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Resolving rational cohomological dimension
via a Cantor group action

MICHAEL LEVIN

By a Cantor group we mean a topological group homeomorphic to the Cantor set.
We show that a compact metric space of rational cohomological dimension n can be
obtained as the orbit space of a Cantor group action on a metric compact space of
covering dimension n . Moreover, the action can be assumed to be free if nD 1 .

55M10, 22C05; 54F45

1 Introduction

Throughout this paper we assume that maps are continuous and spaces are separable
metrizable. We recall that a compactum means a compact metric space. By the
dimension dim X of a space X we mean the covering dimension.

Let G be an abelian group. The cohomological dimension dimG X of a space X is the
smallest integer n such that the Čech cohomology H nC1.X;AIG/ vanishes for every
closed subset A of X . Clearly dimG X � dim X for every abelian group G . Exploring
connections between cohomological and covering dimensions is one of the central
topics in Dimension Theory. Let us mention a few important results in this direction. By
the classical result of Alexandroff dim X DdimZ X if X is finite-dimensional. Solving
a long-standing open problem, Dranishnikov [2] constructed an infinite-dimensional
compactum X with dimZ X D 3. Edwards’ famous cell-like resolution theorem (see
Edwards [10] and Walsh [16]) asserts that every compactum X with dimZ X D n is
the image of an n–dimensional compactum under a cell-like map. A map is cell-like
if its fibers are cell-like compacta and a compactum is cell-like if any map from it to
a CW complex is null-homotopic. Edwards’ theorem was extended in Levin [14] to
rational cohomological dimension: every compactum X with dimQ X D n, n� 2, is
the image of an n–dimensional compactum under a rationally acyclic map. A map
is rationally acyclic if its fibers are rationally acyclic compacta and a compactum is
rationally acyclic if its reduced Čech cohomology with rational coefficients vanishes.
Note that by the Begle–Vietoris theorem a cell-like map and a rationally acyclic map
cannot raise the integral and the rational cohomological dimensions respectively. This
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paper is devoted to establishing another connection between rational cohomological
and covering dimensions.

Theorem 1.1 Let X be a compactum with dimQ X D n. Then there is an n–
dimensional compactum Z and an action of a Cantor group � on Z such that
X DZ=� . Moreover, the action of � can be assumed to be free if nD 1.

By a Cantor group we mean a topological group homeomorphic to the Cantor set.
Since a Cantor group is a pro-finite group one can easily derive from basic properties
of transformation groups (see Bredon [1, Chapter III, Theorem 7.2]) that for an action
of a Cantor group � on a compactum Z we have dimQ Z=� � dimQ Z and hence
dimQ Z=� � dim Z . On the other hand Dranishnikov and Uspenskij proved:

Theorem 1.2 [7] Let f W Z!X be a 0–dimensional map of compacta Z and X .
Then dimG Z � dimG X for every abelian group G .

Thus for an action of a Cantor group � on a compactum Z we have that dimQ Z=�D

dimQ Z and hence Theorem 1.1 provides a characterization of rational cohomological
dimension in terms of Cantor group actions.

Let us also note that, in general, the action of � in Theorem 1.1 cannot be free for
n > 1. Indeed, consider any compactum Y with dim Y > dimQ Y D n� 1 and let
X be the cone over Y . Then dim X D dim Y C 1 > dimQ Y C 1 D dimQ X D n.
Now assume that X is the orbit space of a free action of a Cantor group � on a
compactum Z . Since X is contractible, one can easily observe that Z DX �� and
hence dim Z D dim X > dimQ X D n.

A result closely related to Theorem 1.1 can be derived from the work of Dranishnikov
and West [8]. For a prime p we denote by Zp D Z=pZ the p–cyclic group and by
ZN

p D
Q1

iD1.Zp/i the product of countably many copies of Zp .

Theorem 1.3 [8] Let X be a compactum. Then for every prime p there is a com-
pactum Y and an action of the group � D ZN

p on Y such that dimZp
Y � 1 and

X D Y=� .

