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An exceptional collection for Khovanov homology

BENJAMIN COOPER

MATT HOGANCAMP

The Temperley–Lieb algebra is a fundamental component of SU.2/ topological
quantum field theories. We construct chain complexes corresponding to minimal
idempotents in the Temperley–Lieb algebra. Our results apply to the framework
which determines Khovanov homology. Consequences of our work include semi-
orthogonal decompositions of categorifications of Temperley–Lieb algebras and
Postnikov decompositions of all Khovanov tangle invariants.

57R56; 57M27

1 Introduction

The purpose of this paper is to give a general method for lifting an idempotent decom-
position of the Temperley–Lieb algebra TLn to a decomposition of its categorification.
Roughly speaking, we lift each idempotent p 2 TLn to a chain complex P 2 Kom.n/
so that the equation

p �p D p lifts to P ˝P ' P:

Along the way, we find new skein-theoretic expressions for the decomposition of the
Temperley–Lieb algebra, the categories which determine Khovanov homology are
extended to differential graded categories, some mapping spaces are computed, and a
complete decomposition of these categories is introduced.

1.1 The Temperley–Lieb algebra and its decomposition

A k–algebra A can be often be expressed as a sum

(1-1) ADA1˚A2˚ � � �˚AN :

This information can be encoded by a collection of elements fpig
N
iD1

called projectors
or idempotents. Each pi 2A determines a projection and an inclusion

A
pi �
��!Ai ,!A
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2660 Benjamin Cooper and Matt Hogancamp

to and from the subspace Ai in A. Equation (1-1) implies that the collection fpig

satisfies the equations

(1-2) pi �pi D pi ; pi �pj D 0 when i ¤ j ; and 1A D

NX
iD1

pi :

If each projector pi cannot be written as a sum of two non-trivial projectors then the
collection fpig is a complete set of primitive, mutually orthogonal idempotents.

Suppose that Uq sl.2/ is the quantum group associated to the Lie algebra sl.2/ and
V D V1 is the 2–dimensional irreducible representation corresponding to the action of
sl.2/ on C2 . The Temperley–Lieb algebra TLn is the endomorphism algebra of the
n–fold tensor power of V :

TLn D EndUq sl.2/.V
˝n/:

The inner product V ˝V !C.q/ and its dual C.q/!V ˝V generate the Temperley–
Lieb algebra TLn . Drawing the latter as a cup and the former as a cap gives rise to a
pictorial representation of every element in TLn . For example, the composition

V ˝V !C.q/! V ˝V is pictured as 2 TL2 :

This graphical interpretation leads to an alternative, topological, definition of the
Temperley–Lieb algebras as quotients of categories of 1–dimensional cobordisms. An
important consequence of these two different definitions is the ability to characterize
constructions involving the Temperley–Lieb algebra in two very different ways.

The Temperley–Lieb algebra is semi-simple and a complete set of primitive mutually
orthogonal idempotents can be described using representation theory. If Vk is the k th

irreducible representation of sl.2/ then the tensor product V ˝n
1

can be written as a
direct sum of irreducible representations

(1-3) V ˝n
1
Š Vn˚mn�2Vn�2˚mn�4Vn�4˚ � � � :

The number mk D dim C.q/ Hom.Vk ;V
˝n

1
/ is the multiplicity of Vk in V ˝n

1
. Corre-

sponding to each summand Vk �mkVk � V ˝n
1

is an idempotent

pW V ˝n
1
! Vk ,! V ˝n

1
2 TLn :

For example, the multiplicity mn of Vn in V ˝n
1

is always equal to 1 and the idempotent
associated to Vn � V ˝n

1
is the famous Jones–Wenzl projector (see Wenzl [29]). In this

paper, we are interested in the entire collection

fpW WW � V ˝n
1

such that W Š Vk for some k in (1-3)g:
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Unfortunately, the definition given above is not useful in practice. In Section 2, we will
begin by finding more convenient expressions for these idempotents in terms of the
Jones–Wenzl projectors.

Example 1.2 When nD 4, there is a decomposition

V ˝4
1
D V4˚ 3V2˚ 2V0;

which contains a unique copy of the 5–dimensional irreducible representation V4 , three
copies of the 3–dimensional representation V2 and two copies of the 1–dimensional
trivial representation V0 . There are six idempotents p� in the Temperley–Lieb algebra
TL4 ; each corresponding to projecting onto distinct irreducible summands. They are
pictured below:

p4;4 D p.1;1;1;1/ D ;

p4;2 D p.1;1;1;�1/Cp.1;�1;1;1/Cp.1;1;�1;1/ D
Œ3�
Œ4�

C
1
Œ2�

C
Œ2�
Œ3�

;

p4;0 D p.1;�1;1;�1/Cp.1;1;�1;�1/ D
1
Œ2�2

C
1
Œ3�

:

In this illustration, the number Œn� 2 ZŒq; q�1� is the nth quantum integer

Œn�D q�.n�1/
C q�.n�3/

C � � �C qn�3
C qn�1:

The subscript �D .�1; : : : ; �4/ indicates that p� corresponds to projection onto a distinct
summand isomorphic to V�1C���C�4

, see Definition 2.15. The k th row corresponds to
the k th isotypic or higher-order projector pn;k 2 TLn . The boxes in the pictures above
represent Jones–Wenzl projectors pn 2 TLn .

1.3 Categorifications and decompositions

The idea behind categorification is to replace a k–algebra A by a monoidal category
A. When A is monoidal the Grothendieck group K0.A/ becomes a ring. A category
A categorifies a k–algebra A when there is an isomorphism

(1-4) K0.A/˝Z k �!� A:

There are as many examples of categorifications as there are monoidal categories for
which the Grothendieck group functor can be defined. In order to ensure that something
interesting happens one usually asks for the category A to satisfy some additional
properties.

In [16], Khovanov introduced a categorification of the Jones polynomial. In subsequent
papers [17; 2], this homological invariant of links was refined to a local invariant of
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tangles, taking values in categories Kom.n/. There are isomorphisms

K0.Kom.n//˝Z C.q/ �!� TLn;

making the categories Kom.n/ categorifications of the Temperley–Lieb algebras TLn .
In addition to being categorifications, they satisfy the constraint that they determine
knot invariants.

Other categorifications of the Temperley–Lieb algebra have been shown to lead to knot
invariants. Some come from derived categories of coherent sheaves, others come from
enumerative invariants of Lagrangian fibrations, perverse sheaves on Grassmannians,
the category O , matrix factorizations or sheaves concentrated on type A2 singularities;
see Cautis and Kamnitzer [6], Seidel and Smith [26], Stroppel [27], Bernstein, Frenkel
and Khovanov [3], Khovanov and Rozansky [19], Wu [30], and Orlov [22]. However,
the requirement that such categories determine knot invariants is very strong (see
Khovanov [18]). The categories Kom.n/ are minimal with respect to these constraints.
This makes them the ideal setting for constructions which apply to other categorifications
in this family.

