1/D 2C

tX
kD1

ck D 2C

tX
kD1

jUCk
j:

Therefore, since m D jUwj, there are exactly two basis vectors, say e0
1

and e0
2

,
such that e0

1
; e0

2
2 Uw and for every k 2 f1; : : : ; tg we have e0

1
; e0

2
62 UCk

. Since
wD

Pt
iD2 vi D

P
j ;` ˇ

`
j e`j with ˇ`j 2 f˙1g and a2; : : : ; atC1I c1; : : : ; ct are odd, we

necessarily have that there exists one vector, say v2 , such that e0
1
; e0

2
2 Uv2

. Note that
this implies that for every i 2 f3; : : : ; tC1g, we have ai D�ci�1 . At this point, using
Lemma 5.1 to fix the embedding of the .�2/–chains and the central vertex, it follows
that the embedding of v0; v3; : : : ; vtC1;C1; : : : ;Ct is as claimed in Figure 10.

In order to conclude, we must determine the embedding of v1 and v2 . Since v2�w and
fe0

1
; e0

2
g[UC1

D Uv2
it follows that, up to the sign of e0

1
and e0

2
, we have v2 D e1

1
C

� � �Ce1
c1
Ce0

1
Ce0

2
. The vector v1 , which is the only one with even square, is connected

to the central vertex, and since it is orthogonal to all the other vertices, we necessarily
have UC1

� Uv1
and Uv1

\Uvi
D ∅ for every i 2 f3; : : : ; t C 1g. Since v1 � v2 D 0

we deduce that there exist � 2Z such that v1 D e1
1
C� � �C e1

c1
��e0

1
� .c1��/e

0
2

.

6 Remaining cases

Lemmas 5.3 and 5.4 proved in the last section imply Theorem 1.1 for pretzel knots in
the families (p1) and (p2). The “only” thing left now is to understand what happens
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with the Seifert spaces from Lemma 5.5. In this section we introduce the correction
terms from Heegaard–Floer homology and explain how to use them in combination with
Donaldson’s theorem to get further obstructions to sliceness. This enhanced obstruction
suffices to reduce the candidates to Seifert spaces bounding rational homology balls in
Lemma 5.5 to the double branched covers of the knots studied in Section 4.

6.1 Correction terms from Heegaard–Floer homology

Ozsváth and Szabó, using techniques from Heegaard–Floer homology, showed that
if Y is a rational homology sphere bounding a rational homology ball W , then, for
each Spinc –structure s on Y which extends over W , the so-called correction term
d.Y; s/ vanishes. Details can be found in [25]. We summarize here, following [12], a
particular way of using this information as an obstruction for a Seifert space to bound
a rational homology ball.

We denote by Spinc.W / the set of Spinc structures on the manifold W . This set
admits a free transitive action of the group H 2.W IZ/ and the following diagram,
where the horizontal arrows give the action, r is the restriction and i� is induced by
the inclusion, commutes:

H 2.W IZ/�Spinc.W / //

.i�;r/

��

Spinc.W /

r

��
H 2.Y IZ/�Spinc.Y / // Spinc.Y /

After fixing a reference Spinc structure on W , say s0 , we are able to identify H 2.W IZ/
with Spinc.W / as Spinc.W /D s0CH 2.W IZ/ and analogously Spinc.Y /D r.s0/C

H 2.Y IZ/. Therefore, it follows from the above diagram and Ozsváth and Szabó’s
result that if Y bounds a rational homology ball W then for every s 2 r.Spinc.W //�

Spinc.Y / the correction term d.Y; s/ vanishes and we can identify r.Spinc.W //

with r.s0/C i�.H 2.W IZ//. We shall denote by V the subgroup i�.H 2.W IZ//�
H 2.Y IZ/.