Consider any compactum X . By Theorem 1.3 for every prime p there is a compactum
Yp and an action of �p D ZN

p on Yp such that dimZp
Yp � 1 and X D Yp=�p . Let


pW Yp!X be the projection, P the set of prime numbers and Y D
Q

p2P Yp . Denote
by Z the pull-back of the maps 
p , p 2 P , which is the subset of Y consisting of
the points y D .yp/ 2 Y such that 
p.yp/D 
q.yq/ for every p; q 2 P . Consider the
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group � D
Q

p2P ZN
p and the pull-back action of � on Z defined by gy D .gpyp/

for g D .gp/ 2 � and y D .yp/ 2Z , and notice that X DZ=� . Since the orbits of
�p on Yp are 0–dimensional, we get that the orbits of � on Z are 0–dimensional
and the projection of Z to Yp is 0–dimensional for every p . By Theorem 1.2 we
get that dimQ Z � dimQ X and dimZp

Z � 1 for every p 2 P . Then, by Bockstein’s
inequalities (see Kuz’minov [12] and Dranishnikov [5]), dimZ Z �maxfdimQ X; 2g

and we obtain

Theorem 1.4 (Derived from [8]) Let X be a compactum with dimQ X D n. Then
there is a compactum Z and an action of the group � D

Q
p2P ZN

p on Z such that
dimZ Z �maxfn; 2g and X DZ=� .

Theorem 1.4 motivates the following problem.

Problem 1.5 Can the group � in Theorem 1.1 be assumed to be abelian or even the
product of countably many finite cyclic groups?

Let us finally mention that the interest in Cantor group actions is inspired by the
Hilbert–Smith conjecture which claims that no Cantor group acts effectively on a
manifold. Smith [15] reduced the conjecture to the actions of the groups of p–adic
integers Ap , p 2P , and Yang [17] showed that if Ap acts effectively on a manifold M

then dimZ M=Ap D dim M C2 and if Ap acts on a finite-dimensional compactum Z

then dimZ Z=Ap � dim ZC 3. Theorem 1.1 shows that the dimensional restrictions
imposed by Ap do not apply to general Cantor groups even in the following extreme
form: There is a free action of a Cantor group on a one-dimensional compactum
raising the integral cohomological dimension of the orbit space to infinity. Indeed, take
an infinite-dimensional compactum X with dimQ X D 1 and dimZ X D1. Then
Theorem 1.1 produces a one-dimensional compactum Z and a free action of a Cantor
group � on Z such that X DZ=� . This example can be considered as a complement
to the example of Dranishnikov and West in [8] of an action of ZN

p on a 2–dimensional
compactum raising the dimension of the orbit space to infinity.

2 Preliminaries

Let us recall basic definitions and results in extension theory and cohomological
dimension that will be used in the proof of Theorem 1.1.

The extension dimension of a space X is said to be dominated by a CW complex
K , written e-dim X � K , if every map f W A! K from a closed subset A of X
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extends over X . Note that the property e-dim X �K depends only on the homotopy
type of K . The covering and cohomological dimensions can be characterized by the
following extension properties: dim X � n if and only if the extension dimension
of X is dominated by the n–dimensional sphere Sn , and dimG X � n if and only
if the extension dimension of X is dominated by the Eilenberg–MacLane complex
K.G; n/. The extension dimension shares many properties of covering dimension. For
example: if e-dim X �K then for every A�X we have e-dim A�K , and if X is a
countable union of closed subsets whose extension dimension is dominated by K then
e-dim X �K . Let us list a few more properties.

Theorem 2.1 [9] Let X be a space and let K and L be CW complexes. If X DA[B

is the union of subspaces A and B such that e-dim A�K and e-dim B �L then the
extension dimension of X is dominated by the join K �L.

Theorem 2.2 [4] Let K and L be countable CW complexes and X a compactum
such that e-dim X � K �L. Then X decomposes into subspaces X D A[B such
that e-dim A�K and e-dim B �L.

Proposition 2.3 [13] Let X be a compactum and K a simply connected CW com-
plex such that K has only finitely many non-trivial homotopy groups and dim�i .K /X �

n for every i > 0. Then e-dim X �K .

Theorem 2.4 [3] Let X be a compactum and K a CW complex such that e-dim X �

K . Then dimHn.K /X � n for every n> 0.

By a Moore space M.Q; n/ we will mean the model which is the infinite telescope
of a sequence of maps from Sn to Sn of all possible non-zero degrees. Note that
M.Q; 1/DK.Q; 1/.

Proposition 2.5 Let X be a compactum. Then dimQ X � n if and only if e-dim X �

M.Q; n/.

