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The fundamental group and Betti numbers
of toric origami manifolds

TARA S HOLM

ANA RITA PIRES

Toric origami manifolds are characterized by origami templates, which are combi-
natorial models built by gluing polytopes together along facets. In this paper, we
examine the topology of orientable toric origami manifolds with coorientable folding
hypersurface. We determine the fundamental group. In our previous paper, we
studied the ordinary and equivariant cohomology rings of simply connected toric
origami manifolds. We conclude this paper by computing some Betti numbers and
cohomology rings in the non-simply connected case.

53D20; 55N91, 57R91

Introduction

Smooth toric varieties and their generalizations are manifolds whose geometry and
topology can be characterized by combinatorial models. The interplay between geome-
try and topology on the one hand and algebra, combinatorics, and discrete geometry
on the other has been integral to our understanding of toric varieties. In this paper,
we study toric origami manifolds, a class of toric manifolds that arise in symplectic
geometry. The geometry of toric origami manifolds is encoded in an origami template: a
collection of (equi-dimensional) polytopes with certain facets identified. In our previous
paper [13], we studied the simplest examples of toric origami manifolds, the acyclic
ones. In this manuscript, we develop new techniques to address the complications that
arise in the cyclic case.

We first study the fundamental group of a toric origami manifold. Building on work of
Masuda and Park [17] and others, we use the combinatorics of the origami template to
determine the fundamental group of a toric origami manifold (Theorem 2-14). The key
trick is to build a simply connected cover of the origami template. As a consequence of
our result, we may deduce that a toric origami manifold is simply connected if and only
if it is acyclic. We can use our result (namely, the form of the fundamental group) to
show the existence of a 4–dimensional manifold equipped with an effective T2 action
which is not a toric origami manifold (Remark 2-18).
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We then turn to the Betti numbers of a toric origami manifold. When M is orientable,
there is a natural decomposition M DMC[M� , where MC\M�ŠZ is the folding
hypersurface. There are situations in which we have control of the cohomology groups
of Z and of MC tM� ŠM nZ . We may then use a Mayer–Vietoris argument to
determine certain Betti numbers of M . In dimension 4, we may determine all Betti
numbers, and hence the Euler characteristic (Theorem 5-2). Again, this allows us to
rule out a possible toric origami structure on a specific 4–manifold which is known to
admit an effective T2 action (Remark 5-3).

The results in this paper were developed simultaneously to those in the recent preprint
of Ayzenberg, Masuda, Park and Zeng [2]. Their techniques rely on the assumption that
proper faces of the orbit space are acyclic. With this hypothesis, the authors are, for the
most part, able to determine the ring structure in cohomology, in terms of equivariant
cohomology. Our results apply to all origami templates, but our cohomological results
are only about Betti numbers.

The remainder of the paper is organized as follows. We outline the basic notions and
notation in Section 1. We compute the fundamental group of a toric origami manifold
in Section 2. In Section 3, we establish certain Betti numbers of components of M nZ ,
and in Section 4, we describe a method to compute the Betti numbers of Z . We
then use those calculations in Section 5 to determine some of the Betti numbers of
toric origami manifolds. In particular, we determine all of the Betti numbers of a
4–dimensional toric origami manifold, in terms of combinatorial data from the origami
template. We conclude with the full details of an example in 6 dimensions, showing
how our techniques are tractable even in higher dimensions, when faced with specific
examples.
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1 Origami manifolds

This is a summary of the background and set-up described in our previous paper [13,
Section 2], where there are more examples and details. We include it again here to set
the notation. There is one new item: toric origami manifolds with boundary, which are
an ingredient in Section 2.

1.1 Symplectic manifolds

We begin with a very quick review of symplectic geometry following [4]. Let M be a
manifold equipped with a symplectic form ! 2�2.M /; that is, ! is closed (d! D 0)
and non-degenerate. In particular, the non-degeneracy condition implies that M must
be an even-dimensional manifold.

Suppose that a compact connected abelian Lie group T D .S1/n acts on M preserv-
ing ! . The action is weakly Hamiltonian if for every vector � 2 t in the Lie algebra t

of T , the vector field

X�.p/D
d

dt

�
exp.t�/ �p

�ˇ̌
tD0

is a Hamiltonian vector field. That is, we require !.X� ; � / to be an exact one-form:1

(1-1) !.X� ; � /D d�� :

Thus each �� is a smooth function on M defined by the differential equation (1-1), so
determined up to a constant. Taking them together, we may define a moment map

ˆW M ! t�; p 7!

�
t ! R
� 7! ��.p/

�
:

The action is Hamiltonian if the moment map ˆ can be chosen to be a T–invariant
map. Atiyah [1] and Guillemin and Sternberg [11] have shown that when M is a
compact Hamiltonian T–manifold, the image ˆ.M / is a convex polytope, and is the
convex hull of the images of the fixed points ˆ.M T /.

For an effective2 Hamiltonian T action on M , dim.T /� 1
2

dim.M /: We say that the
action is toric if this inequality is in fact an equality. A symplectic manifold M with
a toric Hamiltonian T action is called a symplectic toric manifold. Delzant used the
moment polytope to classify symplectic toric manifolds.

A polytope � in Rn is simple if there are n edges incident to each vertex, and it is
rational if each edge vector has rational slope: it lies in Qn�Rn . A simple polytope is

1The one-form !.X� ; � / is automatically closed because the action preserves ! .
2An action is effective if no non-trivial subgroup acts trivially.
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smooth at a vertex if the n primitive vectors parallel to the edges at the vertex span the
lattice Zn �Rn over Z. It is smooth if it is smooth at each vertex. A simple rational
smooth convex polytope is called a Delzant polytope. We may now state Delzant’s
result.

Theorem 1-2 (Delzant [8]) There is a one-to-one correspondence˚
compact toric symplectic manifolds

	
!

˚
Delzant polytopes

	
;

up to equivariant symplectomorphism on the left-hand side and affine equivalence on
the right-hand side.

1.2 Origami manifolds

We now relax the non-degeneracy condition on ! following [5]. A folded symplectic
form on a 2n–dimensional manifold M is a 2–form ! 2 �2.M / that is closed
(d! D 0), whose top power !n intersects the zero section transversely on a subset Z

and whose restriction to points in Z has maximal rank. The transversality forces Z to
be a codimension-1 embedded submanifold of M . We call Z the folding hypersurface
or fold.

Let i W Z ,! M be the inclusion of Z as a submanifold of M . Our assumptions
imply that i�! has a 1–dimensional kernel on Z . This line field is called the null
foliation on Z . An origami manifold is a folded symplectic manifold .M; !/ whose
null foliation is fibrating: � W Z ! B is a fiber bundle with orientable circle fibers
over a compact base B . The form ! is called an origami form and the bundle � is
called the null fibration. A diffeomorphism between two origami manifolds which
intertwines the origami forms is called an origami-symplectomorphism. The definition
of a Hamiltonian action only depends on ! being closed. Thus, in the folded framework,
we may define moment maps and toric actions exactly as in Section 1.1.

An oriented origami manifold M with fold Z may be unfolded into a symplectic
manifold as follows. Consider the closures of the connected components of M nZ , a
manifold with boundary which consists of two copies of Z . We collapse the fibers of
the null fibration by identifying the boundary points that are in the same fiber of the
null fibration of each individual copy of Z . The result, M0 WD .M nZ/[B1[B2 , is a
(disconnected) smooth manifold that can be naturally endowed with a symplectic form
which on M0n.B1[B2/ coincides with the origami form on M nZ . Because this can
be achieved using symplectic cutting techniques, the resulting manifold M0 is called
the symplectic cut space (and its connected components the symplectic cut pieces), and
the process is also called cutting. The symplectic cut space of a nonorientable origami
manifold is the Z2 –quotient of the symplectic cut space of its orientable double cover.
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The cut space M0 of an oriented origami manifold .M; !/ inherits a natural orientation.
It is the orientation on M0 induced from the orientation on M that matches the
symplectic orientation on the symplectic cut pieces corresponding to the subset of
M nZ where !n > 0 and the opposite orientation on those pieces where !n < 0. In
this way, we can associate a C or � sign to each of the symplectic cut pieces of an
oriented origami manifold, as well as to the corresponding connected components of
M nZ .