Remark 6.1 Notice that the group V defined above coincides with the group V in
Theorem 4.1. There is in fact a striking formal similarity between the Casson–Gordon
invariants and the d –invariants of a 3–manifold. Nevertheless these two invariants
detect different phenomena. For example we shall see in the next subsection that the
correction terms do not obstruct the existence of a rational homology ball bounded by
Y .a;�a� 2;�a� .a2C 9/=2/ while the Casson–Gordon invariants do obstruct (cf
Section 4.1 and Remark 4.4).
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Given a slice knot K � S3 , the 2–fold cover of D4 branched over a slicing disc D

of K is a rational homology ball WD [5, Lemma 2]. Hence, we can specialize the above
discussion to WD and Y D @WD , which is the 2–fold cover of S3 branched over K .
In the case K is a Montesinos knot, let � be its associated plumbing graph with m

vertices, and let us further assume that the associated incidence matrix Q� is negative
definite. Let us call Y D Y� D @M� the boundary of the plumbing 4–manifold M�

associated to � .

The manifold M� [Y�
.�WD/ is a closed, oriented, negative definite, 4–manifold

and hence, by Donaldson’s theorem, there exists a basis ze1; : : : ; zem of H 2.M� [Y�

.�WD/IZ/ with respect to which the intersection pairing is represented by � Id.
Let †1; : : : ; †m 2 H2.M� IZ/ be a basis determined by the m 2–handles of M�

and let D1; : : : ;Dm 2 H2.M� ;Y� IZ/ be a dual basis determined by their cocores.
With these choices of bases, the map �W H2.M� IZ/ ! H2.M� ;Y� IZ/ is repre-
sented by the incidence matrix Q� of the graph � . The application in cohomology,
 W H 2.M� ;Y� IZ/!H 2.M� IZ/, is again represented by the matrix Q� , when we
consider in H 2.M� ;Y� IZ/ the basis †�

1
; : : : ; †�m of the Poincaré duals of the †i

and in H 2.M� IZ/ the basis z†1; : : : ; z†m of the Hom-duals of the †i : z†i.†j /D ıij .
The long exact sequence in cohomology of the pair .M� ;Y�/,

(9)

0 // H 2.M� ;Y� IZ/

Î

Q� // H 2.M� IZ/

Î

ı // H 2.Y� IZ/

Î
// 0

Zm Zm Zm=Q�Zm;

allows us to identify H 2.Y� IZ/ with the cokernel of Q� via ı . Therefore, we can
further identify Spinc.Y /D r.s0/C coker Q� . Using some algebraic topology one
can obtain [12, Theorem 3.4], which in our notation states:

Theorem 6.2 (Greene, Jabuka) Let K , WD , Y� , M� , Q� be as above. Then,
with the above fixed bases, H 2.M� [Y�

.�WD/IZ/ ! H 2.M� IZ/ has a matrix
representative A, which leads to a factorization Q� D �AAt . Moreover, ı in (9)
induces an isomorphism

.im A/=.im Q�/
Š
�! i�.H 2.WD IZ//�H 2.Y� IZ/„ ƒ‚ …

coker Q�

:

From the above discussion we know that d.Y� ; s/D 0 for every sD r.s0/C v , where
v 2 V D i�.H 2.WD IZ//. Therefore, we must have at least jV j Spinc –structures
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on Y� for which the invariant d vanishes. By Theorem 6.2 we can calculate jV j as

jV j D j.im A/=.im Q�/j D j.AZm/=.�AAtZm/j(10)

D jZm=.�AtZm/j D jdet At
j:

For 3–manifolds Y obtained as boundaries of 4–dimensional plumbings specified
by certain graphs, Ozsváth and Szabó give in [25] an explicit formula to calculate
d.Y; s/. The class of graphs that they consider includes all star-shaped graphs � such
that Q� is negative definite. In order to state the formula we need to introduce some
definitions and notation. With the above fixed basis, a covector v2H 2.M� IZ/ is called
characteristic for Q� if it is congruent modulo 2 to the vector .Q�11

; : : : ;Q�mm
/,

whose coordinates in the basis z†1; : : : ; z†m are the elements in the diagonal of Q� .
We will denote by Char.Q�/ � H 2.M� IZ/ the set of all characteristic covectors
for Q� . Given a cohomology class v 2 H 2.M� IZ/ we will write Œv� to denote its
equivalence class in coker Q� . For a given s 2 Spinc.Y�/ we define the set

Chars.Q�/ WD fv 2 Char.Q�/ j sD r.s0/C Œv�g:

With these conventions and definitions in place, we are ready to state the formula we
use for computing correction terms (see [25, Corollary 1.5]):

(11) d.Y� ; s/D max
v2Chars.Q�/

vtQ�1
�
vCj�j

4
:

