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An alternative approach to extending
pseudo-Anosovs over compression bodies

ROBERT ACKERMANN

Biringer, Johnson, and Minsky proved that any pseudo-Anosov whose stable lami-
nation is the limit of disks in a compression body has a power which extends over
some non-trivial minimal compression body. This paper presents an alternative proof
of their theorem. The key ingredient is the existence of a certain collection of disks
whose boundaries are formed from an arc of the stable lamination and an arc of the
unstable lamination. The proof here also shows that there are only finitely many
minimal compression bodies over which a power of a pseudo-Anosov can extend.
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1 Introduction

The following theorem was proved by Biringer, Johnson, and Minsky.

Theorem 1.1 [1, Theorem 1.1] Let 'W F ! F be a pseudo-Anosov with stable
lamination LC and unstable lamination L� . Suppose also that a lamination KC � LC

bounds in a compression body M , and M is minimal with respect to this condition.
Then there exists k such that 'k extends over M .

Here we say that a lamination bounds if it is the Hausdorff limit of curves bounding
disks in the compression body. A compression body M is minimal with respect to the
condition that KC bounds if there is no inequivalent N �M in which KC bounds.
Their proof makes use of relatively recent ideas including ı–hyperbolic geometry, the
curve complex, and Ahlfors–Bers theory. They also give examples which show that
their theorem is false if 'k is replaced with ' in the conclusion.

The purpose of this paper is to offer an alternative proof to this theorem using older
ideas first introduced by Casson and Long. More specifically, Casson and Long in [4]
provide an algorithm for determining whether a particular pseudo-Anosov extends
over some compression body, and Long in [6] goes on to show that a pair of minimal,
transverse laminations can bound in only finitely many compression bodies.
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The proof given here is achieved by generalizing lemmas of Casson and Long. The
basic idea is to show that disks of a particular type must exist in any compression
body in which the stable lamination of ' bounds and some curve approximating the
unstable lamination bounds as well. Using these disks, we build a non-empty but finite
collection of compression bodies over which ' could potentially extend. Within this
collection there is a (possibly smaller) collection which is invariant under the action of
' , implying that a power of ' extends.

2 Definitions and basic facts

Let F be a closed, orientable surface of genus at least two. A compression body is
any 3–manifold formed by taking F � I , attaching disjoint 2–handles to the boundary
surface F � f1g, and filling in any resulting 2–spheres with 3–handles. The boundary
surface F � f0g is called the exterior surface of M which we will denote @EM . Call
F � I the trivial compression body.

A compression body M with exterior surface @EM has associated to it a normal
subgroup N D ker.i�W �1.@EM /! �1.M //, where i W @EM !M is inclusion. N

is equal to the image of the fundamental group of a regular covering of @EM which is
planar, so we call N the planar kernel of M (see [6]).

Given a fixed surface F and collections of disjoint, non-isotopic, essential curves
C1 , C2 , we say that the pairs .F; C1/ and .F; C2/ are equivalent if hC1iN D hC2iN ,
where hCiiN denotes the normal closure of the subgroup generated by Ci in �1.F /.
If M is a compression body and � W F ! @EM is a homeomorphism such that
��hCiN D ker.i�W �1.@EM /! �1.M // we say that M is built from .F; C/.

A geodesic lamination L on F is a closed subset which can be written as the union of
disjoint geodesic leaves. A geodesic lamination is minimal if the closure of any leaf is
the whole lamination, and a geodesic lamination fills if each component of F nL is
simply connected. We call the closure of these components the complementary regions
of L, and say L is maximal if every complementary region is an ideal triangle. To save
words, a lamination will always be assumed to be a geodesic lamination.

Given a closed surface F , the Hausdorff metric is a metric on all closed subsets of F .
For two closed subsets A and B , distance is defined by dH .A;B/ � � if there are
�–neighborhoods N�.A/� B and N�.B/�A. The Hausdorff metric is particularly
useful for measuring how close a simple closed curve is to a minimal lamination.

