
msp
Algebraic & Geometric Topology 15 (2015) 2479–2515

Moving basepoints and the induced automorphisms
of link Floer homology

SUCHARIT SARKAR

Given an l–component pointed oriented link .L;p/ in an oriented three-manifold Y ,
one can construct its link Floer chain complex CFL.Y;L;p/ over the polynomial
ring F2ŒU1; : : : ;Ul � . Moving the basepoint pi 2Li once around the link component
Li induces an automorphism of CFL.Y;L;p/ . We study a (possibly different)
automorphism of CFL.Y;L;p/ defined explicitly in terms of holomorphic disks; for
links in S3 , we show that these two automorphisms are the same.

57M25; 57M27, 57R58

1 Introduction

Heegaard Floer theory is a collection of invariants, originally defined for pointed
oriented closed three-manifolds by Ozsváth and Szabó [12; 13] and subsequently
extended for pointed oriented knots (by Ozsváth and Szabó [11] and Rasmussen [17])
and pointed oriented links by Ozsváth and Szabó [15] in oriented three-manifolds.
For each of these objects, the theory comes in several variants; in each variant, one
constructs a chain complex in the graded homotopy category over some graded ring;
furthermore, for each object and in each variant, the mapping class group of the object
acts on the chain complex.

In this paper, we will work with links. Initially, we will study links in arbitrary oriented
three-manifolds; later on, we will concentrate on links in S3 . Let us first specify the
version of link Floer theory that we will study: it is the associated graded object of the
minus version of the fully filtered theory over the base ring F2ŒU1; : : : ;Ul �. We choose
to work with the associated graded object and not the (more general) fully filtered theory
because the former object is easier to study and also because the proof of Theorem 1.1
is simpler. For simplicity again, we only work with the minus version CFL� and not all
three of the standard versions CFL� , CFLC , CFL1 (the general object that we could
have studied being the inclusion �W CFL� ,!CFL1 ); however, we can construct CFL1

and CFLC formally from CFL� as CFL� ˝F2ŒU1;:::;Ul � F2ŒU1;U
�1
1
; : : : ;Ul ;U

�1
l
�

and the mapping cone of CFL� ! CFL� ˝F2ŒU1;:::;Ul � F2ŒU1;U
�1
1
; : : : ;Ul ;U

�1
l
�,
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respectively. We work over the ring F2ŒU1; : : : ;Ul � and not the more universal ring
ZŒU1; : : : ;Ul � because most of the variants of link Floer theory are only defined over the
base field F2 (and, again, because working over F2 is simpler). Therefore, henceforth
whenever we say CF or CFL, we mean the associated graded object of the minus
version of the link Floer chain complex over F2ŒU1; : : : ;Ul �. (We will give precise
definitions of some of these objects in the next section.)

In Section 2, we will give a quick tour of the relevant areas of Heegaard Floer theory. We
will describe how to represent an l–component pointed link .L;p/ in a three-manifold
Y by a Heegaard diagram H , and then how to construct a chain complex CF.H;Js/ ,
viewed as an object in a certain homotopy category K.Al/, in terms of the Heegaard
diagram H and some additional data Js ; the link-invariant CFL.Y;L;p/, viewed
as an object in an equivalent category N.K.Al//, can be obtained from CF.H;Js/

using naturality; see Ozsváth and Szabó [14], Ozsváth and Stipsicz [9], Juhász [2] and
Juhász and Thurton [3]. In Section 3, we will study the mapping class group action
�W MCG.Y;L;p/! AutN.K.Al //.CFL.Y;L;p// and a specific mapping class group
element �i 2MCG.Y;L;p/, the positive Dehn twist around the i th link component Li ,
which corresponds to moving the basepoint pi 2 Li once around. In Section 4, we
will define certain link-invariant maps ˆi and ‰i from CF.H;Js/ to itself using counts
of certain holomorphic disks and prove that the map IdCˆi‰i induces a well-defined
automorphism of CFL.Y;L;p/. Our main theorem is the following:

Theorem 1.1 Let H D .†; ˛; ˇ; z; w/ be a Heegaard diagram representing an l–
component pointed link .L;p/ in S3 ; then, for all 1 � i � l , the automorphism
IdC‰iˆi in AutK.Al /.CF.H;Js// induces �.�i/ in AutN.K.Al //.CFL.S3;L;p//,
where �i 2MCG.S3;L;p/ is the positive Dehn twist along the i th link component
Li and �.�i/ is its induced automorphism on CFL.S3;L;p/.

In Section 5, we will use grid diagrams to prove Theorem 1.1; and finally in Section 6,
we will compute the automorphism IdCˆ1‰1 for all the 85 prime knots up to nine
crossings and see that it is non-trivial (as in, not the identity) more often than not.
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2 Heegaard Floer basics

A pointed link is a link with a basepoint in each component. Let L� Y be an oriented
l–component pointed link inside a closed, oriented three-manifold Y ; let Li be the
i th component and let pi 2 Li be the basepoint in the i th component. We say that
HD .†; ˛; ˇ; z; w/ is a Heegaard diagram for L if there exists a self-indexing Morse
function f W Y !R, equipped with a gradient-like flow, such that:

� †D f �1
�

3
2

�
is a surface of genus g .

� z D .z1; : : : ; zl/, w D .w1; : : : ; wl/ and there is an l–tuple k D .k1; : : : ; kl/

such that zi is a collection of ki markings zi;1; : : : ; zi;ki
in † and wi is also a

collection of ki markings wi;1; : : : ; wi;ki
in †.

� For each i 2 f1; : : : ; lg, one of the wi –markings, say wi;si
, is designated special.

� f has jkj index-zero critical points and jkj index-three critical points.

� ˛ is the intersection of † and the stable manifold of the index-one critical points.

� ˇ is the intersection of † and the unstable manifold of the index-two critical
points.

� Li is the union of the flowlines through the zi –markings and the reversed
flowlines through the wi –markings.

� The basepoint pi 2Li is the special wi –marking wi;si
.

� The Heegaard diagram is also assumed to be admissible [15, Definition 3.5].

Let n D gC jkj � 1 and let j be a complex structure on †; Js is a path of nearly
symmetric, almost complex structures on the symmetric product Symn.†/, which
is a generic perturbation of the constant path Symn.j/ [13, Definition 3.1]; T˛ D
fx 2 Symn.†/ j all the coordinates of x lie on ˛g is a totally real, half-dimensional
torus; Tˇ is defined similarly; the marking zi;j gives rise to the divisor Zi;j D

fx2Symn.†/ jat least one of the coordinates of x is zi;j g; Wi;j is defined similarly;
let Zi D

P
j Zi;j , Wi D

P
j Wi;j , Z D

P
i Zi and W D

P
i Wi .

Given x , y 2 T˛ \Tˇ , �2.x;y/ is the set of all Whitney disks joining x to y or, in
other words, the set of all homotopy classes of maps�
fz 2C j jzj � 1g;

˚
iei�

ˇ̌
�

1
2
� � � � 1

2
�
	
;
˚
ei�

ˇ̌
�

1
2
� � � � 1

2
�
	
; i;�i

�
�! .Symn.†/;T˛;Tˇ;x;y/I

given a Whitney disk ' 2 �2.x;y/, yMJs
.'/ is the unparametrized moduli space

of such maps. Elements of T˛ \Tˇ carry a Maslov grading M [14, Theorem 7.1]
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and l Alexander gradings Ai [15, Section 8.1] such that, whenever ' 2 �2.x;y/,
M.y/�M.x/D�.'/�2' �W and Ai.x/�Ai.y/D ' �.Zi�Wi/, where the Maslov
index �.'/ is the expected dimension the moduli space MJs

.'/. (Here, and throughout
the rest of the paper, for any divisor D viewed as a codimension-2 submanifold
and for any Whitney disk ' viewed as 2–dimensional submanifold, ' �D denotes
their algebraic intersection number.) Let P be the .lC1/–graded polynomial ring
generated over F2 by the variables Ui;j for i 2 f1; : : : ; lg, j 2 f1; : : : ; kig, where
the .M;A1; : : : ;Al/ grading of Ui;j is .�2;�ı1i ; : : : ;�ıli/.1 The chain complex
CF.H;Js/ is the .lC1/–graded F2ŒU1; : : : ;Ul �–module freely generated over P by
T˛ \ Tˇ , where the Ui –action is multiplication by Ui;si

; the boundary map is a
Ui;j –equivariant .�1; 0; : : : ; 0/–graded map and, for x 2 T˛ \Tˇ , it is given by

@x D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D1

j yMJs
.'/j

Y
{;|

U
'�W{;|

{;| :

Given a small abelian category C , let K.C/ be the homotopy category of chain com-
plexes whose objects are chain complexes in C and whose morphisms are chain maps
up to chain homotopy. Given a small category C and a group G , let CG be the category
whose objects are two-tuples .A; f /, where A 2 ObC and f W G! AutC.A/, and the
set of morphisms MorCG

..A1; f1/; .A2; f2// is the subset of MorC.A1;A2/ consisting
of the ones that are G–equivariant. Given a small category C , let N.C/ be the category
whose objects are three-tuples .I; oI ; fI /, where I is a set, oI is a map from I to
ObC and fI is a map from I � I to MorC , such that fI .i; i 0/ 2 MorC.oI .i/; oI .i

0//

for all i , i 0 2 I , fI .i; i/ D IdoI .i/ for all i 2 I , and fI .i
0; i 00/fI .i; i

0/ D fI .i; i
00/

for all i , i 0 , i 00 2 I . A morphism from .I; oI ; fI / to .J; oJ ; fJ / is a map � from
I � J to MorC such that �.i; j / 2 MorC.oI .i/; oJ .j // for all i 2 I and all j 2 J ,
�.i 0; j /fI .i; i

0/D�.i; j / for all i , i 02I and all j 2J , and fJ .j ; j
0/�.i; j /D�.i; j 0/

for all i 2 I and all j , j 0 2 J .

If Al is the category of .A1; : : : ;Al/–graded F2ŒU1; : : : ;Ul �–modules, then CF.H;Js/

is an object of K.Al/. If H0 D .†0; ˛0; ˇ0; z0; w0/ is another Heegaard diagram for
the same pointed link .L;p/ and J 0s is a path of nearly symmetric, almost complex
structures on Symn0.†0/, then by naturality — see [14, Theorem 2.1; 9, Section 6; 2,
Section 5.2; 3, Theorem 1.8] — there is a Ui –equivariant chain map from CF.H;Js/ to
CF.H0;J 0s / . It can be checked that this map is well defined up to Ui –equivariant chain
homotopy or, in other words, this map induces a well-defined morphism F.H;Js/;.H0;J 0s /
in K.Al/. Therefore, given a pointed link .L;p/ in Y , we get a well-defined ob-
ject CFL.Y;L;p/ in N.K.Al//, where the indexing set I is the set of all ordered

1Throughout the paper, ı denotes the Kronecker delta function.
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pairs .H;Js/, where H is a Heegaard diagram for L and Js is a path of nearly
symmetric, almost complex structures on the symmetric product, oI ..H;Js// is the
chain complex CF.H;Js/ , and fI ..H;Js/; .H0;J 0s// is the morphism F.H;Js/;.H0;J 0s / .