We already know that for every s 2 r.s0/CV we have d.Y� ; s/D 0. Nevertheless,
let us compute d.Y� ; s/ for s 2 r.s0/CV with equality (11). Greene and Jabuka’s
result, Theorem 6.2, shows V Š .im A/=.im Q�/, so we consider a cohomology class
v DAx 2H 2.M� IZ/. In this case, the term vtQ�1

�
v from (11) simplifies to

vtQ�1
� v D�xtAt .AAt /�1Ax D�xtAt .At /�1A�1Ax D�jxj2;

and therefore

(12) d.Y� ; s/D max
Ax2Chars.Q�/

�jxj2Cm

4
;

where m is the number of vertices in � . The requirement that vDAx be characteristic
can be expressed as a condition on x itself. In fact, by definition v D

Pm
iD1 vi

z†i

is characteristic if and only if vi �Q�ii .mod 2/ for all i . Since, by Theorem 6.2,
Q� D�AAt , we have that v DAx is characteristic if and only if

(13)
mX

jD1

Aij xj �

mX
jD1

A2
ij .mod 2/�

mX
jD1

Aij .mod 2/ for all i D 1; : : : ;m:
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Since det.Q�/ is the determinant of the knot K , it follows that det.A/ is odd and
therefore the matrix A is invertible (mod 2). Hence, the vector x .mod 2/ is uniquely
determined by equivalence (13). At the same time, it is clear that taking xi� 1 .mod 2/

for all i , the equivalences in (13) are satisfied, so it must be the unique solution. Now,
since d.Y� ; s/ D 0, equation (12) forces xi 2 f˙1g for all i 2 f1; : : : ;mg. Notice
that there are 2m such vectors v DAx in im A, while the number jV j of equivalence
classes of these vectors Œv� in V Š .im A/=.im Q�/ might be significantly smaller.

In the next subsection we shall compute, for the Seifert spaces in Lemma 5.5, an upper
bound N on the number of Spinc structures with vanishing correction terms. The
above arguments imply that the inequality jV j �N must hold, which will give further
constraints on the invariants defining Seifert spaces in family (p3) that bound rational
homology balls.

6.2 Further study of family (p3)

Lemma 6.3 Let a D �C � > 1 be an odd integer, �; � 2 Z with �; � � 0. If the
Seifert space Y D Y .�a��2� �2;�a� 2I a/ bounds a rational homology ball, then
either Y D Y .�a� .a2C 1/=2;�a� 2I a/ or Y D Y .�a� .a2C 9/=2;�a� 2I a/.

Proof Since Y is the boundary of a rational homology ball, the intersection lattice of
its associated canonical negative plumbing graph ‰ , which is easily seen to be negative,
admits an embedding into .Zm;� Id/, where mD aC2. Let us label the vertices in ‰
as follows: let v1; : : : ; va�1 be the vertices in the .�2/–chain corresponding to the
parameter a, where v1 is connected to the central vertex; let va be the central vertex;
let vaC1 be the vertex with weight �a�2 and finally let vaC2 be the remaining vertex.
The 2–handles represented by the vertices fv1; : : : ; vaC2g form a basis of H2.M‰IZ/.
With respect to this basis, the incidence matrix of the graph Q‰ is the matrix of the
intersection pairing on M‰ . Since Y satisfies the assumptions of Lemma 5.5 we know
explicitly the factorization Q‰ D�AAt :

At
WD

0BBBBBBBBBBBB@

1 0 0 �1 1 1

�1 1 0 0 1 1

0 �1
: : :

:::
::: 1 1

:::
:::

: : :
:::

:::
:::
:::

0 0 1 0 1 1

0 0 �1 0 1 1

0 0 : : : : : : 0 0 1 ��

0 0 : : : : : : 0 0 1 ��

1CCCCCCCCCCCCA
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By assumption, there exists a rational homology ball W such that Y D @W . With
the notation and conventions fixed in Section 6.1, we have that every s 2 Spinc.Y /

which extends to W is of the form r.s0/C v , where v 2 V �H 2.Y IZ/. Greene and
Jabuka’s result, Theorem 6.2, states that V Š .im A/=.im Q‰/ and by (10) we have

jV j D jdet Aj D
p
jdet Q‰j

D

rˇ̌̌�
1

a
C

1

�a�2
C

1

�a��2��2

�
a.�a�2/.�a��2��2/

ˇ̌̌
D j�� �j:

Notice that we have used equality (1) to calculate jdet Q‰j.