A surface automorphism 'W F ! F is called pseudo-Anosov if it preserves a pair
of transverse measured laminations .LC; �C/ and .L�; ��/, called the stable and
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unstable lamination respectively. In this case, both LC and L� are minimal and filling.
We say that ' extends over a compression body M built from .F; C/ if there is an
automorphism  W M !M such that  j@EMD �'�

�1 . A necessary and sufficient
condition for an automorphism to extend is that .F; C/ and .F; 'C/ are equivalent
(see [3, Lemma 5.2]).

An important fact about the behavior of pseudo-Anosovs is that they exhibit source-sink
dynamics on the space of all measured laminations. In particular, suppose that ' is a
pseudo-Anosov with invariant laminations LC and L� . If LC and L� are maximal and
L is a third lamination not equal to LC or L� , then the sequence f'k.L/g converges
to LC and f'�k.L/g converges to L� in the Hausdorff topology (see [2]).

Crucial to our discussion is the following definition, inspired from [4].

Definition 2.1 Let L be a geodesic lamination in a surface F . Then L bounds in the
pair .F; C/ if there is a sequence of simple closed curves fCig such that:

(1) The element of �1F corresponding to Ci is in hCiN for all i .

(2) Ci! L as i !1 in the Hausdorff metric.

If M is a compression body built from .F; C/ and L bounds, then the corresponding
lamination isotopic to �.L/ in @EM has a sequence of simple closed curves fDig all
of which bound disks in M such that Di ! L as i !1. In this case we will also
say L bounds in M . Note that if LC and L� are transverse, minimal, and maximal
measured laminations with full support then condition (2) is equivalent to �C.Ci/! 0

as i !1 (possibly after isotopy). In [1], a similar notion of bounding is expressed in
terms of limit sets. One motivation for this definition is that if a pseudo-Anosov extends
then both its stable and unstable lamination must bound, by source-sink dynamics.

If L is a lamination, then we say that .F; C/ is minimal with respect to L bounding if
L bounds in .F; C/ and if .F;D/ is another pair with hDiN � hCiN then L does not
bound in .F;D/. Similarly, we say that .F; C/ is minimal with respect to a collection
of laminations A bounding if hCiN is the “smallest” normal subgroup in which every
element of A bounds.

3 Disks in compression bodies

Throughout take .LC; �C/ and .L�; ��/ to be transverse, minimal, and maximal
measured laminations in the exterior surface of some compression body M . In this
section, we construct a collection of bounding curves built from “short” arcs of L�
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and “long” arcs of LC with controlled ��–measure. Necessary for the existence of
these curves is that LC bounds and some curve C approximating L� bounds as well.

We begin by stating a lemma first proved in [6].

Lemma 3.1 Let � > 0 be given. Then there are numbers M.�/, m.�/ such that:

(1) If ˛C � LC , ˛� � L� are arcs with ��.˛C/ >M and �C.˛�/ > � , then
int˛C\ int˛� ¤∅.

(2) If ˛C�LC , ˛��L� are arcs with �C.˛�/ < � and jint˛C\ int˛�j� 2, then
��.˛

C/ >m.

Furthermore, M.�/;m.�/ �!1 as � �! 0.

Let Nı.L�/ be a closed ı–neighborhood of L� . Such a neighborhood can be foliated
by intervals so that it has the structure of a product, and each tie t can be thought of as
an arc in F transverse to L� . Let r D r.ı/Dmaxf��.t/ j t is a tie of Nı.L�/g.

Lemma 3.2 Let C be a geodesic simple closed curve such that dH .C;L�/ < ı for
some small ı > 0, and suppose that fAng is a sequence of simple closed geodesics
converging to LC . Then for any � > 0, there is an N such that for all n�N we have:

(1) If ˛C � An , ˛� � C are arcs with ��.˛C/ > 2M and �C.˛�/ > � , then
int˛C\ int˛� ¤∅.