Remark 1-3 In this paper we restrict to origami manifolds whose fold is coorientable;
that is, the fold has an orientable neighborhood. Note that this does not imply that the
manifold is orientable. Indeed, for an orientable M , the condition that !n intersects
the zero section transversally implies that the connected components of M nZ which
are adjacent in M have opposite signs. Since M is connected, picking a sign for one
connected component of M nZ determines the signs for all other components. As a
consequence, an origami manifold M with coorientable fold is orientable if and only
if it is possible to make such a global choice of signs for the connected components of
M nZ .

Proposition 1-4 [5, Propositions 2.5 and 2.7] Let M be a (possibly disconnected)
symplectic manifold with a codimension two symplectic submanifold B and a symplec-
tic involution  of a tubular neighborhood U of B which preserves B .3 Then there is
an origami manifold zM such that M is the symplectic cut space of zM . Moreover, this
manifold is unique up to origami-symplectomorphism.

This newly created fold Z � zM involves the radial projectivized normal bundle of
B �M , so we call the origami manifold zM the radial blow-up of M through .;B/.
The cutting operation and the radial blow-up operation are in the following sense
inverses of each other.

Proposition 1-5 [5, Proposition 2.37] Let M be an origami manifold with cut space
M0 . The radial blow-up zM0 is origami-symplectomorphic to M .

There exist Hamiltonian versions of these two operations which may be used to see that
the moment map ˆ for an origami manifold M coincides, on each connected compo-
nent of M nZ with the induced moment map ˆi on the corresponding symplectic cut
piece Mi . As a result, the moment image ˆ.M / is the union of convex polytopes �i .

3In the noncoorientable case, the involution must satisfy additional conditions; see [5, Definition 2.23].
In the coorientable case, we have B DB1[B2 and the involution  maps a tubular neighborhood of B1

to one of B2 and vice versa.
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Furthermore, if the circle fibers of the null fibration for a connected component Z of
the fold Z are orbits for a circle subgroup S1 � T , then ˆ.Z/ is a facet of each of
the two polytopes corresponding to neighboring components of M nZ . Let us denote
these two polytopes �1 and �2 . We note that they must agree near ˆ.Z/: there is a
neighborhood V of ˆ.Z/ in Rn such that �1\V D�2\V . The condition that the
circle fibers are orbits is automatically satisfied when the action is toric, and in that
case there is a classification theorem in terms of the moment data.

The moment data of a toric origami manifold can be encoded in the form of an origami
template, originally defined in [5, Definition 3.12]. Definition 1-6 below is a refinement
of that original definition. Following [10, page 5], a graph G consists of a nonempty set
V of vertices and a set E of edges together with an incidence relation that associates
an edge with its two end vertices, which need not be distinct. Note that this allows for
the existence of (distinguishable) multiple edges with the same two end vertices, and
of loops whose two end vertices are equal. The degree of a vertex v 2 V in a graph G

is equal to the number non-loop edges incident to v plus twice the number of loops
incident to v .

We introduce some additional notation: let Dn be the set of all Delzant polytopes in
Rn and En the set of all subsets of Rn which are facets of elements of Dn .

Definition 1-6 An n–dimensional origami template consists of a graph G , called the
template graph, and a pair of maps ‰V W V ! Dn and ‰E W E! En such that:

(1) If e is an edge of G with end vertices u and v , then ‰E.e/ is a facet of each
of the polytopes ‰V .u/ and ‰V .v/, and these polytopes agree near ‰E.e/.

(2) If v is an end vertex of each of the two distinct edges e and f , then ‰E.e/\

‰E.f /D∅.

The polytopes in the image of the map ‰V are the Delzant polytopes of the symplectic
cut pieces. For each edge e , the set ‰E.e/ is a facet of the polytope(s) corresponding
to the end vertices of e . We refer to such a set as a fold facet, as it is the image of the
connected components of the folding hypersurface.4

With these combinatorial data in place, we may now state the classification theorem.

Theorem 1-7 [5, Theorem 3.13] There is a one-to-one correspondence˚
compact toric origami manifolds

	
!

˚
origami templates

	
;

up to equivariant origami-symplectomorphism on the left-hand side, and affine equiva-
lence of the image of the template in Rn on the right-hand side.

4A noncoorientable connected component of the folding hypersurface corresponds to a loop edge e .
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For the purposes of this paper, we need to work with toric origami manifolds with a
certain type of boundary. We begin by defining templates with boundary. To do so,
we now allow our graph G to have dangling edges, that is, an edge that has only one
endpoint. Note that this is different from a loop edge. In particular, for the purpose of
computing the degree of a vertex, a dangling edge counts as a non-loop edge.

Definition 1-8 An n–dimensional origami template with boundary consists of a
graph G , possibly including dangling edges, called the template graph, and a pair
of maps ‰V W V ! Dn and ‰E W E ! En satisfying the conditions (1) and (2) in
Definition 1-6.

Remark 1-9 Note that condition (1) of Definition 1-6 does not impose a constraint
on a dangling edge, but condition (2) may do so.

To define the toric origami manifold with boundary associated to an origami template
with boundary, we may use a construction motivated by Theorem 1-7. In this way,
the boundary of the origami manifold is contained in the fold. More specifically, the
component of the boundary corresponding to the dangling edge e is a principal circle
bundle over the toric symplectic manifold with moment image ‰E.e/. If we collapse
the circle fibers of this fibration, we obtain a toric origami manifold, possibly with
boundary, with the dangling edge e removed from the template graph.

This is not the most general definition of a toric origami manifold with boundary, but it
is the version that we will need in the remainder of the paper.

The orbit space X DM=T of a toric origami manifold, possibly with boundary, is
closely related to the origami template. When M is a toric symplectic manifold,
then the orbit space may be identified with the corresponding Delzant polytope; this
identification is achieved by the moment map. For a toric origami manifold, possibly
with boundary, the orbit space is realized as the topological space obtained by gluing
the polytopes in ‰V .V / along the fold facets as specified by the map ‰E . More
precisely, the orbit space is the quotient

(1-10) X D
G
v2V

.v;‰V .v//
ı
�;

where we identify .u;x/ � .v;y/ if there exists an edge e with endpoints u and v
and the points x D y 2 ‰E.e/ � Rn . Again, this identification is achieved by the
moment map. In simple low-dimensional examples, we can visualize the orbit space
by superimposing the polytopes ‰V .v/ in Rn and indicating which of their facets to
identify. There is a deformation retraction from orbit space X to the template graph.
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There is a natural description of the faces of X . The facets of a polytope are well-
understood. The set of facets of X isG

v2V
F facet of‰V .v/
F not a fold facet

.v;F /
ı
�;

where the equivalence relation is induced by the one in (1-10). The faces of X are
non-empty intersections of facets in X , together with X itself. This notion of face of
the orbit space agrees with Masuda and Panov’s definition [16, Section 4.1].

2 The fundamental group of toric origami manifolds

We now proceed to compute the fundamental group of a toric origami manifold M . As
our manifolds are always connected, we suppress the notation of a basepoint. Key to
this calculation are two lattices that arise in the definition of M by its origami template.

Definition 2-1 The Delzant polytopes are subsets of Rn , and the Delzant condition
refers to a fixed choice of lattice N DZn �Rn . An important sublattice of N is NX ,
the sublattice spanned (over Z) by the normal vectors to the facets of X DM=T .

Masuda and Park have investigated the relationship between the fundamental group
of M , that of X , and N=NX .

Proposition 2-2 [17, Proposition 3.4] Let M be an orientable toric origami manifold
and let NX be as in Definition 2-1. Let q�W �1.M /! �1.X / be the homomorphism
induced from the quotient map qW M !X . Then there is an epimorphism

�W N=NX ��1.X /! �1.M /

such that the composition q� ı �W N=NX ��1.X /! �1.X / is the projection on the
second factor, in particular, ker.�/ is contained in N=NX .

Remark 2-3 As Masuda and Park note, N=NX is trivial, finite cyclic or infinite cyclic.
When N=NX is trivial, then � is an isomorphism.