From the discussion in Section 6.1 we know that, for every cohomology class vDAx 2

im A for which sD r.s0/Cv satisfies d.Y; s/D 0, it holds that xD .x1; : : : ;xm/ has
coordinates xi 2 f˙1g for all i . While there are 2m such v DAx in im A, there are
significantly fewer equivalence classes of such vectors Œv� in V D .im A/=.im Q‰/. In
fact, observe that any two cohomology classes, vDAx and v0DAx0 , satisfy Œv�D Œv0�
if and only if there exists some y such that A.x�x0/D�AAty . Namely, if and only
if x�x0 2 im At . The first aC1 columns col1; : : : ; colaC1 of At generate the kernel
of `W Zm ! Z, where `.x1; : : : ;xaC2/ D xaC1 � xaC2 . In fact, since `.coli/ D 0

for i D 1; : : : ; aC 1 we have span.col1; : : : ; colaC1/� ker `. On the other hand, for
every y D .y1; : : : ;yaC2/ 2 ker `, yaC1 D yaC2 and since the determinant of the
leading principal minor of At is �1, it follows that span.col1; : : : ; colaC1/D ker `.
Therefore, ker `� im At and hence, if `.x/D `.x0/ then Œv�D Œv0�. The functional `,
when restricted to the set fx 2 ZaC2 j xi 2 f˙1gg, only takes 3 different values.
Thus, d.Y; s/ vanishes for at most 3 Spinc structures in r.s0/C V . On the other
hand, we know that all the Spinc structures of the form sD r.s0/C v , with v 2 V ,
extend to W and therefore, they all have vanishing correction terms. We conclude that
jV j D j���j � 3. Since a is odd we cannot have �D �C2, and therefore �D �C1

or �D �C3. Taking into account that aD�C� and making the pertinent substitutions
we obtain the Seifert spaces in the statement.

Corollary 6.4 Every Seifert space in Lemma 5.5 bounding a rational homology ball
is either of the form Y D Y .�c1 � .c

2
1
C 1/=2;�c1 � 2;�c2; : : : ;�ct I c1; : : : ; ct / or

Y D Y .�c1� .c
2
1
C 9/=2;�c1� 2;�c2; : : : ;�ct I c1; : : : ; ct /.

Proof The Seifert spaces in Lemma 5.5 are of the form

Y D Y .�c1��
2
� �2;�c1� 2;�c2; : : : ;�ct I c1; : : : ; ct /

for some �; � 2 Z such that �C � D c1 . Since Y is invariant under any change of
order of the parameters, it is the double cover of S3 branched over the pretzel knot

K WD P .�c2; c2;�c3; c3; : : : ;�ct ; ct ;�c1��
2
� �2;�c1� 2; c1/:
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Adding to the projection of K the band shown in Figure 1 and performing a ribbon
move along it, we obtain the disjoint union of an unknot and the pretzel knot

K2 WD P .�c3; c3; : : : ;�ct ; ct ;�c1��
2
� �2;�c1� 2; c1/:

Therefore K �K2 , where � stands for concordance equivalence. Since concordance
is an equivalence relation, we have K #� xK2 �K2 #� xK2 and hence K #� xK2 is slice.
It follows that its double branched cover, the 3–manifold Y #�Y2 , is the boundary
of a rational homology ball, and therefore there exists a rational homology cobordism
between Y and

Y2 WD Y .�c3; c3; : : : ;�ct ; ct ;�c1��
2
� �2;�c1� 2; c1/:

Obviously, we can repeat the same construction t � 1 times showing that there exists a
rational homology cobordism between Y and the Seifert space with three exceptional
fibers Y .�c1 � �

2 � �2;�c1 � 2; c1/. Among these spaces, by Lemma 6.3 the only
ones that possibly bound rational homology balls are of the form Y D Y .�c1� .c

2
1
C

1/=2;�c1� 2I c1/ and Y D Y .�c1� .c
2
1
C 9/=2;�c1� 2I c1/.