Let Bl be the category of .M;A1; : : : ;Al/–graded F2ŒU1; : : : ;Ul �–modules and let
Cl be the category of .M;A1; : : : ;Al/–graded F2 –modules. By taking homology,
we get a pointed link-invariant object HFL.Y;L;p/DH�.CFL.Y;L;p// in N.Bl/;
after putting Ui D 0 for all 1 � i � l and then taking homology, we get a pointed
link-invariant object �HFL.Y;L;p/ D H�.CFL.Y;L;p/=fUi D 0g/ in N.Cl/. We
sometimes need the shift functors in K.Al/, Bl and Cl (and the induced shift functors
in N.K.Al//, N.Bl/ and N.Cl/). Let Œm; a1; : : : ; al � be the shift functor in any of
these categories that decreases the .M;A1; : : : ;Al/–grading by .m; a1; : : : ; al/.

Remark 2.1 Most of the naturality statements in [14; 9; 2; 3] are stated after taking
homology, that is, in the categories Bl or Cl . However, the proofs go through almost
verbatim in the more general homotopy category K.Al/ as well.

3 Mapping class group actions

Diffeomorphisms will always be orientation preserving,2 and the mapping class group
MCG is the �0 of the space of all (orientation-preserving) self-diffeomorphisms.
There exists a well-defined map �W MCG.Y;L;p/ ! AutN.K.Al //.CFL.Y;L;p//,
defined in [14; 9, Definition 6.5; 2, Corollary 5.20; 3, Corollary 1.7] as follows. Let
� 2MCG.Y;L;p/; assume that � comes from z� 2 Diff.Y;L;p/; let z� also denote
the induced automorphisms of the set of all Heegaard diagrams for .Y;L;p/, their
symmetric products, and the space of all paths of nearly symmetric, almost complex
structures on the symmetric products. Therefore, we have a Ui;j –equivariant chain
map from CF.z��1.H/;z��1.Js//

to CF.H;Js/ which sends x 2 z��1.T˛/\ z��1.Tˇ/ to
z�.x/2T˛\Tˇ . This induces a well-defined morphism f� from CF.z��1.H/;z��1.Js//

to
CF.H;Js/ in K.Al/ and hence a well-defined automorphism f�F.H;Js/;.z��1.H/;z��1.Js//

in AutK.Al /.CF.H;Js//. It turns out that the maps of the form F.H;Js/;.H0;J 0s / com-
mute with such automorphisms. Therefore, we can treat CF.H;Js/ as an object in
K.Al/MCG.Y;L;p/ and the maps F.H;Js/;.H;Js/ as morphisms in this category. There-
fore, CFL.Y;L;p/ can be thought of as a pointed link-invariant object in the category
N.K.Al//MCG.Y;L;p/ .

2In particular, unless otherwise mentioned, a diffeomorphism of the pair .Y;L/ is a diffeomorphism
that preserves the orientations of both Y and L .
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Let T .L/ D
Q

i Li be the pointed l–dimensional torus with the basepoint p D

.p1; : : : ;pl/. Since L is oriented, �1.T .L/;p/ is canonically isomorphic to Zl .
We have a fiber bundle

.Diff.Y;L;p/; Id/ // .Diff.Y;L/; Id/

��

.T .L/;p/;

which gives rise to a long exact sequence

�1.T .L/;p/ // �0.Diff.Y;L;p// // �0.Diff.Y;L// // �0.T .L/;p/

Zl // MCG.Y;L;p/ // MCG.Y;L/ // f0g.

Let �i 2MCG.Y;L;p/ be the image of the i th unit vector in Zl ; we call �i the positive
Dehn twist around Li . Then there is an action of MCG.Y;L/ on CFL.Y;L;p/, which
is well defined up to the l automorphisms �.�i/. In this paper, we will try to understand
these l automorphisms.

Let us first describe a way to view �.�i/ as a composition of two triangle maps. Let
H˛ˇ D .†; ˛; ˇ; z; w/ be a Heegaard diagram for L such that the i th link component
Li contains exactly one w marking and exactly one z marking. By stabilizing twice
if necessary, we can assume that there is an oriented arc joining zi;1 to wi;1 that is
disjoint from ˛ and intersects ˇ transversely at a point, that there is an oriented arc
joining wi;1 to zi;1 that is disjoint from ˇ and intersects ˛ transversely at a point, and
that the union of these two arcs is an oriented embedded circle C on the Heegaard
surface †. A regular neighborhood nbd.C / of C is shown in Figure 3.1.

˛0

˛ ˇ0
ˇ

wi;1

zi;1

Figure 3.1: The annular neighborhood nbd.C /
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Let @.nbd.C //D C1�C2 with each Ci oriented parallel to C . Let � 2Diff.†; z; w/
be the composition of a positive Dehn twist along C1 and a negative Dehn twist
along C2 . Let Js be a path of nearly symmetric, almost complex structures on
Symn.†/ and let Js;t be a path in the space of paths of nearly symmetric, almost
complex structures joining ��1.Js/ to Js . Let ˛0 be obtained by first perturbing ˛
and then applying ��1 ; ˇ0 is defined similarly. The multicurves ˛ , ˇ , ˛0 and ˇ0

in nbd.C / are represented in Figure 3.1 by the red, blue, pink and light blue curves,
respectively. Let H˛ˇ0 D .†; ˛; ˇ0; z; w/ and H˛0ˇ0 D .†; ˛0; ˇ0; z; w/.

The MCG.Y;L;p/ element induced by � is �i . Therefore, the automorphism �.�i/

acts by mapping x 2T˛0\Tˇ0 in CF.H˛0ˇ0 ;��1.Js//
to �.x/2T˛\Tˇ in CF.H˛ˇ;Js/ .

The naturality map F.H˛ˇ;Js/;.H˛0ˇ0 ;��1.Js//
, by naturality, is the composition

F.H˛0ˇ0 ;Js/;.H˛0ˇ0 ;��1.Js//
F.H˛ˇ0 ;Js/;.H˛0ˇ0 ;Js/F.H˛ˇ;Js/;.H˛ˇ0 ;Js/:

The first two maps are the triangle maps [13, Equation (21)] and it is easily verified
that the relevant triple Heegaard diagrams are admissible. The third map is induced by
the path Js;t [13, Equation (14)]; however, if we assume that yMJs;t

.'/ is empty for
all t 2 Œ0; 1� and for all Whitney disks ' with �.'/� 0, for example by assuming that
H˛ˇ is a nice Heegaard diagram [19, Definition 3.1], then the third map is the identity
map. Therefore, the automorphism �.�i/ can be thought of as a composition of two
triangle maps.

4 A candidate

Following the notations from Section 2, let HD .†; ˛; ˇ; z; w/ be a Heegaard diagram
for a pointed link .L;p/ in Y and let Js be a path of nearly symmetric, almost complex
structures on Symn.†/. For each 1� i � l , let ai , bi W f1; : : : ; kig ! f1; : : : ; kig be
the two bijections such that, for every j , zi;j and wi;ai .j/ lie in the same com-
ponent of † n ˛ and zi;j and wi;bi .j/ lie in the same component of † n ˇ . For
each .i; j /, let us define two P –module maps ‰i;j and ˆi;j from CF.H;Js/ to
CF.H;Js/Œ�1;�ı1i ; : : : ;�ıli � and CF.H;Js/Œ1; ı1i ; : : : ; ıli �, respectively, as follows:
For x 2 T˛ \Tˇ ,

‰i;j .x/D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD'�Zi;jD1

�.'/D1

j yMJs
.'/j

Y
{;|

U
'�W{;|

{;| ;

ˆi;j .x/D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D1

.' �Wi;j /j yMJs
.'/jU�1

i;j

Y
{;|

U
'�W{;|

{;| :

Algebraic & Geometric Topology, Volume 15 (2015)



2486 Sucharit Sarkar

A few points are in order. Here, and throughout the paper, we face a scarcity of indexing
notations and we usually use { and | as indices. These are different from i and j ,
although, informally speaking, { will “correspond” to i and | will “correspond” to j .

Secondly, the U�1
i;j appearing here (and in a couple of places later on) might look

unnatural at first sight since our base ring P is a polynomial ring over the U{;| –variables
and does not contain U�1

i;j . However, this is not an issue since we multiply the term
by .' �Wi;j /, thereby discarding all Whitney disks ' with zero intersection with Wi;j .
In other words, in order to contribute, ' has to intersect Wi;j at least once, thus picking
up a Ui;j power, which cancels with U�1

i;j .

Lemma 4.1 For every x 2 T˛ \ Tˇ and every .i; j /, the commutators satisfy
Œ@W‰i;j �D Ui;ai .j/CUi;bi .j/ and Œ@Wˆi;j �D 0.

Proof Let us first set up a few extra notations. For any x 2T˛ , let �˛
2
.x/ be the set of

all Whitney disks with boundary lying in T˛ or, in other words, the set of all homotopy
classes of maps .fz 2 C j jzj � 1g; fz 2 C j jzj D 1g; i/! .Symn.†/;T˛;x/; given
'˛ 2 �˛

2
.x/, yN ˛

Js
.'/ is the unparametrized moduli space of such maps. The Whitney

disks �ˇ
2
.x/ and the moduli spaces yN ˇ

Js
are defined similarly. For every x 2 T˛

and every .i; j / with 1 � i � l , 1 � j � ki , there exists a unique Whitney disk
'˛x;i;j 2 �

˛
2
.x/ such that �.'˛x;i;j /D 2 and '˛x;i;j �Z{;| is 1 if .{; |/D .i; j / and is 0

otherwise; also, '˛x;i;j �W{;| is 1 if .{; |/D .i; ai.j // and is 0 otherwise; furthermore,
if '˛ 2 �˛

2
.x/ with �.'˛/ D 2, then yN ˛

Js
.'˛/ has an odd number of points if and

only if jkj > 1 and '˛ D '˛x;i;j for some .i; j / [15, Theorem 5.5]. Similarly, for
every x 2Tˇ and every .i; j /, there exists a unique Whitney disk 'ˇx;i;j 2 �

ˇ
2
.x/ such

that �.'ˇx;i;j / D 2 and 'ˇx;i;j �Z{;| is 1 if .{; |/ D .i; j / and is 0 otherwise; also,
'ˇx;i;j �W{;| is 1 if .{; |/D .i; bi.j // and is 0 otherwise; furthermore, if 'ˇ 2 �ˇ

2
.x/

with �.'ˇ/ D 2, then yN ˇ
Js
.'ˇ/ has an odd number of points if and only if jkj > 1

and 'ˇ D 'ˇx;i;j for some .i; j /.