We aim to show that � is an isomorphism. We now introduce several auxiliary spaces
that will allow us to identify �1.M /. Let zX denote the universal cover of the orbit
space X . Let zM be the toric origami manifold corresponding to zX . Note that zM is
non-compact unless the original template graph is a tree. Then there is a covering map
V W zM !M and an injection V�W �1. zM /! �1.M /.
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Choose a fundamental domain D for the action of the deck transformations on zX and
consider its closure zX0 D D inside zX . This has template graph zG0 , a spanning tree
of the original template graph G for M , together with some extra dangling edges.
More explicitly, for every edge e in G that is not in the spanning tree, there are now
two dangling edges in zG0 , one emanating from each end vertex of e . The manifold
zM0 is an origami manifold with boundary. Note that in the same way that X can be

recovered from zX0 by gluing along some of the facets, and G may be recovered from
zG0 by splicing the dangling edges described above, the origami manifold M can be
recovered from zM0 by appropriately identifying boundary components to each other.

Recall that the fundamental group of X is a free group F` , since X deformation
retracts to the template graph. The Cayley graph of the free group F` is an infinite
regular tree of degree 2`. We may think of zX in terms of this infinite tree, where each
vertex represents a copy of zX0 and the edges represent the facets by which the copies
of zX0 are glued together. We introduce auxiliary spaces zXi , for i � 0, which consist
of the ..2`/iC1�1/=.2`�1/ copies of zX0 that are distance at most i from the identity
copy of zX0 in the Cayley graph of F` . We then may define the origami manifold with
boundary zMi to have template with boundary zXi .

We note that the spaces zXi and the spaces zMi are nested. That is, we have a commu-
tative diagram

M

��

zM
cover
oo

��

� � �� zM2�

��

zM1�

��

zM0�

��

X zX
universal

cover
oo � � �� zX2� zX1� zX0:�

We also include Figure 2.4 below showing X , zX0 , zX1 and zX2 .

We now wish to compute the fundamental groups �1. zMi/ and �1. zM /. Danilov
computed the fundamental group of a normal toric variety associated to a fan [7,
Proposition 9.3]; a detailed proof is given in [6, Theorem 12.1.10].

Theorem 2-5 Let † be a fan in NR and let N† be the sublattice of N generated by
j†j \N . Then the fundamental group of the normal toric variety X† is �1.X†/Š

N=N† .

We begin by computing �1. zMi/.

Lemma 2-6 Let M be an origami manifold, possibly with boundary, such that the
orbit space X is simply connected (or equivalently, the template graph G of M

is a tree). Let NX be the sublattice of N generated by the rays of the multi-fan
corresponding to M . Then the fundamental group �1.M /ŠN=NX .
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Figure 2.4: From left to right: The moment map image of a toric origami
manifold M whose template graph has two vertices and three edges (the
polytopes corresponding to the two vertices are identical and appear super-
imposed); and representations of zX0 , zX1 and zX2 , drawn unfolded and with
shrinking polytopes to prevent too many overlaps. The red boundary facets
correspond to the dangling edges of the template graph. The moment images
of each of these 3 spaces looks like the leftmost figure, but their templates are
all different.

Proof We proceed by induction on the number of vertices in the template graph G .
The base case is when there is a single vertex. Then the manifold M is a symplectic
manifold (possibly with boundary), and the corresponding multi-fan is in fact a fan †.
Then M is homeomorphic to the normal toric variety X† , and the result is a direct
application of Theorem 2-5.

For the induction step, we pick a leaf vertex v of G . Denote the vertex set of G by V

and the edge set E . Given the leaf vertex v , let e be the edge that connects it to the rest
of G and f1; f2; : : :: the (possibly empty) list of dangling edges emanating from v .
Let Star.v/ be the graph with a single vertex v and dangling edges Qe; f1; f2; : : :, where
Qe is the new dangling edge obtained from e . Next, let Star.V n v/ be the graph with
vertex set V n fvg and edge set E n fe; f1; f2; : : :g[ fQeg, where Qe is the new dangling
edge obtained from e .

We now describe a cover of M with two open sets. The first set, A, is a small
neighborhood in M of the toric origami manifold with boundary M1 whose template
graph is Star.v/ and orbit space is X1 . We may choose A so that it deformation
retracts to M1 . By Theorem 2-5, �1.A/ Š N=NX1

. The second set, B , is a small
neighborhood in M of the toric origami manifold with boundary M2 whose template
graph is Star.V n v/ and orbit space is X2 . We may choose B so that it deformation
retracts to M2 . By the induction hypothesis, �1.B/ŠN=NX2

.

We note that the intersection A \ B is the tubular neighborhood of the connected
component Z of the fold Z corresponding to the edge e . It is homeomorphic to the
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toric variety whose fan has rays which are the normals to the facets in the polytope
‰V .v/ that are adjacent to the fold facet ‰E.e/. Thus, we may apply Theorem 2-5 to
deduce that �1.A\B/ŠN=NA\B , where NA\B is the sublattice of N spanned by
the rays described in the previous sentence.

We may apply the Seifert–van Kampen theorem to deduce that

�1.M /ŠN=NX1
�N=NA\B

N=NX2
:

As in [6, proof of Theorem 12.1.10], the final step is to use presentations of the groups
N=NX1

, N=NX2
and N=NA\B in terms of generators and relations to conclude that

N=NX1
�N=NA\B

N=NX2
DN=.NX1

CNX2
/DN=NX :

This completes the proof.

We may now compute �1. zMi/, then subsequently �1. zM /.

Corollary 2-7 Let zMi be the origami manifold with boundary with orbit space zXi , as
described above. For each i �0, the fundamental group is �1. zMi/ŠN=N zXi

DN=NX .

Proof The only missing ingredient is to notice that N zXi
DNX for each i .

Corollary 2-8 Let zM be the toric origami manifold with boundary with orbit space
zX , as described above. The fundamental group is �1. zM /ŠN=NX .

Proof We may describe zM as a direct limit zM D lim
��!
zMi , so we apply Corollary 2-7

and [15, Exercise 2.4.11] to deduce

�1. zM /Š lim
��!

�1. zMi/Š lim
��!

N=NX DN=NX :

We next show that N=NX is a subgroup of �1.M /.

Corollary 2-9 Let M be the toric origami manifold with orbit space X , let zX be
the universal cover of X , and zM the toric origami manifold with boundary with orbit
space zX , as described above. Then there is an injection N=NX ,! �1.M /.

Proof As noted above, we have a covering map V W zM !M and therefore there is
an injection V�W �1. zM / ,! �1.M /. The result now follows from Corollary 2-8.

The group N=NX must be trivial or cyclic. When it is trivial, � provides an isomor-
phism �1.M / Š �1.X / in Proposition 2-2. We now tackle the two separate cases
when N=NX is finite and when it is isomorphic to Z.
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Proposition 2-10 Let M be the toric origami manifold with orbit space X . If N=NX

is a finite cyclic group, then the surjection � from Proposition 2-2 is an isomorphism.

Proof We know that �1.M /Š .N=NX��1.X //= ker.�/, and that the kernel ker.�/�
N=NX . Because N=NX is finite, we have an isomorphism �1.M / Š Z=kZ�F` ,
where F` Š �1.X / is a free group on ` generators. The image of N=NX under the
injection V� must be in the Z=kZ factor, since F` is free. The only way for the finite
group N=NX to be a subgroup of Z=kZŠ .N=NX /= ker.�/ is for ker.�/Df1g. This
completes the proof.

Finally, we turn to the case where N=NX Š Z. This situation turns out to be quite
rigid.

Proposition 2-11 The quotient N=NX Š Z if and only if the toric origami manifold
M of dimension 2n is equivariantly homeomorphic to T2 �Y , where Y D YF is a
toric symplectic manifold of dimension 2n�2, the torus T2 is a toric origami manifold.

Proof ()) We begin by assuming that N=NX ŠZ. This means that NR=.NX /RŠ

R, and so U D .NX /R is a hyperplane in NR D Rn . Let u be a non-zero vector
orthogonal to U .