Remark 6.5 The above corollary shows that the Seifert space

Y .a1; : : : ; ak ; ˛1; : : : ; ˛r ;�˛1; : : : ;�˛r /;

where ai ; j̨ 2 Z, bounds a rational homology ball if and only if Y .a1; : : : ; ak/ does.

6.3 Proof of main theorem

In this last section we prove Theorem 1.1 putting together the conclusions of the
preceding sections. We shall give two nearly equivalent statements of our main result:
one regarding the sliceness of pretzel knots, as stated in the introduction, and another
one focusing on the Seifert spaces bounding rational homology balls. Notice that in
this second case our results are slightly weaker since we were able to determine, in
Section 4, that many of the knots in the family P .a;�a�2;�.aC1/2=2/, a� 3 odd,
are not slice but this does not imply that the double branched covers do not bound
rational homology balls.

Proof of Theorem 1.1 Up to considering mirror images we can suppose that the
double branched cover of the slice knot K bounds a negative definite 4–manifold.
Since K is slice �.K/D0 and its double branched cover Y bounds a rational homology
ball. It follows that the slice condition (SC) from Section 5 are satisfied.

If K is of type (p1) or (p2) then the theorem is an immediate corollary of Lemmas 5.3
and 5.4, since the Seifert spaces determine the pretzel knots up to reordering of the
parameters.
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If K belongs to (p3) then its double branched cover Y is one of the Seifert spaces
in Corollary 6.4. If Y D Y .�c1� .c

2
1
C 9/=2;�c1� 2;�c2; : : : ;�ct I c1; : : : ; ct / then

by Remarks 6.5 and 4.4 it does not bound a rational homology ball and therefore K

is not slice. Finally, if Y D Y .�c1 � .c
2
1
C 1/=2;�c1 � 2;�c2; : : : ;�ct I c1; : : : ; ct /

then it is the double branched cover of all pretzel knots with defining parameters
f�c1�.c

2
1
C1/=2;�c1�2;�c2; : : : ;�ct I c1; : : : ; ctg. Since the Alexander polynomial

is invariant under mutation, all the different pretzel knots with the same set of parameters
have the same Alexander polynomial. By assumption K is slice and therefore its
Alexander polynomial has a Fox–Milnor factorization. It then follows that the Alexander
polynomial of any knot concordant to K also has a Fox–Milnor factorization. Since the
pretzel knot P .c1;�c1� 2;�.c1C 1/2=2; c2;�c2; : : : ; ct ;�ct / is clearly concordant
to P .c1;�c1�2;�.c1C1/2=2/ and by assumption fc1;�c1�2;�.c1C1/2=2g 62 E ,
by Theorem 4.5 we conclude that K is not slice.

As far as Seifert spaces bounding rational homology balls are concerned we have the
following result which is just a rephrasing of Theorem 1.1.

Theorem 6.6 Consider a Seifert space of the form Y DY .p1; : : : ;pn/ with n� 3, p1

even and pi odd for i D 2; : : : ; n. If Y is the boundary of a rational homology ball,
then the set of parameters P D fp1; : : : ;png satisfies one of the following:

(1) n is even and P can be written as fp1;�p1˙ 1; q1;�q1; : : : ; qn=2;�qn=2g.

(2) n is odd and P can be written as fp1; q1;�q1; : : : ; q.n�1/=2;�q.n�1/=2g.

(3) n is odd and P can be written as

(a) fa;�a� 2;�.aC 1/2=2; q1;�q1; : : : ; q.n�3/=2;�q.n�3/=2g or
(b) f�a; aC 2; .aC 1/2=2; q1;�q1; : : : ; q.n�3/=2;�q.n�3/=2g,

where a� 3 and jp1j D .aC 1/2=2.

Moreover, in the two first cases the rational homology ball exists.

