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Braids, complex volume and cluster algebras

KAZUHIRO HIKAMI

REI INOUE

We try to give a cluster-algebraic interpretation of the complex volume of knots. We
construct the R–operator from cluster mutations, and show that it can be regarded as
a hyperbolic octahedron. The cluster variables are interpreted as the edge parameters
used by Zickert for computing complex volume.

57M25; 13F60

1 Introduction

Interest in geometrical properties of quantum invariants has risen since the formulation
of the volume conjecture (see Kashaev [17] and H Murakami and J Murakami [20]),
which suggests a relationship between the colored Jones polynomial and the hyperbolic
volume of knot complements. As quantum invariants of knots, such as the colored
Jones polynomial, are constructed by use of the Artin braid relation, it is interesting to
study a hyperbolic-geometric solution to the braid relation.

A fundamental object in 3–dimensional hyperbolic geometry is the ideal tetrahedron.
When a manifold is constructed from a set of ideal tetrahedra, its complex volume, ie
a complexification of hyperbolic volume, is written in terms of the extended Rogers
dilogarithm function; see Neumann [23]. On the other hand, cluster algebras have
been developed since the pioneering work of Fomin and Zelevinsky [9], and have
applications in representation theory, Teichmüller theory, integrable systems and so on.
The dilogarithm function also plays an important role in the theory of cluster algebras;
see Fock and Goncharov [7] and Nakanishi [22].

The purpose of this article is to give a cluster-algebraic interpretation of the complex
volume of knots. In our previous paper [13], we gave an interpretation of the cluster
mutation as a hyperbolic ideal tetrahedron, and we proposed a method to compute
the complex volume of 2–bridge knots. In this article, we first give a geometric
interpretation of the R–operator, which can be constructed from the cluster mutation
based on a relation with Teichmüller theory; see Dynnikov [5] and Dehornoy, Dynnikov,
Rolfsen and Wiest [4]. We find that the R–operator in Theorem 2.3 is identified with a
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hyperbolic octahedron composed of four ideal tetrahedra, and that the cluster variable
corresponds to an edge parameter used by Zickert [29] to computate complex volume.
Our main claims are in Theorem 3.1 and Conjecture 3.2: following a method of Zickert,
we propose a formula for complex volume in terms of cluster variables. Our construction
can be naturally quantized with the help of the quantum cluster algebra [12].

This paper is organized as follows. In Section 2, after explaining the minimal ba-
sics of the cluster algebra, we introduce the R–operator. In Section 3, we interpret
the R–operator in hyperbolic geometry, and formulate the complex volume of knots
in Theorem 3.1 and Conjecture 3.2. Some examples of numerical calculations are
presented in Section 4.

2 Cluster algebra and braid relation

2.1 Cluster variable

We briefly introduce a notion of cluster algebra used in this article. A basic reference
is [9].

A cluster seed .x;B/ is a pair consisting of:

� A cluster variable x D .x1; : : : ;xN / (an N–tuple of algebraically independent
variables).

� An exchange matrix B D .bij / (an N �N skew symmetric integer matrix).

For each k D 1; : : : ;N , we define the mutation �k of .x;B/ by

(2-1) �k.x;B/D .zx; zB/;

where

� zx D .zx1; : : : ; zxN / is

(2-2) zxi D

(
xi for i ¤ k,
1

xk

�Q
j Wbj k>0 x

bj k

j C
Q

j Wbj k<0 x
�bj k

j

�
for i D k,

� zB D .zbij / is

(2-3) zbij D

(
�bij for i D k or j D k;

bij C
jbik jbkjCbik jbkj j

2
otherwise.

The pair .zx; zB/ is again a cluster seed. We remark that the mutation �k is involutive,
and that we have �j�k.x;B/D �k�j .x;B/ if bjk D 0.
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In terms of the cluster variable x , we introduce the y–variable y D .y1; : : : ;yN /

defined by Fomin and Zelevinsky [10]:

(2-4) yj D

Y
k

x
bkj

k
:

The mutation �k induces a mutation of a pair .y ;B/,

(2-5) �k.y ;B/D . zy ; zB/;

where zB is (2-3), and zy D .zy1; : : : ; zyN / with zyj D
Q

k zx
zbkj

k
given by

(2-6) zyi D

8̂<̂
:

y�1
k

for i D k,

yi.1Cy�1
k
/�bki for i ¤ k, bki � 0,

yi.1Cyk/
�bki for i ¤ k, bki � 0.