We fix a choice of a single polytope P D‰V .v/ in the moment image, and fix F a
fold facet of P , that is, F D ‰E.e/ for some edge e in the template. Let � denote
the normal vector to F . Let F1; : : : ;Fs be the facets of P adjacent to F , and let
�1; : : : ; �s denote the normal vectors to the facets. Because P is a Delzant polytope,
�; �1; : : : ; �s span N . The vectors �1; : : : ; �s must span a subspace of U . Combined
with the fact that P is Delzant, we may conclude that �1; : : : ; �s span an .n� 1/–
dimensional subspace, so they must span all of U . Each hyperplane �?i contains
R �u. Thus, the affine hyperplanes Hi that define the facets Fi all contain an affine
translation of R �u. This means that the intersection of affine half-spaces

Ts
iD1 H

C
i

used to define part of P can be described as an infinite prism
s\

iD1

HCi D F CR �u;

where C denotes the Minkowski sum. There cannot be another non-fold facet of P

because the Delzant condition would force that facet to have a normal vector pointing
out of U , contradicting the hypothesis that N=NX Š Z. Therefore, there are only
fold facets remaining, and because fold facets must be isolated, there can be only one
additional fold facet zF capping off P . Note that the infinite prism zFCR �u is identical
to F CR �u, and indeed F and zF have the same combinatorial type. This description
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as a subset of an infinite prism is valid for each polytope in the image of ‰V . Moreover,
because adjacent polytopes must agree near their shared fold facet, the infinite prism is
identical in each case. This implies that the moment image of M is contained in the
infinite prism F CR �u. Moreover the template graph must be a cycle.

For our fixed choice of P and F , we have a hyperplane UF D �
? Š Rn�1 , with

lattice UF \N . Let Y D YF denote the toric symplectic manifold of dimension 2n�2

corresponding to the Delzant polytope F �UF . We now consider the closure Mj in M

of a connected component Wj of M nZ . This corresponds to a vertex vj in the template
graph, and hence a polytope Pj D‰V .vj /. We want to show that Mj is equivariantly
homeomorphic to YF �S1 � Œaj ; bj �. To do so, we will think of constructing a toric
symplectic manifold in the topological manner, by taking a quotient of P �T by an
equivalence relation to get YP D P �T= �. In this way, if Pj D F � Œaj ; bj �, then
we get a splitting of the symplectic cut piece Cj D YF �YŒaj ;bj � D YF �S2

Œaj ;bj �
, and

hence Mj D YF �S1 � Œaj ; bj �.

For the general case, we proceed as follows. Let hW F � Œaj ; bj �! Pj be a linear
homeomorphism, preserving faces, and consider the homeomorphism h� 1Tn W F �

Œaj ; bj � � Tn ! Pj � Tn . The closure Mj of Wj is obtained from Pj � Tn by
collapsing the appropriate S1 � Tn fibers over those facets of Pj which are in the
image h.@F � Œaj ; bj �/. Note that the symplectic cut piece Cj corresponding to Wj

would be obtained by further collapsing the appropriate S1 � Tn fibers over the
remaining facets of Pj , namely h.F � faj g/ and h.F � fbj g/. In the topological
construction, the circle subgroup of Tn that we collapse over a particular facet is
indicated by the normal vector to that facet. Because the homeomorphism h does
not change the normal vectors to the facets in the image h.@F � Œaj ; bj �/, the map
h� 1Tn induces an equivariant homeomorphism between YF �S1 � Œaj ; bj � and Mj ,
as desired.

Thus, we have seen that the closure Mj of each connected component of M nZ is
a manifold with boundary homeomorphic to YF �S1 � Œaj ; bj �, with two boundary
components that correspond to the two fold facets of the polytope Pj . The whole
manifold M is obtained from the collection of Mj by identifying them along their
boundaries as prescribed by ‰E . Thus, we may deduce that M is equivariantly
homeomorphic to the union of the YF � S1 � Œaj ; bj � along their boundaries, and
therefore is equivariantly homeomorphic to YF �T2 .

(() If M is equivariantly homeomorphic to T2 �Y with Y toric symplectic and
T2 toric origami, then its moment image is as described in the paragraphs above: see
[5, Figure 14] for the moment image of a toric origami T2 . Thus we must have that
N=NX Š Z.
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Definition 2-12 In the case where the quotient N=NX Š Z and M Š T2 � Y , we
call the toric origami manifold prismatic.

Corollary 2-13 If a toric origami manifold M is prismatic, then its fundamental
group is

�1.M /D Z2:

Proof The fundamental group is a homeomorphism invariant, and �1.T
2 � Y / D

�1.T
2/��1.Y /, where �1.T

2/DZ2 and Y is simply connected because it is a toric
symplectic manifold.

We now have all the necessary ingredients to compute �1.M /.

Theorem 2-14 Let M be an orientable toric origami manifold with orbit space X ,
and let N and NX be as in Definition 2-1. Then the fundamental group of M is

�1.M /ŠN=NX ��1.X /:

Proof By Remark 2-3, Proposition 2-10 and Corollary 2-13, the only thing missing is
to check that for M prismatic, the fundamental group of the orbit space is �1.X /DZ.
This is true because X deformation retracts onto the template graph, which as remarked
in the proof of Proposition 2-11 is a cycle.

In particular, this allows us to deduce that Masuda and Park’s map � [17] is an
isomorphism.

Corollary 2-15 The epimorphism �W N=NX ��1.X /!�1.M / from Proposition 2-2
is an isomorphism.

Proof By Remark 2-3, Proposition 2-10, we are only left with checking that � is
an isomorphism when M is prismatic. Recall that in that case N=NX D Z and
�1.X /D Z.

We know that �1.M /Š .N=NX ��1.X //= ker.�/Š Z2= ker.�/, and that ker.�/�
N=NX Š Z. Since �1.M /D Z2 , the only possibility is that the kernel is the trivial
subgroup ker.�/D f1g.

Another consequence of Theorem 2-14 is a characterization of simply connected
toric origami manifolds. The following result indicates that the key assumption in our
previous work [13], namely that the origami template be acyclic, is a natural topological
hypothesis.
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Corollary 2-16 A toric origami manifold is simply connected if and only if its origami
template is acyclic.

Proof If M is a toric origami manifold and has at least one cycle in its template graph,
then there must be at least one infinite cyclic factor in �1.M / and M not simply
connected.

If the template graph is acyclic, then the �1.X / factor of �1.M / is trivial. In addition,
any polytope corresponding to a leaf of the template graph has at least one vertex not
contained in a fold facet. By the Delzant condition at that vertex, the lattice quotient
N=NX is trivial. Thus �1.M /D f1g and M is simply connected.

In Table 2.17 below, we show examples where N=NX takes on all possible types of
group.

M S2 �S1 �S1 Š S2 �T2 S3 �S1 L.kI 1/�S1

ˆ.M /

N=NX Z f1g Z=kZ

�1.M / Z�Z Z Z=kZ�Z

Table 2.17: Examples of the possible types of N=NX . In each case, the
template graph has two vertices, connected to one another by two edges. Each
quotient space has two facets, with facet normals indicated in the figures.

Remark 2-18 The form of the fundamental group of a toric origami manifold given
by Theorem 2-14 excludes certain manifolds from admitting such a structure. For
example, a non-trivial finite cyclic group Z=kZ cannot occur as the fundamental group
of a toric origami manifold (as noted in [17, proof of Corollary 3.6] for the non-simply
connected case). To verify this, we note that if M is a toric origami manifold and
has at least one cycle in its template graph, then there must be at least one infinite
cyclic factor in �1.M /. On the other hand, if the template graph is acyclic, then M

is simply connected by Corollary 2-16. Orlik and Raymond introduced manifolds
so-called “of type L” as some of the building blocks for 4–manifolds admitting toric
actions [19]. More precisely, [20, Theorem VI.1] states that every orientable compact
smooth 4–manifold that admits an effective smooth action of T2 with at least one
fixed point is diffeomorphic to a connected sum of copies of S4 , CP2 , CP2 , S2 �S2 ,
S1�S3 , Ln and L0n for n� 2. The fundamental group of the manifolds of type L is
�1.Ln/D �1.L

0
n/DZ=nZ (see [20, page 296]), which implies that they do not admit

a toric origami structure. It is easy to see that all the other building blocks do admit
toric origami structures.
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3 The cohomology of M n Z

In this section we obtain results about the cohomology of open toric symplectic mani-
folds of the form Y nB , where Y is a compact toric symplectic manifold and B is a
(not necessarily connected) codimension two toric symplectic submanifold of Y . This
is exactly the form that the connected components of M nZ take. In Section 5, we
will assemble these pieces in a Mayer–Vietoris sequence and deduce facts about the
cohomology of M .

In this and the following section, we write

ˇi.X /D rank.Hi.X IZ// and ˇi.X /D rank.H i.X IZ//

to denote the i th homology and cohomology Betti numbers of the space X , respectively.

We begin by stating a result about the Euler characteristic of a manifold Y nB . This
fact is known in greater generality; see for example [9, Section 4.5].

