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Khovanov homology is a skew Howe
2–representation of categorified quantum slm

AARON D LAUDA

HOEL QUEFFELEC

DAVID E V ROSE

We show that Khovanov homology (and its sl3 variant) can be understood in the
context of higher representation theory. Specifically, we show that the combinatorially
defined foam constructions of these theories arise as a family of 2–representations
of categorified quantum slm via categorical skew Howe duality. Utilizing Cautis–
Rozansky categorified clasps we also obtain a unified construction of foam-based
categorifications of Jones–Wenzl projectors and their sl3 analogs purely from the
higher representation theory of categorified quantum groups. In the sl2 case, this
work reveals the importance of a modified class of foams introduced by Christian
Blanchet which in turn suggest a similar modified version of the sl3 foam category
introduced here.

81R50; 17B37, 57M25, 18G60

1 Introduction

1A Categorified knot invariants and quantum groups

One of the original motivations for categorifying quantum groups was to provide a
representation-theoretic explanation for the existence of Khovanov homology and other
link homologies categorifying quantum link invariants. Just as the Jones polynomial is
described representation theoretically by the quantum group Uq.sl2/ and tensor powers
of its two-dimensional representation, the categorification of the Jones polynomial via
Khovanov homology should be described in terms of the 2–representation theory of
the categorified quantum group associated to Uq.sl2/.

Currently, the primary link between categorified quantum groups and Khovanov homol-
ogy follows the indirect path through Webster’s work [74; 75] on categorified tensor
products. This connection utilizes an isomorphism relating Webster’s categorifications
of tensor products with categories associated to blocks of graded, parabolic category O .
Categorifications associated with category O were initiated by Bernstein, Frenkel and
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Khovanov [3], further developed in work of Frenkel, Khovanov and Stroppel [68; 25],
and were later shown to give rise to 2–representations of categorified quantum groups
by Hill and Sussan [27] and Brundan and Stroppel [6]. The relation to the familiar
picture-world, see Bar-Natan [1; 2], of Khovanov homology then relies on several
technical results of Stroppel [69; 68] relating the knot homologies constructed using
category O to Khovanov’s more elementary construction [32; 33]. More generally,
for link homology theories associated with fundamental sln representations, Webster
describes an isomorphism relating his construction to Sussan’s category O based link
homology theory [71], which is related via Koszul duality to a theory defined by
Mazorchuk and Stroppel [57]. When nD 3, the latter of these link homologies can
then be identified [57] with Khovanov’s more elementary construction [34] of sl3 link
homology defined using singular cobordisms called foams.

Alternatively, there is an algebro-geometric construction of Khovanov homology and
related sln link homologies due to Cautis and Kamnitzer [12; 13]. These knot ho-
mologies arise from derived categories of coherent sheaves on algebraic varieties
associated to orbits in the affine Grassmannian. In the sl2 case this knot homology
agrees with Khovanov homology [12, Theorem 8.2] and these geometric categories
can be understood as 2–representations of categorified quantum groups; see Cautis and
Lauda [20] and Cautis, Kamnitzer and Licata [16]. These link homologies are related
to those of Seidel and Smith [66] and Manolescu [56] by mirror symmetry.

In this article, we provide a direct construction of foam based sln link homology
theories for n D 2 or n D 3 intrinsically in terms of categorified quantum groups.
We show that all of the components involved in these knot homologies are already
present within the structure of categorified quantum groups including the relations in
foam categories and the complexes defining the braiding. Utilizing Cautis–Rozansky
categorified clasps [10; 65] we also obtain categorified projectors lifting Jones–Wenzl
idempotents and their sl3 analogs purely from the higher relations of categorified
quantum groups. In the sl2 case this work reveals the importance of a modified class
of foams introduced by Christian Blanchet [4], suggesting that this version of the foam
category is most natural from the perspective of categorified quantum groups. In the
sl3 case these results suggest a similar modified version of the sl3 foam category.

1B Categorified representation theory

Recall that in categorified representation theory, C.q/–vector spaces V with decompo-
sitions into weight spaces V D

L
� V� , are replaced by graded categories V D

L
� V� ,

and instead of linear maps between spaces, Chevalley generators act by functors
Ei1�W V� ! V�C˛i

, Fi1�W V� ! V��˛i
satisfying quantum Serre relations up to
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isomorphism of functors. The higher structure of categorified representation theory
appears at the level of natural transformations between these functors. In most instances
when Uq.sln/ admits a categorical action of this form, the natural transformations that
appear between functors are predictable and can be systematically described. A key part
of this structure is that F is a left and right adjoint for E and that the endomorphisms
of Ea are acted upon by the so-called KLR algebras developed in papers by Chuang
and Rouquier [21], Khovanov and Lauda [36; 38] and Rouquier [64].

In Lauda [46] and Khovanov and Lauda [37], it was suggested that the full structure of
categorical representations of Uq.sln/ is described by a 2–functor from an additive
2–category PUQ.sln/. This 2–category categorifies Lusztig’s modified version PUq.sln/

of the quantum group Uq.sln/ [48]. The objects of PUQ.sln/ are indexed by the weight
lattice of PUq.sln/, 1–morphisms correspond to the elements of PUq.sln/, and the
2–morphisms govern the natural transformations that appear in categorical represen-
tations. However, the 2–category PUQ.sln/ has additional relations on 2–morphisms
beyond specified adjoints and KLR relations. We refer to the collection of relations
on 2–morphisms as higher relations because they can be viewed as replacements
for the quantum Serre relations. Indeed, these higher relations give rise to explicit
isomorphisms lifting the defining relations in PUq.sln/, while simultaneously controlling
the Grothendieck group of PUQ.sln/, allowing for a ZŒq; q�1�–algebra isomorphism
between its split Grothendieck ring K0. PUQ.sln// and the integral version of PUq.sln/.
Under this isomorphism, the images of indecomposable 1–morphisms from PUQ.sln/

map to the canonical basis of PUq.sln/; see Lauda [46] and Webster [76].

Here we show that these higher relations also encode the information needed to con-
struct all sl2 and sl3 knot homology theories in a framework where computations are
accessible.

1C Braidings via skew Howe duality

The key insight for our elementary construction of knot homologies from categorified
quantum groups is the fundamental observation of Cautis, Kamnitzer and Licata that
the R–matrix describing the braiding in an m–fold tensor product of fundamental
representations of Uq.sln/ in Reshetikhin–Turaev link invariants can be obtained from
a deformed Weyl group action associated with Uq.slm/ [15].

Recall that the Weyl group W of a semi-simple Lie algebra g is a finite Coxeter group
associated to the root system of g. Passing from U.g/ to Uq.g/, the Weyl group
deforms to a braid group of type g, which acts on Uq.g/–modules. In the simplest
case of g D sl2 , the Weyl group W D S2 deforms to the braid group B2 giving a
reflection isomorphism T W V�! V�� between weight spaces of a Uq.sl2/–module.
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This action can be expressed in a completion of the idempotented quantum algebra
PUq.sl2/ by the power series

(1-1)

T 1� D
X
s�0

.�q/sF .�Cs/E.s/1� �� 0;

T 1� D
X
s�0

.�q/sE.��Cs/F .s/1� �� 0:

On any finite-dimensional representation, T 1� can be expressed as a finite sum. When
g D slm and W D Sm , there are analogous maps Ti1� for each 1 � i � m � 1

satisfying the braid relations.

Cautis, Kamnitzer and Licata related the braiding of fundamental Uq.sln/ representa-
tions to the Weyl group action using a version of Howe duality for exterior algebras
they called skew Howe duality [15]. The key idea is to study quantum exterior powers.
Denote by Cn

q the standard PUq.sln/–module with basis denoted x1; : : : ;xn . The
quantum exterior algebra is the PUq.sln/–module defined asV�

q.C
n
q /DC.q/hx1; : : : ;xni=.x

2
i ; xixj C qxj xi for i < j /:

By assigning degree one to each xi the quantum exterior algebra is a graded PUq.sln/–
module whose homogeneous subspace of degree N is denoted by

V
q
N .Cn

q /.

The space
V

q
N .Cn

q ˝Cm
q / admits commuting actions of PUq.slm/ and PUq.sln/ which

constitute a Howe pair. For example, when mD2 the space
V

q
N .Cn

q˝C2
q/ decomposes

into PUq.sl2/ weight spaces asV
q
N .Cn

q ˝C2
q/Š

V
q
N .Cn

q ˚Cn
q /Š

M
aCbDN

Va
q.C

n
q /˝

Vb
q.C

n
q /;

where the weight of a summand
Va

q.C
n
q /˝

Vb
q.C

n
q / is � D b � a. The action of

PUq.sl2/ is given by maps

(1-2)
E1�W

Va
q.C

n
q /˝

Vb
q.C

n
q /!

Va�1
q .Cn

q /˝
VbC1

q .Cn
q /;

F1�W
Va

q.C
n
q /˝

Vb
q.C

n
q /!

VaC1
q .Cn

q /˝
Vb�1

q .Cn
q /:

For more details on quantum skew Howe duality see Cautis, Kamnitzer and Morrison
[19] and Cautis [10].

The Weyl group action gives an isomorphism between the �th and ��th weight spaces
of
V

q
N .Cn

q ˝C2
q/.

���
Vq

bC1
.Cn

q /˝
Vq

a�1
.Cn

q /
Vq

b
.Cn

q /˝
Vq

a.C
n
q /

F

hh

E

((

���
Vq

a.C
n
q /˝

Vq

b
.Cn

q /
Vq

a�1
.Cn

q /˝
Vq

bC1
.Cn

q /

E

((

F

hh

���2 �� � �C2

��

T

��

���
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Since Cn
q is the defining representation of PUq.sln/, the quantum exterior powersVa

q.C
n
q / D V!a

correspond to fundamental PUq.sln/–representations, where !a for
1� a�n�1 are the fundamental weights of sln . The deformed reflection isomorphism

V!a
˝V!b

Š
Va

q.C
n
q /˝

Vb
q.C

n
q /

T
�!

Vb
q.C

n
q /˝

Va
q.C

n
q /Š V!b

˝V!a
:

gives a braiding of fundamental representations that agrees with the R–matrix in the
Reshetikhin–Turaev construction [15] (up to a power of ˙q ). The key advantage of
this realization of the R–matrix in terms of skew Howe duality is that it suggests a
procedure for categorification.

1D Knot homology from categorical skew Howe duality

Following the ideas of Chuang and Rouquier [21] (see also Cautis and Kamnitzer [14]),
one can define a categorification of the reflection isomorphism T 1�W V�! V�� using
the 2–category PUQ.sl2/ categorifying PUq.sl2/. Passing to the category of complexes
Kom. PUQ.sl2//, it is possible to define a complex T 1� of 1–morphisms

(1-3) E.��/1�
d1
�! E.��C1/F1�f1g

d2
�! E.��C2/F .2/1�f2g �! � � �

�! E.��Ck/F .k/1�fkg
dkC1

�! � � �

for �� 0 and a similar complex for �� 0 (compare with (1-1)). The differentials in
this complex can be explicitly defined using the 2–morphisms in PUQ.sl2/. Verification
that d2 D 0 follows from the relations in the 2–category PUQ.sl2/; the enhanced
graphical calculus from Khovanov, Lauda, Mackaay and Stošić [40] is useful for this
computation.

Given a 2–representation V of the 2–category PUQ.sl2/ with weight decomposition
into abelian categories V� , the functor of tensoring with the complex T 1� gives rise to
derived equivalences T 1�W D.V�/!D.V��/. The resulting derived equivalences are
highly non-trivial and have led to the resolution of several important conjectures [21; 16;
18]. Our interest in these equivalences stems from their application to knot homology
theory. Given a categorification of

V
q
N .Cn

q ˝C2
q/ with commuting categorical actions

of PUQ.sln/ and PUQ.sl2/, the categorified braid group action gives a categorification
of the R–matrix. More generally, one can categorify the braid group action on an
m–fold tensor product of Uq.sln/ representation using the categorified braid group
action coming from the deformed Weyl group action of PUq.slm/ [14].

In fact, Cautis and Kamnitzer’s algebro-geometric construction of Khovanov homology
[12] and sln link homology [13] can be understood in this framework. Their invariants
arise from a categorification of

V
q
N .Cn

q ˝Cm
q / using derived categories of coherent

sheaves on varieties related to orbits in the affine Grassmannian [10, Theorem 2.6].

Algebraic & Geometric Topology, Volume 15 (2015)



2522 Aaron D Lauda, Hoel Queffelec and David E V Rose

1E Reinterpreting sln skein theory using skew Howe duality

While categorifications of
V

q
N .Cn

q ˝Cm
q / defined via derived categories of coherent

sheaves are far from elementary, it turns out that this story has a more combinatorial
description. In the decategorified case, the usual skein theory description of sln link
invariants in terms of MOY calculus [60], can also be understood in terms of skew
Howe duality.

Recall that an sln web is a graphical presentation of intertwiners between tensor
products of fundamental representations of Uq.sln/. When nD 2, the calculus of sl2
webs is described by the Temperley–Lieb algebra; Kuperberg described the nD 3 case
using a graphical calculus of oriented trivalent graphs [45] which depict the morphisms
in a combinatorially defined pivotal category called the sl3 spider. These descriptions
have recently been generalized by Cautis, Kamnitzer and Morrison [19] to general n,
building on earlier work of Kim [44] and Morrison [58]. We briefly summarize this
construction, referring the reader to their work for the details.

The category nWeb is the pivotal category whose objects are sequences in the symbols
f1˙; : : : ; .n�1/˙g. Morphisms are oriented graphs with edges labeled by f1; : : : ; n�1g

generated by the following:

(1-4)

kC l

k l

kC l

k l k

n� k

k

n� k

where a strand labeled by k is directed out from the label kC and into the label k�

in the domain, and vice versa in the codomain. These graphs, called sln webs, are
considered up to isotopy (relative to their boundary) and local relations. The category
nWeb can be identified with the full subcategory of Uq.sln/ representations generated
(as a pivotal category) by the fundamental representations by identifying the symbol
kC with

Vk
q .C

n
q / and identifying k� with its dual. Sequences correspond to tensor

products of the corresponding representations.

The connection to skew Howe duality is given by considering a related family of
m–sheeted web categories. Let nWebm.N / denote the category whose objects are
sequences aD .a1; a2; : : : ; am/ with 0 � ai � n and

Pm
iD1 ai D N . Note that here

we allow the symbols 0 and n in the object sequences, but none of the dual symbols
k� . As above, these labels should be interpreted as representations

Vk
q .C

n
q / for

0� k � n with
V0

q.C
n
q /D

Vn
q.C

n
q /DC.q/ corresponding to the trivial representation.
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Morphisms in nWebm.N / are sln webs mapping between the symbols ai ¤ 0; n in
each sequence.

Via skew Howe duality, the action of PUq.slm/ on
V

q
N .Cn

q ˝Cm
q / gives morphisms

between tensor products of fundamental representations. This map has a graphical
interpretation described in [19] using “ladder diagrams” to represent webs:

1� 7!
a1

am:::

Ei1� 7!
ai

aiC1

ai � 1

aiC1C 1
Fi1� 7!

ai

aiC1

ai C 1

aiC1� 1

These diagrams should be read from right to left and we omit m�2 lines in each of the
latter two diagrams (compare with (1-2)). The sequences on the right are determined
by the slm weight � D .�1; : : : ; �m�1/ by �i D aiC1 � ai ; edges connected to the
label 0 should be deleted and those connected to the label n should be truncated to the
“tags” depicted in the last two diagrams in (1-4).

In this paper, we categorify Cautis, Kamnitzer and Morrison’s construction for the cases
nD2 and nD3. In fact, for the sl2 case we work with related categories 2BWebm.N /

where we allow strands labeled by 2 and no longer require the tag morphisms.1 For
example in 2BWeb2.2/ we have the morphism

0

2

1

1

where depicts a 1–labeled edge and depicts a 2–labeled edge.

In the sl3 case, we continue to work with 3Webm.N /, although this category has
a simpler description than the one given above. Since

V2
q.C

3
q/ can be canonically

identified with the dual of
V1

q.C
3
q/ we can replace 2–labeled edges with 1–labeled

edges oriented in the opposite direction and do away with the tag morphisms. For
example, the diagram

2

1

1

2

2

0

1

3

1Here the “B” stands for Blanchet; this category is related to a decategorification of his work [4].
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depicts a morphism in 3Web4.6/. We will later also consider a (categorified) version
of this category in which we retain 3–labeled edges.

We will now exhibit the power of the skew Howe approach to diagrammatic represen-
tation theory (which hints at the utility of its categorified counterpart) in an example.
The decomposition of

V3
q.C

3
q ˝C2

q/ into PUq.sl2/ weight spaces gives

V
3

q
.C3

q/˝
V

0

q
.C3

q/

E1�3

##V
2

q
.C3

q/˝
V

1

q
.C3

q/

F1�1

cc

E1�1

##V
1

q
.C3

q/˝
V

2

q
.C3

q/

F11

cc

E11

##V
0

q
.C3

q/˝
V

3

q
.C3

q/

F13

cc

or diagrammatically

.3; 0/

0

3

1

2
))

.2; 1/

1

2

2

1

))

1

2

0

3

ii
.1; 2/

2

1

3

0

))

2

1

1

2

ii
.0; 3/

3

0

2

1

ii

where we again read the webs from right to left in the above.