2.2 R–operator

We define the 7 by 7 exchange matrix B by

(2-7) B D

0BBBBBBBBB@

0 1 �1 0 0 0 0

�1 0 0 1 0 0 0

1 0 0 �1 0 0 0

0 �1 1 0 1 �1 0

0 0 0 �1 0 0 1

0 0 0 1 0 0 �1

0 0 0 0 �1 1 0

1CCCCCCCCCA
:

By regarding the matrix element as

(2-8) bij D #farrows from i to j g� #farrows from j to ig;

the exchange matrix B corresponds to quiver, which is dual to triangulated surface
(see Fomin, Shapiro and D Thurston [8]). In our case (2-7), we have the quiver and the
triangulated disk depicted in Figure 1.

For our later use, we introduce the R–operator acting on the cluster variables associated
with the quiver in Figure 1.

Definition 2.1 We define the R–operator by

(2-9) RD s3;5s2;5s3;6�4�2�6�4:
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Figure 1: Quiver and triangulated disk

Here we have used the permutation si;j of subscripts i and j in seeds,

si;j .: : : ;xi ; : : : ;xj ; : : :/D .: : : ;xj ; : : : ;xi ; : : :/:

Actions on the exchange matrix are defined in the same manner. Note that we have

(2-10) R�1
D s3;6s2;5s3;5�4�5�3�4:

The permutations are included in the R–operator so that the exchange matrix B (2-7)
is invariant under R. Explicitly we have

(2-11) R˙1.x;B/D .R˙1.x/;B/;

where

(2-12)

R.x/D

0BBBBBBBBBBB@

x1

x5

x1x3x5Cx3x4x5Cx1x2x6

x2x4

x1x3x4x5Cx3x2
4

x5Cx1x3x5x7Cx3x4x5x7Cx1x2x6x7

x2x4x6
x3x4x5Cx3x5x7Cx2x6x7

x4x6

x3

x7

1CCCCCCCCCCCA

>

;

R�1.x/D

0BBBBBBBBBBB@

x1

x1x3x5Cx1x2x6Cx2x4x6

x3x4

x6

x1x2x4x6Cx2x2
4

x6Cx1x3x5x7Cx1x2x6x7Cx2x4x6x7

x3x4x5

x2

x2x4x6Cx3x5x7Cx2x6x7

x4x5

x7

1CCCCCCCCCCCA

>

:
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Correspondingly, actions of the R–operator, (2-9) and (2-10), on the y–variable are
respectively given as follows:

(2-13)

R.y/D

0BBBBBBBBBBBBB@

y1.1Cy2Cy2y4/

y2y4y5y6

1Cy2Cy6Cy2y6Cy2y4y6

1Cy2Cy6Cy2y6Cy2y4y6

y2y4

y4

.1Cy2Cy2y4/.1Cy6Cy4y6/

1Cy2Cy6Cy2y6Cy2y4y6

y4y6

y2y3y4y6

1Cy2Cy6Cy2y6Cy2y4y6

.1Cy6Cy4y6/y7

1CCCCCCCCCCCCCA

>

;

R�1.y/D

0BBBBBBBBBBBBBB@

y1y3y4

1Cy4Cy3y4

y5

1Cy4Cy3y4Cy4y5Cy3y4y5

.1Cy4Cy3y4Cy4y5Cy3y4y5/y6

.1Cy4Cy3y4/.1Cy4Cy4y5/
y3y4y5

y2.1Cy4Cy3y4Cy4y5Cy3y4y5/

y3

1Cy4Cy3y4Cy4y5Cy3y4y5

y4y5y7

1Cy4Cy4y5

1CCCCCCCCCCCCCCA

>

:

It should be remarked that the R–operator (2-9) can be also written as

(2-14) RD s2;5s3;6�2�6�4�2�6;

which can be checked from

s3;5.�3�5�4/
3
D 1;

s2;6.�2�6�4/
3
D 1:

These identities correspond to a (half) periodicity in the cluster algebra associated to
A3 –type quiver, which is a subquiver of Figure 1. See [9; 22].