If an algebra A is categorified by A then an element p 2A is categorified by a choice
of P 2A for which K0.P /Dp . Whenever one encounters an element p in an algebra
A, one can ask for lifts P 2A. Equation (1-4) implies that there will be at least one lift,
but there may be others depending upon how many extensions exist between objects in
the category A.

In Cooper and Krushkal [8], the Jones–Wenzl projector pn 2 TLn was lifted to a
chain complex Pn 2 Kom.n/ which satisfies K0.Pn/ D pn . In addition to being
idempotent, Pn˝Pn ' Pn , the lift Pn was characterized uniquely up to homotopy in
the category Kom.n/. The properties which determine Pn are given in terms of the
topological description of the category Kom.n/ and provide a unique counterpoint to
algebraic descriptions that can be obtained by Yoneda’s Lemma or localization (as in
Section 8.15). There are deep relations between the categorified projectors Pn and
constructions in mathematical physics and algebraic geometry; see Gorsky, Oblomkov,
Rasmussen and Shende [12], Gukov and Stošić [13], and Rozansky [25].

One of the main results of this paper is the construction of chain complexes P� 2Kom.n/
corresponding to each of the idempotents p�2TLn which were discussed in the previous
section. More precisely, we show:

Theorem For each � , there is a chain complex P� 2Kom.n/ such that K0.P�/D p� .

Theorem The chain complexes P� are idempotent and mutually orthogonal:

P�˝P� ' Pe and P�˝Pı ' 0 when � ¤ ı:
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Theorem The projectors P� glue together to form a chain complex Rn which satisfies

1n 'Rn;

where 1n 2 Kom.n/ is the monoidal identity. This homotopy equivalence corresponds
to the second part of Equation (1-2) above.

An important new ingredient in this setting is the maps between objects. In the
Temperley–Lieb algebra, different subspaces did not interact because they corresponded
to the images of distinct irreducible summands of V ˝n

1
. After lifting the idempotents

p� defining these subspaces to objects P� 2 Kom.n/, we find that they must interact:
there are non-trivial maps between idempotents. However, a more refined statement
can be made. We address the question of what this interaction looks like in the theorem
below:

Theorem The mapping spaces between projectors which do not respect the dominance
order are contractible:

� 6E ı implies Hom�.P�;Pı/' 0I

see Section 5.

It follows from this theorem that all of the objects in the categories Kom.n/ are filtered
by the projectors P� . In turn, this filtration can be used to define Postnikov towers
for all objects, including tangle invariants. The idempotents fP�g form an exceptional
collection for Khovanov homology.

Example 1.4 The picture of the resolution of identity R4 captures many aspects of
the information conveyed above. Each projector p� in Example 1.2 lifts to a chain
complex P� that satisfies K0.P�/Dp� . These categorified projectors form the vertices
of the diagram below. The arrows represent non-trivial maps between projectors that
control the decomposition of the category Kom.4/. There are no arrows pointing from
right to left:

14 ' P.1;1;�1;�1/

P.1;�1;1;�1/ P.1;�1;1;1/ P.1;1;1;1/

P.1;1;�1;1/

P.1;1;1;�1/

Algebraic & Geometric Topology, Volume 15 (2015)



2664 Benjamin Cooper and Matt Hogancamp

2 The Temperley–Lieb category and higher-order projectors

In this section we summarize basic information about the Temperley–Lieb category
TL, the Temperley–Lieb algebra TLn , and the Jones–Wenzl projectors pn 2 TLn .
In Section 2.10, the higher-order projectors pn;k 2 TLn are defined representation
theoretically. In Section 2.14, new projectors p� 2 TLn are introduced and related to
the higher-order projectors. This allows us to characterize pn;k uniquely in terms of its
interaction with other Temperley–Lieb elements. It is this latter definition which will
lift to chain complexes in Section 8. For more information about the Temperley–Lieb
algebra and its connection to low-dimensional topology, see [15].

2.1 Temperley–Lieb category

Here we define the Temperley–Lieb category TL and establish some basic notions,
such as the through-degree �.a/ of elements a 2 TL.

Definition 2.2 The Temperley–Lieb category TL is the category of Uq sl.2/–equi-
variant maps from n–fold to k–fold tensor powers of the fundamental representation V .

More specifically, the objects of TL are indexed by integers n corresponding to tensor
powers V ˝n of the fundamental representation, and the morphisms

(2-1) TL.n; k/D HomUq sl.2/.V
˝n;V ˝k/

are determined by Uq sl.2/–equivariant maps. The elements of TL.n; k/ can be
represented by C.q/–linear combinations of pictures consisting of chords from a
collection of n points to a collection of k points situated on two horizontal lines in the
plane. Such pictures correspond to compositions of the maps

C.q/! V ˝V and V ˝V !C.q/:

Pictures are considered equivalent when they are isotopic relative to the boundary. We
also impose the relation that a disjoint circle can be removed at the cost of multiplying
by qC q�1 , the graded dimension of V .

A sample element of the space of morphisms from four points to six points is pictured
below:

(2-2) 2 TL.4; 6/

When elements are represented by such pictures, the composition

TL.n; k/˝TL.k; l/! TL.n; l/; where a˝ b 7! ba
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in the Temperley–Lieb category corresponds to vertical stacking.

Definition 2.3 There are two operations relating different parts of TL that will be
used repeatedly:

x 7! x t 1 and x 7! Nx:

For each element x 2 TL.n; k/ there is an element x t 1 2 TL.nC 1; kC 1/ obtained
by placing a single vertical strand to the right of all of the diagrams appearing in the
expression for x . Given an element x 2 TL.n; k/ there is a corresponding element
Nx 2 TL.k; n/ obtained by flipping the diagrams representing x upside down. Both of
these operations are q–linear.

Definition 2.4 The Temperley–Lieb algebra TLn is given by the endomorphisms of
the nth object in the Temperley–Lieb category,

TLn D TL.n; n/D EndUq sl.2/.V
˝n/:

Definition 2.5 The elements of TLn are generated by elementary diagrams ei con-
taining n� 2 vertical chords and two horizontal chords connecting the i th and the
i C 1st positions. For instance,

e1 D 2 TL3 :

Definition 2.6 If a 2 TL.n;m/ is a Temperley–Lieb diagram then there are many
ways in which a factors as a composition aD cb where b˝ c 2 TL.n; l/˝TL.l;m/.
The through-degree �.a/ of a is equal to the minimal l achieved by such a factorization.
If a 2 TL.n;m/ is a linear combination of Temperley–Lieb diagrams, aD

P
i fiai ,

then the through-degree of a is defined by

�.a/Dmax
i
f�.ai/ j fi ¤ 0g:

Example 2.7 The through-degrees � of the two diagrams (2-2) and e1 , pictured above,
are two and one respectively.