The local relations for sl3 webs from Kupperburg [45] can be deduced from the fact that
the above is an sl2 representation. Indeed, the PUq.sl2/ relation EF13DFE13C Œ3�13

gives the circle relation
D Œ3�

and the square relation

D C

follows from the relation EF11 D FE11C Œ1�11 . The above diagrammatics extends
to a description of the action by the integral version A PU.sl2/ on

V3
q.C

3
q ˝C2

q/ where
divided powers E.k/ WDEk=Œk�! act by ladder web diagrams with diagonal lines labeled
by k . In the above example, the divided power relation E21�1 D Œ2�E

.2/1�1 gives
the remaining bigon relation

D Œ2�

from [45].
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The skein-theoretic definition of the braiding can also be constructed from skew Howe
duality using the deformed Weyl group action. For example, the braiding for edges
labeled by the standard sl3 representation can be recovered from the action of PUq.sl2/

on
V2

q.C
3
q ˝C2

q/. The decomposition into weight spaces is given diagrammatically
by

.2; 0/

0

2

1

1

**

.1; 1/

1

1

2

0

**

1

1

0

2

jj
.0; 2/

2

0

1

1

jj

and the Weyl group action (1-1) on the 0–weight space gives the braiding

1

1

1

1
D

1

1

1

1
� q

1

1

1

1

since T 10 D 10 � qFE10 . Up to a power of q , this recovers the formula for the
positive crossing from [45]; the negative crossing can be recovered by considering
T �110 D 10� q�1EF10 .

In a similar manner, one can recover the sl2 skein theory (ie the Kauffman bracket)
from the action of A PUq.slm/ on 2Webm.N /. In fact, Cautis, Kamnitzer and Morrison
use this approach to deduce the sln web relations for n� 4. One can use their setup
to give a combinatorial description of sln link invariants labeled by any fundamental
representation of Uq.sln/.

Moreover, one may realize the invariant of a link (or tangle) as the image of an element
in PUq.slm/ under the (appropriate) skew Howe map. For example, the sl3 invariant of
the Hopf link

3

0

0

3

3

0

0

3

is the element in

Endsl3
�V3

q.C
3
q/˝

V0
q.C

3
q/˝

V0
q.C

3
q/˝

V3
q.C

3
q/
�
ŠC.q/

given by the action of F1E3T 2
2

E1F31.�3;0;3/ 2
PUq.sl4/ on

V6
q.C

3
q ˝C4

q/.

Algebraic & Geometric Topology, Volume 15 (2015)



2526 Aaron D Lauda, Hoel Queffelec and David E V Rose

1F Foamation functors for knot homologies

The observations from the previous section suggest an approach to obtaining diagramma-
tic sln link homologies using categorical skew Howe duality. In his work categorifying
the sl3 polynomial, Khovanov utilized certain singular web cobordisms called foams
[34]. In Mackaay, Stošić and Vaz [52] these singular surfaces were generalized to the
sln case to supply a diagrammatic counterpart of Khovanov–Rozansky homology [42;
43; 55]. These foams also appear to be connected with category O , see Mazorchuk and
Stroppel [57], and with Soergel bimodules; see Vaz [73]. However, unlike Khovanov’s
construction for sl3 , there is no known finite set of relations on sln foams for n> 3

that guarantee any closed foam can be evaluated to an element of the ground ring. For
general sln , matrix factorizations become the primary computation tool [77; 78; 79], and
the only way to evaluate a closed foam is through the mysterious Kapustin–Li formula
[52], Dyckerhoff and Murfet [24]. For foams this formula was discovered by Khovanov
and Rozansky [41] generalizing work of the physicists Vafa [72], Kapustin and Li [30].
It arises from the topological Landau–Ginzburg model associated to components of
the foam. A purely combinatorial foam construction of sln link homology remains an
important open problem.

Foams can be viewed as a categorification of webs. Indeed, this point of view motivates
our approach to constructing sln link homologies for nD 2 and nD 3. In Section 3 we
describe 2–categories of m–sheeted sln foams categorifying the above web categories.
We define 2–functors

ˆnW PUQ.slm/! nFoamm.N /

for nD 2 and nD 3. The existence of such functors was predicted by Khovanov and
previously defined by Mackaay in the nD 3 case working in the restrictive setting of
Z=2Z coefficients in [50] where he called them “foamation” 2–functors.

Here we reinterpret Mackaay’s work (and extend it to the sl2 case) using skew Howe
duality, defining foamation functors for nD 2; 3 with integer coefficients. Working
over Z, it is not obvious for nD 2 how to connect categorified quantum groups with
the Bar-Natan’s foam description of Khovanov homology. For example, one of the
most basic relations for categorified quantum groups PUQ.slm/ is the nilHecke relation:

D � �
�
D
�
� �

which should correspond to the following neck-cutting relation
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D

�

C

�

via the foamation 2–functor. However, the signs under this assignment do not match.
One can try to rescale the foamation functors, but one quickly finds that there is no
way to fix the signs under this assignment.

The difficulty in matching the neck-cutting relation with the nilHecke relation is
closely related to the solution of another famous problem related to Khovanov homol-
ogy. As originally defined, Khovanov homology is a projective functorial invariant,
meaning that to a cobordism f W T ! T 0 between two tangles one can assign a map
Kh.f /W Kh.T /!Kh.T 0/ between the respective homologies well defined only up
to a ˙1 sign; see Khovanov [35; 33], Bar-Natan [2] and Jacobsson [28].

Clark, Morrison and Walker [22], and independently Caprau [7; 8], showed that the
functoriality of Khovanov homology could be fixed by considering modified foam
categories. From the representation-theoretic point of view, these foam categories
keep track of the fact that the defining representation of Uq.sl2/ is non-canonically
isomorphic to its dual. Keeping track of this information gives rise to a fully functorial
tangle invariant. For both of these fixes to Khovanov homology one must work with
foams defined over the Gaussian integers ZŒi �.

Christian Blanchet proposed yet another construction fixing the functoriality of Kho-
vanov homology [4]. He works with an enhanced version of the foam category where
one labels facets by elements of the set f1; 2g. The 2–labeled facets are the primary
difference from the previous two constructions. The presence of these 2–labeled facets
introduces additional signs that are not present in the CMW or Caprau approaches
to functoriality. Blanchet’s approach gives rise to a functorial version of Khovanov
homology defined over the integers [4].

These modified foam categories are quite natural from the representation-theoretic
viewpoint. In the skew Howe framework, foams naturally provide a representation
of UQ.gln/. Seen from this perspective, the foams introduced by Blanchet keep
track of the difference between the trivial representation

V0
q.C

2
q/ and the determinant

representation
V2

q.C
2
q/. As Uq.sl2/ representations there is of course no difference

between these two representations, but it appears that Blanchet’s approach has addi-
tional information that contributes additional signs coming from the 2–labeled facets
corresponding to the determinant representation

V2
q.C

2
q/.
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In this article, we construct foamation functors into both the CMW foam categories as
well as the foam categories of Blanchet. To define the functors into the CMW foam
categories one must continue working with complex coefficients, while Blanchet’s
foam categories naturally admit foamation functors defined over the integers. This
suggests that Blanchet’s approach is the most natural from the perspective of categorified
representation theory. It is also interesting to note that the sl2 knot homology most
closely related to categorified quantum groups is integral and functorial.

It turns out that in the n D 3 case it is possible to modify Mackaay’s definition of
the foamation functors to work over Z, although this requires rather complicated and
unnatural sign assignments. Motivated by the sl2 case, we consider a modified sl3
foam category that incorporates additional 3–labeled facets. To distinguish these foams
from the usual sl3 foams we call them Blanchet sl3 foams. We show that there are
2–functors into Blanchet sl3 foams with much more natural sign assignments for the
generating 2–morphisms in UQ.slm/. There is also a natural construction of a forgetful
2–functor into the usual sl3 foams defined intrinsically in terms of the topology of the
Blanchet foams. Taking the composite of these 2–functors provides an explanation for
the complicated signs occurring in the standard sl3 foamation functors.

Checking the relations for the 2–category UQ.slm/ needed to define foamation functors
is a laborious task. Here we utilize recent results of the first author with Cautis showing
that in a 2–representation with finitely many nonzero weight spaces many of the
relations come for free [20].

An independent construction of the integral foamation functors into the usual sl3 foam
2–category was given by Mackaay, Pan and Tubbenhauer in a recent update to their
work in [51]. They utilize the foamation functors for a different application related to a
generalization of Khovanov’s arc algebra to the sl3 setting.

1G Comparing knot homologies

A careful analysis of Cautis’ arguments in [10] reveals that the skew Howe duality
approach also supplies a mechanism for equating different constructions of sln link
homologies. Indeed, given any 2–representation of PUQ.slm/ whose objects are indexed
by the nonzero weights in

Vq
N .C

n
q ˝Cm

q /, and whose endomorphisms of the highest
weight object are one-dimensional in degree zero and zero-dimensional otherwise, one
obtains a unique knot homology theory that is formally determined by the relations
imposed by the 2–representation. In Section 4B, we show that Khovanov’s sl2 and
sl3 link homology theories fit into this framework. We also sketch a proof of the sl3
case of Cautis and Kamnitzer’s [13, Conjecture 6.4] relating Khovanov–Rozansky link
homology to the geometrically defined Cautis–Kamnitzer link homology, contingent
on results to appear in Cautis [11].
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1H Cautis–Rozansky categorified clasps

Categorifying sln link invariants labeled by arbitrary (non-fundamental) representations
appears to be a much more difficult problem; see Webster [75]. In the nD 2 case, there
are several approaches to defining categorifications of the coloured Jones polynomial
by categorifying Jones–Wenzl projectors. The approach of Cooper and Krushkal uses
foam based methods [23], while another approach of Frenkel, Stroppel and Sussan
uses Lie-theoretic methods [26] based on category O for gln . These two approaches
are compared and related via Koszul duality in Stroppel and Sussan [70]. Rozansky
defined yet another approach to categorifying Jones–Wenzl projectors using complexes
in Bar-Natan’s foam category [65]. These complexes are presented as the stable limit
of the complexes assigned to k –twist torus braids as k!1, or infinite twists . This
construction also agrees with the Cooper–Krushkal sl2 projectors.

There are analogs of Jones–Wenzl projectors for sln . Given a tensor product of
fundamental Uq.sln/ representations, there is a corresponding idempotent

P W V!i1
˝V!i2

˝ � � �˝V!im
! VP

k ik
;

called a clasp following Kuperberg’s terminology from the sl3 case. For nD 3 these
clasps were categorified by the third authors using an sl3 foam based construction and
a generalization of Rozansky’s infinite twist approach to projectors [63].

A related, but more general, approach using infinite twists was independently considered
by Cautis who showed that sln clasps can be categorified explicitly using the higher
structure of categorified quantum groups [10]. His approach utilizes an infinite twist
construction together with the categorified braid group action described above. Given
a reduced decomposition of w D si1

� � � sik
of the longest braid word w in the Weyl

group for slm , Cautis defines a complex Tw1� WD Ti1
� � � Tik

1� in Kom. PUQ.slm//. He
shows that the infinite twist lim`!1 T 2`

w 1� converges and categorifies the clasp P in
any appropriate 2–representation.

Cautis’ categorified clasps are formulated explicitly using the 2–morphisms in PUQ.slm/.
Given appropriate families of 2–representations of PUQ.slm/ with nonzero weight spaces
matching the vector space

V
q
N .Cn

q ˝Cm
q / where N and m vary, Cautis’ framework

gives rise to sln knot homology theories and categorifications of sln clasps. Cautis
describes such 2–representations using derived categories of coherent sheaves. In
Section 4A we show that foamation functors allow Cautis’ categorified clasps to be
utilized in the foam setting. In the sl2 case this gives categorified projectors which
can be viewed as an extension of the Cooper–Krushkal and Rozansky projectors to the
functorial foam categories of Clark–Morrison–Walker and Blanchet. In the sl3 case
the resulting projectors agree with those constructed by the third author [63].
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1I Recovering relations from categorified quantum groups

Foams can be thought of as a categorification of webs. This perspective suggests that
new insights into foam categories can be achieved through categorical skew Howe
duality. In [19], Cautis, Kamnitzer and Morrison use skew Howe duality to deduce the
sln web relations. In Section 4C, we show that this holds at the categorified level as
well, namely that relations for sl2 and sl3 foams can be deduced from the categorified
quantum group.

This suggests that one may gain further insight to sln foams for n� 4 using categorical
skew Howe duality. In a follow-up paper the second and third author give a foam-based
construction of sln link homologies for n� 4 which avoids the use of the Kapustin–Li
formula [62].

Note that the relations we derive use graded parameters that are usually set to zero
in the literature. These relations are similar to the ones of [54] in the sl3 case, but
in the sl2 case we obtain relations that slightly extend both Blanchet’s [4] and Clark–
Morrison–Walker models [22].

Acknowledgments The authors would like to thank Christian Blanchet, Sabin Cautis,
Joel Kamnitzer and Mikhail Khovanov for helpful discussions. A L was supported by a
Zumberge Fellowship and the Alfred P Sloan foundation.

2 Categorified quantum groups

In this section we recall the relevant background information on categorified quantum
groups and higher representation theory.

2A The 2–category PUQ.slm/

Fix a base field k. We will always work over this field which is not assumed to be of
characteristic 0, nor algebraically closed.

2A1 The Cartan datum Let I D f1; 2; : : : ;m� 1g consist of the set of vertices of
the Dynkin diagram of type Am�1

ı ı ı ı
1 2 3 m� 1

� � �

enumerated from left to right. Let X D Zm�1 denote the weight lattice for slm and
f˛igi 2I �X and fƒigi2I �X denote the collection of simple roots and fundamental
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weights, respectively. There is a symmetric bilinear form on X defined by .˛i ; j̨ /D

aij , where

aij D

8<:
2 if i D j ;

�1 if ji � j j D 1;

0 if ji � j j> 1;

is the (symmetric) Cartan matrix associated to slm . For i 2 I denote the simple coroots
by hi 2 X_ D HomZ.X;Z/. Write h �; � iW X_ �X ! Z for the canonical pairing
hi; �i WD hhi ; �i D 2.˛i ; �/=.˛i ; ˛i/ for i 2 I and � 2X that satisfies hhi ; ƒii D ıi;j .
Any weight � 2X can be written as �D .�1; �2; : : : ; �m�1/, where �i D hhi ; �i.

We let XC �X denote the dominant weights, which are those of the form
P

i �iƒi

with �i � 0. Finally, let Œn�D .qn� q�n/=.q� q�1/ and Œn�!D Œn� Œn� 1� � � � Œ1�.

2A2 The algebra Uq.slm/ The algebra Uq.slm/ is the Q.q/–algebra with unit
generated by the elements Ei , Fi and K˙1

i for i D 1; 2; : : : ;m�1, with the defining
relations

KiK
�1
i DK�1

i Ki D 1; KiKj DKj Ki ;(2-1)

KiEj K�1
i D qaijEj ; KiFj K�1

i D q�aijFj ;(2-2)

EiFj �Fj Ei D ıij
Ki �K�1

i

q� q�1
;(2-3)

E2
i Ej � .qC q�1/EiEj Ei CEj E2

i D 0 if j D i ˙ 1;(2-4)

F2
i Fj � .qC q�1/FiFj Fi CFj F2

i D 0 if j D i ˙ 1;(2-5)

EiEj DEj Ei FiFj D Fj Fi if ji � j j> 1.(2-6)

Recall that PU.slm/ is the modified version of Uq.slm/ where the unit is replaced by a
collection of orthogonal idempotents 1� indexed by the weight lattice X of slm ,

(2-7) 1�1�0 D ı��01�;

such that if �D .�1; �2; : : : ; �m�1/, then

(2-8) Ki1� D 1�Ki D q�i 1�; Ei1� D 1�C˛i
Ei ; Fi1� D 1��˛i

Fi ;

where

(2-9) �C˛i D

8<:
.�1C 2; �2� 1; �3; : : : ; �m�2; �m�1/ if i D 1;

.�1; �2; : : : ; �m�2; �m�1� 1; �m�1C 2/ if i Dm� 1;

.�1; : : : ; �i�1� 1; �i C 2; �iC1� 1; : : : ; �m�1/ otherwise.
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Let A WDZŒq; q�1�; the A–algebra A PU.slm/ is the integral form of PU.slm/ generated
by products of divided powers E

.a/
i 1� WD .E

a
i =Œa�!/1� , F

.a/
i 1� WD .F

a
i =Œa�!/1� for

� 2X and i D 1; 2; : : : ;m� 1.

2A3 Choice of scalars Q Associated to the Cartan datum for slm we also fix a
choice of scalars Q consisting of tij for all i; j 2 I , such that

� tii D 1 for all i 2 I and tij 2 k� for i ¤ j ,

� tij D tji when aij D 0.

2A4 The definition We now recall the general version of the 2–category categorify-
ing PU.slm/ given in [20]. There, a 2–category UQ.g/ was defined associated to any
root datum and choice of scalars Q. This 2–category is a modest generalization of the
2–category originally defined in [37] for the choice of scalars Q, where all tij D 1. It
follows from [38, page 15] and [37; 39] that UQ.slm/ is independent of the choice of
scalars Q up to isomorphism. Here we present the general definition; in later sections
we will choose a convenient choice of scalars.

Definition 2.1 The 2–category UQ.slm/ is the graded additive k–linear 2–category
consisting of:

� Objects � for � 2X .

� 1–morphisms are formal direct sums of (shifts of) compositions of

1�; 1�C˛i
Ei D 1�C˛i

Ei1� D Ei1�; 1��˛i
Fi D 1��˛i

Fi1� D Fi1�

for i 2 I and � 2X .