2.3 Braid relation

We generalize the quiver in Figure 1 to that in Figure 2. Therein also given is the
triangulated disk, and an exchange matrix B is given by the rule (2-8) as a generalization
of (2-7).
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Figure 2: Quiver and triangulated disk

Definition 2.2 As a generalization of (2-9), we define the R–operator
i
R for i D

1; : : : ; n� 1 associated with the quiver in Figure 2 by

(2-15)
i
RD s3i;3iC2s3i�1;3iC2s3i;3iC3�3iC1�3i�1�3iC3�3iC1:

Note that

(2-16)
i
R�1
D s3i;3iC3s3i�1;3iC2s3i;3iC2�3iC1�3iC2�3i�3iC1:

The R–operators
i
R˙1 leave the exchange matrix associated to Figure 2 invariant. The

explicit forms of the actions on the cluster variable x D .x1;x2; : : : ;x3nC1/ and the
y –variable y D .y1;y2; : : : ;y3nC1/ are

i
R
˙1.x/D .x1; : : : ;x3i�3;R

˙1.x3i�2; : : : ;x3iC4/;x3iC5; : : : ;x3nC1/;(2-17)
i
R
˙1.y/D .y1; : : : ;y3i�3;R

˙1.y3i�2; : : : ;y3iC4/;y3iC5; : : : ;y3nC1/;(2-18)

where R˙1.x1; : : : ;x7/ and R˙1.y1; : : : ;y7/ are defined in (2-12) and (2-13) respec-
tively.

Theorem 2.3 The R–operator satisfies the braid relation, namely we have
i
R

iC1
R

i
RD

iC1
R

i
R

iC1
R for i D 1; 2; : : : ; n� 2;(2-19)

i
R

j

RD
j

R
i
R for ji � j j> 1:(2-20)
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Proof The second equality is trivial.

It is sufficient to check
1
R

2
R

1
RD

2
R

1
R

2
R

on the cluster variable .x1; : : : ;x10/ with the exchange matrix associated to Figure 2
with n D 3. By direct computation, we can check that both actions result in the
following same expressions:�
x1;x8;

x1x2x4x6x8Cx1x3x5x7x8Cx3x4x5x7x8Cx1x2x6x7x8Cx1x2x4x5x9

x2x4x5x7
;

1

x2x4x5x7x9

�
x1x2x4x6x7x8Cx1x3x5x2

7x8Cx3x4x5x2
7x8

Cx1x2x6x2
7x8Cx1x2x4x6x8x10Cx1x3x5x7x8x10

Cx3x4x5x7x8x10Cx1x2x6x7x8x10Cx1x2x4x5x9x10

�
;

x6x7x8Cx6x8x10Cx5x9x10

x7x9
;
x1x3x5Cx3x4x5Cx1x2x6

x2x4
;

1

x2x4x6x7x9

�
x1x3x4x6x7x8Cx3x2

4x6x7x8Cx1x3x4x6x8x10

Cx3x2
4x6x8x10Cx1x3x4x5x9x10Cx3x2

4x5x9x10

Cx1x3x5x7x9x10Cx3x4x5x7x9x10Cx1x2x6x7x9x10

�
;

x3x4x6x7x8Cx3x4x6x8x10Cx3x4x5x9x10Cx3x5x7x9x10Cx2x6x7x9x10

x4x6x7x9
;

x3;x10

�
:

Actions on the y –variables are induced from these actions. This completes the proof.

The R–operator (2-9) is not new. In [18], Kashaev constructs a solution of the Yang–
Baxter equation from the quantum dilogarithm function based on a relationship with
Teichmüller theory. An operator which has a similar action on the y–variable (2-13)
was used in studies of lamination [5]. In our case, the braiding denotes an exchange of
the punctures on the disk. Also an operator which has a tropicalized action of cluster
variable (2-12) was given in [4]. See Fock and Goncharov [6] for applications of
Teichmüller coordinates to laminations.