From Gromov compactification adapted to our present settings [15, Section 6], we
know that for any ' 2 �2.x;y/ with �.'/ D 2, the number of broken flowlines,P
'D'1�'2

j yMJs
.'1/� yMJs

.'2/j, is even, unless jkj> 1 and 'D'˛x;i;j or 'D'ˇx;i;j
for some .i; j /, in which case it is odd. Therefore, for every x 2 T˛ \ Tˇ and
every .i; j /,

.@‰i;j C‰i;j@/.x/

D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD'�Zi;jD1

�.'/D2

X
'1;'2

�.'1/D�.'2/D1
'D'1�'2

j yMJs
.'1/� yMJs

.'2/j
Y
{;|

U
'�W{;|

{;|

D .Ui;ai .j/CUi;bi .j//x
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and

.@ˆi;jCˆi;j@/.x/

D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D2

X
'1;'2

�.'1/D1
'D'1�'2

.'1C'2/�Wi;j j yMJs
.'1/� yMJs

.'2/jU
�1
i;j

Y
{;|

U
'�W{;|

{;|

D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D2

.' �Wi;j /U
�1
i;j

X
'1;'2

�.'1/D�.'2/D1
'D'1�'2

j yMJs
.'1/� yMJs

.'2/j
Y
{;|

U
'�W{;|

{;|

D 0:

This completes the proof.

For 1� i � l , let ‰i D
P

j ‰i;j and ˆi Dˆi;si
.

Theorem 4.2 For every i , the two Ui;j –equivariant chain maps ‰i and ˆi in-
duce link-invariant maps from CFL.Y;L;p/ to CFL.Y;L;p/Œ�1;�ı1i ; : : : ;�ıli � and
CFL.Y;L;p/Œ1; ı1i ; : : : ; ıli �, respectively, in N.K.Al//.

The proof is a consequence of the following lemma:

Lemma 4.3 Let H0 D .†0; ˛0; ˇ0; z0; w0/ be another Heegaard diagram for .L;p/
and let J 0s be a path of nearly symmetric, almost complex structures on Symn0.†0/.
If ‰0i and ˆ0i denote the two chain maps on CF.H0;J 0s / then, for all i , both the maps
F.H;Js/;.H0;J 0s /‰i C ‰

0
iF.H;Js/;.H0;J 0s / and F.H;Js/;.H0;J 0s /ˆi C ˆ

0
iF.H;Js/;.H0;J 0s / are

chain homotopic to zero, where the chain homotopies are also Ui –equivariant.

Proof Let us first clarify a notational convention that we will follow for the rest of
the proof and, indeed, occasionally during the rest of the paper. If an object in the
Heegaard diagram H is denoted by some symbol S , then the corresponding object
in the Heegaard diagram H0 is denoted by S 0 . For example, the boundary map
in H0 is denoted by @0 , the markings on the i th link component Li are z0

i;1
; : : : ; z0

i;k0
i

,
w0

i;1
; : : : ; w0

i;k0
i

, and the basepoint pi is w0
i;s0

i

.

Using [13, Proposition 7.1] and [7, Lemma 2.4], we can assume that we are in one of
the following four cases:

Case 1 H0 DH .

Following the proof of [13, Theorem 6.1], we assume that j0 D j and we choose
a path Js;t in the space of paths of nearly symmetric, almost complex structures

Algebraic & Geometric Topology, Volume 15 (2015)



2488 Sucharit Sarkar

joining Js to J 0s . Given a Whitney disk ' 2 �2.x;y/, let MJs;t
.'/ denote the moduli

space of holomorphic disks with time-dependent complex structure on the target [13,
Equation (14)]. The map F.H;Js/;.H;J 0s / is defined as

F.H;Js/;.H;J 0s /.x/D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D0

jMJs;t
.'/j

Y
{;|

U
'�W{;|

{;| :

Define Hzi
;Hwi

W CF.H;Js/! CF.H;J 0s /
3 as follows:

Hzi
.x/D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD'�ZiD1
�.'/D0

jMJs;t
.'/j

Y
{;|

U
'�W{;|

{;| ;

Hwi
.x/D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D0

' �Wi;si
jMJs;t

.'/jU�1
i;si

Y
{;|

U
'�W{;|

{;| :

By analyzing the ends of MJs;t
.'/ for Whitney disks ' with �.'/D 1, we see that

F.H;Js/;.H0;J 0s /‰i C‰
0
iF.H;Js/;.H0;J 0s / DHzi

@C @0Hzi
;

F.H;Js/;.H0;J 0s /ˆi Cˆ
0
iF.H;Js/;.H0;J 0s / DHwi

@C @0Hwi
:

Case 2 J 0s D Js and H0 can be obtained from H by isotoping and handlesliding the
˛ curves or by isotoping and handlesliding the ˇ curves.

Without loss of generality, let us assume that we are isotoping and handlesliding the
ˇ curves. Furthermore, we can assume that the multicurves ˇ and ˇ0 intersect each
other transversely, zH D .†; ˇ; ˇ0; z; w/ is an admissible Heegaard diagram for the
n–component unlink in #g

.S1�S2/ and the two tori Tˇ and Tˇ0 intersect each other
at 2n points, all lying in the same Alexander grading.

In zH let ‚ 2 Tˇ \ Tˇ0 be the element with the highest Maslov grading. By [13,
Lemma 9.1 and Lemma 9.4], ‚ is a cycle in CF.zH;Js/

. The map F.H;Js/;.H0;Js/ ,
evaluated on x 2 T˛ \Tˇ , is given by

F.H;Js/;.H0;Js/.x/D
X

y2T˛\Tˇ0

y
X

'2�2.x;‚;y/
'�ZD0
�.'/D0

jMJs
.'/j

Y
{;|

U
'�W{;|

{;| ;

3Technically some shift operators are involved: Hzi
maps CF.H;Js/ to CF.H;J 0s /Œ0;�ı1i ; : : : ;�ıli �

and Hwi
maps CF.H;Js/ to CF.H;J 0s /Œ2; ı1i ; : : : ; ıli � . However, we will often suppress the degree shift

information.
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˛0

ˇ0

Figure 4.1: An ordinary stabilization

where �2.x; ‚;y/ is the set of all Whitney triangles connecting x , ‚ and y [13,
Section 8.1.2]. Define Hzi

;Hwi
W CF.H;Js/! CF.H0;Js/ as follows:

Hzi
.x/D

X
y2T˛\Tˇ0

y
X

'2�2.x;‚;y/
'�ZD'�ZiD1
�.'/D0

jMJs
.'/j

Y
{;|

U
'�W{;|

{;| ;

Hwi
.x/D

X
y2T˛\Tˇ0

y
X

'2�2.x;‚;y/
'�ZD0
�.'/D0

' �Wi;si
jMJs

.'/jU�1
i;si

Y
{;|

U
'�W{;|

{;| :

Since ‚ is a cycle in CF.zH;Js/
and all the points in Tˇ\Tˇ0 lie in the same Alexander

grading, by counting the ends of MJs
.'/ for Whitney triangles ' with �.'/D 1 we

get
F.H;Js/;.H0;J 0s /‰i C‰

0
iF.H;Js/;.H0;J 0s / DHzi

@C @0Hzi
;

F.H;Js/;.H0;J 0s /ˆi Cˆ
0
iF.H;Js/;.H0;J 0s / DHwi

@C @0Hwi
:

Case 3 H0 is obtained from H by an ordinary (de)stabilization, as shown in Figure 4.1,
and J 0s is related to Js as described below.

We fix a Riemann surface E of genus 1 with one ˛0–circle and one ˇ0–circle, intersect-
ing each other transversely at a single point. The Heegaard surface †0 is simply †#E ;
J 0s is induced from Js , the complex structure on E , the two connected sum points in
† and E , and the length of the connected sum neck.

There is a natural bijection between T˛ \ Tˇ and T˛0 \ Tˇ0 ; let x0 2 T˛0 \ Tˇ0
be the element corresponding to x 2 T˛ \Tˇ . For all x , y 2 T˛ \Tˇ , there is a
natural bijection between �2.x;y/ and �2.x

0;y0/ which preserves the Maslov index;
let '0 2 �2.x

0;y0/ be the Whitney disk corresponding to ' 2 �2.x;y/.

However, by moving the connected sum points and extending the connected sum length,
we can ensure that, for all x , y 2 T˛ \Tˇ and all ' 2 �2.x;y/ with �.'/D 1, the

Algebraic & Geometric Topology, Volume 15 (2015)



2490 Sucharit Sarkar

˛0 ˇ0

z{;|

z{;|

z{;k{C1

w{;k{C1

%1

%2

Figure 4.2: A special stabilization

two moduli spaces yMJs
.'/ and yMJ 0s

.'0/ are homeomorphic [13, Theorem 10.4]. The
map F.H;Js/;.H0;J 0s / sends x to x0 and the map F.H0;J 0s /;.H;Js/ is its inverse. Therefore,
F.H;Js/;.H0;J 0s /‰iC‰

0
iF.H;Js/;.H0;J 0s /DF.H;Js/;.H0;J 0s /ˆiCˆ

0
iF.H;Js/;.H0;J 0s /D 0 and

F.H0;J 0s /;.H;Js/‰
0
i C‰iF.H0;J 0s /;.H;Js/ D F.H0;J 0s /;.H;Js/ˆ

0
i CˆiF.H0;J 0s /;.H;Js/ D 0.

Case 4 H0 is obtained from H by a special (de)stabilization, as shown in Figure 4.2,
and J 0s is related to Js as described below.

We fix a Riemann surface S of genus 0 with one ˛0–circle and one ˇ0–circle, inter-
secting each other transversely at two points %1 and %2 . The Heegaard surface †0

is simply † # S , where the connected sum is done near the z{;| marking on † and
the z and w markings on †0 are as shown in Figure 4.2; J 0s is induced from Js , the
complex structure on S , the two connected sum points in † and S , and the length of
the connected sum neck.

There is a natural bijection between T˛0 \ Tˇ0 and .T˛ \ Tˇ/ � f1; 2g, where the
element corresponding to .x; 1/ uses the point %1 and is denoted by x0 and the
element corresponding to .x; 2/ uses the point %2 and is denoted by x00 . Recall
that CF.H:Js/ is the module generated freely over P by T˛ \ Tˇ and CF.H0;J 0s /
is the module generated freely over P 0 D P ˝ F2ŒU{;k{C1� by T˛0 \ Tˇ0 . All the
maps below are assumed to be P–module maps; furthermore, the maps between P 0–
modules are assumed to be P 0–module maps. From [15, Proposition 6.5], by moving
the connected sum point in S near the ˛0–circle and extending the connected sum
length, we can ensure the following: CF.H0;J 0s / is isomorphic to the mapping cone
U{;k{C1CU{;a{.|/W C2˝F2ŒU{;k{C1�! C1˝F2ŒU{;k{C1�, where

� C1 is isomorphic to CF.H;Js/ , corresponding to elements of the form x0 , and
C2 is isomorphic to CF.H;Js/ , corresponding to elements of the form x00 ;

� F.H;Js/;.H0;J 0s /.x/D x0 ;
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� F.H0;J 0s /;.H;Js/.U
m
{;k{C1

x00/D 0 and F.H0;J 0s /;.H;Js/.U
m
{;k{C1

x0/D U m
{;a{.|/

x ;

� ‰0i;j .x
0/D.‰i;j .x//

0 and ‰0i;j .x
00/D.‰i;j .x//

00 for .i; j / 62 f.{; |/; .{; k{C1/g;

� .‰0{;| C‰
0
{;k{C1

/.x0/D .‰{;| .x//
0 and .‰0{;| C‰

0
{;k{C1

/.x00/D .‰{;| .x//
00 ;

� ˆ0i.x
0/D .ˆi.x//

0 and ˆ0i.x
00/D .ˆi.x//

00Cx0ıi{ısi a{.|/ .