� 2–morphisms are k–vector spaces spanned by compositions of (decorated)
tangle-like diagrams illustrated below.

OO

�
��C˛i

i

WEi1�! Ei1�f.˛i ;˛i/g
��

�
���˛i

i

WFi1�! Fi1�f.˛i ;˛i/g

OOOO

i j
�WEiEj 1�! EjEi1�f�.˛i ; j̨ /g ����i j

�WFiFj 1�! FjFi1�f�.˛i ; j̨ /g

�� JJ

i �
W1�! FiEi1�f1C.�;˛i/g ��TT

i �
W1�! EiFi1�f1�.�;˛i/g

WW


i �
WFiEi1�! 1�f1C.�;˛i/g GG ��

i �
WEiFi1�! 1�f1�.�;˛i/g
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Here we follow the grading conventions in [20] which are opposite to those from [37]
but line up nicely with the gradings on foams used later in the paper. For example, a
dot

OO

� ��C˛i

i

in [37] is a degree-zero map from Ei1� to Ei1�f�2g, while for us it is a degree-zero
map from Ei1� to Ei1�f2g. In this 2–category (and those throughout the paper) we
read diagrams from right to left and bottom to top. The identity 2–morphism of the
1–morphism Ei1� is represented by an upward oriented line labeled by i and the
identity 2–morphism of Fi1� is represented by a downward such line.

The 2–morphisms satisfy the following relations:

(1) The 1–morphisms Ei1� and Fi1� are biadjoint (up to a specified degree shift).
These conditions are expressed diagrammatically as the following equations.

(2-10) OO �� OO

�

�C˛i

D OO

��C˛i

��OO��

�C˛i

�

D ��

�C˛i�

(2-11) OO��OO

�

�C˛i

D OO

��C˛i

�� OO ��

�C˛i

�

D ��

�C˛i�

(2) The 2–morphisms are Q–cyclic with respect to this biadjoint structure.

(2-12) OO

��

��

�C˛i

�
�

D

��

�

� �C˛i

D OO

��

��

�C˛i

�

�

The Q–cyclic relations for crossings are given below:

(2-13)
����i j
� D t�1

ij

OO ��

�� OO
�

�� OO

��OO

j i

ji

D t�1
ji

OO��

��OO
�
��OO

�� OO

ij

i j

Algebraic & Geometric Topology, Volume 15 (2015)



2534 Aaron D Lauda, Hoel Queffelec and David E V Rose

The Q–cyclic condition for sideways crossings is given by the equalities

OO

��j i
�
D

OO

�
�� OO

��OO

i j

ij

D tij

��

�
OO��

OO ��

ji

j i

(2-14)

��

OO

ij
�
D

OO

�
��OO

�� OO

ji

j i

D tji

�� �

OO ��

OO��

i j

ij

(2-15)

where the second equality in (2-14) and (2-15) follow from (2-13).

(3) The E ’s carry an action of the KLR algebra associated to Q. The KLR algebra
RDRQ associated to Q is defined by finite k–linear combinations of braid-like
diagrams in the plane, where each strand is labeled by a vertex i 2 I . Strands can
intersect and can carry dots but triple intersections are not allowed. Diagrams
are considered up to planar isotopy that do not change the combinatorial type of
the diagram. We recall the local relations:

(i) If all strands are labeled by the same i 2 I then the nilHecke algebra
axioms hold:

OO OO

�
D 0

OOOO OO

� D

OOOOOO

�(2-16)

OOOO

D

OO

�

OO

�

OO

�
OO

D

OOOO

�
�

OOOO

�
(2-17)

(ii) For i ¤ j

(2-18)
�

OOOO

i j

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

tij

OOOO

i j

if .˛i ; j̨ /D 0,

tij

OOOO

�

i j

C tji

OOOO

�

i j

if .˛i ; j̨ /¤ 0.

(iii) For i ¤ j the dot sliding relations

(2-19)
OO

�
OO

i j
D

OO

�

OO

i j

OOOO

�

i j
D

OOOO

�i j

hold.
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(iv) Unless i D k and .˛i ; j̨ / < 0 the relation

(2-20)

OOOO OO

�

i j k

D

OOOOOO

�

i j k

holds. Otherwise, .˛i ; j̨ /D�1 and we have the following.

(2-21)

OOOO OO

�

i j i

�

OOOOOO

�

i j i

D tij

OOOO OO

i j i

(4) When i ¤ j one has the mixed relations relating EiFj and FjEi .

(2-22) OO��

��

OO

�

i j

D tji ��OO �

i j

��

��

OO

OO

�

i j

D tij OO�� �

i j

(5) Negative degree bubbles are zero. That is, for all m 2 ZC one has

(2-23)
i
��MM

�
m

�

D 0 if m< �i � 1,
i QQ��

�
m

�

D 0 if m< ��i � 1.

Note that a dotted bubble of degree zero is just the identity 2–morphism:2

i
��MM

�
�i � 1

�

D Id1� for �i � 1,
i QQ��

�
��i � 1

�

D Id1� for �i � �1.

(6) For any i 2 I one has the extended sl2 –relations. In order to describe certain
extended sl2 –relations it is convenient to use a shorthand notation from [46]
called fake bubbles. These are diagrams for dotted bubbles where the labels of
the number of dots is negative, but the total degree of the dotted bubble taken
with these negative dots is still positive. They allow us to write these extended
sl2 relations more uniformly (ie independent on whether the weight �i is positive
or negative).

2One can define the 2–category so that degree-zero bubbles are multiplication by arbitrary scalars at
the cost of modifying some of the other relations; see for example [47; 53]. However, it is shown in [20]
that the resulting 2–categories are all isomorphic.
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� Degree zero fake bubbles are equal to the identity 2–morphisms

i
��MM

�
�i � 1

�

D Id1� if �i � 0,
i QQ��

�
��i � 1

�

D Id1� if �i � 0:

� Higher degree fake bubbles for �i < 0 are defined inductively as

(2-24)
i
��MM

�
�i � 1C j

�

D

8̂̂<̂
:̂
�

X
aCbDj

b�1

��MM

�
�i � 1C a

QQ��

�
�� 1C b

�

if 0� j < ��i C 1;

0 if j < 0.

� Higher degree fake bubbles for �i > 0 are defined inductively as

(2-25)
i QQ��

�
��i � 1C j

�

D

8̂̂<̂
:̂
�

X
aCbDj

a�1

��MM

�
�i � 1C a

QQ��

�
�� 1C b

�

if 0� j < �i C 1;

0 if j < 0.

These equations arise from the homogeneous terms in t of the ‘infinite Grass-
mannian’ equation

(2-26)
�

i QQ��

�
��i � 1

�

C

i QQ��

�
��i � 1C 1

�

t C � � �C
i QQ��

�
��i � 1C˛

�

t˛C � � �

�

�

�
i
��MM

�
�i � 1

�

C

i
��MM

�
�i � 1C 1

�

t C � � �C
i
��MM

�
�i � 1C˛

�

t˛C � � �

�
D Id1� :

Now we can define the extended sl2 relations. Note that in [20] additional curl
relations were provided that can be derived from those above. Here we provide
a minimal set of relations.

(i) �i > 0:

�KK

LL

RR

VV

i

D 0

i i

�� OO � D � ��

��

OO

OO

�

i i

(2-27)

i i

OO �� � D � OO��

��

OO

�

i i

C

X
f1Cf2Cf3

D�i�1

�

��NN�
f3

		
OO

�f1
i QQ��

�
��i � 1Cf2

i

i

(2-28)
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(ii) �i < 0:

� SS

RR

LL

HH

i

D 0

i i

OO �� � D � OO��

��

OO

�

i i

(2-29)

i i

�� OO �� D � ��

��

OO

OO

�

i i

C

X
g1Cg2Cg3

D��i�1
RR���

g3

II��

�g1
i
��MM

�
�i � 1Cg2

i

i
�

(2-30)

(iii) �i D 0:

�KK

LL

RR

VV

i

D �

�

OO

i

� SS

RR

LL

HH

i

D

�

OO

i

(2-31)

i i

OO �� � D � OO��

��

OO

l

i i i i

�� OO � D � ��

��

OO

OO

�

i i

(2-32)

2A5 Karoubi completions Recall that an idempotent eW b! b in a category C is a
morphism such that e2 D e . The idempotent is said to split if there exist morphisms
b

g
�!b0

h
�! b such that e D hg and ghD idb0 . The Karoubi envelope Kar.C/ (also

called the idempotent completion or Cauchy completion) of a category C is a minimal
enlargement of the category C in which all idempotents split. More precisely, the
category Kar.C/ has:

� Objects of Kar.C/: pairs .b; e/ where eW b! b is an idempotent of C .

� Morphisms .e; f; e0/W .b; e/! .b0; e0/, where f W b!b0 in C makes the diagram

(2-33)

b
f
//

e

��

f

��

b0

e0

��

b
f
// b0

commute; ie ef D f D fe0 .

� Identity 1–morphisms: .e; e; e/W .b; e/! .b; e/.
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When C is an additive category we write .b; e/ 2 Kar.C/ as im e and we have b Š

im e˚ im.1� e/ in Kar.C/.

The Karoubi envelope PUQ.slm/ WD Kar.UQ.slm// of the 2–category UQ.slm/ is the
2–category with the same objects as UQ.slm/ whose Hom categories are given by

PUQ.1�; 1�0/ WD Kar.UQ.1�; 1�0//:

In particular, all idempotent 2–morphisms split in PUQ.1�; 1�0/. It was shown in [37]
that there is an isomorphism of A–algebras

(2-34)  W K0. PUQ.slm//!A PU.slm/

between the split Grothendieck ring K0. PUQ.slm// and the integral form A PU.slm/
of the idempotent modified quantum enveloping algebra. Recent results of Webster
have generalized this statement to arbitrary type [74]. Furthermore, the images of the
indecomposable 1–morphisms in PUQ.slm/ in K0.UQ.slm// agree with the Lusztig
canonical basis in A PU.slm/ [76].

Typically the passage from a diagrammatically defined category to its Karoubi envelope
results in the loss of a completely diagrammatic description of the resulting category.
However, the Karoubi envelope PUQ.sl2/ of the 2–category UQ.sl2/ still admits a
completely diagrammatic description [40]. In this case, one defines idempotent 2–
morphisms eaW Ea1�! Ea1� given by the composite of any reduced presentation of
the longest braid word on a strands together with a specific pattern of dots starting
with a� 1 dots on the left-most strand, a� 2 on the next strand, and ending with no
dots on the last of the a strands. An example is shown below for aD 4.

OOOO

�

OO

�
�

OO

�

�
�

DW ea

It is convenient to introduce a box notation for this composite 2–morphism.

The divided power E.a/1� is defined in the Karoubi envelope PUQ.sl2/ as the pair

E.a/1� WD .Ea1�fa.a� 1/=2g; ea/;

where the grading shift is necessary to get an isomorphism Ea1� Š
L
Œa�! E.a/1� . The

divided power 1�F .a/ is then defined as the adjoint of E.a/1� . It was shown in [40]
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that splitting the idempotents ea by adding E.a/1� and F .b/1� gives rise to explicit
decompositions of arbitrary 1–morphisms into indecomposable 1–morphisms using
only the relations from UQ.sl2/. This allows for a strengthening of the categorification
result to the case when we define UQ.sl2/ by taking Z–linear combinations of 2–
morphisms, rather than k–linear combinations for a field k.

It is possible to represent the 1–morphisms E.a/1� in PUQ.sl2/ by introducing an
augmented graphical calculus of thickened strands. For example, the identity 2–
morphism for E.a/1� is given by the following triple, where we think of the label a

placed next to the green line as describing the thickness of the strand:

(2-35) .ea; ea; ea/D

 
ea; ea

�

; ea

!
DW

a

�

A downward oriented line of thickness b conveniently describes the 1–morphism
F .b/1� in PUQ.sl2/.

One can introduce further notation to describe natural 2–morphisms in PUQ.sl2/. For
example, using the shorthand

a
WD

„ ƒ‚ …
a

a b

WD

„ ƒ‚ …
a

„ƒ‚…
b

there are 2–morphisms in PUQ.sl2/ given by

aC b

a b

�

WD

 
eaCb;

b a

ea eb

�
; eaeb

!
W E.aCb/1�ftg ! E.a/E.b/1�ft � abg

aC b

a b

�

WD

 
eaeb;

a b

eaCb

aC b

�

; eaCb

!
W E.a/E.b/1�ftg ! E.aCb/1�ft � abg:
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To compute the degree of the above diagrams one must account for the shift in the
definition of divided powers. For example, in the first diagram the degree shift in
the divided power for E.aCb/1� is 1

2
.aC b/.aC b� 1/, while the degree shift in the

composite E.a/E.b/1� is 1
2
a.a�1/C 1

2
b.b�1/, so that the net difference is 1

2
2abDab .

Both of the above diagrams in the thick calculus have degree �ab .

For general m there is no completely diagrammatic description of the Karoubi envelope
of UQ.slm/. In this case one lacks a set of diagrammatic relations needed to decompose
arbitrary 1–morphisms into indecomposables, though explicit isomorphisms giving
higher Serre relations were defined by Stošić [67]. It will nevertheless be convenient to
introduce a version of the 2–category UQ.slm/ where we have split the idempotents
needed to define divided powers, but where we have not passed to the full Karoubi
completion. Diagrammatically this 2–category can be defined using thick strands
carrying two labels, one indicating the thickness of the strand, and one indicated the
label i 2I of the a strands. Since the thick strands are defined in terms of idempotents in
thin strands, all the 2–morphisms can be studied using only the relations from UQ.slm/.

Definition 2.2 Let LUQ.slm/ denote the full sub-2–category of PUQ.slm/ with the
same objects � 2X as PUQ.slm/ and with 1–morphisms generated as a graded additive
k–linear category by the 1–morphisms E.a/i 1� WD .Ea

i 1�f12a.a � 1/g; ea/ and their
adjoints.

2A6 2–representations Let UQ denote any of the 2–categories UQ.slm/, LUQ.slm/

or PUQ.slm/.

Definition 2.3 A 2–representation of UQ is a graded additive k–linear 2–functor
UQ! K for some graded, additive 2–category K .

When all of the Hom categories K.x;y/ between objects x and y of K are idempotent
complete, in other words Kar.K/Š K , then any graded additive k–linear 2–functor
UQ.g/! K extends uniquely to a 2–representation of PUQ.g/.

Remark 2.4 For each i 2 I there is a sub 2–category UQ.sl2/i of UQ.slm/ where
we restrict to diagrams where all strands are labeled i . For general 2–representations
F W UQ.slm/! K it may happen that K is not Karoubi complete. However, there are
many instances when the images of divided powers E.a/i 1� and F .b/i 1� exist in K .
In this case, the composite 2–functors Fi W UQ.sl2/i! UQ.slm/! K extend to give
2–representations from the Karoubi envelope of the sl2 subcategories PUQ.sl2/i ! K .
In this case, the 2–representation F extends to a 2–representation F W LUQ.slm/! K .
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2A7 Minimal relations and defining 2–functors In [20], it is shown that a 2–
representation of UQ.slm/ can be specified by defining a 2–category satisfying a small
number of axioms. The following is a slightly stronger statement of the main theorem
from that work.

Theorem 2.5 [20, Theorem 1.1] A map R from the set of weights X of slm to
the objects of a graded additive k–linear 2–category K extends to a 2–representation
UQ.slm/! K provided the following conditions are satisfied:

(1) The object R.�C r˛i/ is (isomorphic to) the zero object for r � 0 or r � 0.

(2) HomK.1�; 1�flg/ is zero if l<0 and one-dimensional if lD0, where 1� denotes
the identity endomorphism of R.�/. Moreover, the space of 2–morphisms
between any two 1–morphisms in K is finite-dimensional.

(3) There exist 1–morphisms Ei1�W R.�/! R.�C ˛i/ in K which possess both
right and left adjoints.

(4) Defining 1–morphisms Fi1�W R.�/!R.��˛i/ for all � 2X via

Fi1�C˛i
WD .Ei1�/Rf��i � 1g

we have the following isomorphisms in K :

Fi1�C˛i
Ei1� Š Ei1��˛i

Fi1�˚
M
Œ�hi;�i�

1� if hi; �i � 0;

Ei1��˛i
Fi1� Š Fi1�C˛i

Ei1�˚
M
Œhi;�i�

1� if hi; �i � 0:

(5) The E’s carry an action of the KLR algebra associated to Q.

(6) If i ¤ j 2 I then Fj 1�C˛i
Ei1� Š Ei1�� j̨

Fj 1� in K .

In the above, we set M
f .q/

M WD

kM
iD�l

.M fig/
L

ri

when f .q/D
Pk

iD�l riq
i is a Laurent polynomial with ri � 0.

2B Categorified Weyl group action

The Weyl group for slm is the symmetric group Sm generated by transpositions si

associated to the roots ˛1; : : : ; ˛m�1 . The action of the Weyl group on the weights lifts
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to a braid group action on representations of the associated quantum group Uq.slm/;
see for example [49; 29; 15].