Proof By Theorem 2.4 the condition e-dim X �M.Q; n/ implies dimQ X � n. Let
us show that dimQ X � n implies e-dim X �M.Q; n/. The case nD 1 is obvious
since M.Q; 1/DK.Q; 1/. Assume that n> 1. Then M.Q; n/ is simply connected
and, since Hi.M.Q; n// D 0 for i > 0; i ¤ n, and Hn.M.Q; n// D Q, we have
�i.M.Q; n//D 0 for 0< i < n and �i.M.Q; n//D �i.M.Q; n//˝Q for i � n [11,
Theorem 9.3]. Thus, by Bockstein’s theorem [5; 12], dim�i .M.Q;n//X � dimQ X � n

for every i � n. Note that M.Q; n/ is the direct limit of its finite subtelescopes which
are homotopy equivalent to Sn . Then, since �i.S

n/ is finite for i � 2n, we have that
�i.M.Q; n// is torsion for i � 2n and hence �i.M.Q; n//D �i.M.Q; n//˝QD 0

for i � 2n. Thus, by Proposition 2.3, e-dim X �M.Q; n/.
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Corollary 2.6 Let X be a compactum. Then dimQ X � n, n > 1 if and only if X

decomposes into X DA[B such that dimQ A� 1 and dim B � n� 2.

Proof Note that M.Q; n/ is homotopy equivalent to †n�1M.Q; 1/ D Sn�2 �

M.Q; 1/ and the corollary follows from Proposition 2.5 and Theorems 2.1 and 2.2.

Proposition 2.7 Let X be a compactum. Then dimQ X � n if and only if for every
map f W A!Sn from a closed subset A of X to a sphere Sn we have that f followed
by a map of non-zero degree from Sn to Sn extends over X .

Proof The proof follows from Proposition 2.5 and an easy adjustment of the proof of
[6, Proposition 3.13].

By a partial map from a compactum X to a CW complex K we mean a map f W F!K

from a closed subset F of X to K . A collection F of partial maps from X to K is
said to be representative if for every partial map f 0W F 0!K there is a map f W F!K

in F such that F 0 � F and f restricted to F 0 is homotopic to f 0 . Let X be the
inverse limit of a sequence of compacta Xn with bonding maps !nC1W XnC1!Xn .
We say that a partial map f W F!K from Xi to K is extendable in the inverse system
if there is j > i such that for the map !i

j D !iC1 ı!iC2 ı � � � ı!j W Xj !Xi we have
that !i

j restricted to .!i
j /
�1.F / and followed by f extends over Xj . The proof of the

following proposition is simple and left to the reader.

Proposition 2.8 Let X be a compactum and K a CW complex.

(1) If K is a countable CW complex then there is a countable representative collec-
tion of partial maps from X to K .

(2) Let X be the inverse limit of compacta Xn and let Fn be a representative
collection of partial maps from Xn to K such that for every n and every f in
Fn we have that f is extendable in the inverse system. Then e-dim X �K .

3 Proof of Theorem 1.1

Proposition 3.1 Let .K;L/ be a pair of finite simplicial complexes with K being
connected,  W S1! S1 a covering map, and �W L! S1 a map such that � followed
by  extends to a map gW K! S1 . Consider a component M of the pull-back of the
maps g and  , and the projection ˇM W M !K . Then ˇM restricted to ˇ�1

M
.L/ and

followed by � extends over M .
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Proof Clearly ˇM is a covering map. Let mD deg and assume that Zm DZ=mZ
acts freely on S1 so that  is the projection to the orbit space S1 D S1=Zm . Then
the action of Zm on S1 induces the corresponding free action of Zm on the pull-back
Z of the maps g and  .

Consider a component L0 of L and let N 0 be a component of ˇ�1
M
.L0/. Clearly ˇM

restricted to N 0 and L0 is a covering map. Let us show that ˇM is one-to-one on N 0 .
Take a map ˛W S1! L0 . Note that � ı ˛ is a lifting of  ı � ı ˛ via  and hence
the map .˛; � ı˛/W S1!Z �K �S1 is a lifting of ˛ via the projection of Z to K .
Then .˛; � ı˛/ followed by (the action of) an element of Zm provides a lifting of ˛
to N 0 and hence ˇM is one-to-one on N 0 .