Remark 2.8 Through-degree cannot increase when composing elements of TL. In
this manner, the category TL is filtered by through-degree. Let TLk

� TL denote the
subcategory consisting of morphisms that have a through-degree which is less than k ,

TLk.n;m/D ff 2 TL.n;m/ W �.f / < kg:
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Then there is a filtration

� � � � TLk�1
� TLk

� TLkC1
� � � � and TLD

[
k

TLk

which is respected by operations in the sense that

TLk
˝TLk ı

�! TLk and TLk
˝TLl t

�! TLkCl :

Remark 2.9 Instead of through-degree, one might choose instead to filter elements
a 2 TLn by the number of turnbacks,

\.a/D .n� �.a//=2:

This convention also appears in the literature. While Theorem 2.26 and Definition 8.4
can be stated in terms of turnbacks, it is awkward to use \.a/ for general elements of
the category TL.

2.10 Idempotents from irreducibles

In this section we will explain the connection between Uq sl.2/ representation theory
and higher-order Jones–Wenzl projectors. These higher-order Jones–Wenzl projectors
will be explored in Section 2.14 and categorified in Section 7.

The irreducible representations Vk of Uq sl.2/ are indexed by integers k 2 Z�0 . The
trivial representation V0 is 1–dimensional and the fundamental representation V1 Š V

is 2–dimensional. In general, we can use the Clebsch–Gordan rule,

(2-3) Vn˝V1 Š VnC1˚Vn�1;

to decompose the tensor product V ˝n into a direct sum of irreducible representations

V ˝n
Š Vn˚mn�2Vn�2˚mn�4Vn�4˚ � � � :

For each summand mkVk � V ˝n there are equivariant projection and inclusion maps,

V ˝n
�n;k

���!mkVk

in;k

��! V ˝n;

and Equation (2-1) implies the existence of a Temperley–Lieb element pn;k D in;k ı

�n;k 2 TLn .

Definition 2.11 The k th higher-order Jones–Wenzl projector is the idempotent element
pn;k 2 TLn corresponding to the summand mkVk � V ˝n .

In the remainder of this section we will provide several descriptions of these idempotents.
A different discussion can be found in [10; 23].
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2.12 Jones–Wenzl projectors

The Jones–Wenzl projectors pn 2TLn are a special case of Definition 2.11. The largest
irreducible summand Vn � V ˝n occurs with multiplicity one, mn D 1. Since the
Jones–Wenzl projectors correspond to projection onto this summand,

V ˝n
! Vn! V ˝n;

they correspond to the higher-order Jones–Wenzl projector of largest degree, pnDpn;n .
In [29], Wenzl introduced projectors using the recurrence relation

(2-4) p1 D 1 and pn D pn�1 t 1�
Œn� 1�

Œn�
.pn�1 t 1/en�1.pn�1 t 1/;

where the quantum integer Œn� is defined to be the Laurent polynomial

Œn�D
qn� q�n

q� q�1
D q�.n�1/

C q�.n�3/
C � � �C qn�3

C qn�1:

If we depict pn graphically by a box with n incoming and n outgoing chords

pn D n ;

then Equation (2-4) can be illustrated using diagrams:

n D n� 1 �
Œn� 1�

Œn�

n� 1

n� 1
:

It can be shown that the Jones–Wenzl projectors are uniquely characterized by the
following properties:

(1) pn 2 TLn .

(2) pn� 1 belongs to the subalgebra generated by fe1; e2; : : : ; en�1g.

(3) eipn D pnei D 0 for all i D 1; : : : ; n� 1.

For more information see [29; 15; 8].

Remark 2.13 Although the coefficient ring C.q/ is used throughout Section 2, we
will consistently interpret expressions like Œn�=ŒnC 1� as a power series in the ring
ZŒq�1� ŒŒq��. See [8; 9] for discussion.
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2.14 Higher-order Jones–Wenzl projectors

Recall from Section 2.10 that the Uq sl.2/ representation V ˝n decomposes as a sum
of irreducible representations Vk ,

V ˝n
Š

M
k

mkVk :

Each summand mkVk � V ˝n is a sum of mk copies of the k th irreducible representa-
tion Vk . For each higher-order projector pn;k we would like to write an equation of
the form

(2-5) pn;k D

X
�2Ln;k

p�;

where Ln;k is a set indexing copies of Vk in the summand mkVk � V ˝n so that
jLn;k j Dmk . Each element p� 2 TLn corresponds to projection onto a distinct copy
of Vk within mkVk . This notation is introduced by the definition below.

Definition 2.15 A sequence � is an n–tuple

� D .i1; i2; : : : ; in/; where ik 2 f�1; 1g for 1� k � n:

The length l.�/ of a sequence �D .i1; i2; : : : ; in/ is given by l.�/D n and the size j�j
of � is defined to be the sum j�j D i1 C � � � C in . If � D .i1; i2; : : : ; in/ and ı D

.j1; j2; : : : ; jn/ are two sequences, we write � D ı to mean that

i1C � � �C ik � j1C � � �C jk for all k D 1; : : : ; n:

For each sequence � , if we denote by 0 the l.�/–tuple consisting entirely of zeros then
the sequence � is admissible if � D 0.

We denote by Ln the collection of all admissible sequences of length n and by Ln;k�Ln

the collection of admissible sequences of length n and size k :

Ln D f� W l.�/D n; � D 0g and Ln;k D f� 2 Ln W jej D kg:

The relation D when applied to these sets is called the dominance order.

Definition 2.16 If � D .i1; i2; : : : ; in/ is a sequence then we will use the notation
� � .C1/ and � � .�1/ to denote the sequence obtained from � by appending C1 or �1

respectively,

� � .C1/D .i1; i2; : : : ; in;C1/ and � � .�1/D .i1; i2; : : : ; in;�1/:
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Associated to each � 2 Ln is a special element q� 2 TLn . Since these special elements
are vertically symmetric, it is easiest to define the top half t� first.

Definition 2.17 If � 2 Ln and j�j D k then there is an element t� 2 TL.k; n/ defined
inductively by

t.1/ D 1; t��.C1/ D ; and t��.�1/ D ;

where the box represents a Jones–Wenzl projector pk and the marshmallow-shaped
region represents the element t� . The special element q� 2 TLn is equal to the top t�
composed with its reverse,

q� D t� Nt�:

The relation pkpk D pk allows us to eliminate one of the two central pk in the
definition of q� .

The elements q� satisfy a recurrence relation.

Lemma 2.18 For each sequence � 2 Ln;k , there is a recurrence relation

(2-6) q� t 1D q��.C1/C
Œk�

ŒkC 1�
q��.�1/:

Proof This follows from applying Equation (2-4) in Section 2.12 to the middle Jones–
Wenzl projector pk of q� in the definition above.