The action of a simple transposition is described by an element of the completion
QUq.slm/ of Uq.slm/. This ring is defined as a quotient of the ring of series

P1
kD1 Xk

of elements of Uq.slm/ acting on each irreducible representation V� of highest weight
� by zero but for finitely many terms Xk ; see [29]. To si , we associate the braiding
map Ti 2

QUq.slm/:

Ti1� WD
X
s�0

.�q/sE
.��iCs/
i F

.s/
i 1� if �i � 0;(2-36)

Ti1� WD
X
s�0

.�q/sF
.�iCs/
i E

.s/
i 1� if �i � 0:(2-37)

This definition differs from the one given in [49, Section 5.2.1] but is equivalent up
to rescaling; see [10, Remark 6.4]. With this definition, Ti D

P
�2X Ti1� gives an

endomorphism of any finite-dimensional representation. Note that if v is a weight
vector of weight �, Ti.v/ is a weight vector of weight si.�/.

For sl2 the deformed Weyl group action on a Uq.sl2/–representation V gives a
reflection isomorphism from the � weight space of V to the �� weight space. This
reflection isomorphism was categorified by Chuang and Rouquier in the context of
abelian categories [21]. Their work is closely related to a variant of the 2–category
UQ.sl2/ where the nilHecke algebra is replaced by the affine Hecke algebra and there
is no grading. Cautis, Kamnitzer and Licata later developed analogous complexes in
the context of UQ.sl2/ and generalized Chuang and Rouquier’s results to triangulated
categories [18].

To categorify the reflection isomorphism Ti1� it is clear from (2-36) and (2-37) that
we will need to work in LUQ.slm/ so that we have lifts of divided powers. Also, the
minus signs in the definition of the braid group generators suggests that we will have
to pass to the 2–category Kom. LUQ.slm// of bounded complexes over the 2–category
LUQ.slm/ whose objects are weights � 2X , 1–morphisms are bounded complexes of
1–morphisms in LUQ.slm/, and 2–morphisms are chain maps constructed from the
2–morphisms in LUQ.slm/.

The braid group generator Ti1� lifts to a complex Ti1� in Kom. LUQ.slm// of the
form,3

(2-38) Ti1�DE.��i /
i 1�

d1
�!E.��iC1/

i Fi1�f1g
d2
�!� � �

ds
�!E.��iCs/

i F .s/i 1�fsg
dsC1

�! � � �

3Note that we take the mirror of Cautis’s definition of these complexes in [10], in order to better fit
with usual definition of Khovanov homology. This also reverses the decategorification process so that a
shift by k will decategorify to qk , while it decategorifies to q�k in [10].
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when �i � 0 and

(2-39) Ti1� D F .�i /
i 1�

d1
�! F .�iC1/

i Ei1�f1g
d2
�! � � �

ds
�! F .�iCs/

i E.s/i 1�fsg
dsC1

�! � � �

when �i � 0, where in the above formulae the leftmost term is in homological degree 0.
The differential dk that appears in the first complex is conveniently expressed in the
extended graphical calculus from [40] as

dk D

k��i C k

kC 1��i C kC 1

�

where all strands are colored by the index i 2 I and the labels indicate the thickness of
strands. The differential in the second complex is defined similarly. Using the extended
calculus it is easy to see that d2D 0. Results of Cautis and Kamnitzer show the images
of the complexes Ti1� under any integrable 2–representation LU.slm/! K satisfy
braid relations up to homotopy in Kom.K/ [14, Section 6].

The complexes Ti1� are invertible, up to homotopy, with inverses given by taking the
left adjoint of the complex Ti1� in the 2–category Kom. LUQ.slm/. More explicitly,
the inverses are given by

1�T �1
i D � � �

d�
sC1

�! 1�E
.s/
i F .��iCs/

i f�sg
d�s
�! � � �

d�
2
�! 1�EiF

.��iC1/
i f�1g

d�
1
�! 1�F

.��i /
i

when �i � 0 and

1�T �1
i D � � �

d�
sC1

�! 1�F
.s/
i E.�iCs/

i f�sg
d�s
�! � � �

d�
2
�! 1�FiE

.�iC1/
i f�1g

d�
1
�! 1�E

.�i /
i

when �i � 0, where in these formulae the rightmost term is in homological degree
zero.

Given a 2–representation F W LUQ.slm/! K , the braiding Ti1� is lifted to a complex
Ti1� that gives an equivalence between F.�/ and F.si.�// in the homotopy 2–category
of complexes over K . For sl2 there are no interesting braid relations to check. The
content of a categorification of the reflection isomorphism is that the complex Ti1� has
a homotopy inverse, so that a 2–representation LUQ.sl2/! K induces an equivalence
in the homotopy category of complexes over K [21, Theorem 6.4]. The resulting
equivalences are highly nontrivial and have been applied to a variety of contexts
ranging from the representation theory of the symmetric group [21] to coherent sheaves
on cotangent bundles [16; 18]. Cautis and Kamnitzer later showed that given an
integrable 2–representation UQ.slm/! K the complexes Ti1� defined for each i 2 I

satisfy the braid relations [14, Section 6]; see also [10, Section 4.1]. This is a crucial
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observation for Cautis’s construction of knot homology theories from the 2–category
UQ.slm/.

3 Foams and foamation

We now aim to define families of foamation 2–functors from UQ.slm/ to certain 2–
categories of sl2 and sl3 foams. We use the particular choice of scalars Q given by
ti;iC1 D 1, ti;i�1 D�1 and ti;j D 1 when ai;j D 0.

3A sl2 foam 2–categories

In this section, we define a family of 2–functors from UQ.slm/ to suitable categories
of sl2 foams. We first review Bar-Natan’s cobordism-based construction of (sl2 )
Khovanov homology [2] as well as a functorial enhancement of this theory due to
Blanchet [4] which encodes additional representation-theoretic information. We will
define our foamation 2–functors into a family of related 2–categories which are
natural to consider from the perspective of skew Howe duality. We also construct
such 2–functors into the Clark–Morrison–Walker functorial formulation of Khovanov
homology [22].

3A1 Standard sl2 foams In [2], Bar Natan gave a construction of Khovanov ho-
mology as a quotient of the cobordism category of planar tangles and surfaces. This
work gives a categorification of (a version of) the category 2Web. We summarize this
construction, which can be understood as a 2–category defined as follows:

� Objects are sequences of points in the interval Œ0; 1�, together with a zero object.

� 1–morphisms are formal direct sums of Z–graded shifts4 of planar tangles, with
boundary corresponding to the sequences of points in the domain and codomain.

� 2–morphisms are formal matrices of k–linear combinations of degree-zero
dotted cobordisms between such planar curves, modulo isotopy (relative to the
boundary) and local relations.

Let qkT denote the shift of a planar tangle T by k in Z–grading. The degree of a
cobordism C W qt1T1! qt2T2 is then defined by the formula

(3-1) deg.C /D �.C /� 2#D� 1
2

#@C t2� t1;

4In other words, a web is a priori of degree zero, and can be shifted into a different Z–degree to yield
a different 1–morphism.
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where #D is the number of dots and #@ is the number of boundary points in either T1

or T2 (they agree!). The local relations are then given as follows.

D 0
�

D 1(3-2)

D

�

C

�

(3-3)

The neck-cutting relation (3-3) gives the formula

(3-4) 2 � D

which allows for a completely topological description of the 2–category when 2 is
invertible in k.

The version of the Bar-Natan cobordism category presented here is the generic one, as
defined in [2, Section 4]. In this formulation, not all closed surfaces of genus g > 1

equal zero. To be precise, the 3–dotted sphere (which is a multiple of a genus 3 surface)
survives as a degree-4 parameter and all other closed surfaces can be expressed in
terms of this (the fact that a 2–dotted sphere equals zero follows from relation (3-3)).
Specializing this parameter to zero recovers Khovanov’s original homology theory, and
to one yields the Lee degeneration [2, Section 9]. In our context, it makes sense to
keep this parameter, as the same phenomenon will appear on the categorified quantum
group side of skew Howe duality. See Section 4 for more details.

As mentioned in Section 1, the C sign in the neck-cutting relation prevents us from
defining a 2–functor from UQ.slm/ to this 2–category since it is incompatible with the
sign in the nilHecke relation. We hence consider related versions of this construction.

3A2 Enhanced foams Bar-Natan formulates Khovanov homology in the homotopy
category of complexes in the above 2–category, giving an invariant which is functorial
only up to a ˙ sign under tangle cobordism. This functoriality issue was fixed by
Clark, Morrison and Walker [22] working in a related 2–category of disoriented curves
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and cobordisms defined over the Gaussian integers;5 see also the work of Caprau [7; 8;
9] for a related construction. Blanchet [4] later gave another functorial construction of
Khovanov homology in a related 2–category defined over the integers.

It turns out that in addition to fixing functoriality, these later constructions also fix the
incompatibility of the neck-cutting and nilHecke relations. We will work in Blanchet’s
enhanced foam model since it is more natural to consider from the perspective of skew
Howe duality and it avoids the introduction of complex coefficients. We return to the
Clark–Morrison–Walker (CMW) construction in the following section.

We begin by defining a family of 2–categories related to Blanchet’s construction which
should be viewed as categorifications of the categories 2BWebm.N /.

Definition 3.1 2BFoamm.N / is the 2–category defined as follows:

� Objects are sequences .a1; : : : ; am/ labeling points in the interval Œ0; 1� with
ai 2 f0; 1; 2g and N D

Pm
iD1 ai , together with a zero object.

� 1–morphisms are formal direct sums of Z–graded shifts of enhanced sl2 webs:
directed planar graphs with boundary with two types of edges — 1–labeled edges

and 2–labeled edges — where all vertices are trivalent and take
the following two forms:

(3-5) or

1– (respectively 2–) labeled edges are directed out from points labeled by
1 (respectively 2) in the domain and directed into such labeled points in the
codomain. No edges are attached to points labeled by 0.

� 2–morphisms are formal matrices of k–linear combinations of degree-zero
sl2 foams — surfaces with oriented singular seams which locally look like the
product of the letter Y with an interval — considered up to isotopy (relative to
the boundary) and local relations.

There are two types of facets of an sl2 foam, 1–labeled and 2–labeled, depending on
which type of edge they are incident upon when the foam is expressed as a composition
of elementary foams. The degree of a foam F W qt1W1 ! qt2W2 is given by the
degree of the cobordism resulting from deleting all the 2–labeled facets and edges and
forgetting the orientation of the 1–labeled edges.

5Actually, they work over the ring ZŒ1
2
; i � .
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As in UQ.slm/, we shall read diagrammatic depictions of webs and foams from right to
left and from bottom to top. The orientation of a singular seam gives a cyclic ordering of
the facets incident upon the seam via the right hand rule. By convention, a seam travels
down through the first vertex in (3-5) and up through the second; this corresponds to
the cyclic orientation of web vertices from [4].

The relations for sl2 foams come from a non-local, universal construction detailed
in [4]; however, we can exhibit a complete set of local relations giving an equivalent
description of Blanchet’s work. In what follows, the 2–labeled facets are depicted in
yellow and 1–labeled facets are drawn in red.

We impose the relations (3-2) and (3-3) for 1–labeled facets, as well as the following
relations involving 2–labeled facets.

D � (3-7) D �1(3-6)

�

�

˛

ˇ
D

8<:
1 if .˛; ˇ/D .1; 0/
�1 if .˛; ˇ/D .0; 1/
0 if .˛; ˇ/D .0; 0/ or .1; 1/

(3-8)

D �(3-9)

D(3-10)

D

�

�

�

(3-11)
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Relations (3-2), (3-3) and (3-6)–(3-8) allow for the evaluation of any closed sl2 foam.
Additionally, note that these relations imply that we can reverse the direction of any
closed, singular seam at the cost of multiplying by �1. Equations (3-9), (3-10), and
(3-11) guarantee that if a linear combination of foams evaluates to zero whenever it is
closed off to give a closed foam, then that linear combination is zero; the latter is a
non-local relation from [4]. The equivalence of this relation to the collection of local
relations given above can be proved in a manner similar to the proof of [59, Lemma 3.5]
using the above local relations. The proof utilizes several relations that follow from the
above local relations, allowing a web with a digon or square face to be expressed in
terms of webs with fewer faces.

D D �(3-12)

D 0 D
�

�

(3-13)

�
D D �

�

(3-14)

D � (3-16) D �(3-15)

D �(3-17)

D �(3-18)

D

�

C

�

(3-19)
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�

D �

�

(3-20)

The neck-cutting relation (3-6) implies that the topology of the 2–labeled facets plays
a limited role. One may hence ask if there is a way to coherently delete such facets
and obtain a forgetful 2–functor from 2BFoamm.N / to (an appropriate version of)
the Bar-Natan 2–category.

Such a 2–functor would act via

7! ˛

for some scalar ˛ ; (3-12) shows that composing the left-hand foam with a cap produces
a cap, while pre-composing with a cup gives �1 multiplied by a cup. It is therefore
impossible to define such a 2–functor which acts as the identity on foams containing
no 2–labeled facets (unless working over a field of characteristic 2).

3A3 Foamation We now define sl2 foamation 2–functors UQ.slm/!2BFoamm.N /

categorifying the skew Howe map to webs discussed in Section 1. As in the de-
categorified case, we define the 2–functor on objects by sending an slm weight
�D .�1; : : : ; �m�1/ to the sequence .a1; : : : ; am/ with ai 2 f0; 1; 2g, �i D aiC1�ai ,
and

Pm
iD1 ai DN provided it exists and to the zero object otherwise.

The map is given on 1–morphisms by

1�ftg 7! qt

a1

am
:::

Ei1�ftg 7!qt

ai

aiC1

ai�1

aiC1C1
Fi1�ftg 7!qt

ai

aiC1

aiC1

aiC1�1

when the boundary values lie in f0; 1; 2g and to the zero 1–morphism otherwise. The
labelings of the edges incident upon the boundary are given by the boundary labels;
edges incident upon boundary points labeled by zero should be deleted. Note that we
have not depicted m� 2 horizontal strands in each of the latter two formulae.
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We will make use of a lemma to deduce the existence of the foamation functors. Let
the images of 1� , Ei1� , and Fi1� given above be denoted 1� , Ei1� and Fi1� .

Lemma 3.2 There are isomorphisms

FiEi1� Š EiFi1�˚
M
Œ�hi;�i�

1� if hi; �i � 0;

EiFi1� Š FiEi1�˚
M
Œhi;�i�

1� if hi; �i � 0;

and FjEi1� Š EiFj 1� for i ¤ j 2 I in 2Foamm.N /.

Proof We’ll prove only the first relation since the proof of the second is analogous
and the third is straightforward. The condition on weights implies that � maps to a
sequence with aiC1 � ai .

If ai D 0, aiC1 D 0 and both sides of the equation map to the zero foam. If ai D 1

and aiC1 D 0, then the web

is isomorphic to 1� via the foam realizing the web isotopy.

If ai D aiC1 D 1, then the relevant webs are isotopic:

�

hence isomorphic.

If ai D 2 and aiC1 D 0, then the web

is isomorphic to q�11�˚q1� using equations (3-11), (3-13), and (3-14). This confirms
the relation since EiFi1� 7! 0 for such a weight.

If ai D 2 and aiC1 D 1, then the web

is isomorphic to 1� using equations (3-16) and (3-18). Finally, if ai D aiC1 D 2, both
sides of the equation map to zero.
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Proposition 3.3 There is a 2–representation

ˆ2W UQ.slm/! 2BFoamm.N /

for each N > 0 specified on single strand 2–morphisms by

ˆ2

�
OO
�

i

�
D ˆ2

�
OO

�
�

i

�
D �

on crossings by

ˆ2

� OOOO

i i
�
�
D

ˆ2

� OOOO

i i C 1

�
�
D ˆ2

� OOOO

i C 1 i

�
�
D

ˆ2

� OOOO

j i
�
�
D ˆ2

� OOOO

i j
�
�
D

where j � i > 1, and on caps and cups by

ˆ2

�
WW



i ��
D ˆ2

�
GG ��
i ��

D .�1/ai

ˆ2

�
�� JJ

i �

�
D .�1/aiC1 ˆ2

�
��TT

i �

�
D
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where in the above diagrams the i th sheet is always in the front. To obtain the spe-
cific image foam from these (generic6) pictures, use the labelings of the domain and
codomain webs (which are determined by the slm weight �) to induce a labeling on
all foam facets, then remove all 0–labeled facets7 and re-color the remaining facets
appropriately. In particular, the blue-colored facets in the above are used only to make
the pictures more readable.

Note that the singular seams may degenerate in such examples, eg

ˆ2

� OOOO

i i
�
�
D

when � maps to a sequence with ai D 2 and aiC1 D 0.

Moreover, the generic depiction of the foam in this example contained an intersection of
2 seams (before removing facets). It is not difficult to check that all pictures containing
such a singularity yield well-defined foams, where some singular seams degenerate
and the intersection between seams disappears.

Additionally, to make the pictures above more readable, we haven’t depicted the
orientation of the seams in Proposition 3.3. In the case where they do not degenerate,
the orientation is induced by the corresponding trivalent vertices in the boundary webs.
Explicitly, seams are directed into trivalent vertices which split a 2–labeled edge into 1–
labeled edges in the codomain of a foam, and out from vertices which merge 1–labeled
edges into 2–labeled ones (and vice-versa in the domain web).

Proof While it is not difficult to verify all relations by hand, we apply Theorem 2.5
to 2BFoamm.N / to reduce the number of relations that need to be verified. For each
m and N , the non-zero objects of this 2–category are indexed by the non-zero slm
weight spaces of the finite-dimensional Uq.slm/–module

V
q
N .C2˝Cm/, so condition

(1) is satisfied. Furthermore, it is clear from the definitions that Ei1� has Fi1�C˛i
as a

left and right adjoint, up to a grading shift. Lemma 3.2 establishes conditions (4) and
(6), thus, it suffices to show that conditions (2) and (5) are satisfied.