Proposition 3-1 The Euler characteristics of Y and B are additive:

�.Y nB/D �.Y /��.B/:

Proof We consider the long exact sequence for the pair .Y;Y n B/, with integer
coefficients understood:

(3-2) � � � !H�.Y nB/!H�.Y /!H�.Y;Y nB/!H��1.Y nB/! � � �

By [12, Proposition 3.46], noting that B is compact and locally contractible and Y is
an orientable manifold, and by Poincaré duality for the manifold B , we can replace the
relative terms:

(3-3) H�.Y;Y nB/ŠH 2n��.B/ŠH��2.B/:

For simplicity of bookkeeping, we write ˇ�2.B/ D ˇ�1.B/ D 0, since these ranks
correspond, via the Poincaré duality in (3-3), to

H�2.B/ŠH 2n.B/D 0 and H�1.B/ŠH 2n�1.B/D 0:

Taking the alternating sum of the ranks of the terms in the sequence (3-2), we obtain

0D

2nX
kD0

.�1/k Œˇk.Y nB/�ˇk.Y /Cˇk�2.B/�

D

2nX
kD0

.�1/kˇk.Y nB/�
2nX

kD0

.�1/kˇk.Y /C

2n�2X
jD0

.�1/j ǰ .B/

D �.Y nB/��.Y /C�.B/:

Algebraic & Geometric Topology, Volume 15 (2015)



The fundamental group and Betti numbers of toric origami manifolds 2409

We now prove a lemma related to [12, Proposition 3.46] that is a dual version of what is
commonly called Alexander–Lefschetz duality. We adapt the very explicit proof given
by Møller [18, Theorem 4.92] to this dual version, taking into account our special case
that B is a submanifold of Y , suitably oriented.

Lemma 3-4 There is an isomorphism H j .Y;Y nBIZ/ŠH2n�j .BIZ/.

Proof Let U be an open neighborhood of B in Y . We begin by recalling the
particulars of cap products. Both Y and B are Z–orientable manifolds, and so we
have the following maps induced by taking a cap product with appropriate orientation
classes.

¬ For the compact manifold Y , we have orientation class �Y 2H2n.Y IZ/, which
gives

H j .Y IZ/
�Y \�
�! H2n�j .Y IZ/:

 For the manifold with boundary Y nU , we have the relative orientation class
�Y nU 2H2n.Y nB;U nBIZ/; which gives

H j .Y nBIZ/
�Y nU\�

�! H2n�j .Y nB;U nBIZ/:

® For the compact manifold B , we have the relative orientation class �B 2

H2n.U;U nBIZ/: By pre-composing with the excision isomorphism, we have

H j .Y;Y nBIZ/ŠH j .U;U nBIZ/
�B\�
�! H2n�j .U IZ/:

We use these maps to produce a diagram, with integer coefficients,

��� // H j�1.Y nB/ //


��

H j .Y;Y nB/ //

®
��

H j .Y / //

¬
��

H j .Y nB/ //


��

���

��� // H2n�.j�1/.Y nB;U nB/ // H2n�j .U / // H2n�j .Y / // H2n�j .Y nB;U nB/ // ���

where the top row is the long exact sequence of the pair .Y;Y nB/, and the bottom row
is the long exact sequence of the pair .Y;U / where the terms Hk.Y;U / are replaced by
Hk.Y nB;U nB/ via excision. This diagram commutes: the “up to sign” discrepancy
in [18, proof of Theorem 4.92] disappears because we may choose Y and B to be
compatibly oriented.
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We next take a limit over the poset U of neighborhoods U containing B to obtain a
limit diagram

(3-5)

� � � // H j�1.Y nB/ //

·
��

H j .Y;Y nB/ //

¸
��

H j .Y / //

¶
��

H j .Y nB/ //

·
��

� � �

� � � // H2n�.j�1/.Y nB/ // H2n�j .B/
J
// H2n�j .Y / // H2n�j .Y nB/ // � � �

which still commutes, and the bottom sequence remains exact under the limit. We
observe that the map J is induced by inclusion. We also note that ¶ and · are
Poincaré duality isomorphisms. We now apply the five lemma to deduce that ¸ is an
isomorphism, completing the proof.

We return to the long exact sequence of the pair .Y;Y nB/, which is the top row in
the diagram (3-5), with integer coefficients understood. The toric symplectic manifold
Y has cohomology concentrated in even degrees, up to degree 2n. The space B is a
disjoint union of toric symplectic manifolds, therefore its homology is concentrated in
even degrees up to degree 2n� 2. Then by Lemma 3-4 the long exact sequence splits
into 4–term exact sequences, with integer coefficients,

(3-6) 0!H 2k�1.Y nB/!H 2k.Y;Y nB/
'k
�!H 2k.Y /!H 2k.Y nB/! 0:

Thus, we may always identify H 2k�1.Y nB/Š ker.'k/ and H 2k.Y nB/Š coker.'k/.

Let us now look more carefully at the map 'k . We have a diagram

(3-7)

H 2k.Y;Y nB/
'k
//

¸
��

H 2k.Y /

¶
��

H2n�2k.B/
J
//

Š PD
��

H2n�2k.Y /

Š PD
��

H 2k�2.B/
z'k

// H 2k.Y /;

where all vertical maps are isomorphisms, and we define z'k to be the map that makes
the bottom square commute. Recall from the comments after (3-5) that J is the
natural map induced by the inclusion i W B ,! Y . The homology groups of Y and B
are isomorphic to the Chow homology groups of those varieties. The Chow groups of
smooth toric varieties are very explicitly understood: they are spanned by classes, one
for each T–invariant subvariety. A subvariety in B may be regarded as a subvariety
of Y , and so the map J maps the corresponding class on B to the class on Y .
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When we apply Poincaré duality, we have very explicit presentations of the cohomology
rings H�.Y IZ/ and H�.BIZ/ as the face rings of the corresponding polytopes,
modulo linear relations. That is, when the moment polytope �Y for Y has facets
F1; : : : ;Fd , we may describe

(3-8) H�.Y IZ/Š
ZŒy1; : : : ;yd �˝Q

i2I yi

ˇ̌ T
i2I Fi D∅C linear terms

˛ ;
where each yi has degree 2, and is the Poincaré dual of the codimension 2 toric
symplectic submanifold corresponding to the facet Fi . The linear terms are deter-
mined by the geometry of the normal vectors to the facets. We note, for bookkeeping
purposes, that there are precisely n D 1

2
dim.Y / independent linear relations. That

is, rank.H 2.Y // D d � n. Equation (3-8) is the content of the Danilov–Jurkiewicz
theorem, which is carefully described in [6, Theorem 12.4.4].

For a connected component Bs � B , the moment image �Bs
of Bs is one of the

facets Fs . The facets of �Bs
are each an intersection Fs \Fj , and so as above, we

may describe

H�.BsIZ/Š
ZŒbj1

; : : : ; bjm
�˝Q

i2I bji

ˇ̌ T
i2I .Fji

\Fs/D∅C linear terms
˛ :

Because the yi and bi are Poincaré duals to explicit submanifolds of Y and Bs

respectively, and because J is induced by inclusion, we may derive an explicit formula
for z'k . For the component Bs � B and a single monomial

Q
i2I bji

2H 2k�2.BsIZ/,

z'k

�Y
i2I

bji

�
D ys �

Y
i2I

yji
:

This is not a ring map, as expected.

The following definition extends the notion in Definition 2-12 of prismatic origami
manifolds to a wider context. Let A be an open toric symplectic manifold with open
moment polytope �A . The lattice N�A

is the sublattice of N spanned by the normal
vectors to the facets of �A .

Definition 3-9 An open toric symplectic manifold A with moment polytope �A is
prismatic if the quotient of lattices N=N�A

is Z.

We now turn to z'1W H
0.BIZ/ ! H 2.Y IZ/. The group H 0.BIZ/ Š Zr has one

generator for each connected component of B , each corresponding to a facet in �Y . The
group H 2.Y IZ/ has one generator for each facet of �Y , modulo linear relations. By
our explicit description above, the map z'1 takes the generator of H 0.B/ corresponding
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to a facet Fs of the polytope �Y to the generator ys 2H 2.Y IZ/ corresponding to
the same facet. We may use our explicit description of z'1 to determine ker.z'1/ Š

H 1.Y nBIZ/ in general.