Therefore,

F.H;Js/;.H0;J 0s /‰i C‰
0
iF.H;Js/;.H0;J 0s / D F.H;Js/;.H0;J 0s /ˆi Cˆ

0
iF.H;Js/;.H0;J 0s / D 0:

Similarly, we get

F.H0;J 0s /;.H;Js/‰
0
i C‰iF.H0;J 0s /;.H;Js/ D 0;

.F.H0;J 0s /;.H;Js/ˆ
0
i CˆiF.H0;J 0s /;.H;Js//.U

m
{;k{C1x0/D 0:

However,

.F.H0;J 0s /;.H;Js/ˆ
0
i CˆiF.H0;J 0s /;.H;Js//.U

m
{;k{C1x00/D U m

{;a{.|/
xıi{ısi a{.|/:

Define Hwi
W CF.H0;J 0s /! CF.H;Js/ by Hwi

.U m
{;k{C1

x00/D 0 and Hwi
.U m

{;k{C1
x0/D

mU m�1
{;a{.|/

xıi{ısi a{.|/ . A careful analysis shows that

F.H0;J 0s /;.H;Js/ˆ
0
i CˆiF.H0;J 0s /;.H;Js/ DHwi

@0C @Hwi
:

Observe that the chain homotopy is still Ui –equivariant.

We will now state and prove some properties of the maps ‰i and ˆi .

Lemma 4.4 For all i , all three of the maps ‰iˆi Cˆi‰i , ‰2
i and ˆ2

i are chain
homotopic to zero, and the chain homotopies are also Ui;j –equivariant.

Proof Define the three Ui;j –equivariant chain homotopies as follows:

H1;i.x/D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD'�ZiD1
�.'/D1

.' �Wi;si
/j yMJs

.'/jU�1
i;si

Y
{;|

U
'�W{;|

{;| ;

H2;i.x/D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD'�ZiD2
�.'/D1

j yMJs
.'/j

Y
{;|

U
'�W{;|

{;| ;

H3;i.x/D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D1

�
' �Wi;si

2

�
j yMJs

.'/jU�2
i;si

Y
{;|

U
'�W{;|

{;| :
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By counting the ends of yMJs
.'/ for Whitney disks ' with �.'/ D 2 and ' �Z D

' �Zi D 1, we see that ‰iˆi Cˆi‰i D @H1;i CH1;i@. When ' �Wi D 1, we might
have boundary degenerations in the ends of yMJs

.'/; however, they cancel in pairs
[15, Theorem 5.5]. Similarly, by counting the ends of yMJs

.'/ for Whitney disks '
with �.'/D 2 and ' �Z D ' �Zi D 2, we see that ‰2

i D @H2;iCH2;i@. For the third
case, let us explicitly do the calculation:

.ŒH3;i W @�Cˆ
2
i /.x/

D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D2

X
'1;'2;m1;m2

'1�Wi;si
Dm1

'2�Wi;si
Dm2

�.'1/D1
'D'1�'2

"��
m1

2

�
C

�
m2

2

�
Cm1m2

�
� j yMJs

.'1/� yMJs
.'2/jU

�2
i;si

Y
{;|

U
'�W{;|

{;|

#

D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D2

X
'1;'2;m1;m2

'1�Wi;si
Dm1

'2�Wi;si
Dm2

�.'1/D1
'D'1�'2

�
m1Cm2

2

�
j yMJs

.'1/� yMJs
.'2/jU

�2
i;si

Y
{;|

U
'�W{;|

{;|

D

X
y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD0
�.'/D2

�
' �Wi;si

2

�
U�2

i;si

X
'1;'2

�.'1/D1
'D'1�'2

j yMJs
.'1/� yMJs

.'2/j
Y
{;|

U
'�W{;|

{;|

D 0:

This completes the proof.

Theorem 4.5 For all i , the map IdC‰iˆi D IdCˆi‰i is a link-invariant involution
of CFL.Y;L;p/, viewed as an object in N.K.Al//.

Proof We already know from Theorem 4.2 that IdC‰iˆi is a link-invariant map
from CFL.Y;L;p/ to itself. To see that it is an involution, observe that in N.K.Al//,
by Lemma 4.4, .IdC‰iˆi/

2 D IdC‰iˆi‰iˆi D IdC‰i‰iˆiˆi D Id.

Instead of working in the slightly unfamiliar category N.K.Al//, we often take the
homology and work with HFL.Y;L;p/ D H�.CFL.Y;L;p// in N.Bl/. Another
standard object to work with is the hat-invariant �HFL.Y;L;p/ living in N.Cl/: it is
the homology of the mapping cone of all the maps U1; : : : ;Ul in CFL.Y;L;p/.

The map IdC‰iˆi induces link-invariant involutions on the objects HFL.Y;L;p/
and �HFL.Y;L;p/. Even though the involution on �HFL.Y;L;p/ (and hence the one
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on CFL.Y;L;p/) is often non-trivial — see Theorem 6.1 — quite (un-)surprisingly, the
involution on HFL.Y;L;p/ is always the identity.

Lemma 4.6 For all i , the involution IdC‰iˆi on HFL.Y;L;p/, viewed as an object
in N.Bl/, is the identity map.

Proof In order to prove this, we only need to show that the map ‰iˆi is chain
homotopic to zero, where the chain homotopy need not be Ui –equivariant. Fix a
Heegaard diagram H and a path of nearly symmetric, almost complex structures
Js on the symmetric product. The chain homotopy Hi is U{;| –equivariant for all
.{; |/¤ .i; si/, and is defined as follows:

Hi.U
m
i;si

x/D
X

y2T˛\Tˇ

y
X

'2�2.x;y/
'�ZD'�ZiD1
�.'/D1

mj yMJs
.'/jU m�1

i;si

Y
{;|

U
'�W{;|

{;|

A careful analysis of the ends of yMJs
.'/ for Whitney disks ' with �.'/ D 2 and

' �Z D ' �Zi D 1 shows that ‰iˆi D @Hi CHi@.

In view of Lemma 4.6 along with Theorem 1.1, we can define the invariant HFL for
unpointed links in S3 , although, due to Theorem 6.1, we must continue to treat CFL
and �HFL as invariants of pointed links. Let us conclude this section with a rather bold
conjecture, which is somewhat justified by Theorem 1.1.

Conjecture 4.7 The two automorphisms �.�i/ and IdC‰iˆi are equal in the cate-
gory AutN.K.Al //.CFL.Y;L;p//.

5 Grid diagrams

In this section, we concentrate on pointed links in S3 . The main aim is to prove
Theorem 1.1. We focus our attention on the component .L1;p1/ of the l–component
pointed link .L;p/ in S3 . Following [7], we will represent such links by a special type
of Heegaard diagrams called grid diagrams. A grid diagram of index n is a Heegaard
diagram G D .T; ˛; ˇ; z; w/ for .L;p/, where the Heegaard surface T is the torus
obtained as a quotient of Œ0; 1�2 �C by identifying opposite sides, ˛ is a multicurve
which is isotopic to the image of Œ0; 1�� f0; 1=n; : : : ; .n� 1/=ng, ˇ is a multicurve
which is isotopic to the image of f0; 1=n; : : : ; .n� 1/=ng � Œ0; 1�, and each ˛–circle
intersects each ˇ–circle at exactly one point. It is easy to see that each pointed link
can be represented by a grid diagram. We usually take Js to be the constant path of
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the product complex structure on Symn.T / induced from the complex structure on C .
By generically perturbing ˛ and ˇ , we can ensure that Js achieves transversality [4,
Proposition 3.9]. We will keep using our notations from the previous sections. However,
to avoid clutter, from now on, unless we deem it to be particularly illuminating, we will
drop the subscript Js from our notation. We sometimes use the words north, south, east
and west to denote local directions on the torus T (ie directions on some contractible
subset of T ); at all such times, it is implicitly understood that we have isotoped the ˛–
and ˇ–circles to horizontal and vertical circles, respectively.

We will set up for the proof, while doing a brief review of grid diagrams, in the following
few subsections.

5.1 The grid chain complex

Given a grid diagram G of index n, there are exactly n! points in T˛ \ Tˇ . If
' 2 �2.x;y/ for some x , y 2 T˛ \Tˇ , then let D.'/ be the shadow of ' , which is
a 2–chain generated by components of T n .˛[ˇ/ [13, Definition 2.13]. The domain
D.'/ is said to be non-negative if it has non-negative coefficients everywhere. Since
we are working with a product complex structure, if MJs

.'/ ¤ ¿, then D.'/ is
non-negative. The central fact about grid diagrams is the following observation:

Theorem 5.1 [7] If ' 2 �2.x;y/ is a Whitney disk in a grid diagram with D.'/

non-negative, then �.'/� 0. Furthermore, �.'/D 0 happens precisely when x D y

and ' is the trivial disk, and �.'/ D 1 happens precisely when x and y differ in
exactly two coordinates, D.'/ is a properly embedded rectangle in .T; ˛[ˇ/ which
does not contain any coordinates of x or y in its interior, the northeast and southwest
corners of D.'/ are coordinates of x , and the northwest and southeast corners of D.'/

are coordinates of y ; in the latter case, yM.'/ has exactly one point.

In particular, this theorem implies that the grid chain complex CF.G;Js/ 2 ObK.Al / is
independent of Js as long as it is a constant path of the product complex structure
induced from some complex structure on T . In fact, the following is an explicit
description of the chain complex CFG in grid diagram terminology.

A state x is an n–tuple of points x D .x1; : : : ;xn/ (and the points xi are called the
coordinates of x ) such that each ˛–circle contains some xi and each ˇ–circle contains
some xj . Clearly there are n! states, and there is a natural bijection between T˛ \Tˇ
and the set of all states SG . A grid 2–chain is a formal linear combination of the n2

components of T n .˛ [ ˇ/ over Z. A grid 2–chain is said to be positive if all its
coefficients are non-negative. Given a point p 2 T n .˛[ˇ/ and a grid 2–chain D , the
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number np.D/ is the coefficient of D at the component of T n.˛[ˇ/ that contains the
point p . For any grid 2–chain D , let nzi

.D/D
P

j nzi;j
.D/, nwi

.D/D
P

j nwi;j
.D/,

nz.D/D
P

i nzi
.D/ and nw.D/D

P
i nwi

.D/. A domain joining a state x to a state y

is a grid 2–chain D such that @.@D\˛/D y �x . The set of all domains joining x

to y is denoted by DG.x;y/ and it is in natural bijection with �2.x;y/. A rectangle
R 2DG.x;y/ is a domain satisfying the following conditions: each coefficient of R is
either 0 or 1; the closure of the region where R has coefficient 1 is properly embedded
rectangle in T ; that rectangle does not contain any coordinates of x or y in its interior;
and the northeast and southwest corners of that rectangle are coordinates of x and the
northwest and southeast corners of that rectangle are coordinates of y . The set of all
rectangles joining x to y is denoted by RG.x;y/� DG.x;y/.