We first check condition (2). Given a foam in Hom.1�; qt1�/, we can apply the neck-
cutting relations (3-3) and (3-6) in the neighborhood of each boundary component to
express the foam as a linear combination of foams which are the disjoint unions of

6These pictures more generally depict sln foams; see the follow-up paper [62] for complete details.
7One can check that any foam which would contain facets not labeled by 0 , 1 or 2 would necessarily

have either domain or codomain equal to the zero 1–morphism, hence is zero.
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closed foams, 2–labeled sheets and 1–labeled sheets, which may carry dots. Relations
(3-2), (3-3) and (3-6)–(3-8) give that any closed foam is equal to an element of kŒ

�3 �.
(3-1) then shows that Hom.1�; qt1�/ is zero for t < 0 and 1–dimensional for t D 0.

Using the neck-cutting relations, we can express any foam mapping between fixed
webs W1 and W2 as a linear combination of foams in which every 2–labeled facet
is a disk incident upon the boundary; such facets are determined by the collection
of singular seams incident upon the web vertices. The union of the 1–labeled facets
gives a (dotted) cobordism between the 1–labeled edges of W1 and W2 . Using the
neck-cutting relations and (3-11) we can assume that this cobordism consists of (dotted)
disks. Since there are only finitely many ways to connect the vertices of the boundary
webs with singular seams lying on the cobordism (up to isotopy), it follows from (3-1)
that Hom.qt1W1; q

t2W2/ is finite-dimensional for all values of t1 and t2 .

Finally, we check condition (5), ie that the KLR relations are satisfied.

Relation (2-16) The 2–morphism
OO OO

�

automatically maps to the zero foam unless � maps to a sequence with ai D 2 and
aiC1 D 0. In this case, we compute the image:

D 0;

which follows from (3-13). The images of the 2–morphisms
OOOO OO

� and

OOOOOO

�

are both zero since either � or �C3˛i maps to the zero object, confirming the relation.

Relation (2-17) As before, the only non-trivial case is when � maps to a sequence
with ai D 2 and aiC1 D 0. In this case, we must have the equalities
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D

�

�

�

D

�

�

�

both of which follow from (3-11).

Relation (2-18) The equality
.˛i ; j̨ /D 0

corresponds to ji � j j � 2 in which case the image of the relation is realized via an
isotopy. For example, when i < j we see that

is isotopic to the identity foam for any values of the al ’s.

If i ¤ j and
.˛i ; j̨ /¤ 0

we must have j D i˙1. We begin with the case j D iC1. The image of the left-hand
side is zero unless aiC1 D 1 since the intermediate objects in the relation map to the
zero object in the image; similarly, the right-hand image is zero unless aiC1 D 1; 2.
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When aiC1 D 1 we have

�

OOOO

i i C 1

7!

where we have omitted the shading on the front and back sheets for clarity. Applying
(3-3) on both sides of the singular seam and evaluating the resulting theta-foams using
(3-8), this gives

�

�

�

which is the image of
OOOO

�
i i C 1

�

OOOO

�
i i C 1

:

When aiC1 D 2, we must confirm that

�

�

�

is the zero foam. This follows from the dot-sliding relation (3-20).

When j D i�1, it similarly suffices to confirm the relation when ai D 0; 1. For ai D 0,
the images of

OOOO

�
i i � 1

and
OOOO

�
i i � 1

are isotopic, so both sides of the relation map to zero.

Algebraic & Geometric Topology, Volume 15 (2015)



2556 Aaron D Lauda, Hoel Queffelec and David E V Rose

For ai D 1, we compute as follows.

�

OOOO

i i � 1

7! D �

�

C

�

To see this, note the middle of the image foam takes the form of the left-hand side of
Equation (3-11) turned sideways, ie there is a sideways 1–labeled cylinder meeting
a pair of 2–labeled facets along oppositely oriented singular seams. Applying this
relation and using Equation (3-20) shows that it equals the specified linear combination
of foams.

Relation (2-19) This relation follows by sliding a dot along a facet, ie via isotopy.

Relation (2-20) For all choices of i , j and k this relation holds via isotopy (or since
both sides map to zero). This is obvious in the case that two of the three values .˛i ; j̨ /,
.˛i ; ˛k/ and . j̨ ; ˛k/ are zero. In the other cases a computation is necessary; note that
we can assume i ¤ j ¤ k since otherwise both sides of the equation automatically
map to zero (an intermediate weight must map to the zero object).

If j D i C 1 and k D i C 2, then we compute both sides of the relation to be

(3-21) and
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which are equal up to isotopy for any value of the al ’s. The other cases follow similarly.

Relation (2-21) We must have j D i˙1 and we’ll only compute for j D iC1 since
the other case is analogous. Note that all 2–morphisms involved automatically map to
zero if � is sent to a sequence with aiC1 D 2 or with ai D 0; 1, so we’ll compute for
the remaining values.

When ai D 2 and aiC1 D 0 we have

OO OO OO

i i C 1 i

7!

OO OOOO

i i C 1 i

7! 0

which gives the relation since the former is isotopic to the identity.

Finally, when ai D 2 and aiC1 D 1 we compute that

OO OO OO

i i C 1 i

7! 0

OO OOOO

i i C 1 i

7! I

applying (3-18) to the above (which, after forgetting the back-most facets and applying
an isotopy, is precisely equal to the negative of the right-hand side of (3-18)) gives the
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foam

�

which confirms the relation.

Note that the scalings of the images of the cap and cup 2–morphisms play no role in
the proof of the proposition. They are determined by the proof of Theorem 2.5.

3A4 Clark–Morrison–Walker foams In the original construction of functorial Kho-
vanov homology [22], Clark, Morrison and Walker use a variation of Bar-Natan’s
2–category involving disoriented surfaces defined over the Gaussian integers. We can
define foamation 2–functors to a family of 2–categories related to their construction.
We will assume some familiarity with their work.

We fix once and for all ! to be a primitive fourth root of unity.

Definition 3.4 CMWFoamm.N / is the 2–category defined as follows:

� Objects are sequences .a1; : : : ; am/ labeling points in the interval Œ0; 1� with
ai 2 f0; 1; 2g and N D

Pm
iD1 ai , together with a zero object.

� 1–morphisms are formal direct sums of Z–graded disoriented planar tangles
directed out from 1–labeled points in the domain and into such points in the
codomain.

� 2–morphisms are formal matrices of kŒ!�–linear combinations of degree-zero
dotted disoriented cobordisms between such disoriented planar tangles, modulo
isotopy and local relations.

The disorientations are represented by fringed seams; the local relations are given by
(3-2) and (3-3) in regions where no seams are present and the following local seam
relations.

(3-22)

D ! D �!

D ! D �!
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By adjusting some coefficients in the formulation of Proposition 3.3 and appropriately
interpreting the image foams as 2–morphisms in CMWFoamm.N /, we obtain the
desired 2–functor. The interpretation is as follows.

and

should be read as the disoriented tangles

and

and (in addition to removing 0–labeled sheets from the generic pictures below) the
2–labeled sheets should be deleted, retaining the seams where they meet 1–labeled
facets and adding fringes aligned with the disorientation “tags” on the tangles.

Proposition 3.5 For each N > 0 there is a 2–representation ˆCMWW UQ.slm/ !

CMWFoamm.N / defined on single strand 2–morphisms by

ˆCMW

�
OO
�

i

�
D ˆCMW

�
OO

�
�

i

�
D �

on crossings by

ˆCMW

� OOOO

i i
�
�
D .�!/

ˆCMW

� OOOO

i i C 1

�
�
D

ˆCMW

� OOOO

i C 1 i

�
�
D !
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ˆCMW

� OOOO

j i
�
�
D

ˆCMW

� OOOO

i j
�
�
D

where j � i > 1, and on caps and cups by

ˆCMW

�
WW



i ��
D

ˆCMW

�
GG ��
i ��

D .�1/ai .�!/ı

ˆCMW

�
�� JJ

i �

�
D .�1/aiC1.�!/ı

ˆCMW

�
��TT

i �

�
D

where in the above diagrams the i th sheet is always in the front, and ıD 1 if �i is even
and ı D 0 otherwise. As before, we have drawn generic versions of the image foams,
and one should apply the procedure outlined before this statement to obtain the actual
CMW foams.
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The proof is the same as for Proposition 3.3: we apply Theorem 2.5. Most of the work
involves checking the KLR relations and is straightforward, so we omit almost all of
the details. The following calculation confirms the nilHecke relation (2-17), which we
include to show the importance of the disorientation seams:

ˆCMW

� OO

�

OO

�

OO

�
OO �

D�!

 
�

�
�

!
D�!

 
�

�
�

�

!

D ! D DˆCMW

� OOOO �
:

In the above pictures we have applied isotopies to the disoriented tangles and cobordisms
for clarity (so that all fringes and dots lie on the front side of the cobordisms). This
relation determines the scaling of the .i; i/ crossing in the definition above. The KLR
relations also fix the scaling on the composition of an .i; iC1/ and an .iC1; i/ crossing;
we choose to rescale the .i C 1; i/ crossing. The scalings of the other 2–morphisms
again follow from the proof of Theorem 2.5.

At present time, we don’t have a good explanation for the rescalings in the above
2–functor. For this reason, we believe that 2BFoamm.N / is a more natural setting for
the foamation 2–functors; in particular, we’ll see in Proposition 3.10 that the definition
of the foamation functor from Proposition 3.3 generalizes mutatis mutandis to give a
foamation 2–functor to an enhanced version of sl3 foams.

3B sl3 foam 2–categories

In this section, we recall the definition of the sl3 foam 2–category and prove the
existence of the sl3 foamation 2–functor. We then define an enhanced sl3 foam
2–category similar to Blanchet’s sl2 foam category which appears naturally in the
categorical skew Howe context. Finally, we give a functor from enhanced foams to
standard foams, contrasting the sl2 case.

3B1 Standard sl3 foams In [34], Khovanov gives a foam based categorification
of the sl3 link invariant. This construction was generalized by Mackaay and Vaz
in [54] and Morrison and Nieh in [59] in the spirit of Bar-Natan’s sl2 cobordism
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2–category [2], giving a categorification of Kuperberg’s sl3 spider [45]. Mackaay and
Vaz showed [55] that these foam based constructions of sl3 link homologies coincide
with the n D 3 case of Khovanov and Rozansky’s sln link homologies defined via
matrix factorizations [42].

We now recall the definition of this 2–category, which we denote 3Foam, using a
hybrid of the above approaches:

� Objects are sequences of points in the interval Œ0; 1� labeled by 1 or 2, together
with a zero object.

� 1–morphisms are formal direct sums of Z–graded shifts of sl3 webs — directed,
trivalent planar graphs with boundary in which each (interior) vertex is a sink or
a source — where an edge is directed out from a point labeled by 1 and into a
point labeled by 2 in the domain and vice-versa in the codomain.

� 2–morphisms are formal matrices of k–linear combinations of degree-zero sl3
foams — dotted surfaces with oriented singular seams which locally look like
the product of the letter Y with an interval — considered up to isotopy (relative
to the boundary) and local relations.

Denoting the Z–grading of a web by the monomial qt for t 2Z, the degree of a foam
F W qt1W1! qt2W2 is given by the formula

deg.F /D 2�.F /� #@C 1
2

#V C t2� t1;

where �.F / is the Euler characteristic of the foam F , #@ is the number of boundary
points in either W1 or W2 (they agree!), and #V is the total number of trivalent vertices
in W1

`
W2 . A dot should be viewed as a puncture for the sake of computing an sl3

foam’s Euler characteristic. We shall depict sl3 foams using the colors red and blue,
for clarity; unlike the sl2 case, these colors have no meaning as all facets are treated
equally.

The local sl3 foam relations are as follows (where a number next to a dot denotes the
number of dots present).

D 0 D
� ��

D �1(3-23)
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D �

��

�

�

�

�

��

�
�3

�

�
�3

�

�

 
�4

C
�3

2
!

(3-24)

�

�

�

˛


ˇ
D

8<:
1 if .˛; ˇ;  /D .0; 1; 2/ or a cyclic permutation
�1 if .˛; ˇ;  /D .0; 2; 1/ or a cyclic permutation
0 all other triples with ˛; ˇ;  � 2

(3-25)

D

�

�

�

(3-26)

D � �(3-27)

Note that the local foam relations are all degree-homogeneous. The direction of the
singular seams keeps track of a cyclic ordering of the incident facets; by convention, we
take this ordering to be given by the right-hand rule. This convention is opposite to that
used in [34] and [54], hence one would expect to see opposite foam relations above;
however, we also reverse the relation between singular seams and trivalent vertices
(seams are directed up through source vertices and down through sink vertices) which
corresponds to taking different generating morphisms for the 2–category. It is easy
to see that the above 2–category is isomorphic to the universal sl3 foam 2–category
from [54] and [59, Section A]. Our conventions are chosen to align with those in the
definition of the 2–category 2BFoamm.N /.

Using the neck-cutting relation (3-24) and the theta-foam relation (3-25), we can derive
the following local relations.
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D

�

�

�

(3-29) D �(3-28)

�3 D �
�3

�2 �

 
�4

C
�3

2
!

�

�

 
�5

C 2
�3 �4

C
�3

3
!(3-30)

The values of the 3–, 4– and 5–dotted spheres should be viewed as (graded) parameters
which are typically set equal to zero in the literature, eg in [34] and [59], although
this is not required for our considerations. In the case that the 3–dotted sphere is zero,
Morrison–Nieh show the relation

3 � D

which allows for a completely topological description of this 2–category when 3 is
invertible in k.

Note that the set of relations above does not explicitly correspond with that from either
[54] or [59]. The relations (3-23)–(3-25), together with a non-local relation constitute
the relations from [54] (although in that work the authors introduce parameters a, b

and c in place of the dotted-sphere parameters above). In [59], Morrison and Nieh
show that the relations (3-26) and (3-27) imply the non-local relation. Our chosen set
of relations above almost agree with those of Morrison–Nieh (when the dotted surface
parameters equal zero): they impose the relation that reversing the orientation of a
singular seam negates the foam instead of specifying the values of the theta-foams; this
seam reversal relation follows from (3-24) and (3-25).

As in the sl2 case, we are interested in a related family of 2–categories which is natural
to consider from the perspective of categorical skew Howe duality.
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Definition 3.6 3Foamm.N / is the 2–category defined as follows:

� Objects are sequences .a1; : : : ; am/ labeling points in the interval Œ0; 1� with
ai 2 f0; 1; 2; 3g and N D

Pm
iD1 ai together with a zero object.

� 1–morphisms are formal direct sums of Z–graded shifts of sl3 webs mapping
between the points labeled by 1 and 2 as in 3Foam.

� 2–morphisms are formal matrices of k–linear combinations of degree-zero sl3
foams mapping between such webs.

Note that the objects in 3Foamm.N / correspond with the direct summands appearing
in the decomposition of

V
q
N .C3˝Cm/ into slm weight spaces and 1–morphisms

correspond to sl3 intertwiners between such summands. For each m and N , there is
an obvious 2–functor 3Foamm.N /! 3Foam which forgets the 0’s and 3’s.

3B2 Foamation We now define sl3 foamation 2–functors UQ.slm/! 3Foamm.N /.
As in the sl2 case, the 2–functor is defined on objects by sending an slm weight
�D .�1; : : : ; �m�1/ to the sequence .a1; : : : ; am/ with ai 2f0; 1; 2; 3g, �iDaiC1�ai

and
Pm

iD1 ai DN provided such a sequence exists and to the zero object otherwise.

The map on 1–morphisms is again given by

1�ftg 7! qt

a1

am
:::

Ei1�ftg 7!qt

ai

aiC1

ai�1

aiC1C1
Fi1�ftg 7!qt

ai

aiC1

aiC1

aiC1�1

when the boundary values lie in f0; 1; 2; 3g and to the zero 1–morphism otherwise.
Note that the orientation of the undirected strands (and whether they become deleted)
is determined by these boundary values and that we have not depicted m�2 horizontal
strands in each of the latter two formulae.

We will make use of a lemma to deduce the existence of the foamation 2–functors. Let
the images of 1� , Ei1� and Fi1� above be denoted 1� , Ei1� and Fi1� .

Lemma 3.7 There are isomorphisms

FiEi1�ŠEiFi1�˚Œ�hi;�i�1� if hi; �i�0; EiFi1�ŠFiEi1�˚Œhi;�i�1� if hi; �i�0;

and FjEi1� Š EiFj 1� for i ¤ j 2 I in 3Foamm.N /.

Proof The proof is similar to the proof of Lemma 3.2.
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Proposition 3.8 There is a 2–representation ˆ3W UQ.slm/! 3Foamm.N / for each
N > 0 defined on single strand morphisms by

ˆ3

 
OO
�

i

!
D ˆ3

 
OO

�
�

i

!
D �

on crossings by

ˆ3

� OOOO

i i
�
�
D ˆ3

� OOOO

i i C 1

�
�
D

ˆ3

� OOOO

i C 1 i

�
�
D .�1/aiC1C1

ˆ3

� OOOO

j i
�
�
D ˆ3

� OOOO

i j
�
�
D

where j � i > 1, and on caps and cups by

ˆ3

�
WW



i ��
D ˙ ˆ3

�
GG ��
i ��

D ˙

ˆ3

�
�� JJ

i �

�
D ˙ ˆ3

�
��TT

i �

�
D ˙

where the ˙ above depend on (the image of) the weight � and are given by8 Table 1.