Let �W M ! S1 be the projection to S1 . Note that � restricted to N 0 is a lifting (via
the map  ) of ˇM restricted to N 0 and followed by  ı� . Then the maps �jN 0 and
� ı .ˇM jN

0/ coincide up to the action of Zm on S1 and hence they are homotopic.
Thus � extends up to homotopy the map ˇM restricted to N 0 and followed by � , and
hence ˇM restricted to ˇ�1

M
.L/ and followed by � extends over M . The proposition

is proved.

Suppose that X;Y and Y 0 are compacta, and � and � 0 are finite groups acting on
compacta Y and Y 0 respectively, such that Y=�DX DY 0=� 0 . Let 
 W Y !X DY=�

and 
 0W Y 0!X D Y 0=� 0 be the projections and let ˛W � 0!� be an epimomorphism
and ˇW Y 0 ! Y a surjective map. We say that the actions of � and � 0 agree with
˛ , ˇ if 
 0 D 
 ı ˇ and ˇ.gy/ D ˛.g/ˇ.y/ for every g 2 � 0 and y 2 Y 0 . Given a
closed subset Z of Y and a map f W F ! S1 from a closed subset F of Z we say
that ˇ resolves f over Z if ˇ restricted to ˇ�1.F / and followed by f extends over
ˇ�1.Z/.

Proposition 3.2 Suppose that X and Y are compacta, A is a closed connected subset
of X with dimQ A� 1, and � is a finite group acting on Y with X D Y=� such that:

� 
�1.A/ is connected and � acts freely on 
�1.A/, where 
 W Y !X D Y=�

is the projection.

Then for every map f W F!S1 from a closed subset F of 
�1.A/ to a circle S1 there
are a compactum Y 0 , a finite group � 0 acting on Y 0 with X D Y 0=� 0 , an epimorphism
˛W � 0! � , and a surjective map ˇW Y 0! Y such that:

� 
 0�1.A/ is connected and � 0 acts freely on 
 0�1.A/, where 
 0W Y 0 ! X D

Y 0=� 0 is the projection.
� The actions of � and � 0 agree with ˛ and ˇ .
� ˇ resolves f over 
�1.A/.

Algebraic & Geometric Topology, Volume 15 (2015)



Resolving rational cohomological dimension via a Cantor group action 2433

Proof Clearly dimQ 

�1.A/� 1 and hence, by Proposition 2.7, there is a covering

map  W S1 ! S1 such that  ı f extends over 
�1.A/. Recall that � is finite,
the action of � is free on 
�1.A/, and 
�1.A/ is compact and connected. Then
one can approximate the action of � over a closed neighborhood B of A through
a free action of � on a finite connected simplicial complex K and a surjective map
�Z W Z D 


�1.B/! K such that �Z commutes with the actions of � . Taking B

sufficiently close to A we may assume that  ıf extends over Z , and (the diameters
of) the fibers of �Z are as small as we wish. Then, we may also assume that the
map f factors up to homotopy through �Z restricted to F and a map �W L! S1

from a subcomplex L of K such that �Z .F /�L and � followed by  extends to
a map gW K! S1 . Let �W B D Z=� !K=� be the map induced by �Z and let

K W K!K=� be the covering projection.

In this proof we always consider a covering map as a pointed map and identify the
fundamental group of the covering space with the subgroup of the fundamental group of
the base space obtained under the induced monomorphism of the fundamental groups.
Thus �1.K/ is a normal subgroup of �1.K=�/ with �1.K=�/=�1.K/ D � . Let
M be a connected component of the pull-back of g and  and let ˇM W M ! K

be the projection. Clearly ˇM is a covering map. Then �1.M / is a subgroup of
�1.K/ of finite index and hence there is a normal subgroup G of �1.K=�/ of finite
index such that G is contained in �1.M /. Consider covering maps 
 0

K
W K0!K=�

and ˇK W K
0 ! K from a covering space K0 with �1.K

0/ D G . Then ˇK factors
through ˇM and � 0 D �1.K=�/=G acts on K0 so that K0=� 0 DK=� and for the
induced epimorphism ˛W � 0 ! � we have that the actions of � and � 0 on K and
K0 respectively agree with ˇK and ˛ . Denote by Z0 the pull-back of 
 0

K
and �,

consider the pull-back action of � 0 on Z0 , and let 
 0
Z
W Z0 ! B D Z=� D Z0=� 0

and ˇZ W Z
0!Z be the projections induced by 
 0

K
and ˇK respectively.