We will use the special elements q� 2 TLn to construct idempotents corresponding to
the decomposition described in Section 2.10. The following two propositions tell us
that there are scalars f� 2C.q/ such that the collection p� D f�q� satisfies

(1) p�p� D ı�;�p� ,

(2) 1n D
P
�2Ln

p� ,

where 1n 2 TLn is the identity element. The first proposition below tells us that
composing p� and p� when � ¤ � yields zero. Theorem 2.20 will address the second
equation and the first equation when � D � .

Proposition 2.19 The special elements q� 2 TLn defined above are mutually orthogo-
nal,

q�q� D 0 for � ¤ �:
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Proof Using the definition of q� found above we can write q� D a Na and q� D b Nb . If
�¤ � then aD a0pk and bD b0pl , where k¤ l . The product q�q� contains pk Na

0b0pl

which is equal to zero. By symmetry, q�q� also vanishes.

In the next proposition, we show that for each � 2Ln , there are constants f� 2C.q/ and
idempotents p� D f�q� which yield the decomposition of identity 1n 2TLn mentioned
above.

Theorem 2.20 For each � 2 Ln , there are idempotents p� 2 TLn which satisfy

1n D

X
�2Ln

p�:

Moreover, p� D f�q� for some non-zero scalar f� 2C.q/.

Proof The proof is by induction on the number of strands n. When n is 1 the only
sequence is � D .1/; we set f� D 1 so that p� D q� D 1.

Assume that there is a decomposition of 1n�1 and place a disjoint strand next to
everything. We have

1n�1 t 1D 1n D

X
�2Ln�1

f�q� t 1D
X

k

X
�2Ln�1;k

f�q� t 1;

in which the elements p� D f�q� are idempotent. The recurrence relation (2-6) implies
that

(2-7) 1n D

X
k

X
�2Ln�1;k

f�

�
q��.C1/C

Œk�

ŒkC 1�
q��.�1/

�
:

Setting p��.C1/ D f�q��.C1/ and p��.�1/ D f�
Œk�
ŒkC1�

q��.�1/ yields the equation in the
statement of this proposition.

To show that the p� are idempotent, multiply 1n D
P
� p� on the left with p� . The

previous proposition implies that

p� D
X
�

p�p� D p�p� :

Remark 2.21 By Proposition 2.19, p�p� D 0 when � ¤ � because the projectors p�
differ from the elements q� by scalars. The construction in the proof of Theorem 2.20
above implies the equation:

(2-8) p� t 1D p��.C1/Cp��.�1/:

By convention p� D 0 when � 62Ln . This equation corresponds to the Clebsch–Gordan
rule (2-3) in Section 2.10.
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Remark 2.22 Each idempotent p� corresponds to projection onto one term Vk �

mkVk � V ˝n . The higher-order projectors pn;k correspond to the entire subspace
mkVk � V ˝n .

Definition 2.23 The k th higher-order Jones–Wenzl projector pn;k 2 TLn is given by
the sum

pn;k D

X
�2Ln;k

p�:

Remark 2.24 From Proposition 2.19 and Theorem 2.20 it follows that the elements
pn;k 2 TLn form a system of mutually orthogonal idempotents. This means that

pn;kpn;l D ık;lpn;k and 1n D

X
k

pn;k :

Remark 2.25 Since pn;k is a sum of elements p� with j�j D k , and each p� neces-
sarily factors through a Jones–Wenzl projector pk , the projector pn;k 2 TLn is a linear
combination of diagrams which factor as bpka, where a˝ b 2 TL.n; k/˝TL.k; n/.

Although a definition of the higher-order projectors pn;k was given in Section 2.10, it
is often useful to characterize elements intrinsically in terms of their interaction with
other elements and gluing operations. This is the definition given below and the one
which will lift to the categorical setting in Section 8.

Theorem 2.26 The higher-order Jones–Wenzl projectors pn;k 2TLn of Definition 2.23
are characterized uniquely by the following properties:

(1) The through-degree �.pn;k/ of pn;k is equal to k .

(2) The projector pn;k vanishes when the number of turnbacks is sufficiently high:
for each l 2 ZC and a 2 TL.n; l/, if �.a/ < k then

apn;k D 0 and pn;k NaD 0:

(3) The projector pn;k fixes elements of through-degree k up to lower through-
degree terms: for each l 2 ZC and a 2 TL.n; l/, if �.a/D k then

apn;k D aC b;

where �.b/ < k .

In essence, these properties state that the projectors pn;k control and respect the
filtration of TL by through-degree � , see also the discussion following Definition 2.6.
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Proof We begin by proving that the elements pn;k defined above satisfy properties
(1)–(3). Using Remark 2.25 above, we can write pn;k as a sum of the form

pn;k D

X
x;y

xpk Ny:

The first property follows from �.pk/D k . Now pick some l 2 ZC and a 2 TL.n; l/.

For the second property, if we assume that �.a/ < k then

apn;k D

X
x;y

axpk Ny D 0;

since �.ad/� �.a/ < k and pk kills diagrams of through-degree less than k . For the
same reason, pn;k NaD 0.

For the third property, if we assume that �.a/D k then

aD a1n D

X
l

apn;l D

X
l�k

apn;l ;

so that rearranging terms gives apn;k D a�
P

l<k apn;l .

Suppose that e 2 TLn satisfies properties (1)–(3) above. We will show that e D pn;k .
If l < k then property (2) for e implies that epn;l D 0. If l > k then property (2) for
pn;l implies that epn;l D 0. Therefore,

e D e1n D

X
l

epn;l D epn;k :

Property (3) implies that epn;k D pn;k C b , where �.b/ < k . By Theorem 2.20,

e D epn;k D ep2
n;k D .pn;k C b/pn;k D p2

n;k D pn;k :

We continue our discussion of the higher-order projectors with a series of observations.

Proposition 2.27 For each element a 2 TL.n;m/, the equation apn;k D pm;ka holds:

a

n; k

D

m; k

a

Proof Recall that 1m D
P

l pm;l and 1n D
P

l pn;l . Simplifying the resulting
expressions for 1mapn;k and pm;ka1n gives apn;k D pm;kapn;k D pm;ka.
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Corollary 2.28 The higher-order projectors pn;k are contained in the center Z.TLn/

of the Temperley–Lieb algebra.

Corollary 2.29 If D 2 TLn and the through-degree �.D/D l so that D D ba where
a˝ b 2 TL.n; l/˝TL.l; n/, then

pn;kD D pn;kbaD bpl;ka:

Remark 2.30 This means we can slide a pn;k past some turnbacks onto a fewer
number of strands as long as we change it to a pl;k . In pictures:

n; k

D
l; k

We conclude this section with another definition of pn;k . This definition has the value
of expressing pn;k in terms of simpler projectors.