3 Hyperbolic geometry

3.1 Ideal tetrahedron

A building block of hyperbolic 3–manifold is an ideal tetrahedron whose vertices are
on the boundary of a hyperbolic 3–space; see W Thurston [25]. An ideal hyperbolic
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tetrahedron 4 is parameterized with cross ratio z 2 C of its four vertices, and the
volume of 4 is given by the Bloch–Wigner function,

(3-1) D.z/D=Li2.z/C arg.1� z/ log jzj:

As depicted in Figure 3, opposite edges have the same dihedral angles. Therein we
have used the notation

(3-2) z0 D 1�
1

z
; z00 D

1

1�z
:

v0

v1 v2

v3

z z0z00

z00

z0 z

z0

z z00

Figure 3: An oriented ideal tetrahedron (left) and a triangle as intersection
with horosphere (right)

In case a set of ideal tetrahedra f4�g is glued faces together to a hyperbolic manifold
M D

S
�4� , the volume of M is given by

(3-3) Vol.M /D
X
�

D.z�/:

A complexification of Vol.M /, known as complex volume, is defined via the Chern–
Simons invariant CS.M /. We have [23]

(3-4) i.Vol.M /C i CS.M //D
X
�

sgn.4�/L.Œz� Ip� ; q� �/;

where Œz� Ip� ; q� � is an element of the extended Bloch group with integers p� and q� ,
and sgn.4�/ is C1 (resp. �1) when the vertex ordering of 4� is same (resp. inverse)
with Figure 3. We have used the extended Rogers dilogarithm function

(3-5) L.ŒzIp; q�/D Li2.z/C
1

2
log z log.1� z/C

� i
2
.q log zCp log.1� z//�

�2

6
:

A method to compute p� and q� was proposed in [29]. For an oriented ideal tetrahedron
of modulus z in Figure 3, let cab be complex parameters on the edge connecting
vertices va and vb . Assume that they fulfill

(3-6)
c03c12

c02c13

D˙z;
c01c23

c03c12

D˙

�
1�

1

z

�
;

c02c13

c01c23

D˙
1

1�z
:
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Note that, in gluing tetrahedra together, identical edges have the same complex param-
eter. Then ŒzIp; q�, integers p and q for modulus z , is given by

(3-7)
log zCp� iD log c03C log c12� log c02� log c13;

� log.1� z/C q� iD log c02C log c13� log c01� log c23:

Here and hereafter we mean the principal branch in the logarithm. In [29] these edge
parameters cab are read from a developing map.

3.2 Octahedron

In our previous paper [13], we demonstrated that the cluster mutation can be regarded
as an attachment of ideal tetrahedron to triangulated surface (see also Nagao, Terashima
and Yamazaki [21]). Furthermore we claimed that the cluster variable x corresponds to
Zickert’s complex parameters cab on edges (see [13, Section 2.3] for details). Roughly
speaking, this is due to the fact that all mutations used in R˙1.x/ have the form of the
Ptolemy relation, acC bd D ef , which is the same as (3-6).

v1

v2 v3

v3 v2

v0

x2 x3

x1 x7

zx3 x5

x3 zx5

zx4

x4

x5 x6

xc

v1

v3 v2

v2 v3

v0

x6 x5

x1 x7

x2 zx6

zx2 x6

zx4

x4

x3 x2

xc

Figure 4: Octahedron for
1

R (left) and
1

R�1 (right)

For brevity, we study the case

zx D
1
R˙1.x/:

Based on the observation in [13], we see that the R–operator (2-9) is realized as an
octahedron in Figure 4, which is composed of four tetrahedra f4N ;4S ;4W ;4Eg.
See Figure 5 for a top view. The four tetrahedra originate from four mutations in the
R˙1 –operator, (2-9) and (2-10); �2 and �6 in (2-9) respectively correspond to 4W
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and 4E , and two �4 are for 4N and 4S . The cluster variables xk and zxk are
assigned to edges of the octahedra, and we have used

(3-8) xc D
x2x6Cx3x5

x4
:

Note that we have fixed vertex ordering for our convention, and that edges with the
same complex parameters (eg two pairs of edges v0 –v2 , v1 –v3 ) are identical.