Lemma 3-10 The kernel of the map z'1W H
0.BIZ/!H 2.Y IZ/ is ker.z'1/Š Z if

Y nB is prismatic and trivial otherwise.

Proof Without loss of generality, we may assume that B corresponds to the disjoint
union of facets F1; : : : ;Fr of �Y . Let u1; : : : ;ud be the primitive outward pointing
normals to all the facets of �Y . Then

H 0.BIZ/D Zx1˚ � � �˚Zxr and H 2.Y IZ/D Zy1˚ � � �˚Zyd=J;

where J is the ideal of linear relations, which are
Pd

iD1hv;uiiyi , for all v 2 N .
Henceforth, we will abuse notation, and let yi denote the equivalence class yi CJ 2

H 2.Y IZ/.

The map z'1 is given by z'1.xi/D yi . Therefore an element
Pr

iD1 aixi 2H 0.BIZ/
is in the kernel of z'1 if and only if there exists a v 2N such that

rX
iD1

aiyi D

dX
iD1

hv;uiiyi :

Equivalently, v 2N must satisfy

(3-11)
�
hv;uii D ai for i D 1; : : : ; r;

hv;uii D 0 for i D r C 1; : : : ; d:

The second half of (3-11) means that v 2 .N�Y nB/
? .

If Y nB is not prismatic, then the lattice quotient N=N�Y nB is either trivial or finite
cyclic, which implies that .N�Y nB/

? is trivial and so ker.z'1/ is trivial as well.

If Y nB is prismatic, then .N�Y nB/
?ŠZ and a generator v of .N�Y nB/

? will provide
a non-zero element

Pd
iD1hv;uiiyi 2J , and therefore gives a generator

Pr
iD1hv;uiixi

of ker.z'1/.

We can now prove the main result of the section.

Theorem 3-12 Let Y be a 2n–dimensional toric symplectic manifold with moment
polytope �Y , and let d denote the number of facets of �Y . Let B be a non-empty
codimension 2 toric symplectic submanifold with r connected components. We may
compute the following Betti numbers of Y nB .
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Y nB prismatic Y nB not prismatic

ˇ0.Y nB/ 1 1

ˇ1.Y nB/ 1 0

ˇ2.Y nB/ d � n� 1 d � n� r

ˇ2n�1.Y nB/ 1 r � 1

ˇ2n.Y nB/ 0 0

Proof We begin by noting that if Y n B is prismatic then B necessarily has r D 2

connected components. Using this, we will determine all rows simultaneously in the
prismatic and non-prismatic cases.

(0) ˇ0.Y nB/ The manifold Y nB is connected, so ˇ0.Y nB/D 1.

(1) ˇ1.Y nB/ Recall that ker.z'1/ŠH 1.Y nBIZ/. Lemma 3-10 says ˇ1.Y nB/D1

when Y nB is prismatic, and ˇ1.Y nB/D 0 otherwise.

(2) ˇ2.Y nB/ We now identify the terms of (3-6) in the case k D 1:

0!H 1.Y nB/!H 2.Y;Y nB/
ŠH 2.B/Š Zr

!H 2.Y /Š Zd�n
!H 2.Y nB/! 0:

A dimension count proves that

ˇ2.Y nB/D ˇ1.Y nB/C d � n� r:

Substituting ˇ1.Y nB/, and rD2 in the prismatic case, completes the calculation.

(3) ˇ2n.Y nB/ We note that Y nB is homotopy equivalent to a manifold X with
boundary Z . Poincaré duality for manifolds with boundary implies that

H 2n.Y nBIZ/ŠH 2n.X IZ/ŠH0.X;ZIZ/:

We note that relative cohomology H0.X;ZIZ/Š zH0..X=ZIZ/, and this is 0

because X=Z is connected.

(4) ˇ2n�1.Y nB/ We now identify the terms of (3-6) in the case k D n:

0!H 2n�1.Y nB/!H 2n.Y;Y nB/
ŠH 2n�2.B/Š Zr

!H 2n.Y /Š Z!H 2n.Y nB/D 0! 0:

We have the rightmost equality H 2n.Y nB/D 0 by the previous computation.
A dimension count now proves that ˇ2n�1.Y nB/D r � 1. Substituting r D 2

in the prismatic case completes the calculation.
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We note that when nD 2, Theorem 3-12 gives all the Betti numbers of Y nB . Even in
higher dimensions, in specific examples, it is often tractable to compute the various
maps z'k , and to compute all of the Betti numbers, as well as torsion in the cohomology
groups H�.Y nBIZ/. We conclude the section with such an example.

Example 3-13 Let Y be the toric variety CP1
�CP1

�CP1 blown up at one fixed
point. This has the moment polytope shown in Figure 3.14.

F0

F1

F2

F3

F4

F5

F6

x

yz

Figure 3.14: The moment map image for the T 3 action on CP1
�CP1

�CP1

blown up at one fixed point. The polytope is a cube truncated at one vertex.

In our calculations below, we will use the linear relations to simplify the presentations
of the cohomology rings; that is, we will use them to reduce the number of degree 2

generators. We have

H�.Y IZ/D
ZŒy0;y1;y2;y3;y4;y5;y6��

y1y2; y3y4; y5y6; y0y1; y0y3; y0y5; y2y4y6;

�y0Cy3�y4; �y0Cy5�y6; �y0Cy1�y2

�
Š

ZŒy0;y2;y4;y6��
y2

0
�y2

2
;y2

0
�y2

4
;y2

0
�y2

6
;

y2
0
Cy0y2;y

2
0
Cy0y4;y

2
0
Cy0y6;y2y4y6

� :
We next compute the cohomology of B :

H�.B0IZ/D
ZŒb2; b4; b6�

hb2b4b6 ; b4� b6 ; b2� b4i
Š

ZŒb2�

hb3
2
i
;

H�.B1IZ/D
ZŒb3; b4; b5; b6�

hb3b4 ; b5b6 ; b3� b4 ; b5� b6i
Š

ZŒb4; b6�

hb2
4
; b2

6
i
:
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Putting these two calculations together, and using x0 and x1 as degree-zero dummy
variable placeholders, we have

H�.BIZ/D x0

ZŒb2�

hb3
2
i
˚x1

ZŒb4; b6�

hb2
4
; b2

6
i
:

We know that z'k maps bi to yi , and xi to yi . It is only a matter of bookkeeping to
compute

H 0.Y nBIZ/D Z;

H 1.Y nBIZ/D ker.z'1/D 0;

H 2.Y nBIZ/D coker.z'1/D spanfy4 ; y6g Š Z2;

H 3.Y nBIZ/D ker.z'2/D 0;

H 4.Y nBIZ/D coker.z'2/D spanfy4y6g Š Z;

H 5.Y nBIZ/D ker.z'3/D spanfx0b2
2 �x1b4b6g Š Z;

H 6.Y nBIZ/D coker.z'3/D 0:

4 The cohomology of Z

In this section we describe a method for computing the cohomology groups of con-
nected components of the fold Z . It suffices to make computations one connected
component Z at a time. Let T 	 Y denote a toric symplectic manifold and B a
T–invariant connected codimension two symplectic submanifold of Y . The unit sphere
bundle �1.B � Y / of the normal bundle �.B � Y / is equivariantly homeomorphic
to the circle bundle S1 ,! Z ! B . We will use the ordinary and equivariant Gysin
sequences for this bundle to describe an explicit way to determine the Betti numbers
of Z . In Section 5, we will combine this with results of Section 3 to compute the Betti
numbers of a toric origami manifold in some cases.

The action T 	 Y is toric with moment polytope �Y �Rn , and the submanifold B
is fixed by a circle S1 � T . The residual action TB D T=S1 	 B is a toric action
with moment polytope �B . Order the facets F1; : : : ;Fd so that FmC1 is the moment
image of B , and F1; : : : ;Fm are the facets of �Y with non-empty intersection with
FmC1 . Thus, the facets of �B are precisely F1 \FmC1; : : : ;Fm \FmC1 . We will
study the T–equivariant cohomology rings of Z and B . Because S1 	 Z is free, we
have ring isomorphisms

(4-1) H�T .Z/ŠH�T=S1.Z=S1/ŠH�TB
.B/;

so we will also need an explicit description of H�TB
.B/.
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The equivariant cohomology of a toric variety is given by the face ring of its moment
polytope, so we have two face ring presentations

H�T .Y IZ/Š
ZŒy1; : : : ;yd �˝Q

i2I yi

ˇ̌ T
i2I Fi D∅

˛ ;
H�TB

.BIZ/Š
ZŒb1; : : : ; bm�˝Q

i2I bi

ˇ̌ T
i2I .Fi \FmC1/D∅

˛ ;
where yi and bi are the degree-two generators Poincaré dual to the codimension two
symplectic submanifolds corresponding to the facets of �Y and �B respectively.
We are abusing notation slightly here. The indexing set I on the left is a subset of
f1; : : : ; dg and on the right a subset of f1; : : : ;mg.