The .M;A1; : : : ;Al/–graded ring P is the polynomial ring generated over F2 by
the variables Ui;j for i 2 f1; : : : ; lg; j 2 f1; : : : ; kig, and CFG is the F2ŒU1; : : : ;Ul �–
module freely generated over P by SG , where the Ui –action is multiplication by Ui;si

.
The Ui;j –equivariant .�1; 0; : : : ; 0/–graded boundary map, evaluated on a state x , is

@x D
X

y2SG

y
X

R2RG.x;y/
nz .R/D0

Y
{;|

U
nw{;| .R/
{;| :

5.2 Changing the complex structure

Let Js and J 0s be the constant paths of almost complex structures on Symn.T / induced
from two complex structure on T . We know that CF.G;Js/ and CF.G;J 0s / are the
same object; therefore, it is not unnatural to expect the naturality map F.G;Js/;.G;J 0s / in
MorK.Al /.CF.G;Js/;CF.G;J 0s // to be the identity map. This is indeed the case.

Theorem 5.2 If Js and J 0s are two constant paths of almost complex structures on
Symn.T / induced from two complex structures on T , then F.G;Js/;.G;J 0s / D Id.

Sketch of a proof This is a direct consequence of [13, Proof of Theorem 6.1],
adapted to our present setting, where any Whitney disk ' 2 �2.x;y/ whose shadow
D.'/ 2 DG.x;y/ is positive and which satisfies �.'/� 0 is a trivial one.

5.3 Commutation

Commutation comes in two flavors, horizontal commutation and vertical commutation.
The story for vertical commutation can be guessed from the story of horizontal com-
mutation by reversing the roles of ˛ and ˇ ; vertical commutations are also described
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˛

˛

%%0

˛1

˛01

Figure 5.1: Horizontal commutation

in full detail in [8], from where much of the material for this subsection is derived; so
for now, let us only talk about horizontal commutation.

A horizontal commutation is a pair of grid diagrams .G;G0/ drawn on the same torus
such that G0 can be obtained from G by changing exactly one ˛–circle in the following
manner: if the circle ˛1 in G is changed to the circle ˛0

1
in G0 , then some neighborhood

of ˛1[˛
0
1

must be homeomorphic to the region shown in Figure 5.1, where the four
black dots are two z markings and two w markings. The two points in ˛1 \ ˛

0
1

are
marked as % and %0 . The ˇ–circles are not shown, but we assume that they avoid both
% and %0 .

Commutation induces the naturality map FG;G0 2MorK.Al /.CFG ;CFG0/. Allow us to
explain this map in grid diagram terminology.

For x 2 SG and y 2 SG0 , a pentagon P joining x to y is a 2–chain generated by the
components of T n .˛[˛0[ˇ/ such that each component appears with coefficient 0

or 1, the closure of the union of the coefficient-1 components is an embedded pentagon
one of whose vertices is %, the embedded pentagon does not contain any coordinates of
x or y in its interior, the northeast and southwest corners of the embedded pentagon are
coordinates of x , and the northwest and southeast corners of the embedded pentagon are
coordinates of y . The set of all pentagons joining x to y is denoted by %PG;G0.x;y/ .
We have a Ui;j –equivariant .0; 0; : : : ; 0/–graded chain map %

zFG;G0 W CFG ! CFG0 ,
which when evaluated on x 2 SG is given by

%
zFG;G0.x/ D

X
y2SG0

y
X

P2%PG;G0 .x;y/

nz .P/D0

Y
{;|

U
nw{;| .P/
{;| :

This chain map depends on the location of the point %, namely which component of
T nˇ contains %. Similarly, we get another chain map %0

zFG0;G W CFG0 ! CFG , which
depends on the location of the point %0 . By [8, Proposition 3.2], any of the maps %0 zFG0;G
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˛

ˇ

˛0
˛

ˇ

˛0

Figure 5.2: Horizontal commutation

is an inverse for any of the maps %
zFG;G0 in the homotopy category K.Al/. Therefore,

we get a well-defined map zFG;G0 2MorK.Al /.CFG ;CFG0/ which is independent of %.

It is not hard to check that this map zFG;G0 , defined in terms of pentagons in the torus T ,
is same as the map F.G;Js/;.G0;Js/ , defined using holomorphic triangles in Symn.T /.
We give a direct verification below.

Given a commutation diagram, we can perturb ˛0 to ensure that each ˛0–circle intersects
its corresponding ˛–circle in exactly two points; furthermore, except for %0 , we can
ensure that each of the intersection points lies in the component of T nˇ that contains
the point %. The situation is illustrated in Figure 5.2. Let ‚ be the top-dimensional
generator in the Heegaard diagram .T; ˛0; ˛/; the coordinates of ‚ are shown (note, %
is one of the coordinates).

For x2SG and y2SG0 , if D is a 2–chain generated by the components of T n.˛[˛0[ˇ/

such that @.@Dj˛/D‚�x and @.@Dj˛0/D y�‚, then D is called a domain joining
x , ‚ and y . If ' 2 �2.x; ‚;y/ is a Whitney triangle connecting x , ‚ and y

in Symn.T /, then its shadow D.'/ is a domain joining x , ‚ and y . Conversely, given
any domain D joining x , ‚ and y , there is a unique Whitney triangle ' 2�2.x; ‚;y/

such that D DD.'/.

It is easy to see that each pentagon in %PG;G0.x;y/ gives rise to exactly two positive
domains joining x , ‚ and y . Let us call such domains twin pentagonal domains. One
such pentagonal domain is shown in Figure 5.2.

Lemma 5.3 If ' 2 �2.x; ‚;y/ is a Whitney triangle with �.'/ D 0 and D.'/

positive, then D.'/ is a pentagonal domain. Conversely, if ' , '0 2 �2.x; ‚;y/

are Whitney triangles such that D.'/ and D.'0/ are twin pentagonal domains, then
�.'/ D �.'0/ D 0 and jM.'/j C jM.'0/j D 1. Therefore, the triangle map FG;G0

agrees with zFG;G0 .
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Proof For the first direction, assume ' 2 �2.x; ‚;y/ is a Whitney triangle with
�.'/ D 0 and D.'/ positive. Let B be the union of the 2n bigonal components
of T n .˛ [ ˛0/. Let D0 be the unique domain joining some state y0 2 SG and ‚
and y such that D0 is supported in B and @D0j˛0 D @D.'/j˛0 . Using the Maslov
index formula from [18], it is easy to check that the Maslov index of D0 is �1.
Therefore, zD DD.'/�D0 is a Maslov index-1 domain in DG.x;y

0/. Furthermore,
since D0 has coefficient zero outside B and D.'/ is positive, zD is a positive domain
as well. Theorem 5.1 tells us that zD is a rectangle in G . However, we know that
D.'/D zDCD0 is also a positive domain. Therefore, the rectangle zD can only be in
certain configurations. By analyzing them carefully, we see that those are precisely the
configurations for which D.'/ is a pentagonal domain.

The other direction is fairly straightforward. Let ' , '0 2 �2.x; ‚;y/ be Whitney
triangles such that D.'/ and D.'0/ are twin pentagonal domains. A direct compu-
tation reveals that the Maslov index of any pentagonal domain is zero. To show that
jM.'/jC jM.'0/j D 1, following standard practice, we will use Lipshitz’s cylindrical
reformulation [4]; in the cylindrical version, we will count the number of holomorphic
embeddings of surfaces F ,!T �fz 2C j jzj� 1; z3¤ 1g satisfying certain conditions,
such as that the image of the projection onto the first factor is either D.'/ or D.'0/, and
the projection onto the second factor is an n–sheeted cover of fz 2C j jzj � 1; z3¤ 1g

with exactly one branch point (the number of branch points can be figured out from
another formula in [18]). Therefore, F must be a disjoint union of n� 2 copies of
a disk punctured at three boundary points (call them 3–gons) and a single copy of a
disk punctured at six boundary points (call it a 6–gon). Therefore, the moduli space
M.'/tM.'0/ is the product of the n� 1 moduli spaces coming from these n� 1

components. It is a fairly easy exercise in complex analysis to check that the moduli
space of embeddings of a 3–gon contains exactly one point.

To show the moduli space of embeddings of the 6–gon into T �fz 2C j jzj�1; z3¤1g

contains an odd number of points, let us do a model calculation. If % lies in the southern
portion of the pentagonal domains D.'/ and D.'0/, then one of D.'/ and D.'0/

looks like the shaded hexagonal region in Figure 5.2, while the other one is its twin; if
% lies in the northern portion of the pentagonal domain, then D.'/ and D.'0/ have
similar but different shapes. Call D.'/ and D.'0/ the original twin pentagonal domains.
Now consider the index-2 grid diagram G0 for the 2–component unlink. There are
two states and they lie in different Maslov gradings. Do a horizontal commutation
to obtain the grid diagram G1 , which also has two states, lying in different Maslov
gradings. The triangle map must be an isomorphism, and we have already seen that
the shadow of each Whitney triangle must be a pentagonal domain. There are exactly
two sets of twin pentagonal domains in this model commutation diagram. Consider
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the twin pentagonal domains that have the same shape as the original twin pentagonal
domains. Call them the model twin pentagonal domains. Choose a complex structure
on the model twin pentagonal domains which matches the one on the original twin
pentagonal domains. Since the triangle map for the model commutation is a graded
isomorphism, the moduli space corresponding to the model twin pentagonal domains,
and hence the moduli space corresponding to the original twin pentagonal domains,
must contain an odd number of points.

5.4 Stabilization and destabilization

Stabilization for grid diagrams is a move that converts a grid diagram of index n to a
grid diagram of index nC 1. There are several variants (four or eight, depending on
how we count them) of stabilization. However, we are mostly concerned with only one
of these configurations, so let us describe it in detail.

Let G D .T; ˛; ˇ; z; w/ be an index-n grid diagram where the link component L1 con-
tains the 2k1 markings z1;1; : : : ; z1;k1

, w1;1; : : : ; w1;k1
. Let G0D .T; ˛0; ˇ0; z0; w0/ be

an index-.nC1/ grid diagram representing L and satisfying the following: L1 contains
two additional markings z1;k1C1 and w1;k1C1 ; there is an ˛0–circle ˛nC1 and a ˇ0–
circle ˇnC1 , intersecting each other a point % with z1;k1C1 lying immediately to the
southeast of % and w1;k1C1 lying immediately to the northeast of %; and G can be
obtained from G0 by deleting z1;k1C1 , w1;k1C1 , ˛nC1 and ˇnC1 . Getting G0 from G
is an instance of stabilization.

Since ˛ � ˛0 and ˇ � ˇ0 , SG can be identified with the subset of SG0 consisting of
the states that contain the point %. Furthermore, since CFG is freely generated by
SG over the F2 –algebra P and CFG0 is freely generated by SG0 over the F2 –algebra
P 0DP˝F2ŒU1;k1C1�, there is a natural inclusion map �W CFG ,!CFG0 (note, � is just
a P –module map, it in general is not a chain map). With this in mind, let us describe
the naturality map FG;G0 .