(2) If ˛C �An , ˛� � C are arcs with �C.˛�/ < � and jint˛C\ int˛�j� 2, then
��.˛

C/ >m� 2r , where r D r.ı/ as above.

Proof Given an arc ˛� � C , shrink it slightly and assume its endpoints are on leaves
of LC (without changing �C.˛

�/). Then since ı > 0 is small, we can slide its
endpoints along leaves of LC to obtain a nearby arc ˇ � L� with �C.ˇ/D �C.˛�/.

Choose N such that for all n�N the curve An satisfies:

(1) Lemma 3.1 holds with arcs of An in place of arcs in LC .

(2) If ˛��C is an arc and ˇ�L� is chosen as above, then for any p 2 intˇ \ An

there is an arc � � An with endpoints on ˇ and ˛� (one of these is p ) with
��.�/ < r D r.ı/.

These conditions can always be satisfied, after possibly a small isotopy of ˇ , because
the angles between nearby geodesics are close in a lamination (see [2]), and because
the measure of an arc is preserved under homotopy respecting the leaves of L� .
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To prove the first conclusion, let n�N and take any arc ˛C�An with ��.˛C/>2M .
For the sake of contradiction suppose that there is an arc ˛� � C with �C.˛�/ > �
such that int˛C \ int˛� D∅. Take ˇ � L� as above and note that by condition (1),
˛C must intersect ˇ at least twice. Thus by condition (2) both endpoints of ˛C must
lie on short arcs of An with endpoints on intˇ and int˛� . But then by shrinking ˛C

and allowing ��.˛C/ to change by at most 2r <M we obtain an arc which does not
intersect ˇ , a contradiction. Thus int˛C\ int˛� ¤∅.

For the second conclusion, again fix n�N and suppose ˛� � C , ˛C �An are arcs
with �C.˛�/ < � and jint˛C \ int˛�j� 2. Again take ˇ � L� as above. Then by
condition (2), ˛C can be extended to an arc that intersects intˇ at least twice with ��–
measure at most 2r more than ��.˛C/. Thus by Lemma 3.1, ��.˛C/ >m� 2r .

The next lemma mirrors the proof of [6, Lemma 2.4] and relies on Lemma 3.2 to
control the lengths of arcs.

Lemma 3.3 Let ı > 0 be small and let C be a geodesic simple closed curve with
dH .C;L�/ < ı . Suppose in addition that C and LC both bound in a compression
body M . Then for any small � > 0 there are arcs ˛C � LC , ˛� � L� such that
˛C[˛� is the boundary of a disk, and:

(1) �C.˛
�/� � .

(2) m.2�/� 2r � ��.˛
C/� 2M.�/C 2r , where r D r.ı/.

Proof Since LC bounds, there is a sequence of closed geodesics fAng all bounding
disks in M and converging to LC . Choose N as in Lemma 3.2 and let ADAn for
some n�N . Let D� be the disk with boundary C , and DC the disk with boundary
A. We assume � is very small compared to the �C–measure of C .

After isotopy, DC\D� is a collection of arcs with endpoints on A\C . We say that
an arc 
 on C or A contains a complete set if whenever one endpoint of an arc in
DC\D� is on 
 , the other endpoint is on 
 as well. Choose an arc 
C�A such that

C is complete, ��.
C/� 2M , and 
C is minimal with respect to these conditions.
By Lemma 3.2, 
C exists and intersects C many times.

Choose an arc ��DC\D� such that � has endpoints on int 
C and � is an outermost
such arc in D� . Then choose 
� � C D @D� to be the arc with endpoints equal to
the endpoints of � and with the property that int 
� \ int 
C D ∅. By Lemma 3.2,
�C.


�/ < � .

Now set ˇC �A to be the sub-arc of 
C having endpoints @
� (which equals @� ),
and note that intˇC \ int 
� D ∅. We can stretch ˇC and 
� a small amount so
that jintˇC \ int 
�j� 2 and hence ��.ˇC/�m.2�/� 2r .