Proposition 2.31 The higher Jones–Wenzl projector pn;k satisfies the following re-
currence relation:

n; k D

n�1X
jD1

Œj �

Œj C 1�

j

n� 2; k

j

Proof Equation (2-4) implies that

pn D 1n�

n�1X
jD1

Œj �

Œj C 1�
.pj t 1n�j /ej .pj t 1n�j /:

Applying pn;k to both sides of this equation gives

pn;k D

n�1X
jD1

Œj �

Œj C 1�
pn;k.pj t 1n�j /ej .pj t 1n�j /;

which becomes the desired equation after applying Proposition 2.27.

Iterating this formula expresses pn;k purely in terms of Jones–Wenzl projectors pl .
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3 Categorification of the Temperley–Lieb category

In this section we recall Dror Bar-Natan’s graphical formulation [2] of the Khovanov
categorification [16; 17]. We follow the same conventions as [8].

There is a pre-additive category Pre-Cob.n/ whose objects are isotopy classes of
formally q–graded Temperley–Lieb diagrams with 2n boundary points. The morphisms
are given by ZŒ˛�–linear combinations of isotopy classes of orientable cobordisms,
decorated with dots, and bounded in D2 � Œ0; 1� between two disks containing such
diagrams. The degree of a cobordism C W qiA! qj B is given by

deg.C /D deg�.C /C degq.C /;

where the topological degree deg�.C /D�.C /�n is given by the Euler characteristic of
C and the q–degree degq.C /D j � i is given by the relative difference in q–gradings.
The maps C used throughout the paper will satisfy deg.C /D 0. The formal q–grading
will be chosen to cancel the topological grading.

When working with chain complexes, every object will also contain a homological
grading and every map will have an associated homological degree. This homological
degree, or t –degree, is not part of the definition deg.C /. We may refer to degree as
internal degree in order to differentiate between degree and homological degree.

We impose the relations below to obtain a new category Cob.n/ as a quotient of
the category Mat.Pre-Cob.n// formed by allowing direct sums of objects and maps
between them:

D 0 D 1 D 0 D ˛

D C

The dot is determined by the relation that two times a dot is equal to a handle. When
˛ D 0 the cylinder or neck cutting relation implies that closed surfaces †g of genus
g > 3 evaluate to 0. In what follows we will let ˛ be a free variable and absorb it into
our base ring (†3 D 8˛ ). One can think of ˛ as a deformation parameter, see [2].

The categories Cob.n/ fit together in much the same way as the Temperley–Lieb
algebras TLn . There is an inclusion

�t 1m�nW Cob.n/! Cob.m/ when n<m;

which is obtained by placing m� n disjoint vertical line segments to the right of each
object. On morphisms, f t 1m�n is defined to be the union of f and m�n copies of
an identity cobordism. If mD n then the empty set is used.
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There is a category Cob.m; n/ with objects corresponding to diagrams in TL.m; n/,
so that Cob.n/D Cob.n; n/. There is a composition

˝W Cob.n; k/�Cob.k; l/! Cob.n; l/; A�B 7! B˝A;

obtained by gluing all diagrams and morphisms along the k boundary points and k

boundary intervals respectively. Pictorially:

(3-1) C ˝D D
C

D

This composition makes the collection of categories Cob.n; k/ into a 2–category Cob.
The relationship between Cob and the Temperley–Lieb category TL can be described
using the Grothendieck group functor K0 .

Theorem 3.1 The 2–category Cob categorifies the Temperley–Lieb category TL.
There are isomorphisms

TL.n; k/Š K0.Cob.n; k//˝ZŒq;q�1�C.q/

which commute with composition.

These isomorphisms commute with the compositions of Equation (3-1). For more
detail, see [2; 17; 9].

Definition 3.2 The category of chain complexes of cobordisms will be denoted by
Kom.n;m/,

Kom.n;m/D Kom.Cob.n;m//:

Unless otherwise stated chain complexes are bounded from below in homological degree.
All chain complexes produced in what follows will have differentials with components
having internal degree zero. Restricting to the subcategory of chain complexes with
degree zero differentials yields a well-behaved Grothendieck group K0.Kom.n; k//;
see [8].

The category of chain complexes can be enriched to form a differential graded category.

Definition 3.3 There is a differential graded category, Kom�.n;m/, which has the
same objects as the category Kom.n;m/ but with morphisms that are given by allowing
maps of all homological degrees.

If f 2 Homm.A;B/ is a map of homological degree m then d.f / D Œd; f � 2

HommC1.A;B/. Each collection of morphisms from A to B in Kom�.n;m/, denoted
by Hom�.A;B/, is a chain complex and the differential d is a derivation with respect
to composition of maps.
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3.4 Grading shifts

In this section we remind the reader how degree shifts are denoted. Each chain complex
can be shifted in q–degree or t –degree.

If A is a chain complex then tA will denote the chain complex shifted in homological
degree by 1,

.tA/i DAi�1 and dtA D�dA:

We will use qA to denote the chain complex satisfying degq.qB/ D degq.B/C 1,
where B 2 Pre-Cob.n/ corresponds to a summand of A. See Section 3 for a discussion
of q–degree.

If C 2 Kom.n;m/ is a chain complex and f .q/ 2 ZŒq�1� ŒŒq�� is a power series then
we will write Œf .q/C � for an iterated cone of chain complexes A0;A1; : : : in which
Ai D C for all i . The relation

Œf .q/C �D f .q/ � ŒC �

holds in the Grothendieck group K0.Kom.n;m//.

Definition 3.5 If C is a chain complex of the form Q� , where K0.Q�/D q� , then
we will consistently omit a product of terms of the form Œk�=ŒkC 1� from the bracket
notation. Usually,

ŒQ� �D Œf�Q� �;

where f� is defined in the proof of Theorem 2.20.

3.6 Universal projectors

The most important object in the categories defined above is an idempotent chain
complex Pn 2 Kom.n/ which categorifies the Jones–Wenzl projector pn 2 TLn . The
chain complexes Pn will be used repeatedly in later sections in order to construct the
projectors P� and Pn;k that correspond to the elements p� and pn;k introduced in
Section 2.

Theorem 3.7 (Cooper and Krushkal [8]) There exists a chain complex Pn 2Kom.n/,
called the universal projector, such that:

(1) Pn is positively graded with differential having internal degree zero.

(2) The identity diagram appears only in homological degree zero and only once.

(3) For each diagram D which is not the identity, the chain complex Pn ˝D is
contractible.
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These three properties characterize Pn uniquely up to homotopy.

See also [11; 24], and [5; 28] for related ideas.

We conclude this section with a lemma. This lemma plays an important role in the
proof of Theorem 7.1.

Lemma 3.8 If Pn 2 Kom.n/ is a projector then there is a twisted complex

n D Cone

 
n� 1 �! t

"
Œn� 1�

Œn�

n� 1

n� 1

# !

which is also a projector.