�N

�W �E

�S

�
1

y4

zy1
y1

zy7
y7

�zy4

�N

�W �E

�S

�
1

y4

zy1
y1

zy7
y7

�zy4

Figure 5: Dihedral angle at crossings,
1

R (left) and
1

R�1 (right)

As the R–operator satisfies the braid relation (Theorem 2.3), we can interpret that each
octahedron is assigned to every crossing of knot diagram as in Figure 5. This is similar
to a fact of Thurston [24] that octahedron was assigned to the Kashaev R–matrix [16]
(see also the first author [11], Cho, H Kim, Hyuk and S Kim [1], Cho, J Murakami
and Yokota [3] and Yokota [27]). Note that another expression (2-14) of the same
R–operator corresponds to a decomposition of octahedron into five tetrahedra, which
was used in studies of the colored Jones R–matrix at root of unity; see D Thurston [24]
and Cho and J Murakami [2].

1
R

1
R
�1

4 Volume sgn.4/ z4
1

1�z4
sgn.4/ z4

1
1�z4

4N D
�
�

1
y4

�
� �

x2 x6

x3 x5

x3 x5

x4 xc
C �

x3 x5

x2 x6

x2 x6

x4 xc

4S D .�zy4/ � �
zx3 zx5

x3 x5

x3 x5

zx4 xc
C �

zx2 zx6

x2 x6

x2 x6

xc zx4

4W D
�
zy1

y1

�
C

x2 zx3

x3 x5
�

x3 x5

x1 xc
�

zx2 x3

x2 x6
�

x2 x6

x1 xc

4E D
�
zy7

y7

�
C

zx5 x6

x3 x5
�

x3 x5

xc x7
�

x5 zx6

x2 x6
�

x2 x6

xc x7

Table 1: Moduli of four tetrahedra assigned to operators
1

R and
1

R�1 : sign
“C” (resp. “�”) means that vertex ordering of tetrahedron is same (resp.
inverse) with Figure 3.
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Taking into account of the vertex ordering of tetrahedra, we can determine moduli of
each tetrahedron from (3-6) as in Table 1. From these results, we define dilogarithm
functions for every crossing by

(3-9) L.Œ
1
R
˙�Ix/D

X
t2fN;S;W ;Eg

sgn.4t /L.Œz4t
Ip4t

; q4t
�/:

Here we have used the extended Rogers dilogarithm (3-5), and integers p4t
and q4t

are given from (3-7) by use of Table 1.

For instance, p4E
and q4E

in the operator
1
R are given as

p4E
� iD� log

�
zx5x6

x3x5

�
C log.zx5/C log.x6/� log.x3/� log.x5/;

q4E
� iD� log

�
�

x3x5

xcx7

�
C log.x3/C log.x5/� log.xc/� log.x7/:

It should be remarked that, to identify the R–operator with a hyperbolic octahedron,
we need a consistency condition around a central edge labeled by xc in Figure 4. This
condition is automatically satisfied by

y1y4y7 D zy1 zy4 zy7;

where zy D
1
R˙1.y/; see (2-18). In Figure 5 denoted are dihedral angles around central

axis assigned to each crossing.

We can interpret the i th braiding operator
i
R˙1 in (2-15) in the same manner. As we

have the cluster mutation
zx D

i
R
˙1.x/

as in (2-17), the edge parameters .x1;x2; : : : ;x7/ and .zx1; zx2; : : : ; zx7/ in Figure 4
are replaced respectively by .x3i�2;x3i�1; : : : ;x3iC4/ and .zx3i�2; zx3i�1; : : : ; zx3iC4/.
The moduli of the tetrahedra in Table 1 should be replaced correspondingly, and as a
result we have the dilogarithm function as in (3-9) by replacing xa with x3iCa�3 .

3.3 Braid group presentation and gluing conditions

Our main claim is the following.