A northeast snail domain centered at % is a positive domain D 2 DG0.x;y/ for
x , y 2 SG0 such that the following hold: @D is an immersed circle in T ; each
coordinate of x and y , except possibly %, appears with coefficient 0 or 1

4
in D ;

and there is some m� 0 such that the coefficient of D is mC 1 immediately to the
northeast of % and is m in the other three squares adjacent to %. Let L1

%.x;y/ denote
the set of all northeast snail domain centered at % joining x to y . We have shown
some elements of L1

%.x;y/ in the first row of Figure 5.3.
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% % % %

% % % %

Figure 5.3: Snail domains

Let us define a P –module .0; 0; : : : ; 0/–graded chain map zFG;G0 W CFG ! CFG0 as
follows. For x 2 SG , if �.x/ denotes the corresponding state in SG0 , then

zFG;G0.x/D
X

y2SG0

y
X

D2L1
%.�.x/;y/

nz .D/Dnz1;k1C1
.D/

Y
{;|

.{;|/¤.1;k1C1/

U
nw{;| .D/
{;| :

There are similar maps for the other types of stabilization, which can be defined in terms
of similar-looking snail domains. All these snail domains are very similar to the snail
domains that appear in [8]; following their analysis, it is not very hard to see that each
of the stabilization maps, and in particular the above one, is a chain map. Before we
show that this map is the same as the naturality map FG;G0 in MorK.Al /.CFG ;CFG0/,
let us talk a little bit about destabilization.

Destabilization for grid diagrams is the reverse move of stabilization. Once again, there
are several variants and, once again, we will concentrate on only one. The starting
grid diagram G D .T; ˛; ˇ; z; w/ has index nC1 and the link component L1 contains
the 2k1 C 2 markings z1;1; : : : ; z1;k1C1 , w1;1; : : : ; w1;k1C1 . Furthermore, assume
that there is an ˛–circle ˛nC1 and a ˇ–circle ˇnC1 , intersecting each other a point %,
such that z1;k1C1 lies immediately to the southeast of % and w1;k1C1 lies immediately
to the southwest of %; let w1;d be the w–marking that lies in the same component
of T n ˇ as z1;k1C1 . The index-n grid diagram G0 is obtained from G by deleting
z1;k1C1 , w1;k1C1 , ˛nC1 and ˇnC1 ; this is an instance of destabilization.

Once again, there is a natural inclusion �W SG0 ,! SG , which induces a P 0–module map
�W CFG0 ,! CFG . For x , y 2 SG , a southeast snail domain centered at % is a positive
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domain D 2 DG.x;y/ such that @D is an immersed circle in T , each coordinate of
x and y , except possibly %, appears with coefficient 0 or 1

4
in D , and there is some

m� 0 such that the coefficient of D is mC1 immediately to the southeast of % and is
m in the other three squares adjacent to %. Let L2

%.x;y/ denote the set of all southeast
snail domain centered at % joining x to y . Some elements of L2

%.x;y/ are shown
in the second row of Figure 5.3. In [8], a P 0–module .0; 0; : : : ; 0/–graded chain map
zFG;G0 W CFG! CFG0 is defined as follows:

zFG;G0.U
m
1;k1C1x/D

X
y2SG0

y
X

D2L2
%.x;�.y//

nz .D/Dnz1;k1C1
.D/

U m
1;d

Y
{;|

U
nw{;| .D/
{;| :

There are similar chain maps for the other types of destabilization. Manolescu
and Ozsváth [6] show that, for each configuration, the destabilization map zFG;G0 ,
defined in terms of the snail domains, is the same as the naturality map FG;G0 in
MorK.Al /.CFG ;CFG0/. This implies that the same is true for the stabilization maps.

Lemma 5.4 If G0 is obtained from G by a stabilization, then the stabilization map
zFG;G0 , defined in terms of the snail domains, is the same as the naturality map FG;G0 in

MorD.Al /.CFG ;CFG0/.

Proof By naturality, we know that FG;G0FG0;G D Id in K.Al/. From [6] we know
that FG0;G D zFG0;G in K.Al/. Finally, it is easy to check that the chain map zFG0;G zFG;G0

actually equals the identity map on CFG . Therefore,

zFG;G0 D FG;G0FG0;G zFG;G0 D FG;G0 zFG0;G zFG;G0 D FG;G0 :

5.5 Renumbering

There is yet a third type of grid move, namely renumbering the w– and z–markings.
Since we are only concerned with the link component L1 , let us only consider the
renumbering of the w1 – and the z1 –markings. Let us start with a grid diagram G with
k1 w1 –markings and k1 z1 –markings. Fix � , � 2Sk1

. Let G0 be the grid diagram
obtained from G by renaming w1;i as w1;�.i/ and z1;i as z1;�.i/ for 1 � i � k1 ;
furthermore, if w1;s1

is the special w1 –marking in G , then w1;�.s1/ is the special
w0

1
–marking in G0 .

The grid diagrams G and G0 represent the same pointed link. The naturality map FG;G0

is Ui;j –equivariant for i ¤ 1 and sends x
Q

j U
mj
1;j

to x
Q

j U
mj
1;�.j/

. This is simply
because the Ui;j variables are not indexed by pairs of integers i , j , but are rather
indexed by the w–markings themselves. Indeed, we should have written Ui;j as Uwi;j

.
Precise notations lead to triple subscripts (as in Uwi;si

!), so we have chosen to avoid
them.
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5.6 Changing the special marking

Let G D G1 be a grid diagram for the pointed link .L;p/ such that s1 D 1 (ie the
basepoint p1 2 L1 is represented by the w–marking w1;1 ) and the markings that
appear in L1 are, in order, w1;1 , z1;1; : : : ; w1;k1

, z1;k1
with k1 > 1. For 2� j � k1 ,

let Gj be the grid diagram where s1D j but which is otherwise identical to G . Observe
that the grid diagrams Gj represent the same link, but not the same pointed link. The
chain complexes CFGj are identical as F2ŒU2; : : : ;Ul �–modules; the U1 –action is
multiplication by U1;j .

For distinct j , j 0 2 f1; : : : ; k1g, we will define Ui –equivariant chain maps fj ;j 0 from
CFGj to CFGj 0 . Define cj ;j 0 W CFGj ! CFGj 0 as follows: it is U{;| –equivariant for
.{; |/ ¤ .1; j / and sends U m

1;j
x to U m

1;j 0
x . It is clearly an F2ŒU1; : : : ;Ul �–module

map, but in general is not a chain map. Let J.j ; j 0/ � f1; : : : ; k1g be defined by:
| 2 J.j ; j 0/ if and only if z1;| appears in the arc joining w1;j to w1;j 0 in the oriented
link component L1 . Define

fj ;j 0 D cj ;j 0ˆ1;j

X
|2J .j ;j 0/

‰1;| :

Theorem 5.5 The map fj ;j 0 , as defined above, is an F2ŒU1; : : : ;Ul �–module chain
map from CFGj to CFGj 0 . Furthermore, fk1;1f1;k1

D IdCˆ1‰1 D IdC‰1ˆ1 and,
for 2� j � k1� 1, fj ;jC1f1;j D f1;jC1 in K.Al/

Proof The maps ˆi;j and ‰i;j are U{;| –equivariant. The map cj ;j 0 is also Ui –
equivariant since Œcj ;j 0 WU1�Dcj ;j 0U1CU1cj ;j 0Dcj ;j 0U1;jCU1;j 0cj ;j 0D0. Therefore,
the maps fj ;j 0 are Ui –equivariant.

To see that fj ;j 0 is a chain map, recall the commutator relations: Œˆ1;| W @� D 0 and
Œ‰1;| W @�DU1;|CU1;|C1 (the second index being numbered modulo k1 ). It is also easy
to see that Œcj ;j 0 W @�D .U1;j CU1;j 0/cj ;j 0ˆ1;j (since w1;j can appear in a rectangle
at most once). Therefore,

Œfj ;j 0 W @�D

�
Œcj ;j 0 W @�ˆ1;j

X
|2J .j ;j 0/

‰1;|

�
C

�
cj ;j 0 Œˆ1;j W @�

X
|2J .j ;j 0/

‰1;|

�
C

�
cj ;j 0ˆ1;j

X
|2J .j ;j 0/

Œ‰1;| W @�

�

D

�
.U1;j CU1;j 0/cj ;j 0ˆ

2
1;j

X
|2J .j ;j 0/

‰1;|

�
C .cj ;j 0ˆ1;j .U1;j CU1;j 0//

D 0C cj ;j 0.U1;j CU1;j 0/ˆ1;j (since ˆ2
1;j D 0 in grid diagrams)

D 0:
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For the second part of the theorem, let Idj ;j 0 be the identity map from CFGj to CFGj 0 .
It is not U1 –equivariant; indeed, ŒIdj ;j 0 WU1�D .U1;j CU1;j 0/ Idj ;j 0 . Define

Kj ;j 0 W CFGj ! CFGj 0

to be U{;| –equivariant for .{; |/¤.1; j / and send U m
1;j x to ..U m

j CU m
j 0 /=.UjCUj 0//x .

It is easy to see that ŒKj ;j 0 WU1� D U1;j 0Kj ;j 0 C Kj ;j 0U1;j D Idj ;j 0 ; furthermore,
ŒKj ;j 0 W @�D cj ;j 0ˆ1;j .

We have

fk1;1f1;k1
Cˆ1‰1

D ck1;1ˆ1;k1
‰1;k1

c1;k1
ˆ1;1.‰1;1C � � �C‰1;k1�1/Cˆ1;1.‰1;1C � � �C‰1;k1

/

D .ck1;1ˆ1;k1
‰1;k1

Id1;k1
C Id/c1;1ˆ1;1.‰1;1C � � �C‰1;k1�1/C c1;1ˆ1;1‰1;k1

and, for 2� j � k1� 1,

f1;jfj ;jC1Cf1;jC1

D cj ;jC1ˆ1;j‰1;j c1;jˆ1;1.‰1;1C� � �C‰1;j�1/Cc1;jC1ˆ1;1.‰1;1C� � �C‰1;j /

D .cj ;jC1ˆ1;j‰1;j IdjC1;j C Id/c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

C c1;jC1ˆ1;1‰1;j :

Therefore, for 2� j � k1 , we are interested in the map

gj D .cj ;jC1ˆ1;j‰1;j IdjC1;j C Id/c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

C c1;jC1ˆ1;1‰1;j :

We want to show that gk1
D Id and gj D 0 for j � k1� 1 in K.Al/.

Consider the map Hj DKj ;jC1‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � � C‰1;j�1/. We
have

ŒHj WU1�

D ŒKj ;jC1WU1�‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1‰1;j ŒIdjC1;j WU1�c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

D Idj ;jC1‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1‰1;j .U1;j CU1;jC1/ IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

D Idj ;jC1‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

C Idj ;jC1‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

D 0:
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Therefore, Hj is a Ui –equivariant map from CFG to CFGjC1
. We also have

ŒHj W @�

D ŒKj ;jC1W @�‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1Œ‰1;j W @� IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1‰1;j IdjC1;j Œc1;jC1W @�ˆ1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1‰1;j IdjC1;j c1;jC1ˆ1;1.Œ‰1;1W @�C � � �C Œ‰1;j�1W @�/

D cj ;jC1ˆ1;j‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1.U1;j CU1;jC1/ IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1‰1;j IdjC1;j .U1;1CU1;jC1/c1;jC1ˆ
2
1;1.‰1;1C � � �C‰1;j�1/

CKj ;jC1‰1;j IdjC1;j c1;jC1ˆ1;1.U1;1CU1;j /

D cj ;jC1ˆ1;j‰1;j IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

C Idj ;jC1 IdjC1;j c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

C 0CKj ;jC1.U1;jC1CU1;j /‰1;j IdjC1;j c1;jC1ˆ1;1

D .cj ;jC1ˆ1;j‰1;j IdjC1;j C Id/c1;jC1ˆ1;1.‰1;1C � � �C‰1;j�1/

C‰1;j c1;jC1ˆ1;1:

Thus, ŒHj W @�Cgj D‰1;j c1;jC1ˆ1;1Cc1;jC1ˆ1;1‰1;j . We want to show that it is Id
for j D k1 and is zero for j � k1� 1 in K.Al/.