Proof The proof follows from tensoring the Frenkel–Khovanov complex of [8] for Pn

with .Pn�2 t 12/˝ en�1˝ .Pn�1 t 11/ then contracting portions of the subcomplex
consisting of projectors containing turnbacks.

4 Twisted complexes and operations on twisted complexes

4.1 Twisted complexes

In this section we recall the definition of the category TwA of twisted complexes
over a differential graded category A, see [4; 21]. The reader may assume that
AD Kom�.n;m/, see Definition 3.3.

Our main construction in Section 7 will occur in the category of twisted complexes.
Informally, the definitions in this section codify situations in which the objects of study
are chain complexes M with a decreasing filtration

M D F0M � F1M � F2M � � � �

and a splitting F iC1.M /DGiC1˚F i.M / as graded objects. Maps are required to
respect this filtration.

The definitions presented here are variations on standard ones which allow one to work
with categories of twisted complexes that are unbounded and indexed by countable sets
(such as ZC ). This is accomplished by requiring that maps are lower triangular, see
Definition 4.6 below.
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Definition 4.2 A twisted complex over A is a collection

f.Ei/; qij W Ei!Ej g; where i 2 ZC;

consisting of objects Ei 2A and maps qij of degree 1 which satisfy qij D 0 for i � j ,
and the equation

(4-1) .�1/j dA.qij /C
X

k

qkj ı qik D 0:

Definition 4.3 Twisted complexes which satisfy the condition that qij D 0 when i � j

are called one-sided.

Remark 4.4 All infinite twisted complexes will be one-sided. The resolution of
identity Rn in Theorem 7.4 is a one-sided twisted complex.

It will be convenient later to use ordered sets besides ZC to index components of
twisted complexes. In particular, the set of sequences Ln together with the dominance
order described in Definition 2.15 will be used throughout Section 7. In general, it will
be clear from context when this is done.

Definition 4.5 (TwA) The one-sided twisted complexes form a differential graded
category. If AD f.Ai/; aij g and B D f.Bi/; bij g, then degree k maps are those that
intertwine the diagrams formed by A and B ,

Homk
TwA.A;B/D

Y
i�j

HomkCi�j

Kom�.n;m/.Ai ;Bj /:

In other words, morphisms f W A ! B are collections ffij g of maps having the
appropriate degree which satisfy fij D 0 unless i � j . The composition of morphisms
is defined in terms of components by the equation

.f ıg/ij D
X

i�k�j

fkj ıgik :

If f 2 Hom�.A;B/ is given by ffij g, then the equation

.df /ij D .�1/j dA.fij /C
X

k

bkj ıfik � .�1/jf jfkj ı qik

determines a differential which makes TwA into a differential graded category.

Algebraic & Geometric Topology, Volume 15 (2015)



An exceptional collection for Khovanov homology 2679

The categories Tw Kom�.n;m/ are examples of pre-triangulated categories. Pre-
triangulated categories can be seen as an alternative to triangulated categories because
every such category A yields a triangulated category H 0.A/, see [4].

If fEig � Kom.C/ is a collection of non-negatively graded chain complexes, then
as graded objects,

Q
i�0 t iEi Š

L
i�0 t iEi since the direct product is finite in each

degree. This allows us to flatten each twisted complex A D f.Ai/; aij g to a chain
complex Tot.A/ by summing together the individual components Ai of A.

Definition 4.6 If AD Kom.C/ is the category of non-negatively graded chain com-
plexes over an additive category C , then there is a dg functor

TotW TwA!A

from twisted complexes to complexes, defined on objects f.Ei/; qij g 2 TwA by

Tot.f.Ei/; qij g/D

�M
i�0

t iEi ; d

�
; where d D

0BBB@
dE0

q01 �dE1

q02 q12 dE2

:::
:::

:::
: : :

1CCCA
and on morphisms f D ffij g by

Tot.f /D

0BBB@
f00

f01 f11

f02 f12 f22
:::

:::
:::

: : :

1CCCA :
Remark 4.7 The condition that d2

Tot.A/ D 0 is implied by Equation (4-1) above.

Remark 4.8 The functor Tot defined above preserves homotopy equivalences. In
particular, for all X;Y 2 TwA, X ' Y ) Tot.X /' Tot.Y /.

Remark 4.9 If C is an additive category which contains countable direct products,
and A is the differential graded category of possibly unbounded chain complexes over
C , then we can define a dg functor

Tot…W TwA!A

using the formulas above with ˚ replaced by ….

Definition 4.10 (Convolution) If a chain complex A is the total complex of some
twisted complex f.Ei/; qij g, then we say A is a convolution of f.Ei/; qij g.
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Example 4.11 In Lemma 4.26 the twisted complex T pictured below is considered:

A tB t2C t3D
˛ ˇ 

�

�

�

Each object A, B , C and D is a chain complex. The convolution Tot.T / is the chain
complex A˚ tB˚ t2C ˚ t3D with differential

dTot.T / D

0BB@
dA

˛ �dB

� ˇ dC

� �  �dD

1CCA :
This twisted complex is one-sided with respect to the order of the letters appearing in
the alphabet.

The notion of hull defined below formalizes the idea of the subcategory of all chain
complexes built out of iterated extensions of elements of some fixed set of chain
complexes.

Definition 4.12 If E D fA1; : : : ;Ar g � Kom.C/ is a collection of chain complexes,
then the hull hEi �Kom.C/ is the smallest strictly full additive subcategory containing
each Ai and closed under convolution.

In particular, if f.Ei/; qij g 2 Tw Kom.C/ satisfies Ei 2 hEi for all i 2 ZC , then
Tot.f.Ei/; qij g/ 2 hEi.

Definition 4.13 Suppose that AD f.Ai/; aij g and B D f.Bi/; bij g are twisted com-
plexes and f D ffij g WA!B is a degree-zero cycle then the cone of f is the twisted
complex given by

Cone.f /D
�
.Ai ˚Bi�1/ ;

�
aij 0

fi;j�1 �bi�1;j�1

��
:

Remark 4.14 The condition that Cone.f / is a twisted complex is equivalent to the
requirement that f is a degree zero cycle in the definition above.
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Remark 4.15 If A;B are twisted complexes over a category of chain complexes and
f W A! B a degree zero cycle, then

Tot.Cone.f //D Cone.Tot.f //:

Definition 4.16 Suppose that Y D f.Yi/;yij g is a twisted complex indexed by ZC .
For each r; s 2 ZC with r � s , the Œr; s�–truncation of Y is given by

YŒr;s� D f.Ti/; tij g;

where Ti D Yi , tij D yij when i; j 2 Œa; b�, and Ti D 0, tij D 0 when i; j 62 Œr; s�.