Algebraic & Geometric Topology, Volume 15 (2015)



2388 Robert Ackermann

Since @ˇC D @� � int 
C, the arc ˇC is a complete, proper sub-arc of 
C. Thus
��.ˇ

C/� 2M by minimality of 
C.

Now slide 
� along the leaves of LC to an arc ˛� with �C.˛�/D �C.
�/ < � and
endpoints on leaves of LC . Isotopic to 
C is an arc ˛C � LC with @˛C D @˛� and
j��.


C/���.˛
C/j� r . The curve ˛C [ ˛� is essential because it is the union of

geodesic arcs, and is isotopic to the boundary of the disk formed by gluing pieces of
DC and D� cut out by � .

4 Finitely many minimal compression bodies

Recall that .F; C/ is minimal with respect to a lamination L bounding if L bounds
in .F; C/ and whenever .F;D/ is another pair with hDiN � hCiN then L does not
bound in .F;D/. Also note that a single geodesic simple closed curve is a lamination.

Lemma 4.1 [5] Let K be any finite collection of simple closed curves. Then there
are at most finitely many pairs .F; C/ which are minimal with respect to K .

The next lemma gives even more control over what compression bodies can contain a
specified collection of disks (this is referred to as a “folklore lemma” in [6]).

Lemma 4.2 Let f.F; C1/; : : : ; .F; Ck/g be pairwise inequivalent, and suppose also
that hC1iN � hC2iN � � � � � hCkiN where inclusions are strict. Then there is an integer
P , depending only on the genus of F , such that k � P .

The following is a generalization of lemmas first proved in [2] and [6], and is one of
the key ingredients in proving our main result.

Lemma 4.3 Let fKig be a sequence of finite collections of essential simple closed
curves such that any sequence fCi j Ci 2 Kig converges to a lamination L. Let M
be the collection of all pairwise inequivalent pairs .F; C/ minimal with respect to L
bounding and in which a sequence fCi j Ci 2 Kig bounds. Then M is finite.

Proof Let P be the collection of all pairwise inequivalent pairs .F; C/ which are
minimal with respect to some finite (or empty) collection fC1; : : : ;Cn j Ci 2 Kig, and
where either L does not bound in .F; C/ or if it does then .F; C/ is minimal. We
consider P as a partially ordered set with .F;D/� .F; C/ if hDiN � hCiN . Note that
the trivial pair .F;∅/ is the unique least element of P . To save on notation, let �n

formally denote a collection fC1; : : : ;Cn j Ci 2 Kig.
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Any .F; C/ 2M must be minimal with respect to some fCi j Ci 2 Kig, since any
pair in which such a sequence bounds has L bounding as well. Thus, by Lemma 4.2,
any .F; C/ 2M must be minimal with respect to some finite collection �n and hence
M� P .

We show that P is finite. By Lemma 4.2, any chain .F; C1/� .F; C2/� � � � in P is
finite, so it only remains to show that for every .F; C/ there are finitely many .F;D/
such that whenever .F; C/� X � .F;D/ we have X D .F; C/ or X D .F;D/. Call
such a pair .F;D/ a direct descendant of .F; C/.

Suppose that .F; C/ 2 P is minimal for some �n and that L does not bound in .F; C/.
Then there is a minimal R 2N such that no collection �R ��n bounds in .F; C/.
By Lemma 4.1, there are only finitely many compression bodies minimal with respect
to a collection �l with l � R. Any direct descendant of .F; C/ must be minimal
with respect to one of these collections, and thus .F; C/ has only finitely many direct
descendants.

Now suppose .F; C/2P is such that an infinite sequence fCi j Ci 2Kig bounds. Then
L bounds in .F; C/, and by minimality .F; C/ has no direct descendants in this case.
Thus P is finite, and M is finite as well.