The action T 	 B is not effective, since S1 fixes B (pointwise). As vector spaces,

(4-2) H�T .B/ŠH�TB
.B/˝H�S1.pt/;

over any coefficient ring. To find a ring presentation, we consider the restriction map

H�T .Y IZ/!H�T .BIZ/:

This map is easily seen to be surjective, for example by an equivariant version of [13,
Lemma 3.4]. The classes yi for i �mC 2 are in the kernel of this restriction map;
this can be seen by recognizing that the restriction of yi to the fixed points restricts
to 0 at the fixed points in B . The remaining generators y1; : : : ;ymC1 are non-zero
in H�T .BIZ/, and are multiplicative generators. Abusing notation slightly, we call the
images of those classes b1; : : : ; bmC1 respectively. Keeping track of which relations
contribute, we find

(4-3) H�T .BIZ/Š
ZŒb1; : : : ; bmC1�˝Q

i2I bi

ˇ̌ T
i2I .Fi \FmC1/D∅

˛ :
With this presentation, the restriction map H�T .Y IZ/!H�T .BIZ/ sends yi to bi for
values of i D 1; : : : ;mC 1, and sends yi to 0 for i >mC 1. We may think of bmC1

as the generator of H�
S1.pt/ in the decomposition (4-2); it is not involved in any of

the residual multiplicative relations.

The natural map
H�T .BIZ/!H�TB

.BIZ/

has kernel

(4-4)
�mC1X

iD1

hui ;umC1ibi

�
;

where ui is the outward pointing primitive normal to Fi in Rn .
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We now turn to the ordinary and equivariant Gysin sequences for the circle bundle

S1 ,! Z
�
�! B:

Both the ordinary and equivariant cohomology of B are concentrated in even degrees, so
both sequences split into four-term sequences. They fit into the following commutative
diagram with coefficients in Z:

0 // H
2j�1
T .Z/

��
//

��

H
2j
T .B/

[eT
//

��

H
2jC2
T .B/ ��

//

��

H
2jC2
T .Z/ //

��

0

0 // H 2j�1.Z/
��
// H 2j .B/

[e
// H 2jC2.B/

��
// H 2jC2.Z/ // 0,

where eT denotes the equivariant Euler class of the Gysin sequence, e denotes the
ordinary Euler class, �� is the push-forward map of � W Z!B , and �� is the pullback
of � . We note that the term H

2j�1
T .Z/D 0, because the right-hand side of (4-1) is

concentrated in even degrees. Thus we have

(4-5)
0 //

��

H
2j
T .B/

[eT
//

��

H
2jC2
T .B/ ��

//

��

H
2jC2
T .Z/ //

��

0

0 // H 2j�1.Z/
��
// H 2j .B/

[e
// H 2jC2.B/

��
// H 2jC2.Z/ // 0.

We note that the circle bundle � W Z! B is equivariantly homeomorphic to the unit
sphere bundle �1.B � Y / in the normal bundle �.B � Y /, so the Euler class and
equivariant Euler class of the circle bundle are the same as the first Chern class and
equivariant first Chern class of �.B�Y /. Thus, in the presentation (4-3), the equivariant
Euler class of the bundle Z! B is precisely the class eT D bmC1 . In the top row of
(4-5), we see that eT D bmC1 is a non-zero divisor. As noted above, we may think of
bmC1 as the generator of H�

S1.pt/ in the decomposition (4-2).

We now turn to the ordinary Euler class. By naturality of characteristic classes, the
ordinary Euler class e is the image of bmC1 in H�.B/. In terms of the generators
b1; : : : ; bm of H�.B/, by (4-4) we have

bmC1 D�

mX
iD1

hui ;umC1i

humC1;umC1i
bi :

The right-hand side of the above expression appears to have rational coefficients;
because the Euler class is an integral class, we may deduce that it must have integer
coefficients.

We conclude this section with a few remarks about how these calculations may be used
to understand H�.Z/.
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Remark 4-6 We have explicit presentations for H�T .B/ and H�.B/, as well as all of
the maps in (4-5). Thus, in order to determine the Betti numbers of Z in any particular
example, one can pose the question, “what are the ranks of ker.[e/, coker.[e/ and
coker.[eT /?” to a program like Macaulay2.

Remark 4-7 In some special cases, it may be possible to determine the ring structure
for H�.Z/. For example, if Z is a good contact toric manifold, or more generally, if
bmC1 2H 2.B/ is a Lefschetz class, one can apply the results of Luo [14] to determine
the cohomology ring H�.Z/. We do not know if there is a general combinatorial
criterion in terms of the polytope which guarantees that bmC1 is a Lefschetz class.
The manifold Z is a good contact toric manifold when dim.Z/� 5, and if the facets
adjacent to �B form a cone so that we can obtain �B by chopping off a vertex of that
cone. An example and non-example are shown in Figure 4.8.

Figure 4.8: Left: a facet for which Z is good contact toric. The adjacent
facets extend to a cone whose vertex we can chop to obtain �B . Right: a
facet for which Z is not good contact toric (with the specified fold form !).
The adjacent facets do not form a cone.

Remark 4-9 The manifold Z is an almost contact manifold. Indeed, let i W Z ,!M

be the inclusion. If we let v denote a nowhere vanishing section of Z ! B , and
˛ 2 �1.Z/ a 1–form defined by �v˛ D 1, then ˛ ^ .i�!/n�1 is a volume form
on Z . Borman, Eliashberg and Murphy have shown that every almost contact manifold
admits an overtwisted contact structure z̨ such that d z̨ is conformally equivalent to
the original 2–form i�! [3]. It seems very unlikely that their construction could be
made equivariant.

5 The cohomology of toric origami manifolds

In this section, we study the cohomology of toric origami manifolds. There are a
number of cases where we can already deduce a number of facts about the cohomology
of a toric origami manifold. We begin by reviewing these.

The first case is when the template graph is acyclic: this is the topic of our first paper
[13]. In that case, the cohomology of M is concentrated in even degrees and the
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equivariant cohomology is given by a GKM-type description as detailed in [13], or
a Stanley–Reisner face ring [16, Theorem 7.7]. Furthermore, the ring structure on
H�.M IZ/ can be determined completely from the discrete geometry of the orbit space,
as described in [16, Corollary 7.8].

The second case where the cohomology ring is determined is when M is prismatic.
Then by Proposition 2-11, M is homeomorphic to Y � T2 , for a toric symplectic
manifold Y . Therefore the cohomology ring is determined by the Künneth formula,
even over Z since the cohomology of each factor is torsion-free.

We now focus on the non-prismatic case, where we can obtain some partial results
even for the cyclic case. We will use a Mayer–Vietoris sequence to obtain the Betti
numbers of an arbitrary non-prismatic 4–dimensional toric origami manifold. We first
note that in general,

H 0.M IZ/ŠH 2n.M IZ/D Z

because M is a connected 2n–dimensional manifold. Less trivially, H 2n�1.M IZ/Š
H1.M IZ/ is the abelianization of �1.M /. By Theorem 2-14, it is thus N=NX �Z` ,
where ` D 1CR�L is the number of linearly independent cycles in the template
graph, which has L vertices and R edges. We also note that the universal coefficients
theorem then guarantees that H 1.M IZ/Š Z` and that the torsion in H 2.M IZ/ is
precisely N=NX .