Theorem 3.1 Let a knot K have a braid group presentation �"1

k1
�
"2

k2
� � � �

"m

km
, where

"j D˙1 and

Bn D h�1; �2; : : : ; �n�1 j �i�j D �j�i for ji � j j> 1;

�i�iC1�i D �iC1�i�iC1 for i D 1; 2; : : : ; n� 2i:

We define a cluster pattern for xŒj �D .xŒj �1; : : : ;xŒj �3nC1/ by

Algebraic & Geometric Topology, Volume 15 (2015)
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(3-10) xŒ1�

k1
R "1

���! xŒ2�

k2
R "2

���! � � �

km
R "m

����! xŒmC 1�;

with the exchange matrix associated to Figure 2. We assume that the initial cluster
variable xŒ1� satisfies

(3-11) xŒ1�D xŒmC 1�:

Then the y–variables, yŒk�i 2 C , induced from the cluster pattern fulfill algebraic
equations for shape parameters of ideal tetrahedra in the triangulation of S3 n .K [

2–points/.

We note that the periodicity (3-11) denotes a closure of the braid, and that the 2–points
are v2 and v3 in Figure 4.

In the above theorem, we do not assume that a knot K is hyperbolic. We study a
triangulation induced from a braid group presentation. This situation is the same with
the volume conjecture [17], which suggests an intimate relationship between a complex
volume of S3 nK and the Kashaev invariant for K defined from a quantum R–matrix.

Our triangulation is a standard one used in SnapPy (see Weeks [26]), and the Neumann–
Zagier potential function was constructed in [3] from such triangulation. See also
A Inoue and Kabaya [15], where complex volume is studied from the same triangulation
by use of quandle. So it is natural to expect that for hyperbolic knot K there exists a
geometric solution of (3-11), where the neighbors of additional two points cancel and
we endow a complete hyperbolic structure for S3 nK . We show in the next section
numerical results for some knots, and we discuss how the cancellation of two balls
occurs (see Proposition 4.1). Unfortunately, at this stage, we do not know how to extract
generally such a preferable solution from (3-11). Due to the fact that the geometric
content of each octahedron is identified as in Table 1, we obtain complex volume as
follows if we assume the existence of a geometric solution.

Conjecture 3.2 There exists an algebraic solution of (3-11) such that the complex
volume of K is given by

(3-12) i.Vol.S3
nK/C i CS.S3

nK//D

mX
jD1

L.Œ
kj

R
"j �IxŒj �/:

The definition of the dilogarithm function L.Œ
kj

R"j �IxŒj �/ can be found in (3-9) and the
end of the last subsection.

Proof of Theorem 3.1 We need to check consistency conditions and completeness
conditions as [11; 1]. We have already seen that a consistency condition around a
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central axis of octahedra is fulfilled. We shall check other cases. First we study a
cluster pattern

xŒ1�

1

R
�! xŒ2�

2

R
�! xŒ3�:

For each crossing we assign octahedra as in Figure 6. Therein colored faces are glued
together so that identical edges have the same complex parameters. Note that (2-12)
implies xŒ2�6 D xŒ1�3 and xŒ1�7 D xŒ2�7 , and that

xŒ1�c D
xŒ1�2xŒ1�6CxŒ1�3xŒ1�5

xŒ1�4
; xŒ2�c D

xŒ2�5xŒ2�9CxŒ2�6xŒ2�8
xŒ2�7

:

Consistency condition around edge labeled by complex parameter xŒ2�5 is checked as

1

1� yŒ2�7
yŒ1�7

�

�
1C

1

yŒ2�4

�
�

�
1CyŒ2�7

�
�

1

1� yŒ3�4
yŒ2�4

D 1:

xŒ2�5

xŒ1�3

xŒ1�7

xŒ1�5

xŒ2�4

xŒ2�3

xŒ1�3

xŒ2�5

xŒ2�4

xŒ3�6

xŒ2�6

xŒ2�6

xŒ2�c

xŒ2�9

xŒ1�6
xŒ1�c

xŒ2�7

xŒ2�8

xŒ1�

xŒ2�

xŒ3�

#
1

R

#
2

R

yŒ2�7
yŒ1�7

�yŒ2�4

�
1

yŒ2�7

yŒ3�4
yŒ2�4

Figure 6: Gluing of octahedra (left) assigned to crossing (right top), and a
developing map (right bottom): consistency is read from the red circle.