For j � k1�1, consider the map K1;jC1‰1;j C‰1;j K1;jC1 . It is straightforward to
check that it is Ui –equivariant and its commutator with @ is

‰1;j c1;jC1ˆ1;1C c1;jC1ˆ1;1‰1;j :

For the last remaining case, consider the Ui –equivariant map H W CFG!CFG defined
as follows:

H.x/D
X

y2SG

y
X

R2RG.x;y/
nw1;1

.R/D1

nz .R/Dnz1;k1
.R/D1

Y
.{;|/¤.1;1/

U
nw{;| .R/
{;|

It is easy to see that, since k1 > 1, ŒH W @� D ˆ1;1‰1;k1
C ‰1;k1

ˆ1;1 C Id. This
concludes the proof.

5.7 The main theorem

Modulo a technical lemma, Lemma 5.6, we are ready to prove Theorem 1.1. Lemma 5.6
is hard to motivate on its own, so let us postpone it until we need it.
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Proof of Theorem 1.1 As mentioned earlier, we are proving this for i D 1. Due to
Theorem 4.2, we are free to choose our Heegaard diagram. So let H be an index-n grid
diagram representing the pointed link .L;p/; the Heegaard surface † is a torus, so let
us call it T ; let Js be a constant path of almost complex structure on Symn.T / induced
from some complex structure j on T ; as usual, let w1;1 , z1;1; : : : ; w1;k1

, z1;k1
be the

markings, in order, on the oriented link component L1 , with k1 > 1 and w1;1 being
the special w1–marking. Later on, during the proof of Lemma 5.6, we will impose
further restrictions on H; but, for now, let us not be concerned with such restrictions.

As in Section 5.6, for 1 � j � k1 let Gj be the grid diagram where w1;j is the
special w1–marking but which is otherwise identical to H ; let .L;p.j// be the pointed
link that Gj represents (in particular, G1 D H and p.1/ D p ). For each j , starting
at .Gj ;Js/, we will do a stabilization, a sequence of horizontal commutations, a
sequence of vertical commutations, a renumbering, a destabilization and finally a
change of complex structure to obtain a diagram .G0

jC1
;J 0s/; we will then apply a

self-homeomorphism �j ;jC1 of T that sends G0
jC1

to GjC1 and J 0s to Js (the relevant
subscripts are numbered modulo k1 ). This process is best described by Figure 5.4 (the
shaded region might contain additional w– and z–markings).

Let us now discuss a minor subtlety that we had held back for this long. If we stabilize
or destabilize a grid diagram (or a Heegaard diagram in general), the new diagram
does not represent the same pointed link; it represents an isotopic link. However, we
want the two diagrams to represent “nearby” links. Towards this end, let us broaden
the class of links that a Heegaard diagram represents.

Given a grid diagram GD .T; ˛; ˇ; z; w/, let U˛ and Uˇ be the handlebodies specified
by the data .T; ˛/ and .T; ˇ/, respectively. To obtain a link that G represents, in each
component of † n˛ join the z–marking to the w–marking by an embedded path and
push the interior of the path into the interior of U˛ , and in each component of † nˇ
in join the w–marking to the z–marking by an embedded path and push the interior of
the path into the interior of Uˇ . If these “pushes” are small, then each of the links that
G represents is supported in a small neighborhood of T . From now on, let us assume
that the links represented by grid diagrams are supported in a small neighborhood of
the Heegaard torus.

Therefore, when we stabilize a grid diagram G to get a grid diagram G0 , even though
the process changes the underlying links, the change is not drastic; the process merely
introduces a “kink”; see Figure 5.5. Therefore, modulo introducing a small kink
and then removing another, the self-homeomorphism �j ;jC1 of T induces a self-
homeomorphism z�j ;jC1 of .S3;L/; it is constant outside a small neighborhood of
the oriented arc that joins p.j/

1
D w1;j to p

.jC1/
1

D w1;jC1 on L1 and it sends p
.j/
1
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w1;jC1

w1;j

z1;j w1;jC1

w1;j

z1;j

w1;k1C1

z1;k1C1

We start with the diagram .Gj ;Js/ . We stabilize by adding w1;k1C1 and
z1;k1C1 .

w1;jC1

w1;j

z1;j

w1;k1C1

z1;k1C1

w1;jC1

w1;j

z1;j

w1;k1C1

z1;k1C1

We do a sequence of horizontal com-
mutations.

We do a sequence of vertical commu-
tations.

w1;k1C1

w1;jC1

z1;k1C1

w1;j

z1;j

w1;jC1 w1;j

z1;j

We renumber the w– and z–markings. We destabilize by deleting w1;k1C1

and z1;k1C1 . There is an obvious
homeomorphism �j ;jC1 which con-
verts this diagram to GjC1 .

w1;jC1 w1;j

z1;j

w1;jC1

w1;j

z1;j

We change the complex structure on
T from j to j0 D ��1

j ;jC1.j/ to get the
diagram .G0jC1;J

0
s/ .

We apply the homeomorphism �j ;jC1

to get the final diagram .GjC1;Js/ .

Figure 5.4: The sequence of moves converting .Gj ;Js/ to .GjC1;Js/
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Figure 5.5: Stabilization introduces a kink in the link.

to p
.jC1/
1

. Thus, the composition z�k1;1 � � � z�2;3z�1;2 induces the mapping class group
element �1 2MCG.S3;L;p/.

The sequence of moves that converts .Gj ;Js/ to .G0
jC1

;J 0s/ induces a map from
CF.Gj ;Js/ to CF.G0

jC1
;J 0s / (the map is the composition of a stabilization map, some

horizontal commutation maps, some vertical commutation maps, a renumbering map, a
destabilization map and a change of complex structure map). The automorphism �j ;jC1

induces an identification between CF.G0
jC1

;J 0s / and CF.GjC1;Js/ . The composition is
an F2ŒU1; : : : ;Ul �–module chain map from CFGj to CFGjC1

. Lemma 5.6 will prove
that, for certain types of grid diagrams called superstabilized grid diagrams, this map
is in fact the map fj ;jC1 D cj ;jC1ˆ1;j

P
|2J .j ;jC1/‰1;| D cj ;jC1ˆ1;j‰1;j .

A superstabilized grid diagram is a grid diagram where every w– or z–marking lies
in a 2� 2 square S which looks like one of the following: S contains a z–marking
at the southeast square and two w–markings, one each at the northeast square and
the southwest square; or S contains a w–marking at the northwest square and two z–
markings, one each at the northeast square and the southwest square. It is clear that any
grid diagram can be converted to a superstabilized one by stabilizing sufficiently many
times. Therefore, we may assume that our original grid diagram H was superstabilized
to start with.

Lemma 5.6 Assuming that Gj is a superstabilized grid diagram, the sequence of moves
from Figure 5.4, which converts .Gj ;Js/ to .GjC1;Js/, induces the map fj ;jC1 D

cj ;jC1ˆ1;j‰1;j from CFGj to CFG0
j

.

Proof Let Gm be the grid diagram shown in the mth picture of Figure 5.4 (hence,
G0DGj and G8DGjC1 ). The map induced by the sequence of moves is the composition
of the following maps: a stabilization map s from CFG1 to CFG2 ; the composition h

of some horizontal commutation maps, which maps from CFG2 to CFG3 ; the com-
position v of some vertical commutation maps, which maps from CFG3 to CFG4 ;
a renumbering map r from CFG4 to CFG5 ; a destabilization map d from CFG5
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w1;j

w1;j w1;j

z1;j

z1;j

z1;j

w1;jC1 w1;jC1

w1;jC1

z1;jC1

z1;jC1

w1;j�1

z1;j�1
z1;j�1

w1;jC2

Figure 5.6: The three possible configurations of Gj

to CFG6 ; a change of complex structure map from CFG6 to CFG7 D CFG6 , which
is the identity map; and finally an identification map induced by �j ;jC1 from CFG7

to CFG8 . Therefore, if we identify CFG6 with CFG1 by an identification map �, the
map in question is simply the composition �drvhs .

Since Gj is a superstabilized grid diagram, it actually looks like one of the three
configurations of Figure 5.6. The first case is the easiest, so we will do it for warm-up.
The second and the third case are similar, so we will only do the second case.

In the first case, G2 D G3 D G4 and hD v D Id. The sequence of moves is shown in
Figure 5.7. We want to show that the composition �drs equals the map cj ;jC1ˆ1;j‰1;j .
It is easy to see that the part cj ;jC1 comes from renumbering map r and the destabi-
lization map d . We only have to check that the domains that contribute to the map
drs correspond to the domains that contribute to the map ˆ1;j‰1;j .

Recall that the stabilization map s comes from certain northeast snail domains and
they are not allowed to pass through z1;j ; similarly, the destabilization map d comes
from certain southeast snail domains and they too are not allowed to pass through z1;j .
Therefore, only domains of certain “shapes” can appear in the map drs and these

w1;j

z1;j
w1;jC1

w1;j

z1;j
w1;jC1

z1;k1C1

w1;k1C1

w1;jC1

z1;k1C1
w1;k1C1

z1;j

w1;j

w1;jC1 z1;j

w1;j

s r dG1 G2 D G3 D G4 G5 G6

Figure 5.7: The sequence of moves in the first case
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Figure 5.8: The correspondence of domains in the first case. The domains
appearing in the map drs are shown in the top row and the corresponding
domains appearing in ˆ1;j‰1;j are shown in the bottom row. The domains
corresponding to s and ‰1;j are shown in green, while the domains corre-
sponding to d and ˆ1;j are shown in orange.

shapes correspond to the domains that appear in the map ˆ1;j‰1;j . This is best
illustrated by Figure 5.8.

In the second case, G3DG4 and vD Id. The sequence of moves is shown in Figure 5.9.
In this case, the maps �drhs and cj ;jC1ˆ1;j‰1;j will not agree on the nose; we
will have to modify the second map by a homotopy. Given states x , y 2 SGj , let
RH .x;y/ be the subset of RGj .x;y/ consisting of all the rectangles that contain both
w1;j and z1;j with z1;j lying to the north of w1;j . Define the U{;| –equivariant map

w1;j

z1;j

w1;jC1

w1;j

z1;j

w1;jC1

z1;k1C1

w1;k1C1

w1;j

z1;j

w1;jC1

z1;k1C1

w1;k1C1

w1;jC1

z1;k1C1

w1;k1C1

z1;j

w1;j

w1;jC1
z1;j

w1;j

s h r dG1 G2 G3 D G4 G5 G6

Figure 5.9: The sequence of moves in the second case. There could be
arbitrarily many ˛–circles between w1;j and z1;j ; we have drawn three.