8In fact, we will see that the ˙ signs involved in the definition of the 2–functor on caps and cups play
no role in the proof of this proposition; they are determined by the proof of Theorem 2.5. In the next
section, we will give a topological interpretation of this system of signs.
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Counterclockwise cap Sign Clockwise cap Sign

Ni D 3 �i D 1 � Ni D 3 �i D�1 �

Ni D 2 �i D 0 C Ni D 2 �i D 0 �

Ni D 4 �i D 0 � Ni D 4 �i D 0 �

Ni D 1 �i D�1 C Ni D 1 �i D 1 C

Ni D 3 �i D�1 C Ni D 3 �i D 1 �

Ni D 5 �i D�1 � Ni D 5 �i D 1 �

Ni D 2 �i D�2 C Ni D 2 �i D 2 C

Ni D 4 �i D�2 C Ni D 4 �i D 2 �

Ni D 3 �i D�3 C Ni D 3 �i D 3 C

Counterclockwise cup Sign Clockwise cup Sign

Ni D 3 �i D 1 C Ni D 3 �i D�1 C

Ni D 2 �i D 0 C Ni D 2 �i D 0 C

Ni D 4 �i D 0 � Ni D 4 �i D 0 C

Ni D 1 �i D�1 C Ni D 1 �i D 1 C

Ni D 3 �i D�1 � Ni D 3 �i D 1 C

Ni D 5 �i D�1 � Ni D 5 �i D 1 �

Ni D 2 �i D�2 � Ni D 2 �i D 2 C

Ni D 4 �i D�2 � Ni D 4 �i D 2 �

Ni D 3 �i D�3 � Ni D 3 �i D 3 �

Table 1: Signs for relations in Proposition 3.8, where Ni D ai C aiC1

Again, the foams drawn above are generic depictions of the image. As such, up to signs,
they are exactly the same as those appearing in Proposition 3.3; however, the process
we apply to obtain the actual sl3 foams differs from the one applied in Proposition 3.3.
We now kill any web or foam containing a label strictly smaller than 0 or strictly
larger than 3, and delete any web strand (or foam facet) labeled 0 or 3. The singular
seams in such pictures may again degenerate in such situations (and in particular, all
intersections of seams will disappear), eg in the case that � maps to a sequence with
ai D 1; aiC1 D 2 we have the following, which is a saddle cobordism.

ˆ3

�
WW



i ��
D �

Proof As with the proof of Proposition 3.3, we apply Theorem 2.5. Conditions (1)
and (3) follow as before and Lemma 3.7 gives conditions (4) and (6).
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Working in the setting where the 3–, 4– and 5–dotted spheres are set equal to zero,
it is shown in [59] that the vector space Hom.1�; qt1�/ is zero for t < 0 and one-
dimensional for t D 0 (provided 1� is non-zero) and that for any webs W1 and W2 ,
the vector space Hom.qt1W1; q

t2W2/ is finite-dimensional. The same arguments show
that this holds when these dotted spheres are not set equal to zero (since they have
negative Euler characteristic). This confirms condition (2).

We thus conclude by checking condition (5), the KLR relations:

Relation (2-16) The 2–morphism
OO OO

�

maps to a foam which can only possibly be non-zero for � mapping to sequences with

ai D 2; 3 and aiC1 D 0; 1:

When .ai ; aiC1/D .2; 0/ we compute the image:

D 0

which follows by applying the neck-cutting relation (3-24) on the red sheet in a
neighborhood of the center singular seam, and noting that all of the resulting theta-
foams evaluate to zero. The computation for the remainder of the values of .ai ; aiC1/

follows similarly.

We next compute the images of the 2–morphisms

OOOO OO

� and

OOOOOO

�
;

noting that the images can only be non-zero for � mapping to sequences with ai D 3

and aiC1 D 0. The above 2–morphisms map to the following foams, respectively,
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which are equal by (3-30).

and

Relation (2-17) The images of this relation are simply a restatement of (3-26).

Relation (2-18) The equality

.˛i ; j̨ /D 0

corresponds to ji�j j � 2 in which case the image of the relation is realized via isotopy.
For example, when i < j

is isotopic to the identity foam over the bottom (or equivalently top) boundary.

When i ¤ j and

.˛i ; j̨ /¤ 0

we must have j D i ˙ 1. We’ll compute the image of this relationship in the case
j D i C 1 (the other case is similar). The image of the left-hand side is zero when
aiC1 D 0; 3 since the intermediate objects in the relation map to the zero object in the
image; the same is true on the right-hand side when aiC1 D 0. When aiC1 D 3, both
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2–morphisms involved in the expression on the right-hand side map to the same foam,
so the relation is satisfied since ti;iC1 D�tiC1;i . When aiC1 D 1 we have

�

OOOO

i i C 1

7!

and noticing that the center singular seam is a circle bounding a disk, applying (3-28)
to this seam gives the following foam: the image of

OOOO

�
i i C 1

�

OOOO

�
i i C 1

:

�

�

�

Finally, when aiC1 D 2

�

OOOO

i i C 1

7! �

since the central facet is 3–labeled, hence erased. Applying (3-26) (turned sideways!)
to the region between the semi-circular seams gives the foam

�

�

�
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which again is the image of
OOOO

�
i i C 1

�

OOOO

�
i i C 1

:

Relation (2-19) These hold by sliding a dot along a facet, ie via isotopy.

Relation (2-20) For all choices of i , j and k this relation holds via isotopy. This is
obvious whenever one of the strands carries a label which is at least 2 bigger or smaller
than both other labels. In the remaining cases a computation is necessary; we’ll exhibit
this only for two cases, since the remaining cases follow similarly.

First, suppose that j D i and k D i C 1; then both sides of the relation automatically
map to zero unless � maps to a sequence with aiC1D 1. We hence compute the image
(of both sides of the relation) in this case, finding them to be

and

which are related via isotopy (no matter which values of ai and aiC2 we choose).

Next, suppose j D i C 1 and k D i C 2; then we compute both sides of the relation to
be

and
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which are equal up to isotopy.

Relation (2-21) We must have j D i˙1 and we’ll only compute for j D iC1 since
the other case is analogous. Note that all 2–morphisms involved automatically map to
zero if � is sent to a sequence with

aiC1 D 3 or with ai D 0; 1;

so we’ll compute for the remaining values.

First, let aiC1 D 0; then

OO OO OO

i i C 1 i

7!

OO OOOO

i i C 1 i

7! 0:

This confirms the relation since the former is isotopic to the identity foam when

ai D 2; 3;

noting that in these cases either the leftmost or rightmost front facet is deleted. For
example, the ai D 2, aiC2 D 1 case is the following isotopy.

�
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Next, let aiC1 D 1; then we compute as follows.

OO OO OO

i i C 1 i

7! �

OO OOOO

i i C 1 i

7!

The relation then follows from Equation (3-27) when ai D 2; 3, again noting that either
the leftmost or rightmost front facet is deleted for both foams. For example, taking
ai D 2 and aiC2 D 1 gives

OO OO OO

i i C 1 i

7! �

OO OOOO

i i C 1 i

7!

and forgetting the back facets then exactly allows us to apply Equation (3-27).

Finally, if aiC1 D 2, then

OO OO OO

i i C 1 i

7! 0

OO OOOO

i i C 1 i

7! �
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and this confirms the relation since the latter is the identity foam over its boundary
webs when ai D 2; 3.

3B3 Enhanced sl3 foams We now aim to better explain the signs in Table 1 which
give the scalings of the cap and cup 2–morphisms. We take inspiration from Blanchet’s
sl2 foam construction in which the edges of webs labeled by 2 and the corresponding
facets of foams play a special role (and in particular are not deleted).

We hence define an sl3 foam 2–category in which we retain 3–labeled edges and the
corresponding 3–labeled facets. Although such a construction is not suggested at the
decategorified level (as it was in the sl2 case) we will see that the foamation functor is
much more natural to define in this context and that an appropriately defined functor
which forgets the 3–labeled data gives a topological interpretation of the scalings. We
believe that such n–labeled facets will play a role in extending the work in this paper
to the n� 4 case; this is explored in detail in the follow-up paper [62].

Definition 3.9 3BFoamm.N / is the 2–category defined as follows:

� Objects are sequences .a1; : : : ; am/ labeling points in the interval Œ0; 1� with
ai 2 f0; 1; 2; 3g and N D

Pm
iD1 ai together with a zero object.

� 1–morphisms are formal direct sums of Z–graded enhanced sl3 webs, that is,
trivalent planar graphs with boundary with edges of two types: directed edges

and undirected 3–labeled edges where vertices involving only the
directed edges are as in 3Foam and vertices involving the 3–labeled edges take
the form below.

or

Oriented edges are directed out from points labeled by 1 and into points labeled by
2 in the domain and vice-versa in the codomain and 3–labeled edges are attached
to points labeled by 3 in both the domain and codomain. As in 3Foamm.N /,
no edges are attached to points labeled by 0.

� 2–morphisms are sl3 foams between such webs where we allow additional
3–labeled facets incident upon the 3–labeled strands of the webs and attached to
the remainder of the foam along singular seams which are allowed to intersect
the traditional singular seams; the 3–labeled facets are not allowed to carry dots.
We impose local relations on these foams.
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We shall refer to the 2–morphisms in this category as Blanchet sl3 foams and depict
the 3–labeled facets in yellow. The traditional facets of these foams will continue to
be depicted in both red and blue. As in the sl2 case, the degree of a Blanchet sl3 foam
is defined to be the same as the degree of the standard sl3 foam which results when
the 3–labeled web edges and foam facets are deleted.

The local relations are given by the relations in 3Foam in regions where 3–labeled
facets are not present with additional relations for the 3–labeled facets. The seams
where a 3–labeled facet meet the traditional facets are allowed to move freely on the
foam (relative to the points where such seams meet the web vertices depicted above).
This additional foam relation is typified by the following local relation.

D

We also impose a strong neck-cutting relation for these facets,

D

and the condition that we may delete any 3–labeled facet F not incident upon the
boundary (and delete its boundary seam) at the cost of multiplying by .�1/�.F / . Finally,
we have the relation

(3-31) D �

which we impose for all coherent orientations of the singular seams. An Euler charac-
teristic argument shows that these relations are consistent. Using such foams, we have
the following result.
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Proposition 3.10 The definition in Proposition 3.3 describes a family of 2–functors

UQ.slm/! 3BFoamm.N /:

As before, we view the definition as showing the general image of each generating
2–morphism; edges connected to points labeled by 0 and facets incident upon them
are understood to be deleted. The proof of this proposition follows as in the proof of
Propositions 3.3 and 3.8.

The relations for the 3–labeled facets allow us to delete any facet which does not meet
the boundary; however, this is not enough to define a forgetful functor 3BFoamm.N /!

3Foamm.N /. We can give such a rule by taking into account the boundary data.

Given a Blanchet sl3 foam F , define �3.F / to be the Euler characteristic of its 3–
labeled facets and let nu.F / denote the number of 3–labeled edges in the codomain
of F . Let ‰.F / D .�1/�3.F /�nu.F /F where F is the sl3 foam obtained from F

by deleting the 3–labeled facets (and the 3–labeled edges from the boundary webs).
Similarly, define nb.F / to be the number of 3–labeled edges in the domain of F and
nl.F / and nr .F / to be the number of points labeled by 3 in the codomain and domain
(respectively) of the webs between which F maps; of course, these later two denote
the number of 3–labeled vertical intervals on the left and right boundary of F .

Proposition 3.11 The assignment F 7!‰.F / defines a 2–functor 3BFoamm.N /!

3Foamm.N / where objects are sent to themselves and enhanced webs are sent to the
webs obtained by deleting the 3–labeled edges.

Proof It suffices to show that ‰ is compatible with horizontal and vertical composition
of foams. To this end, consider foams F1 , F2 , and F3 which can be composed as
indicated by the following schematic.

F1

F2

F3

We have

�3.F1[F2/�nu.F1[F2/D �3.F1[F2/�nu.F2/

D �3.F1/�nu.F1/C�3.F2/�nu.F2/;

�3.F1[F3/�nu.F1[F3/D �3.F1/�nl.F1/C�3.F3/�nu.F1/Cnl.F1/�nu.F3/

D �3.F1/�nu.F1/C�3.F3/�nu.F3/;

which gives the result.
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One can now consider the composition of the 2–functors defined in Propositions 3.10
and 3.11.

Proposition 3.12 The composition UQ.slm/! 3BFoamm.N /! 3Foamm.N / gives
the 2–functor from Proposition 3.8.

Proof The proof follows from a routine, yet tedious, calculation. We’ll exhibit a few
of the more interesting cases:

� Let � map to a sequence where aiC1 D 2; then

OOOO

i i C 1

�
7! 7! ;

OOOO

i C 1 i

�
7! 7! � :

� Let � map to a sequence with ai D 0 and aiC1 D 3 (ie Ni D 3 and �i D 3), then

GG ��
i �

7! 7! ;

��TT

i �
7! 7! � I

note that this guarantees that the relevant degree-zero bubble
i
��MM

�
2

�

is sent to the
identity 2–morphism in 3Foamm.N /.

3B4 Clark–Morrison–Walker sl3 foams One may notice that the topology of a
3–labeled facet is relatively unimportant; the signs obtained by removing any 3–labeled
facet (not incident upon the boundary webs) depend only on the facet’s boundary seams.
One may then ask why one needs these facets at all: couldn’t we instead introduce a
Clark–Morrison–Walker (CMW) version of sl3 foams?
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Indeed, we can define such a theory by removing all 3–labeled facets and edges of webs
from the definitions in the previous subsection, keeping only the new CMW seams and
imposing the relation that one may remove a closed seam at the cost of multiplying
by �1. It is easy to see that we obtain a family of 2–functors from UQ.slm/ to the
2–category of CMW sl3 foams. Note that the CMW seams in such a theory do not
need fringes, unlike the sl2 case.

However, when one tries to define a forgetful 2–functor to the category of (traditional)
sl3 foams as before, it surprisingly appears that the rigidity obtained from the interaction
of the 3–labeled facets with the 3–labeled edges plays a non-trivial role. Indeed, there
is no hope to define such a 2–functor as we now demonstrate.

Assume a forgetful 2–functor exists. We need maps

7! ˛ 7! ˇ

with ˛ˇ D�1 and

7!  7! ı

with  ı D�1. Since the foam

is isotopic to the identity, we must have ˛ D 1 and since

�

we must have ı D ˛ . This then gives

1D ˛ D ı D�1;
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a contradiction.

Note that this argument remains valid even if we enhance the CMW seams with fringes
(repeat the above argument with all seam directed into the page). The above argument no
longer remains valid if the seams are given an orientation; however, similar arguments
prevent a definition of CMW sl3 foams possessing a forgetful functor to sl3 foams.

3C Extended foamation 2–functors

In order to construct categorified link invariants, we will need to consider the images
of the Rickard complexes under the foamation 2–functors, and hence the images of
divided powers. Recall that the later are 1–morphisms which lie in PUQ.slm/ — the
Karoubi envelope of UQ.slm/ — but not in UQ.slm/ itself.

The universal property of the Karoubi envelope implies that the foamation 2–functors
UQ.slm/! n(B)Foamm.N / extend to 2–functors

PUQ.slm/! Kar.n(B)Foamm.N //;

where n(B)Foamm.N / is shorthand for all sl2 and sl3 categories used as targets of
foamation 2–functors so far in this paper. We would like to consider these extended
2–functors; however, the Karoubi envelope of the foam 2–categories is not easy to
work with. Indeed, the indecomposable 1–morphisms in these 2–categories are closely
related to (dual) canonical bases, and hence are similarly complicated to study.

It turns out, however, that the foam 2–categories are “closer” to their Karoubi envelopes
than the 2–categories UQ.slm/ are to PUQ.slm/. We shall see that the images of the
divided powers already exist in the foam 2–categories. To this end, recall from
Definition 2.2 that LUQ.slm/ is the sub-2–category of PUQ.slm/ whose 1–morphisms
are generated by (shifts of) divided powers.

Proposition 3.13 The 2–functors defined in Propositions 3.3, 3.8, and 3.10 extend to
2–functors from LUQ.slm/ to the relevant foam 2–categories.

Proof Recall that any category C embeds fully faithfully into Kar.C/ by sending an
object c to the pair .c; idc/ and a morphism f W c! d to the triple .idc ; f; idd /; see
[5, Chapter 6.5]. It thus suffices to show that when we restrict the 2–functor

PUQ.slm/! Kar.n(B)Foamm.N //

to LUQ.slm/, the images of all 1–morphisms are isomorphic to 1–morphisms lying in
the sub-2–category n(B)Foamm.N /� Kar.n(B)Foamm.N //.
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We begin with the sl2 case. Since Ek
i 1� 7! 0 and Fk

i 1� 7! 0 for all k � 3, we need
only consider the 1–morphisms E.2/i 1� and F .2/i 1� . Note that the 1–morphism

E.2/i 1� D
�
E2

i 1�f1g;
OOOO

�
�

�
is mapped to zero unless ai D 2 and aiC1 D 0. In this case, the above is mapped to0BBBBBBB@

q ;

�

1CCCCCCCA
which is isomorphic to 0BBB@ ;

1CCCA
in Kar.2BFoamm.N //. Explicitly, we use Equation (3-11) to show that the following
give a pair of inverse isomorphisms.0BBBBBBB@

�

; ;

1CCCCCCCA
0BBBBBBB@

;

�

;

�

1CCCCCCCA
Similarly, we find that the image of F .2/i 1� is isomorphic to0BBB@ ;

1CCCA
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when ai D 0 and aiC1 D 2 (the only case when F2
i 1� is not mapped to zero).