The lemma below says that a twisted complex is determined by its truncations, and
each truncation is an iterated mapping cone. For simplicity of notation, we restrict to
ZC–indexed twisted complexes over the categories Kom�.n/.

Lemma 4.17 If f.Ei/; qij g is a twisted complex over Kom�.n/, then for each integer
s � 0,

Tot.YŒ0;s�/D Cone
�
Tot.YŒ0;s�1�/

ı
�! t s�1Es

�
;

where ıD .q0;s q1;s : : : qs�1;s/ is a chain map of degree zero. Conversely, if we have
chain complexes Cs and maps ısW Cs ! t sEsC1 such that CsC1 D Cone.ıs/, then
there is a unique twisted complex Y such that Cs D Tot.YŒ0;s�/.

Recall that an object E in a dg category A is contractible when the map IdE is a
boundary in the mapping space EndA.E/. The next lemma is a useful tool for showing
that certain filtered chain complexes are contractible.

Lemma 4.18 If fEig � A is a collection of contractible objects then each twisted
complex f.Ei/; qij g is contractible.

Remark 4.19 One subtlety to keep in mind is that the corresponding result for chain
complexes only holds in situations where convolution Tot is defined, eg over a category
of non-negatively graded chain complexes or a category of (possibly unbounded) chain
complexes over an additive category containing countable direct products.

The following theorem says that the dg subcategory of A determined by the hull of E
is controlled by the dg algebra of Hom–spaces between objects in E .

Theorem 4.20 [4] If E is a collection of objects in a pre-triangulated category A,
then the category of differential graded modules over the algebra

E D
M
i;j

Hom�.Ei ;Ej /

is equivalent to the category of hEi.
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4.21 Operations on twisted complexes

In this section we introduce a number of lemmas and notations which will be used
repeatedly throughout Sections 6 and 7.

We will use the following proposition in Theorem 7.1 to construct the chain com-
plexes P� .

Proposition 4.22 (Obstruction theory) For each pair of chain maps ˛W A! B and
ˇW B! C , there is a chain map  W Cone.˛/! tC of the form  D .�h ˇ/, where
ˇ ı˛D dC ıh if and only if ˇ ı˛' 0. Moreover, if Hom�.A;C /' 0 then ˇ ı˛' 0

and the map  is unique up to homotopy.

Proof The associated homotopy category Ho.Kom/ is triangulated. There is an exact
triangle A! B ! Cone.˛/. Applying the functor Hom.�;C / yields a long exact
sequence

� � � ! Homi.Cone.˛/;C /! Homi.B;C /! Homi.A;C /! � � � :

If ˇ ı˛ ' 0 then ˛�.ˇ/D 0 and exactness implies the existence of  . One can check
that  is given by the map above between chain complexes. Uniqueness of  is implied
by exactness on the other side.

Remark 4.23 The uniqueness of the lifts  in the proposition above will guarantee
that there is exactly one choice at each stage in the construction of the projectors P� ,
see Theorem 7.1 and Corollary 7.2.

It will be useful to add a contractible chain complex to a chain complex using the Cone
construction.

Lemma 4.24 (Substitution) Let A;B;C;D be chain complexes and f W B!D a
chain map. Then we have

A B C
˛ ˇ

�

' A Cone.f / C ,

D

�

 ı

f ı˛

�

where  D
�
˛
0

�
, ı D . ˇ 0 / and � D

�
0
Id

�
.
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The following corollary is an inductive version of the previous lemma.

Corollary 4.25 (Inductive substitution) Suppose that AD f.Ai/; qij g is a one-sided
twisted complex and there are maps fi W Ai!Ci . Then A' f.Ci ,!Bi/;pij g, where
Bi D Cone.fi/.

Note that we may have Ci D 0 for some i in the above corollary.

The next lemma allows us to remove arrows between objects in a twisted complex
when the Hom–space between these objects is contractible (as in Theorem 5.13).

Lemma 4.26 (Combing) If ˇ 2 Hom�.B;C / is a boundary, then

A B C D
˛ ˇ 

�

�

�

Š A B C D .
˛ 

�Ch˛

�

� �h

In words, we may remove ˇ from the right-hand side. However, in doing so, we perturb
the differential by arrows which factor through ˛ or  . Note that if Hom�.B;C /' 0,
then every cycle f 2 Hom�.B;C / is a boundary.

Proof Since ˇ is a boundary there exists a homotopy hW B!C such that ˇDdh�hd .
This allows us to define maps ' D '1; '�1 where

'˙1
D

0BB@
IdA

IdB

˙h IdC

IdD

1CCA :
Notice that ''�1 D Id and '�1' D Id. If d is the differential on the left-hand side
then 'dTot.T /'

�1 is the differential on the right-hand side.

5 Computing spaces of maps using duality

In this section we recall a duality for Hom–spaces inside of the category Kom.n;m/.
For each sequence � 2 Ln , chain-level analogues Q� 2 Kom.n/ of the elements
q� 2 TLn found in Section 2.14 are introduced. In Theorem 5.13 the duality statement
is used to prove that Hom–spaces between convolutions of Q� and Q� respect the
dominance order.
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5.1 Duality

Notation 5.2 Denote by Kom.n/b the subcategory of Kom.n/ consisting of chain
complexes which are bounded on both sides in homological degree.

Definition 5.3 (C_ ) If C 2 Kom.n/b then the dual complex C_ is obtained by
reflecting all of the diagrams in the chain complex about the x–axis and reversing both
the quantum and homological gradings.

Remark 5.4 When defining the invariants of tangles which live in Kom.n/b (see [2;
17]) the chain complex associated to a negative crossing can be obtained from the chain
complex associated to a positive crossing by applying this functor.

Remark 5.5 One can show that .C_/_ Š C and that �_W Kom.n/b ! Kom.n/b

preserves homotopy.

Our primary interest in �_ stems from its behavior with respect to the pairing

Kom.n/b �Kom.n/b! Kom.0/b; .A;B/ 7! Hom�.A;B/:

The computation of Hom–spaces in Kom.n/b can be simplified using the planar algebra
trick which is illustrated below:

Hom�
�

;

�
Š

The boxes above represent choices of chain complexes in Kom.n/b so that on the
left-hand side of this equation is the chain complex of maps between the two objects in
the differential graded category Kom�.n/b . On the right-hand side of this equation is
the chain complex in Kom.0/b formed by dualizing the first of the two objects and
then connecting its free end points to those of the second object. This is identified with
the chain complex of abelian groups on the left after applying the functor Hom.¿;�/.

The theorem below contains a precise statement of the general case.

Theorem 5.6 For all A;B 2 Kom.n/b , the Markov trace of the chain complex B˝

A_ 2 Kom.n/b computes the extended Hom–space from A to B ,

Hom�.A;B/Š Tr.B˝A_/:
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Proof If f W D!D0 is a map between diagrams D and D0 in Cob.n/ then there is a
canonical way to construct an element of D0_˝D . This commutes with convolutions
and so respects the differential.