The same goes for a case of a cluster pattern

xŒ1�

1

R�1

��! xŒ2�

2

R�1

��! xŒ3�:

We have octahedra as in Figure 7, and we can check a consistency condition in the
developing map as�

1�
yŒ1�7

yŒ2�7

�
�

1

1CyŒ2�4
�

�
1�

yŒ2�4
yŒ3�4

�
�

1

1C 1
yŒ2�7

D 1:
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xŒ1�5

xŒ1�6

xŒ1�7

xŒ2�2

xŒ2�4

xŒ1�2 xŒ2�6

xŒ2�9 xŒ3�5

xŒ2�c

xŒ2�8

xŒ2�4

xŒ2�5

xŒ2�5

xŒ1�

xŒ1�c

xŒ2�6

xŒ2�7

xŒ1�

xŒ2�

xŒ3�

#
1

R�1

#
2

R�1

�yŒ2�4

yŒ2�7
yŒ1�7

yŒ3�4
yŒ2�4

�
1

yŒ2�7

Figure 7: Gluing of octahedra (left) assigned to crossing (right top), and a
developing map (right bottom): consistency is read from the red circle.

xŒ1�3 xŒ1�3

xŒ2�5

xŒ1�7

xŒ2�4

xŒ2�3

xŒ1�5

xŒ2�9

xŒ3�5

xŒ2�c

xŒ2�8

xŒ2�4

xŒ2�5

xŒ2�5

xŒ1�c

xŒ1�6

xŒ2�6

xŒ2�7

xŒ1�

xŒ2�

xŒ3�

#
1

R

#
2

R�1

yŒ3�4
yŒ2�4

�
1

yŒ2�7
yŒ2�7
yŒ1�7

�yŒ2�4

Figure 8: Gluing of octahedra (left) assigned to crossing (right top), and a
developing map (right bottom): completeness is read from the red curve.

A completeness condition follows from alternating crossings. In the case that the cluster
pattern is given by

xŒ1�

1

R
�! xŒ2�

2

R�1

��! xŒ3�;
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octahedra are attached to each crossing as in Figure 8. See that identical edges have
the same complex parameters xŒ2�6D xŒ1�3 and xŒ1�7D xŒ2�7 due to (2-12). Then we
can check the completeness condition as

1C 1
yŒ2�4

1� yŒ2�7
yŒ1�7

�

1C 1
yŒ2�7

1� yŒ2�4
yŒ3�4

D yŒ1�2yŒ1�3 D 1:

Here the last equality follows from (2-4).

xŒ1�5

xŒ1�6
xŒ1�7

xŒ2�2

xŒ2�4

xŒ2�6
xŒ1�2

xŒ2�5

xŒ2�6

xŒ2�c

xŒ2�6

xŒ2�4

xŒ3�6

xŒ2�9

xŒ1�c

xŒ1�2

xŒ2�7

xŒ2�8

xŒ1�

xŒ2�

xŒ3�

#
1

R�1

#
2

R

�
1

yŒ2�7

yŒ3�4
yŒ2�4

�yŒ2�4

yŒ2�7
yŒ1�7

Figure 9: Gluing of octahedra (left) assigned to crossing (right top) and a
developing map (right bottom)

Figure 9 corresponds to the cluster pattern

xŒ1�

1

R�1

��! xŒ2�

2

R
�! xŒ3�:

Algebraic & Geometric Topology, Volume 15 (2015)



2190 Kazuhiro Hikami and Rei Inoue

By use of (2-4), we have a completeness condition

1� yŒ1�7
yŒ2�7

1CyŒ2�4
�

1� yŒ3�4
yŒ2�4

1CyŒ2�7
D yŒ1�2yŒ1�3 D 1:

Other cases can be checked in a similar manner, and the claim follows.

We note that in the above proof the completeness condition is

(3-13) yŒ1�3i�1yŒ1�3i D 1 for i D 1; 2; : : : ; n,

which follows from the definition of the y –variables (2-4).