In the sl3 case, it suffices to consider the 2–functor

UQ.slm/! 3BFoamm.N /;

since the 2–functor

UQ.slm/! 3Foamm.N /

is obtained via composition with the forgetful functor. We find that Ek
i 1� and Fk

i 1�
are both sent to zero for k � 4, so it suffices to consider the 1–morphisms

E.2/i 1�; E.3/i 1�; F .2/i 1� and F .3/i 1�:

We see that E.2/i 1� is (again) mapped to the 1–morphism0BBBBBBB@
q
�

aiai � 2

aiC1aiC1C 2
�
;

�

1CCCCCCCA
which is isomorphic in Kar.3BFoamm.N // to0BBB@ aiai � 2

aiC1aiC1C 2
;

1CCCA
for any value of the al ’s using the sl3 foam relations. Similarly, the image of F .2/i 1�
is isomorphic to0BBB@ aiai C 2

aiC1aiC1� 2
;

1CCCA :

The directed lines in the latter two 1–morphisms above can be viewed as 2–labeled
edges directed in the opposite direction; from this perspective, the boundary labels
appear more appropriate.
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The only case where E.3/i 1� is not sent to zero is for ai D 3 and aiC1 D 0. and in this
case E.3/i 1� is mapped to

(3-32)

0BBBBBBBBBBBBBBBBBBBBBBBB@

q3 ;

�
� �

1CCCCCCCCCCCCCCCCCCCCCCCCA
which is isomorphic to 0BBB@ ;

1CCCA
in Kar.3BFoamm.N //. The isomorphism above is evident after noticing that the foam
in (3-32) is equal to

�
� �

using (3-30) and (3-31). Finally, the image of F .3/i 1� is isomorphic to0BBB@ ;

1CCCA
when ai D 0 and aiC1 D 3 (ie the only non-zero case).
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We can summarize the 2–functors LUQ.slm/! n(B)Foamm.N / using ladders with
labelings on the diagonal edges:

E.k/i 1� 7!
ai

aiC1

ai � k

aiC1C k

k F .k/i 1� 7!
ai

aiC1

ai C k

aiC1� k

k

where 2–labeled edges in 3Foamm.N / and 3BFoamm.N / should be viewed as 1–
labeled edges oriented in the opposite direction and 3–labeled edges should be deleted
in 3Foamm.N / and un-oriented in 3BFoamm.N /. For example, the image of E.3/1�3

in 3Foam2.N / is the empty web between the sequences .3; 0/ and .0; 3/.

4 Applications

Many known constructions in link homology follow from the 2–functors defined in the
previous section. Indeed, we will re-construct Khovanov homology, sl3 link homology
and categorified highest weight projectors in these theories using the categorified
quantum Weyl group action. The skew Howe perspective also provides a framework
for showing that Cautis and Kamnitzer’s algebro-geometric formulation of sl3 link
homology is isomorphic to Khovanov’s sl3 link homology (the latter is known to be
the same as sl3 Khovanov–Rozanksy homology and the category O sl3 link invariant).
We also explain how foam relations follow as consequences of the relations in the
categorified quantum group.

4A Link homology via skew Howe duality

In this section, we show that all of the ingredients needed to define sl2 and sl3 link
homology theories can be recovered from the foamation functors. We also show how
the invariant of any link can be given as the image of a complex in LUQ.slm/. This
suggests that the graphical calculus in the categorified quantum group can be used to
explore properties of categorified link invariants.

4A1 Categorified braidings In [15, Theorem 4.3], Cautis, Kamnitzer and Licata
show that the action of the quantum Weyl group elements Ti1� on the skew Howe
representation

V
q
N .Cn

q ˝Cm
q / gives the braiding on the category of finite-dimensional

PU.sln/ representations, up to a factor of ˙qr . In the language of webs, this says that
the value of a crossing is given by the image of the corresponding quantum Weyl group
element.

The same holds true at the categorified level (after extending the foamation 2–functors
to 2–categories of complexes), ie the complexes assigned to crossings in sl2 and
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sl3 link homology can be recovered, up to shifts in quantum and homological degree,
as the images of the Rickard complexes. Recall these are given by

Ti1� D E.��i /
i 1�

d1
�! E.��iC1/

i Fi1�f1g
d2
�! � � �

ds
�! E.��iCs/

i F .s/i 1�fsg
dsC1

�! � � �

when �i � 0 and

Ti1� D F .�i /
i 1�

d1
�! F .�iC1/

i Ei1�f1g
d2
�! � � �

ds
�! F .�iCs/

i E.s/i 1�fsg
dsC1

�! � � �

when �i � 0, where in the above formulae the leftmost term is in homological degree
zero. The above complexes are isomorphic when �i D 0.

The complexes Ti1� are invertible, up to homotopy, with inverses given by

1�T �1
i D � � �

d�
sC1

�! 1�E
.s/
i F .��iCs/

i f�sg
d�s
�! � � �

d�
2
�! 1�EiF

.��iC1/
i f�1g

d�
1
�! 1�F

.��i /
i

when �i � 0 and

1�T �1
i D � � �

d�
sC1

�! 1�F
.s/
i E.�iCs/

i f�sg
d�s
�! � � �

d�
2
�! 1�FiE

.�iC1/
i f�1g

d�
1
�! 1�E

.�i /
i

when �i � 0, where in these formulae the rightmost term is in homological degree
zero. Note that these complexes are obtained by taking the adjoints of the above (in
the category of complexes).

We begin with the sl2 case. When � maps to a sequence with ai D 1D aiC1 ,

(4-1) ˆ2.Ti1�/D

 
// q

!

which gives the value of the positive .1; 1/ crossing . This complex is the
Blanchet foam analog of the formula for the crossing given in [32] and [2]. The negative
crossing is given by

(4-2) ˆ2.1�T �1
i /D

 
q�1 //

!
:

In both (4-1) and (4-2), the identity web appears in homological degree zero.

In order to give a construction of the link invariant via the foamation 2–functors, we
will also need the formulae for the braidings involving 0’s and 2’s. Defining the
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positive crossings to be the images of the Ti1� in the appropriate weights and the
negative crossings to be the images of the 1�T �1

i , this gives the formulae

(4-3)

D D ˆ2.Fi1�/ D

D D ˆ2.Ei1�/ D

D D ˆ2.F
.2/
i 1�/ D

D D ˆ2.E
.2/
i 1�/ D

D D ˆ2.Fi1�/ D

D D ˆ2.Ei1�/ D

D D ˆ2.1�/ D

where the dotted strands are meant to indicate a 0–labeled edge, ie an edge that is not
actually present. The braiding on two such 0–labeled edges is simply the empty web
mapping between the appropriate labels.

In the sl3 case, we give the formulae for the braidings in 3BFoamm.N /, since those
in 3Foamm.N / can be recovered from these via the forgetful 2–functor. We’ll first
compute the braidings for the traditional sl3 edges. The .1; 1/ crossings are again
given as

WD ˆ3.Ti1�/(4-4)

D

 
// q

!

WD ˆ3.1�T �1
i /(4-5)

D

 
q�1 //

!
where the identity webs are in homological degree zero in both of the above formulae.
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Similarly, the .1; 2/ braidings are given by

WDˆ3.Ti1�/(4-6)

D

 
// q

!
;

WDˆ3.1�T �1
i /(4-7)

D

 
q�1 //

!
I

note that (4-6) is a positive .1; 2/ braiding and (4-7) is a negative .1; 2/ braiding,
although topologically the former is a left-handed crossing and the latter is right-handed.
The .2; 1/ braidings are given by

WDˆ3.Ti1�/(4-8)

D

 
// q

!

WDˆ3.1�T �1
i /(4-9)

D

 
q�1 //

!

and the .2; 2/ braidings are given by

WDˆ3.Ti1�/(4-10)

D

 
// q

!

WDˆ3.1�T �1
i /(4-11)
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D

 
q�1 //

!
:

As in the sl2 case, we will also need the formulae for the braidings between sequences
involving 0’s and 3’s in order to construct the link invariant. Defining the positive
crossings to be the images of the Ti1� (for appropriate �) and the negative crossings
to be the images of the 1�T �1

i , this gives the formulae

(4-12)

D D ˆ3.Fi1�/ D

D D ˆ3.Ei1�/ D

D D ˆ3.F
.2/
i 1�/ D

D D ˆ3.E
.2/
i 1�/ D

D D ˆ3.F
.3/
i 1�/ D

D D ˆ3.E
.3/
i 1�/ D

D D ˆ3.F
.2/
i 1�/ D

D D ˆ3.E
.2/
i 1�/ D

D D ˆ3.Fi1�/ D

D D ˆ3.Ei1�/ D

D D ˆ3.1�/ D

where again the dotted strands are meant to indicate 0–labeled (non-)edges. The
braiding on two such edges is the empty web.
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Let nD2; 3; it will be useful to note that any object aD.a1; � � � ; am/2n(B)Foamm.N /

can be identified with a canonical object which corresponds to the same sln representa-
tion as a (up to isomorphism). Given an object a in n(B)Foamm.N /, denote by Na the
associated reduced sequence defined to be the same sequence as a with all values 0

and n deleted. For example, if aD .1; 3; 0; 2; 0; 1/ and nD 3, then NaD .1; 2; 1/.

Definition 4.1 Given an object a of n(B)Foamm.N /, the associated canonical se-
quence is the unique object a0 in n(B)Foamm.N / such that Na0 D Na and

a0 D .0; : : : ; 0; a0k ; a
0
kC1; : : : ; a

0
kCr ; n; : : : ; n/

with 0< a0
kCs

< n for 0� s � r .

The trivial braidings (4-3) and (4-12) can be used to give an equivalence between an
object a in n(B)Foamm.N / and its canonical sequence a0 ; this is the analog of [10,
Corollaries 7.3 and 7.8] in the web and foam setting. Let the web a ˇa

�! a0 be given
by the (composition of) braidings involving 0– and n–labeled edges and let the web
a0 ˇa

�1

�! a be given using the inverses of the above braidings. Since the images of the
Rickard complexes braid in any (integrable) 2–representation [14], the above maps are
uniquely defined up to coherent isomorphism. Fix once and for all choices of ˇa and
ˇ�1

a for each object a in each of the foam 2–categories.

4A2 The sl2 tangle invariant The webs that appear in the image of the foamation
2–functors are all in ladder form; hence, we require a method for assigning a complex
of ladders in the foam 2–categories to each tangle. A process which transforms any
web to a ladder is detailed in [19]; however, an adaptation of a construction from [10]
is more useful for our purposes.

Let � be an oriented .r; t/–tangle diagram, ie a tangle diagram with r endpoints on
the right and t endpoints on the left, which we assume to be in Morse position with
respect to the horizontal axis. We now describe a method for assigning to this diagram
a complex ŒŒ� ��2 in 2BFoamrC2l.r C 2l/, for l sufficiently large.

We assign to each basic tangle a complex of 1–morphisms mapping between canonical
sequences; the complex assigned to a tangle will then be the horizontal composition
(in the 2–category of complexes) of the basic complexes.

A tangle involving no crossings, cups or caps is mapped to the identity web of the
sequence

.0; : : : ; 0; 1; : : : ; 1; 2; : : : ; 2/;

where the number of 1’s is equal to the number of strands in the tangle. For example
observe the following, where the bottom dotted web edges are zero-labeled, ie not
actually present.
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7!

:::

:::

We’d like to map the cup as follows,

7!

however the domain on this web will not be a canonical sequence (especially when
other strands of the tangle are present). We will hence pre-compose with the relevant
web ˇ�1

a . For example,

7!

:::

:::

where again we have depicted the 0–labeled edges.

We similarly define the map on the remaining cup and caps to be given by

7! 7! 7!

where we pre- or post-compose with the appropriate braiding maps ˇ�1 and ˇ as
necessary to ensure that the webs map between canonical sequences.

We assign the complexes (4-1) and (4-2) to the positive and negative left-oriented
crossings. This assignment determines the value of the invariant on the remainder of
the crossings (up to isomorphism) since they can be obtained from the left-oriented
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crossings by composing with caps and cups; eg we have

� 7!

where the latter is understood to represent the complex assigned to a left-oriented
crossing horizontally composed in the category of complexes with the indicated webs
(and the necessary braiding maps ˇ�1 and ˇ so that the webs in the complex map
between canonical sequences). Formulae for the other crossings can be obtained
similarly.

Proposition 4.2 The complex ŒŒ� ��2 assigned to a tangle diagram � , viewed in the
homotopy category of complexes of 2BFoamm.N /, gives an invariant of framed
tangles.

Proof It suffices to check the tangle Reidemeister moves (see [31] or [12]); this is a
standard computation following the argument detailed in [2] adapted to the Blanchet
foam setting. Alternatively, one can simplify the computation using the proof of [10,
Proposition 7.9], where it is shown that (most of) the desired relations hold already in
the categorified quantum group.

One can check that (locally)"" ##
2

' q�1

"" ##
2

and

"" ##
2

' q

"" ##
2

so renormalizing the invariant using the writhe w.�/ of the tangle

ŒŒ� ��r2 WD qw.�/ŒŒ� ��2

gives an invariant independent of framing.

Given a link L, the invariant ŒŒL��r2 is a complex of webs mapping between the sequence
.0; 2/ WD .0; : : : ; 0; 2; : : : ; 2/ and itself. Applying the functor

HOM.id.0;2/;�/ WD
M
t2Z

Hom.q�t id.0;2/;�/

to this complex (where id.0;2/ is the identity web) and setting the parameter �3 D 0

gives a complex of finite-dimensional graded vector spaces, which we denote Kh2.L/.
As the notation indicates, we have the following result.
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Proposition 4.3 The homology of the complex Kh2.L/ is the Khovanov homology
of the link L.

Proof Let D be a diagram of the link L. The complex ŒŒD��r2 consists of sl2 webs
with no 1–labeled boundary, ie these webs consist of 1–labeled circles joined to each
other (and to the boundary) by 2–labeled edges. Such a web in ŒŒD��r2 contributes a
direct summand of dimension 2# of circles to the complex Kh2.D/. Indeed, if W is such
a web then HOM.1.0;2/;W / is a free kŒ

�3 �–module with basis given by 1–labeled
cups with one or no dots, intersecting 2–labeled sheets transversely.

The complex Kh2.D/ is hence obtained from a cube of resolutions in which the nodes
of the cube are exactly those appearing in the construction of Khovanov homology.
One can check that the maps labeling the edges of this cube are, up to a ˙ sign, the
maps m and � from [32]. Since the squares in this cube of resolutions anti-commute
(by construction), an argument9 from [61] shows that this complex is isomorphic to
the complex assigned to D in [32].

4A3 An explicit example The invariant of the Hopf link

L D

can be constructed in 2BFoam2l.2l/ for any l � 2; we’ll take the minimal case l D 2.
By the procedure detailed above, we have that ŒŒL��2 is given by the complex

(4-13)

2

2

0

0

2

2

0

0

which is shorthand for the complex obtained from the following cube of resolutions
(after applying some web isomorphisms), where the foams ˛ in the complex are those
depicted in (4-1) horizontally composed with the relevant identity foams.

9Although [61] deals with odd Khovanov homology, Lemma 2.2 of that paper, which proves that
the homology doesn’t depend on a choice of sign assignment, can be adapted to the (even) Khovanov
homology case as well. The proof of [61, Lemma 2.2] shows that given a commutative cube and two sign
assignments � , �0 making all squares anti-commute, the product � � �0 is a cocycle. This is the fact used to
show that the complexes corresponding to � and �0 are isomorphic.
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q
˛
**

˛ 44

˛
**

q2

q

�˛ 44

(4-14)

Note that the complex (4-13) is the image under ˆ2 of the complex

E.2/
2

E.2/
1

F1F2F1E1E2E3T2T2E1F
.2/
1

T �1
2 T �1

3 T3T2F3F
.2/
2

1.0;2;0/

in Kom. LUQ.sl4//. Indeed, for any tangle � , we can realize the complex ŒŒ� ��2 as the
image of a complex in the categorified quantum group by pulling back the various pieces
assigned to elementary tangles to Kom. LUQ.slm//. One may then use the graphical
calculus of the categorified quantum group to perform calculations in link homology;
see eg [10, Section 10].

4A4 The sl3 tangle invariant We define the sl3 tangle invariant ŒŒ���323Foamm.N /

in a similar manner as above.10 An oriented tangle (diagram) with no caps, cups or
crossings determines a sequence s of 1’s and 2’s (corresponding to the strands directed
to the left and right respectively) and we map such a tangle to the identity web of the
sequence .0; s; 3/, eg

7!

:::

:::

where the dotted and dashed lines denote web edges which are not actually present, ie
0– and 3–labeled edges.

The invariant is defined on cups by

7! and 7!

10We could define this invariant in 3BFoamm.N / as well; however, the invariant in 3Foamm.N / is
(essentially) the sl3 invariant found in the literature.
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and on caps by
7! and 7!

where, as in the sl2 case, we pre- and post-compose with the relevant braidings so that
the webs map between canonical sequences. These braidings are given by deleting the
3–labeled edges from those given in (4-12).

We define the invariant on left-oriented crossings by equations (4-4) and (4-5). We’d
like to define the image of the remainder of the crossings using the images of the
braidings (4-6)–(4-11) under the forgetful functor 3BFoamm.N /! 3Foamm.N /;
however, this assignment would not be invariant under planar isotopy as the complexes
differ by factors of q˙1 . It is possible to rescale the Rickard complexes Ti1� depending
on the weight � to fix this issue, but this introduces unwanted scalings on the trivial
braidings (4-12). We instead follow our sl2 approach and define the remainder of the
crossings in terms of the left-oriented crossings and caps and cups.