Appendix

In this appendix we compute the Alexander polynomial of the pretzel knots

Pa D P .a;�a� 2;�.aC 1/2=2/;

where a > 1 odd. To this end we shall heavily rely on Jabuka’s theorem [14, Theo-
rem 3.1] which gives in particular a symmetrized linking form LCL� of the pretzel
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knots Pa associated to the Seifert surfaces given in [14, Figure 2]. We shall use the
following notation, where An is a square matrix of size n:

An D

0BBBBBBB@

t � 1 �1 �1 � � � �1 �1

t t � 1 �1 � � � �1 �1

t t t � 1 � � � �1 �1
:::

:::
:::

: : :
:::

:::

t t t � � � t � 1 �1

t t t � � � t t � 1

1CCCCCCCA
Theorem A.1 (Jabuka) The Alexander polynomial �a.t/ of the knots in family Pa

satisfies �a.t/
:
D det‚a , where

‚a D L� tL� D

0BBBBBBBBBBBBB@

�1 0

AaC1 0
:::

:::

�1 0

1 0

0 �Aa�1

:::
:::

1 0

t � � � t �t � � � �t 0 �t

0 � � � 0 0 � � � 0 1 .aC1/2

4
.1� t/

1CCCCCCCCCCCCCA
:

Expanding the determinant of ‚a by the last column we obtain

(1) �a.t/
:
D det‚a D t det AaC1 det Aa�1C

.aC1/2

4
.1� t/ det Ba;

where Ba equals ‚a with the last row and column removed. In the following two
lemmas we shall compute the determinants of An and Bn for all n 2N .

Lemma A.2 We have det An D

nP
iD0

.�1/n�i t i .

Proof The statement is trivially true for A1 . Let us suppose the lemma holds for
A1; : : : ;An�1 and we will show that it is then true for An , finishing the proof. After
subtracting the second row from the first in An , expand the determinant by the first
row to obtain

det An D� det An�1C t det Cn�1;

where the entries of the matrix Cn are defined as

.cn/ij D

�
.cn/11 D t;

.cn/ij D .an/ij for .i; j /¤ .1; 1/:
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Remark that the determinant of Cn satisfies det Cn D t det Cn�1 and thus det Cn D tn .
We have then det An D� det An�1C tn , concluding the proof.

Lemma A.3 We have det Bn D tnC1� tn .

Proof Subtracting row nC 1 to each of the preceding rows, and subtracting column
nC 1 to each of the preceding columns in Bn , changes the first diagonal block into a
matrix A0

nC1
, whose determinant coincides with that of AnC1 (since A0 is obtained

from A by elementary row and column operations). An analogous row and column
operation changing the block �An�1 into �A0

n�1
yield the matrix

B0n D

0BBBBBBBBBBBBBBB@

0

A0
nC1

0
:::

0

�1

0

0 �A0
n�1

:::

0

1

0 � � � 0 t 0 � � � 0 �t 0

1CCCCCCCCCCCCCCCA
:

Note that the described row and column operations have the property that for every
i < nC 1 the matrix A0i , the submatrix formed by the elements in the first i rows
and columns of A0

nC1
, is exactly Ai . Indeed, the row operations change every entry

of Ai into .aij � t/ for i; j D 1; : : : ; n� 1, while the first i entries in the last column
of AnC1 become all equal to �t . The following column operations, yielding A0

nC1
,

change the entries .aij � t/ to .aij � t C t/ and the claim follows. A completely
analogous argument shows that the relevant submatrices of �A0

n�1
are actually equal

to the corresponding �Ai . Taking all this into account we expand the determinant
of B0n by the last column to obtain

det Bn D�.�t det AnC1 det.�An�2/˙ t det C1/

C .�1/nC1..�1/n�1t det An det.�An�1/� t det C2/;

where C1 and C2 are easily seen to have vanishing determinant. By the proof of
Lemma A.2 it then follows that

det Bn D .�1/nt.det AnC1 det An�2� det An det An�1/

D .�1/nt..tnC1
� det An/ det An�2� det An.t

n�1
� det An�2//

D .�1/ntn.t2 det An�2� det An/D .�1/ntn..�1/n.t � 1//D tnC1
� tn:
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Notice that for n even we have det An D .tnC1 C 1/=.t C 1/. Substituting in the
expression (1) the results of the last two lemmas we obtain, since a is odd,

�a.t/
:
D

taC2C1

tC1

taC1

tC1
�
.aC1/2

4
ta�1.t � 1/2

D

Y
d jaC2
d¤1

ˆd .�t/
Y
ıja
ı¤1

ˆı.�t/�
.aC1/2

4
ta�1.t � 1/2;

where ˆn stands for the nth cyclotomic polynomial.
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