Recall that ' extends over a compression body built from .F; C/ if and only if .F; C/
and .F; 'C/ are equivalent.

Lemma 4.4 Let ' be a pseudo-Anosov with maximal stable, unstable laminations
LC , L� and say that LC bounds in some .F; C/. Let ı > 0 and let N be the collection
of all pairs .F;D/ minimal with respect to LC and which have a curve D in hDiN
with dH .D;L�/ < ı . Then N is non-empty.

Proof Let .F; C/ be any pair minimal for LC and suppose that C is a curve in hCiN .
By the source-sink dynamics of pseudo-Anosovs, for some k the curve '�k.C / is,
after isotopy, a geodesic simple closed curve with dH .'

�k.C /;L�/ < ı .

Now, let fCig be a sequence of curves in hCiN , such that fCig approaches LC in the
Hausdorff topology. Then f'�k.Ci/g has the same property in .F; '�kC/. Further-
more, .F; '�kC/ is still minimal, for if hDiN � h'�kCiN is such that LC bounds
in .F;D/, then h'kDiN � hCiN and in fact .F; 'kD/ is equivalent to .F; C/ by
minimality.

Finally, we prove the main theorem.

Algebraic & Geometric Topology, Volume 15 (2015)



2390 Robert Ackermann

Theorem 4.5 Let 'W F!F be a pseudo-Anosov with stable lamination LC. Assume
that LC is maximal, that LC bounds in .F; C/, and that .F; C/ is minimal with respect
to this condition. Then there exists k such that 'k extends over a compression body
M built from .F; C/.

Proof Choose M and � W F ! M such that � takes geodesics to geodesics and
preserves the transverse measures of curves. Let ı > 0 be small and choose a decreasing
sequence f�ig with �1 > 0 and �i ! 0 as i !1. Define Ki to be the collection of
all simple closed curves ˛C[ ˛� formed from arcs ˛C � �.LC/ and ˛� � �.L�/,
where m.2�i/� 2r � ��.˛

C/ � 2M.�i/C 2r and �C.˛�/ � �i (here M, m, and
r D r.ı/ are as in Lemma 3.2). After identifying isotopic curves, each Ki is finite
and any sequence fCi j Ci 2 Kig converges to �.LC/. Furthermore, ��1.Ki/ gives
collections of curves in F with the same properties converging to LC .

Now let N be the collection of all pairs .F;D/ which are minimal for LC and also have
a sequence of curves fCi j Ci 2 �

�1.Ki/g all of which are in hDiN . By Lemma 4.3,
N is finite.

Let N 0 be the collection of pairs .F;D/ which are minimal for LC and also have a
curve C in hDiN with dH .C;L�/ < ı . By Lemma 4.4, the set N 0 is nonempty and
by Lemma 3.3 it is contained in N . Applying the techniques of Lemma 4.4 once again
shows that '�tN 0 �N 0 for some t , and thus there is a subset of N invariant under
the action of '�1 . Call this collection N � .

Now, .F; '�sC/ lies in N � and thus for some k we have '�s�khCiN D '�shCiN .
Composing with 'sCk we have hCiN D 'khCiN and so 'k extends over M.

The proof implies the following corollary, though it also follows from results of [4].

Corollary 4.6 Let ' be a pseudo-Anosov with maximal invariant laminations. Then
' extends for at most finitely many inequivalent pairs .F; C/ which are minimal with
respect to the condition that the stable lamination of ' bounds.

Remark The observant reader will note that the theorem above is not quite the same
as the theorem of Biringer, Johnson, and Minsky as we have added the hypothesis that
the invariant laminations of ' are maximal. If they are not, it is necessary to consider a
finite collection of laminations which are formed from LC and L� by adding isolated
leaves which “cut across” the diagonals of principal regions (see [2]). Lemmas 3.2, 3.3,
and 4.4 can be modified to take into account this situation, however it makes their
statements and proofs far more clumsy so we do not do so here.
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