Take an open neighborhood V of A in X such that V � B , and write U D 
�1.V /

and U 0 D 
 0�1
Z

.V /D ˇ�1
Z
.U /. Set Y 0 to be the disjoint union of Y nU and U 0 and

ˇW Y 0! Y to be the function defined by the identity map on Y nU and by the map
ˇZ on U 0 . Turn Y 0 into a compactum by preserving the topologies of Y nU and U 0

and declaring the function ˇ to be the quotient map. Extend the action of � 0 on U 0

over Y 0 by setting gy D ˛.g/y for y 2 Y 0 nU 0 D Y nU and g 2 � 0 . It is easy to see
that the action of � 0 is well-defined, X D Y 0=� 0 , and the actions of � and � 0 on Y

and Y 0 respectively agree with ˛ and ˇ .

By Proposition 3.1 the map ˇM restricted to ˇ�1
M
.L/ and followed by � extends

over M . Recall that ˇK factors through ˇM and hence ˇK restricted to ˇ�1
K
.L/ and

followed by � extends over K0 . Then ˇZ restricted to ˇ�1
Z
.F / and followed by f
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extends over Z0 and hence ˇ restricted to ˇ�1.F / and followed by f extends over
ˇ�1.
�1.A//; that is, ˇ resolves f over 
�1.A/.

The only conclusion of the proposition that is not obtained yet is the connectedness of

 0�1.A/. This can be achieved as follows. Denote AY D 


�1.A/ and A0
Y
D 
 0�1.A/.

Take a closed neighborhood WX of A such that the actions of � and � 0 are free
on WY D 


�1.WX / and W 0
Y
D 
 0�1.WX / respectively. Then ker˛ acts freely on

W 0
Y

so that WY DW 0
Y
= ker˛ and ˇ restricted to W 0

Y
and WY is the projection to

the orbit space. Thus both ˇ restricted to W 0
Y

and WY and ˇ restricted to A0
Y

and
AY are open maps. Then for every non-empty clopen (in the subspace topology) set
��A0

Y
we have that ˇ.�/ is clopen in AY and, since AY is connected, ˇ.�/DAY .

Fix a component C of A0
Y

. Then the fact that a component of a compactum is the
intersection of clopen sets implies that ˇ.C / D AY . Consider the global stabilizer
� 0

C
D fg 2� 0 W gC DC g of C . It is easy to see that the facts that C is a component of

A0
Y

and ˇ.C /DAY imply that ˛.� 0
C
/D� . Also note that, since ˇ.C /DAY and � 0

is finite, there are only finitely many components of A0
Y

. Take an open neighborhood
U 0

C
of C in W 0

Y
so that U 0

C
is invariant under � 0

C
, and U 0

C
is so close to C that U 0

C

is also open in Y 0 and gU 0
C

does not intersect U 0
C

if g 2 � n� 0
C

. Then UC D ˇ.U
0
C
/

is open in Y and U 0
C

is closed in ˇ�1.UC /.

Define the compactum Y 0
C

to be the quotient space of ˇ�1.Y nUC /[U 0
C

by identifying
the points of ˇ�1.Y nUC / with Y nUC according to the map ˇ . Extend the action
of � 0

C
on U 0

C
to Y 0

C
by setting gy D ˛.g/y for y 2 Y 0

C
nU 0

C
D Y nUC and g 2 � 0

C
.

Let ˇC W Y
0
C
! Y be the map induced by ˇ and let ˛C be the restriction of ˛ to � 0

C
.

Now we replace Y 0; � 0; ˇ and ˛ by Y 0
C
; � 0

C
, ˇC and ˛C respectively and get that


 0�1.A/D C is connected. One can easily verify that the other properties required in
the proposition are preserved under this replacement.

Proposition 3.3 Let X be a compactum and A a closed subset of X with dimQ A�1.
Then there is a compactum Y and an action of a Cantor group � on Y such that
X D Y=� and for the projection 
 W Y ! X we have that dim 
�1.A/ � 1 and the
action of � is free on 
�1.A/.