Algebraic & Geometric Topology, Volume 15 (2015)



2510 Sucharit Sarkar

H W CFGj ! CFGj as follows:

H.x/D
X

y2SGj

yU�1
1;j

X
R2RH .x;y/

nz .R/D1

Y
{;|

U
nw{;| .R/
{;| :

The map cj ;jC1H is a Ui –equivariant map from CFGj to CFGjC1
. Furthermore,

Œcj ;jC1H W @�D .U1;j CU1;jC1/cj ;jC1ˆ1;j H C cj ;jC1ŒH W @�. However, it is easy to
see that ˆ1;j H D 0 for the case at hand. We will show that the maps �drhs and
cj ;jC1ˆ1;j‰1;j C Œcj ;jC1H W @�D cj ;j .ˆ1;j‰1;j C ŒH W @�/ are equal. The part cj ;jC1

once again comes from r and d . Therefore, we only have to show that the domains
that contribute to the map drhs correspond to the domains that contribute to the map
ˆ1;j‰1;j C ŒH W @�.

Recall that in a horizontal commutation we change a single ˛–circle and the commuta-
tion map is given by counting certain pentagons, one of whose vertices is %, which
is one of the two intersection points between the old ˛–circle and the new ˛–circle.
Therefore, such pentagons could be two types: the north pentagons, which lie to the
north of %, and the south pentagons, which lie to the south of %. The map h is the
composition of several such commutation maps. Furthermore, it is clear that in the
composition, a south pentagon can not be followed by a north pentagon. Therefore,
any domain corresponding to the map h is a sum of two domains: one coming from
the north pentagons, followed by one coming from the south pentagons.

The north pentagons happen immediately after the stabilization map s ; hence, there are
only a few possible configurations for a domain corresponding to the north pentagons.
Similarly, the south pentagons are immediately followed by the destabilization map d ;
therefore, there are only a few possible configurations for a domain corresponding to
the south pentagons as well. This allows us to do a case analysis, whereby we can show
that the domains contributing to the map drhs correspond to the domains contributing
to the map ˆ1;j‰1;j C ŒH W @�; see Figure 5.10.

To complete the proof of Theorem 1.1, recall that the composition z�k1;1 � � � z�2;3z�1;2

induces the mapping class group element �1 2MCG.S3;L;p/. Therefore, the com-
position fk1;1 � � � f2;3f1;2 must equal �.�1/. However, by Theorem 5.5,

fk1;1fk1�1;k1
� � � f2;3f1;2 D fk1;1fk1�1;k1

� � � f1;3 D � � � D fk1;1f1;k1

D IdCˆ1‰1:
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Figure 5.10: The correspondence of domains in the second case (here we
have drawn four ˛–circles between w1;j and z1;j ). The domains appearing in
the map drhs are shown in the first and the third row and the corresponding
domains appearing in ˆ1;j‰1;j C ŒH W @� are shown in the second and the
fourth row. The domains corresponding to s and ‰1;j are shown in green,
the domains corresponding to d and ˆ1;j are shown in orange, the domains
corresponding to h and the first map in ŒH W @� are shown in violet, and the
domains corresponding to the second map in ŒH W @� are shown in pink.
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6 Computations

Let us now present some computations. We will only work with knots in S3 ; since there
is only one component to work with, we will write ˆ and ‰ instead of ˆ1 and ‰1 .
For a pointed knot .K;p/, define the polynomials hK .q; t/; rK .q; t/2ZŒq; q�1; t; t�1�

as follows: the coefficient of qatb in hK .q; t/ is the dimension (as an F2 –module)
of �HFL.S3;K;p/ in .M;A/–bigrading .a; b/; the coefficient of qatb in rK .q; t/

is the rank of the map ˆ‰ on �HFL.S3;K;p/ in .M;A/–bigrading .a; b/. Since
.ˆ‰/2 D 0, the only information that we can get from it is its rank.

If a knot K satisfies hK .q; t/D t s Qh.qt/ for some s 2Z and Qh 2ZŒv; v�1�, it is called
a thin knot; if, in addition, s D�1

2
�.K/, where �.K/ is the signature of K , then K

is called �–thin. The “Euler characteristic” of knot Floer homology is its symmetrized
Alexander–Conway polynomial [11], ie hK .�1; t/D �K .t/. Therefore, for �–thin
knots, the knot Floer homology can be reconstructed from the Alexander–Conway
polynomial and the knot signature as hK .q; t/ D .�q/�.K /=2�K .�qt/. All quasi-
alternating knots are �–thin [10; 5] and, out of the 85 prime knots up to nine crossings,
83 are quasi-alternating. The following theorem shows that, for thin knots, rK .q; t/ can
be constructed from hK .q; t/ and hence, for �–thin knots, rK .q; t/ can be constructed
from the signature and the Alexander–Conway polynomial.

Theorem 6.1 If K is a thin knot with hK .q; t/D t s Qh.qt/, then rK .q; t/D t s Qr.qt/,
where Qr 2 ZŒv; v�1� is the unique polynomial such that, for some m 2 Z, Qh.v/ D
.1� v2mC1/=.1� v/C .v�1C 2C v/ Qr.v/.

Proof The uniqueness is the easy part. If there are two different polynomials Qr and Qr 0

that satisfy the above equation, then we get

.1C v/2.1� v/. Qr � Qr 0/D v2mC2
� v2m0C2:

Differentiating once and then putting v D�1 shows that mDm0 and hence Qr D Qr 0 .

The knot Floer homology �HFL.S3;K;p/ is a graded object with the grading being
the Maslov grading4 and, due to Lemma 4.4, it carries two commuting differen-
tials ˆ and ‰ of gradings 1 and �1, respectively. There are two knot-invariant
spectral sequences: one starts at . �HFL.S3;K;p/; ˆ/ and converges to F2 , where
the differentials on the i th page shift the .M;A/–bigrading by .2i � 1; i/; and the
second one starts at . �HFL.S3;K;p/; ‰/ and converges to F2 lying in Maslov grad-
ing 0, where the differentials on the i th page shift the .M;A/–bigrading by .�1;�i/.
Therefore, for thin knots, both the spectral sequences must collapse immediately, ie

4Since we are working with a thin knot, the Alexander grading differs from this grading by a constant.
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H�. �HFL.S3;K;p/; ˆ/ D F2 and H�. �HFL.S3;K;p/; ‰/ D F2 . Therefore, from a
slight generalization of [16, Lemma 7],5 we see that . �HFL.S3;K;p/; ˆ;‰/ must be
isomorphic to a direct sum of square pieces of the form .F2.a1; a2; a

0
2
; a3/; ˆ;‰/,

where ˆ.a1/D‰.a3/D a0
2

, ˆ.a2/D a3 and ‰.a2/D a1 , and a single ladder piece
of the form .F2.b1; : : : ; b2mC1/; ˆ;‰/, where either ˆ.b2i�1/ D ‰.b2iC1/ D b2i

for all 1 � i � m or ˆ.b2i/ D b2iC1 and ‰.b2i/ D b2i�1 for all 1 � i � m. The
only contributions to the map ˆ‰ come from the square pieces in the middle grading,
namely ˆ‰.a2/D a0

2
. This produces the required decomposition of Qh.v/: the square

pieces contribute the term .v�1C 2C v/ Qr.v/; the ladder piece contributes the term
1C � � �C v2m in the first case and the term 1C � � �C v�2m in the second case.

The two prime knots up to nine crossings that are not thin (and hence not quasi-
alternating) are 819 and 942 .

Lemma 6.2 r819
.q; t/D 0 and r942

.q; t/D t�1C q2t .

Proof From [1], we get

h819
.q; t/D t�3

C qt�2
C q2

C q5t2
C q6t3;

h942
.q; t/D q�1t�2

C 2t�1
C 1C 2qC 2q2t C q3t2:

Since .ˆ‰/2 D 0, the coefficient of qatb in rK .q; t/ is less than or equal to half the
coefficient of qatb in hK .q; t/. This immediately shows that r819

.q; t/D 0.

The knot Floer homology of 942 is supported on two diagonals, M �A D 0 and
M�AD1. For i 2f0; 1g, let Ci be the direct summand that is supported in the diagonal
M �A D i . As in the proof of Theorem 6.1, there are two knot-invariant spectral
sequences starting at .C1; ˆ/˚ .C0; ˆ/ and .C1; ‰/˚ .C0; ‰/ and ending at F2 .
By [1], the first spectral sequence collapses at the very next step, ie H�.C1; ˆ/D 0.
Since the knot 942 is reversible and the spectral sequences are knot invariants, the
second spectral sequence must also collapse at the very next step, ie H�.C1; ‰/D 0.
Another application of [16, Lemma 7] tells us that .C1; ˆ;‰/ is a direct sum of two
square pieces and hence r942

.q; t/D t�1C q2t .

We conclude with the following observation; this can independently be proved by
more classical tools, such as studying combinatorial symmetries of the ideal cell
decomposition of the knot complements, which in turn is easily computed by computer
programs like SnapPea (M Thistlethwaite, personal communication).

5In [16], they do it for bigraded complexes; however, the proof goes through for singly graded
complexes like the one under consideration.

Algebraic & Geometric Topology, Volume 15 (2015)



2514 Sucharit Sarkar

Theorem 6.3 There does not exist any orientation-preserving involution of S3 that
acts freely and in an orientation-preserving way on either the knot 820 or the knot 942 .

Proof Let .K;p/ be a pointed oriented knot in S3 and let � be an orientation-
preserving involution of S3 that acts freely and in an orientation-preserving way on K .
Let � be half a Dehn twist around K that interchanges the points p and �.p/ such that
�2D� , the full positive Dehn twist around K . Since � acts freely on a neighborhood of
K and � is the identity outside a neighborhood of K , the two diffeomorphisms �� and
�� induce the same element of MCG.S3;K; �.p//; hence, the two diffeomorphisms
.��/2 and �2�2 D � induce the same element in MCG.S3;K;p/.

Let y�W MCG.S3;K;p/! AutN.C1/.
�HFL.S3;K;p// be the action of the mapping

class group on knot Floer homology. Theorem 1.1 tells us that y�.�/ D IdCˆ‰ .
However, since .��/2 D � in the mapping class group, y�.�/D IdCˆ‰ D .y�.��//2 .

We know from [1], Theorem 6.1 and Lemma 6.2 that

h820
.q; t/D q�2t�2

C 2q�1t�1
C 3C 2qt C q2t2;

r820
.q; t/D q�1t�1

C qt;

h942
.q; t/D q�1t�2

C 2t�1
C 1C 2qC 2q2t C q3t2;

r942
.q; t/D t�1

C q2t:

For the knot 820 in .M;A/–bigrading .1; 1/, and for the knot 942 in .M;A/–bigrading
.2; 1/, the homology is two-dimensional and the rank of the map ˆ‰ is one. Therefore,
in either case, we can do a change of basis to represent the map IdCˆ‰ by the matrix�

1 1

0 1

�
:

However, this matrix is not a square in GL2.F2/.
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