We now proceed with our Mayer–Vietoris sequence. We enumerate the connected
components A1; : : : ;AL of M nZ and cover M by open neighborhoods of each Ai .
These open neighborhoods may be chosen so that they deformation retract to the Ai ,
and their intersections deformation retract onto components of Z . The Mayer–Vietoris
sequence, with integer coefficients, is

(5-1) 0 // H 0.M / //

LM
iD1

H 0.Ai/ // H 0.Z/

// H 1.M / //

LM
iD1

H 1.Ai/ // H 1.Z/

// H 2.M / //

LM
iD1

H 2.Ai/ // H 2.Z/ // � � �

The techniques of Section 3 often enable us to calculate the ranks of the termsLL
iD1H k.Ai/. As discussed in Section 4, the connected components of Z are S1 –

bundles over compact toric symplectic manifolds of dimension 2n� 2, and we may
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use our explicit description of the ordinary and equivariant Gysin sequences of this
bundle to compute the Betti numbers of each connected component of Z . In some
cases, we may perform each of these calculations explicitly. It may then be possible to
determine the Betti numbers of M . In particular, when 2nD 4, we can complete all
of these steps. We will also include an example in dimension 2nD 6.

Theorem 5-2 Let M be a 4–dimensional toric origami manifold. If M is prismatic,
then it is homeomorphic to S2 �T2 and its Betti numbers are

ˇ0.M /D ˇ4.M /D 1 and ˇ1.M /D ˇ2.M /D ˇ3.M /D 2:

If M is non-prismatic, let L be the number of vertices and R the number of edges of
its template graph, and M T denote the set of (isolated) fixed points. Then

ˇi.M /D

8<:
1 i D 0; 4;

1CR�L i D 1; 3;

#.M T /C 2R� 2L i D 2:

In particular, in both cases the Euler characteristic is �.M /D #.M T /.

Proof In the prismatic case, the result is a consequence of Proposition 2-11 and the
Künneth formula. In this case, �.M /D #.M T /D 0.

We now turn to the non-prismatic case. Let X DM=T be the orbit space of M . The
fixed points M T correspond to vertices of X (not to be confused with vertices of the
template graph!).

We first consider the terms
LL

iD1 H�.Ai/ in (5-1). We begin by noting that when
dim.M /D 4, Theorem 3-12 determines all the Betti numbers of each piece Ai . Let P

be the number of prismatic Ai . Note that for 2–dimensional polytopes the number of
facets (ie edges!) equals the number of vertices. A careful application of Theorem 3-12
now gives us

NX
iD1

ˇ1.Ai/D P;

NX
iD1

ˇ2.Ai/D #fvertices of X gC 2R� 2LCP;

NX
iD1

ˇ3.Ai/D 2R�L;

NX
iD1

ˇ4.Ai/D 0:

We now turn to the terms H�.Z/ in (5-1). When dim M D 2n D 4, each Z is an
S1 –bundle over a toric symplectic 2–sphere, and is therefore diffeomorphic to S1�S2 ,
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to S3 or to a 3–dimensional lens space L D L.kI 1/. The Betti numbers of these
spaces are

ˇj .S1
�S2/D

�
1 if j D 0; 1; 2; 3;

0 otherwise;
and ˇj .S3 or L/D

�
1 if j D 0; 3;

0 otherwise.

We do know that ˇ0.M /D ˇ4.M /D 1 and ˇ1.M /D ˇ3.M /D 1CR�L. Thus,
the only group in the sequence (5-1) whose rank we do not know is H 2.M /. We
proceed by dimension count. Let Q be the number of connected components of Z

diffeomorphic to S1 �S2 . Taking the alternating sum of the dimensions of the groups
in the Mayer–Vietoris sequence (5-1), we have

1�LCR�.1CR�L/CP �QCˇ2.M /�
�
#fvertices of X gC2R�2LCP

�
CQ�.1�RCL/C.2R�L/�RC1D 0

if and only if
ˇ2.M /D #fvertices of X gC 2R� 2L;

completing the proof.

Remark 5-3 An edge (1–dimensional face) of the orbit space X of a toric origami
manifold M is either is a loop or has two end vertices. In the first case the edge is
the moment image of a 2–torus, in the second it is the moment image of a sphere,
with the end vertices being the image of the north and south poles of that sphere. As
a consequence, X can never have exactly one vertex, and M can never have exactly
one fixed point. Thus the Euler characteristic of a toric origami manifold cannot be
equal to 1.

The manifold CP2#.S1�S3/, made up of the building blocks mentioned in Remark 2-18,
has Euler characteristic

�
�
CP2 # .S1

�S3/
�
D �.CP2/C�.S1

�S3/��.S4/D 3C 0� 2D 1

and therefore does not admit a toric origami structure.

Remark 5-4 The second Betti number of a toric origami manifold bears a resemblance
to that of a toric symplectic manifold. We have just seen that for a 4–dimensional toric
origami manifold M , setting `D 1CR�L,

ˇ2.M /D #fvertices in M=Tg� 2C 2`:

For a toric symplectic manifold Y of dimension 2n,

(5-5) ˇ2.Y /D #ffacets in Y=Tg� n:
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In dimension 4, we can rewrite (5-5) as

ˇ2.Y /D #fvertices in Y=Tg� 2:

Thus these two descriptions are the same, up to a correction for the rank ` of �1.M=T /.
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F1
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F3

F5

F4

F6

x
yz x

yz
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F5

F4
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x
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Figure 5.6: Left: the template graph of a toric origami manifold M1 . Center:
the moment image of the toric origami manifold M1 . Right: the template
graph of a toric origami manifold M2 obtained from taking two copies of
M1 and gluing their orbit spaces along 4 pairs of non-folded facets.

Example 5-7 Let M1 be the toric origami manifold described in Figure 5.6, left and
center. This information completely determines the template and therefore the manifold.
Its template graph has 4 vertices and 4 edges, and the manifold has 8 fixed points.
Using Theorem 5-2 we conclude that the Betti numbers of this manifold are

ˇ0.M1/D ˇ
1.M1/D ˇ

3.M1/D ˇ
4.M1/D 1 and ˇ2.M1/D 8:

The orbit space of M1 has 4 non-folded facets, each corresponding to a symplectic
2–sphere embedded in M1 . Let M2 be the toric origami manifold obtained by taking
two copies of M1 and gluing them together along each of the 4 pairs of symplectic
2–spheres with the same moment image. The resulting template graph is on the right-
hand side of Figure 5.6 and has 8 vertices and 12 edges. The vertices and edges that
appear in each of the two concentric square rings of this template graph correspond to
the two copies of M1 , the remaining 4 edges in the template graph correspond to the
new connected components of the fold. The manifold M2 thus created has no fixed
points. Using Theorem 5-2 we obtain its Betti numbers:

ˇ0.M2/D ˇ
4.M2/D 1; ˇ1.M2/D ˇ

3.M2/D 5; ˇ2.M2/D 8:

Example 5-8 We now turn to a higher-dimensional example for which the computa-
tions are still tractable and for which we can obtain all the Betti numbers. Let M be
obtained from two copies of the manifold examined in Example 3-13, glued together
along the two agreeing pairs of facets marked in red.

Algebraic & Geometric Topology, Volume 15 (2015)



The fundamental group and Betti numbers of toric origami manifolds 2423

x
yz

F0

F1

F2

F3

F5

F4

F6

x
yz

F0

F1

F2

F3

F4

F5

F6

x

yz

Figure 5.9: Left: the template graph of the manifold M . Right: each vertex
of the template correponds to a copy of the toric symplectic manifold with
moment image a truncated cube (the same as in Figure 3.14). One edge of
the template graph corresponds to gluing together the pair of facets F0 , the
other edge to gluing together the pair of facets F1 .

Most of the terms in the Mayer–Vietoris sequence with integer coefficients (5-1) are
known, the

LL
iD1 H�.Ai/ terms from Example 3-13 and the H�.Z/ terms from

direct computation. Indeed, Z is the disjoint union Z D S5t .S2�S2�S1/, the first
with moment image the facet F0 and the second with moment image the facet F1 in
Figure 5.9, and therefore

H k.ZIZ/D

�
Z2 for k D 0; 2; 3; 5;

Z for k D 1; 4:

Furthermore, we know that

H 0.M IZ/DH 6.M IZ/D Z

because M is a 6–dimensional connected manifold and that

H 1.M IZ/D Z and H 5.M IZ/D Z

because �1.M / D Z. Taking an alternating sum of the ranks of the groups in the
sequence (5-1), we obtain the remaining Betti numbers of M :

ˇ0.M /D ˇ1.M /D ˇ3.M /D ˇ5.M /D ˇ6.M /D 1 and ˇ2.M /D ˇ4.M /D 2:
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