Proof Note that without loss of generality one can replace X by any larger compactum
and A by any larger closed subset of dimQ � 1. Also note that by adding to A a set of
dim� 1 we still preserve dimQ � 1. Take a Cantor set C embedded into an interval
I and a surjective map �W C !A, and consider the compactum obtained by attaching
to I the mapping cylinder of � . Then attaching this compactum to X through the set
A we enlarge A to a connected set by adding a subset of dimD 1 and hence we may
assume that A is connected.
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Set Y1DX and �1D f1g. We will construct for every n a compactum Yn and a finite
group �n acting on Yn such that X D Yn=�n , 
�1

n .A/ is connected and �n freely
acts on 
�1

n .A/ where 
nW Yn! X D Yn=�n is the projection. The construction is
carried out by induction in the following manner. We take a map (that will be specified
later) fnW Fn! S1 from a closed subset Fn of 
�1

n .A/, and apply Proposition 3.2
to construct YnC1 , �nC1 , an epimorphism ˛nC1W �nC1! �n , and a surjective map
ˇnC1W YnC1! Yn such that the actions of �n and �nC1 agree with ˛nC1 and ˇnC1 ,
and ˇnC1 resolves fn over 
�1

n .A/.

Denote Y D lim
 ��
.Yn; ˇn/ and � D lim

 ��
.�n; ˛n/. Clearly � is a compact 0–dimensional

group, � acts on Y such that X D Y=� , and � acts freely on 
�1.A/, where

 W Y !X D Y=� is the projection. Let us show that at each step of the construction
the map fn can be chosen in a way that guarantees that dim 
�1.A/� 1.

Once Yi is constructed, choose, by (1) of Proposition 2.8, a countable representative
collection Fi of partial maps from AiD


�1
i .A/ to S1 and fix a surjection �i W N!Fi .

Take any bijection � W N!N �N such that for every n and �.n/D .i; j / we have
i � n. Consider the inductive step of the construction from n to nC 1 and take
f D �i.j / 2 Fi with .i; j /D �.n/. Recall that i � n and hence the collection Fi is
already defined. Denote ˇi

n D ˇiC1 ı � � � ıˇnW Yn! Yi for i < n, ˇn
n D idW Yn! Yn ,

and FnD .ˇ
i
n/
�1.F /, where F is the domain of f , and let fnD f ıˇ

i
njFnW Fn!S1

be the map we use at the inductive step of the construction. Then fn is extendable
in the inverse system 
�1.A/ D lim

 ��
.An; ˇnjAn/ and hence f is extendable in this

inverse system as well. Thus, by (2) of Proposition 2.8, e-dim 
�1.A/�S1 and hence
dim 
�1.A/� 1.

If � is a finite group then replacing both Y and � by the products Y �C and � �C

with any Cantor group C we may assume that � is a Cantor group.

Proof of Theorem 1.1 The case n D 0 is trivial. The case n D 1 follows from
Proposition 3.3. Assume that n�2. By Corollary 2.6 decompose X into X DA[B so
that dimQ A�1 and dim B�n�2. Enlarging B to a Gı –subset with the same covering
dimension and replacing A by the smaller set X nB we may assume that A is � –
compact. Represent A as the union AD

S1
iD1 Ai of compacta Ai . By Proposition 3.3

there is a compactum Yi and a Cantor group �i acting on Yi such that X D Yi=�i

and for the projection 
i W Yi!X we have that dim 
�1
i .Ai/� 1. Let Y D

Q1
iD1 Yi

and let Z � Y be the pull-back of the maps 
i . Then � D
Q1

iD1 �i is a Cantor group
and for the pull-back action of � on Z we have that X D Z=� . Let 
 W Z ! X

be the projection. Note that 
 is a 0–dimensional map. Also note that for every i

the map 
 factors through the 0–dimensional projection pi W Z ! Yi and the map

i W Yi!X . Thus, by Hurewicz’s theorem, we have that dim 
�1.B/� dim B � n�2.
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Since 
�1.Ai/D p�1
i .
�1

i .Ai//, we also have dim 
�1.Ai/� dim 
�1
i .Ai/� 1 and

hence dim 
�1.A/ � 1. Thus dim Z � dim 
�1.A/C dim 
�1.B/C 1D n. Recall
that dimQ Z D dimQ X D n and hence dim Z D n.
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