4 Examples

4.1 Figure-eight knot 41

We study the figure-eight knot whose braid group presentation is �1�
�1
2
�1�
�1
2

. The
cluster pattern for 41 is thus

xŒ1�

1

R
�! xŒ2�

2

R�1

��! xŒ3�

1

R
�! xŒ4�

2

R�1

��! xŒ5�:

We can check that xŒ1�D xŒ5� is fulfilled by, for example,

xŒ1�D .x1;x2;x2; 1;x1x2;x
2
1x2;x1;�x2;�x2; 1/;

where .x1;x2/D .e2� i=3; 0/. To compute the complex volume of 41 , we set .x1;x2/D

.e2� i=3C ı; ı/ with ı 2R>0 , and take a limit ı! 0. We have checked numerically
that (3-12) gives i � 2D.e� i=3/D i � 2:02988 : : : as desired [25].

4.2 Trefoil knot 31

The next example is the trefoil 31 , which is not hyperbolic. The braid group presentation
for 31 is �3

1
, and its cluster pattern is

xŒ1�

1

R
�! xŒ2�

1

R
�! xŒ3�

1

R
�! xŒ4�:

We solve xŒ1�D xŒ4� by choosing an initial cluster variable as

(4-1) xŒ1�D .x1;x2;x2; 1;x1x2;x
2
1x2; 1/

and get x1 D�.1C i/=2 in the limit x2! 0. We check numerically that (3-12) gives
�8:22467 : : :'�5

6
�2 . It agrees with the Chern–Simons invariant of 31 , which is also

given from asymptotic limit of the Kashaev invariant; see Kashaev and Tirkkonen [19],
Zagier [28] and the first author and Kirillov [14].
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4.3 Interpretation of initial cluster variables

In the above examples, we have singular solutions such as

(4-2)
xŒ1�2

xŒ1�1
;
xŒ1�3

xŒ1�4
! 0:

This condition for initial cluster variables denotes that a cancellation of the two addi-
tional balls occurs by connecting to the tubular neighbor of the knot K as explained
in [26] (see also [3]).

Proposition 4.1 In the setting of Theorem 3.1, when we set an initial cluster x–
variable as (4-2), we get a canonical triangulation of S3 nK .

We note that such cancellation can occur under other choices of initial cluster variables.

Proof of Proposition 4.1 We need to connect two balls at v2 and v3 (see Figure 4) to
the tubular neighbor of the knot K to get a triangulation of S3 nK . For this purpose,
we introduce a triangular pillow with a predrilled tube as in Figure 10. The pillow is
constructed from two hyperbolic tetrahedra as in Figure 10, and we see that there exists
a drilled tube connecting two vertices (see [26]). By use of other hyperbolic tetrahedra
whose vertex orderings are opposite to those in Figure 10, we have another type of a
triangular pillow as in Figure 11.

v0

v1; v2

v3

c1

c2

c3

v0

v0

v1

v1

v2

v2

v3

v3c1

c1

c1

c1

c1

c1

c2

c2
c2

c2

c3

c4

Figure 10: A pillow with a predrilled tube (left) is constructed from two ideal
tetrahedra (right) by gluing colored faces together. A dashed curve denotes a
tube connecting two vertices. Here ca is a edge parameter.

In both Figures 10 and 11, we assign edge parameters ca for each edge. Shape
parameters of tetrahedra are given by (3-6), and we get

(4-3)
c3

c2

D 0:
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Because of their opposite vertex orderings, a sum of the extended Rogers dilogarithm
functions (3-5) for two pillows vanishes.

v0

v1; v2

v3

c1

c2

c3

v0

v1

v2
v3

v0

v1
v2

v3

c1
c1

c3

c2

c1 c2

c1 c2
c2c1

c1
c4

Figure 11: Another pillow with a predrilled tube (left) is given from two
hyperbolic tetrahedra (right).

We insert and glue the pillow in Figure 10 (resp. Figure 11) to the triangular surface
x2x3x4 in4N (resp. x1x2x3 in4W ) in the octahedron assigned to the first crossing R.
Predrilled tubes of the pillows connect both vertices v2 and v3 to v1 in Figure 4. To
conclude, we obtain a valid triangulation of S3 nK . Since identical edges have the
same edge parameters, condition (4-3) gives xŒ1�2=xŒ1�1 D xŒ1�3=xŒ1�4 D 0.
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