Proposition 4.4 The complex ŒŒ� ��3 assigned to a tangle diagram � , viewed in the
homotopy category of complexes of 3Foamm.N /, is an invariant of framed tangles.

Renormalizing this invariant via ŒŒ� ��r3 D q2w.�/ŒŒ� ��3 gives an invariant independent
of framing which is (essentially) the same as Morrison–Nieh’s [59] extension of
Khovanov’s sl3 link homology [34] to tangles, after setting the 3–, 4– and 5–dotted
spheres equal to zero.

4A5 Categorified clasps In [10], Cautis showed that given any categorification of the
skew Howe representations

V
q
N .Cn

q˝Cm
q /, one obtains a categorification of sln clasps,

the sln analogs of the Jones–Wenzl projectors, using the higher representation theory
of the categorified quantum group. He conjectured that these representations could be
categorified in the foam setting and that this construction would give the categorified
Jones–Wenzl projectors from [23] and [65] and the categorified sl3 projectors from
[63]. Although the foam categories only categorify the intertwiners between such
representations (and not the representations themselves), Cautis’ methods indeed give
a uniform construction of categorified clasps in the sl2 and sl3 foam 2–categories. We
now recall the details of this construction.

Fix a reduced expression w D si1
� � � sik

for the longest word w in the Weyl group for
slm and consider the complex Tw1� WD Ti1

� � � Tik
1� in Kom. LUQ.slm//; this complex

gives the invariant assigned to a half-twist tangle. Cautis shows that the images
of the complexes T 2k

w 1� in any integrable 2–representation stabilize as k ! 1.
Denote the image of Tw1� in such a 2–representation by Tw1� and let T1w 1� WD
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limk!1 T2k
w 1� . The complexes T1w 1� are idempotents (with respect to horizon-

tal composition of complexes) and give categorified clasps in any 2–representation
categorifying

V
q
N .Cn

q ˝Cm
q /.

We first consider the sl2 case. Let PCm WD T1w 1.0;:::;0/ in 2BFoamm.m/ (which is
a complex of webs mapping from the sequence .1; : : : ; 1/ to itself); then we have
the following result, which should be viewed as the Blanchet foam analog of [23,
Theorem 3.2].

Proposition 4.5 The complex PCm satisfies the following properties:

(1) PCm is supported only in positive homological degree.

(2) The identity web id.1;:::;1/ appears only in homological degree zero.

(3) PCm annihilates the webs

in 2BFoamm.m/, up to homotopy.

Proof Properties (1) and (2) follow via inspection. Property (3) follows from argu-
ments in [10, Section 5] or by adapting arguments from [63] to the sl2 foam setting.

It follows that PCm categorifies the analog of the Jones–Wenzl projector pm in the
category of Blanchet webs. Using the foamation 2–functor ˆCMW , the above procedure
also gives a construction of the categorified Jones–Wenzl projectors from [23] and [65]
in the CMW foam setting.

In the sl3 case, let s denote a sequence of 1’s and 2’s of length m; let #s1 denote the
number of 1’s and #s2 the number of 2’s in s. Define PCs WD T1w 1� in 3Foamm.mC

#s2/ where � maps to s under ˆ3 .

Proposition 4.6 The complex PCs is the categorified clasp QPs constructed in [63].

There is nothing to prove here; the categorified sl3 clasps in [63] are constructed
precisely as the limit of the complexes T2k

w 1� as k!1. Note that the C’s and �’s
in the sequences in that work correspond to our 1’s and 2’s, respectively.

Having constructed categorified clasps, we can extend our sl2 and sl3 tangle invariants
to give categorified invariants of framed tangles in which each component is labeled
by an irreducible representation. This construction is detailed in many places in the
literature, in particular in [23; 63; 10], so we will be brief. Given a framed tangle �
with components labeled by irreducible representations, choose for each component a
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tensor product of fundamental representations having the corresponding irreducible
as a highest weight subrepresentation. Assign to the tangle the complex assigned to
a cabling of the tangle (we use here the fact that � is framed) with the categorified
projector inserted along the cabling. The number of strands in the cabling of each
component (and the direction of such strands in the sl3 case) as well as which projector
PC is inserted is given by the relevant tensor product of fundamental representations;
this corresponds to a sequence of 1’s in the sl2 case and a sequence of 1’s and 2’s in
the sl3 case.

One can show (see [23; 63; 10]) that the above invariant doesn’t depend on the choice
of where the projector is inserted or which tensor product of fundamentals is used (up
to equivalence in the case that the tangle is not a link) and gives a categorification of
the Reshetikhin–Turaev invariant of framed tangles.

4B Comparing knot homologies

Let ˆW PUQ.slm/! K be any 2–representation giving a categorification of
V

q
N .Cn

q ˝

Cm
q /. Cautis shows that for N and m sufficiently large, this 2–representation assigns

to any framed, oriented link K a complex of 1–morphisms ‰.K/2End.Kom.ˆ.�///,
where � is the highest weight in

V
q
N .Cn

q˝Cm
q / [10, Section 7.5]. His framework does

not require the full structure of a 2–representation of PUQ.slm/, but rather the weaker
data encoded in what he calls a categorical 2–representation. This weaker action is
more like the data described in Theorem 2.5 without requiring the KLR action.

The KLR relations greatly simplify the resulting complexes; in particular, they imply
analogues of the higher Serre relation [67] and commutativity relations for divided
powers [40]. Using these relations, the complex ‰.K/ associated to a link K can be
reduced to a complex that only involves direct sums of the identity 1–morphism 1�
of ˆ.�/, with various grading shifts. In fact, one does not actually need to know that
the 2–representation K categorifies

V
q
N .Cn

q ˝Cm
q / to apply this reduction procedure;

one only needs that the nonzero weight spaces of
V

q
N .Cn

q ˝Cm
q / parametrize the

nonzero objects in K . In this case, all simplifications can be performed in a quotient
of the 2–category PUQ.slm/ obtained by killing the weights which do not appear inV

q
N .Cn

q ˝Cm
q / (this idea is used extensively in the sequel paper [62]).

Applying the functor HOM.1�;�/ to the (reduced) complex ‰.K/ maps it to a
complex of graded vector spaces. The number of 1� summands and their grading
shifts are formally determined by the categorified quantum group, hence so are the
vector spaces appearing in the complex. The differentials depend only on the map
HOM.1�; 1�/! HOM.1�; 1�/, so it follows that this map completely determines the
link homology theory.
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When the graded algebra A WD HOM.1�; 1�/ is 1–dimensional in degree zero and
0 in all other degrees, only one such map exists; hence all constructions of sln link
homology satisfying this condition are equivalent. After quotienting by the 3–dotted
sphere in the sl2 case and the 3–, 4– and 5–dotted spheres in the sl3 case, the foam
2–categories satisfy this condition.

This observation gives a method for showing that Cautis–Kamnitzer link homology is
equivalent to Khovanov–Rozansky homology. Using constructions from previous work
[17; 18], Cautis describes (weak) categorical 2–representations on derived categories
KGr;m of coherent sheaves on varieties arising as orbits in the affine Grassmannian,
as well as on coherent sheaves on Nakajima quiver varieties KQ;m . Both of these
categorical 2–representations are conjectured by Cautis, Kamnitzer and Licata to extend
to 2–representations of PUQ.slm/. By the results of [20] it suffices to prove that the KLR
algebras act; this was done in the mD 2 case in [16] and (while this paper was under
review) was generalized to symmetric Kac–Moody algebras (in particular for arbitrary
m) in [11]. Moreover, in this setting the algebra A satisfies the 1–dimensionality
condition, so this will show that the link homology theory from [13] fits into the
framework described above.

The results from this paper will hence show that the foam based constructions of
sln link homology agree with the Cautis–Kamnitzer construction for nD 2; 3. This
re-proves [12, Theorem 8.2] and pairs with the results from [55] to give the n D 3

case of [13, Conjecture 6.4] equating sl3 Cautis–Kamnitzer and Khovanov–Rozansky
link homology. In the sequel to this paper, we will establish the analogous results for
general n.

4C Deriving foam relations from categorified quantum groups

In [19], Cautis, Kamnitzer and Morrison showed that the relations on sln webs could
be derived via skew Howe duality from the relations in PUq.slm/. Here we categorify
this result in the nD 2; 3 case to show that many foam relations can be deduced from
the assignments defining the foamation 2–functors ˆ2 and ˆ3 . The main result of this
section is that all sl3 foam relations, all CMW sl2 foam relations (assuming a strong
form of locality), and many Blanchet sl2 foam relations follow from relations in the
categorified quantum group PUQ.slm/. In a follow-up paper, we study foam categories
for arbitrary n using this framework [62].

4C1 Blanchet sl2 foam relations Since the Blanchet foams arising as images under
our 2–functors must contain both 1– and 2–labeled facets (unless they are identity
foams) and always bound webs whose edges are oriented leftward, we cannot expect
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to recover all defining relations from the relations in UQ.slm/. For example, we have
no hope of recovering the 1– and 2–labeled neck-cutting relations (3-3) and (3-6) or
closed foam relations.

There are nevertheless numerous foam relations arising from the quantum group rela-
tions, which we list below. Note that some of the relations we obtain actually slightly
generalize Blanchet’s original relations, using 2– and 3–dotted enhanced spheres as
graded parameters. The category one would obtain by only considering images of the
quantum group relations would be a left-directed foam category providing a universal
version of Blanchet’s construction. In particular, setting the 3–dotted enhanced sphere
to 1 and the 2–dotted one to zero gives a framework for Lee degenerations of Khovanov
homology.

� The nilHecke relation (2-17) implies the enhanced neck-cutting relation below.

D

�

�

�

D

�

�

�

The first is relation (3-11) (note the orientation of the seams) and the second is
equivalent to this using an isotopy of the 1–labeled tube.

� Degree-zero bubbles in weight ˙2 imply the blister relation (3-14). The LHS
of the blister relation (3-13) follows from the non-dotted bubble in weight ˙2.

� Composing the second enhanced neck-cutting relation with

�

and using the previous blister relations, we obtain the following generalization
of the dot-migration relation (3-20).
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�

D �

�

C
�2

(4-15)

Relation (2-18) with j D i C 1 and aiC1 D 2 implies that twice-dotted blisters
can migrate between 2–labeled facets; this allows us to view them as graded
parameters.

� Composing the enhanced neck-cutting relation with

�

and
�

gives the RHS of (3-13), using (3-14). We do not obtain the analog of relation
(3-13) with two dots on the same facet, since the dot-sliding relation has an
additional term.

� Relation (2-18) with j D i C 1 and aiC1 D 1 implies the relation

D

�

�

�

which can be viewed as another enhanced version of neck-cutting.

� Degree zero bubbles in weight ˙1 with mD 2 and N D 3 imply relation (3-16).

� Relation (2-21) implies the foam relation (3-18).

Finally, we comment on the behavior of a twice-dotted foam facet. When �D�2, we
compute the following.

OO

��2 D OO �� OO

�

�2
D �

OO

OO ��

��

OO

OO

�2 �
C

X
g1Cg2Cg3D1

OO

�g1

i
��MM

�
�3Cg2
i QQ��

�
2Cg3

�
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The term on the left in the last part is sent to zero under the foamation functor. We
obtain the following, providing a way to decompose twice-dotted foam facets using the
image of 2– and 3–dotted bubbles.

ˆ2

0BB@
OO

��2

1CCA D ˆ2

0BBB@
OO

QQ��

�
3

�

C

OO
QQ��

�
2
QQ��

�
2

�

C

OO

�
QQ��

�
2

�

1CCCA
4C2 CMW sl2 foam relations We would like to derive the relations in the Clark–
Morrison–Walker sl2 foam category from the relations in UQ.slm/. Recall that this
category11 is a less rigid version of the one presented in Definition 3.4. Its objects are
formal Z–graded direct sums of disoriented planar curves (as depicted in Section 3A4)
and morphisms are matrices of linear combinations of disoriented cobordisms, modulo
isotopy, Relations (3-2), (3-3) and (3-22).

However, since the CMW seam relations (3-22) involve complex coefficients, we
cannot expect to derive them from the categorical skew Howe action of UQ.slm/. We
hence must impose the additional requirement that some relations can be performed
completely locally (which in practice says that some relations have a “square root”).
We will show that by imposing relations derived from this additional assumption, we
can derive a slightly more general CMW foam 2–category in which both the 2– and
3–dotted spheres are (graded) parameters. Specializing these dotted spheres to zero then
recovers the usual CMW category (which also shows that this more general category
we obtain does not collapse).
� Seam relations Considering (2-21) with ai D 2 and aiC1 D 1, we find that

the first term of the relation is mapped to zero and the remaining foams give

D �

(up to isotopy). Assuming this relation can be expressed locally, this requires

D !0

with !0 a primitive fourth root of unity (a priori, this is not required to equal the
fourth root ! from Section 3A4).

11Clark, Morrison and Walker work in the setting of a canopolis, which is a version of a 2–category.
In this section we’ll only be concerned with the details of the Hom categories in this 2–category, and
hence work in terms of categories.
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Having fixed a value for !0 , the values of degree-zero bubbles in weight ˙1

with mD 2 and N D 3 give that a circular seam squares to give �1 (in both
cases). Again assuming complete locality, this gives that a circle can be removed
from a foam at the cost of multiplying by a primitive fourth root of unity. Using
the above, we determine

(4-16) D !0 ; D �!0 :

� Closed foam relations Since negative degree bubbles are zero, we deduce that
a non-dotted sphere is zero by considering the image of (non-dotted) bubbles
in weight ˙2 with N D 2 and mD 2. The values of once-dotted bubbles in
weight ˙2 give the value of a once-dotted sphere, depending on the value of ! .
Choosing !0 D ! (which we do for the duration), we obtain that a once-dotted
sphere has value 1. After we deduce a neck-cutting relation, we will be able to
evaluate n–dotted spheres with n� 4 in terms of spheres with fewer dots.

� Neck-cutting The nilHecke relation (2-17) gives us two neck-cutting relations:

D .�!/

0BBBBBB@
�

�

�
1CCCCCCA D .�!/

0BBBBBB@
�

�

�

1CCCCCCA
Using the seam and closed foam relations, we can recover a deformed version
of the neck-cutting relation from Equation (3-3). Caping with a dotted disk
containing a disorientation seam, we have

�

D .�!/

0BBBBBBBBB@

�

�

� �

�

1CCCCCCCCCA
D � � C

�2

which gives a relation for sliding a dot through a seam.
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We then compute

D .�!/

0BBBBBBBBBBBBBBBB@
�

�

�

1CCCCCCCCCCCCCCCCA
which gives

.�!/ D .�!/

0BBBBBB@.�1/.�!/2

�

C .�!/2
�2

� .�!/2

�

1CCCCCCA
ie the following deformation of the neck-cutting relation.

D

�

C

�

�
�2

Specializing �2 D 0, we recover the foam 2–category from [22].

4C3 sl3 foam relations In the sl3 setting, all foam relations are consequences of
the relations in UQ.slm/:

� Dotted spheres The values in relation (3-23) are recovered by the value of

��MM

�
˛

�

in weight 3 with mD 2 and N D 3 for ˛ D 0; 1; 2.
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� Neck-cutting The image of Equation (2-28) in weight 3 and with mD 2 and
N D 3 gives the neck-cutting relation (3-24) (note that the cup gives a �1

coefficient and the cap gives C1). One can obtain the simpler neck-cutting
relations found in the literature by quotienting the categorified quantum group by
the relevant bubbles (or equivalently passing to the quotient of the foam category
where we set the 3– and 4–dotted spheres equal to zero).

� Equation (3-26) is a consequence of the nilHecke relation (2-17).

� Equation (3-27) is a consequence of Equation (2-21).

� Theta-foams For ˛Cˇ � 3, the values of

(4-17)

�

��MM
i

�
ˇ

OO��

i C 1

�
˛

and

�

PP��

i

�
˛

��OO

i C 1

�
ˇ

when � maps to a sequence with ai D 0, aiC1 D 3 and aiC2 D 0 and � maps
to a sequence with ai D 3, aiC1 D 0 and aiC2 D 3 give the values in relation
(3-25) when ˛ C ˇ � 3 and  D 0. In fact, these values, together with the
remainder of the foam relations, determine the values of all theta-foams.

Using the values of theta-foams we have already determined, we can deduce the
blister relations

D 0;
�

D �

from the neck-cutting and dotted sphere relations. The equality

�

��MM
i

�
2

OO��

i C 1

�

2

D

i C 1 QQ��

�
2

i
��MM

�
3

�

�

i C 1 QQ��

�
3

i
��MM

�
2

�
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implies that
�

�

2

2
D 0, and then the neck-cutting relation gives the following

additional blister relation.

��
D � C

�3

Composing (3-26) with the foam

�

then gives the dot migration relation (compare to [34, Figure 17]):

(4-18) � C

�

C

�

C
�3

D 0

Using this relation, in conjunction with (3-29), we can evaluate the remaining
theta-foams from Equation (3-25).

Note that we may also recover many of the relations which follow as consequences of
the defining relations:

� Equation (3-28) is a consequence of Equation (2-18).

� Using (2-28) with �i D 1 and Ni D 3, we compute
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which gives (3-29).
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� Equation (3-30) follows from the degree-zero bubble

i
��MM
�

D id

when ai D 1 and aiC1 D 2.
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