Remark 5.7 This duality has been explored in [7, Thm 1.3], in [23] this duality was
denoted by �˙ , and in [5] it is denoted by D.�/. Moreover, in each rigid monoidal
category there is an isomorphism Hom.1;A_˝B/! Hom.A;B/, see [1]. In our
setting we can identify the left-hand side with the chain complex determined by the
Markov trace.

Since the category Kom.n/b of bounded complexes is closed under the duality �_ it
has an extra bit of symmetry which is lacking in the category Kom.n/. One way to use
the theorem above in our context is to allow one term in the Hom–pairing to be a chain
complex in Kom.n/ and require the other term to be a chain complex in Kom.n/b :

Kom.n/b �Kom.n/! Kom.0/ or Kom.n/�Kom.n/b! Kom.0/:

Then Theorem 5.6 above continues to hold. This is all that is necessary for the proof
of Theorem 5.13 below. For an alternative viewpoint, see [14].

5.8 Categorical quasi-idempotents

In this section we associate to each sequence � 2 Ln a special chain complex Q� 2

Kom.n/. This construction is directly analogous to the definition of q� in Section 2.14.

Definition 5.9 If � 2Ln and j�j D k , then there is an element T� 2Kom.k; n/ which
is defined inductively by

T.1/ D 1; T��.C1/ D ; and T��.�1/ D ;

where the box represents a universal projector Pk (Theorem 3.7) and the marshmallow-
shaped region represents the element T� . The special element Q� 2 Kom.n/ is equal
to the top T� composed with its reverse,

Q� D T�˝ xT�:

In other words, replacing pk with Pk in the definition of q� gives us Q� . The graded
Euler characteristic of Q� is the element of TLn obtained from q� after identifying its
coefficients with elements of ZŒŒq�� Œq�1�.

The chain complexes Q� will be used extensively in Sections 6 and 7.
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5.10 Hulls of Q� are perpendicular

Before stating the main theorem in this section, we must introduce a lemma which will
be used in its proof.

Lemma 5.11 If N 2 Kom.n/, then the collection of complexes annihilated by N ,

Ann.N /D fM 2 Kom.n/ WM ˝N ' 0g;

is closed under convolution.

Proof If f.Ei/; qij g is a twisted complex with Ei 2 Ann.N / then by Lemma 4.18,

Tot.f.Ei/; qij g/˝N Š Tot.f.Ei ˝N /; qij ˝ IdN g/' 0:

Remark 5.12 In particular, if Q�˝N ' 0 then hQ�i�Ann.N / and so each element
ŒQ� � 2 hQ�i in the hull of Q� satisfies ŒQ� �˝N ' 0.

The following theorem tells us that each convolution of Q� is perpendicular to each
convolution of Q� with respect to the Hom–pairing when � 6E � . This is used in
Theorem 7.1, in conjunction with Proposition 4.22, to inductively construct the projec-
tors P� .

Theorem 5.13 If �; � 2 Ln are sequences and � 6E � , then

Hom�.ŒQ� �; ŒQ� �/' 0

for each ŒQ� � 2 hQ�i and ŒQ� � 2 hQ�i.

Proof Suppose that n 2 ZC and N D ŒQ� �
n is the nth chain group of the chain

complex ŒQ� �. The condition � 6E � implies that there is an i such that

�1C � � �C �i > �1C � � �C �i :

Let k D �1C � � �C �i and l D �1C � � �C �i . By definition of Q� , every summand a

of N D ŒQ� �
n can be written as

aD c˝ .b t 1n�i/ for some b 2 TL.i; l/;

and b satisfies Q�˝.bt1n�i/
_' 0 (for the same reasons as Proposition 2.19). Hence,

Q�˝N _ ' 0. Lemma 5.11 and Theorem 5.6 imply that

Hom�.ŒQ� �; ŒQ� �
n/D Hom�.ŒQ� �;N /D Hom�.ŒQ� �˝N _; 1n/' 0:
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Finally, we observe that Hom�.ŒQ� �; ŒQ� �/D Tot….E/ (see Remark 4.9), where

E D Hom�.ŒQ� �; ŒQ� �
0/! Hom�.ŒQ� �; ŒQ� �

1/! � � � :

So Hom�.ŒQ� �; ŒQ� �/ is a convolution of contractible chain complexes and Lemma 4.18
implies the theorem.

Remark 5.14 The above considerations admit marginal generalizations which are
not necessary for the proof of the main theorem. For instance, suppose that A˝…B

denotes the tensor product, .A˝…B/nD
Q

iCjDn Ai˝Bj . Then the argument above
shows that ŒQ� �˝

… ŒQ� �' 0 unless � E � and the following adjunction holds:

Hom�.C ˝A;B/Š Hom�.C;B˝…A_/:

These observations lead to the stronger statement below.

Statement Suppose that A;B 2Kom.n/, ŒQ� � 2 hQ�i and ŒQ� � 2 hQ�i. Then � 6E �

implies that Hom�.A˝ ŒQ� �;B˝ ŒQ� �/ is contractible.

6 Explicit constructions of resolutions of identity

In this section the higher-order projectors are constructed for n D 2, 3 and 4. The
general construction can be found in Section 7. Many of the important features of this
proof can be seen concretely here when n D 4. The subscripts used in this section
correspond to the sequences introduced in Definition 2.15.

6.1 Two strands: P.1;�1/ and P.1;1/

The second projector P2 can be represented by a chain complex of the form

D �! tq �! t2q3
�! t3q5

� � � ;

where the first map is a saddle and the last two maps alternate between a difference and
a sum of two dots, see [8]. Recalling the box notation from Definition 3.5, we write

D �! t

" #
and '

" #
�! ;

where the map defining the first cone is the saddle appearing in the definition of P2 ,
and the map in the second cone is the inclusion of the tail into P2 . Let us write tP.1;�1/

for the subcomplex of P2 consisting of terms in homological degree greater than zero
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and set P.1;1/ D P2 . There is a map i W P.1;�1/ ! P.1;1/ with degt .i/ D 1, which
satisfies Cone.i/' 12 , where 12 is the identity diagram illustrated above.

The chain complex P.1;�1/ is idempotent and the map i gives the resolution of identity.

6.2 Three strands: P.1;�1;1/ , P.1;1;�1/ and P.1;1;1/

The identity object 13 on three strands is given by the union of the identity object
on two strands together with an extra strand, 13 D 12 t 11 . Applying �t 1 to the
resolution of identity in the previous section we obtain

D �! t

� �
;

'

� �
�! :

Lemma 3.8 implies that the third universal projector P3 D P.1;1;1/ can be chosen to
be equal to the cone P.1;1/ t 1! tP.1;1;�1/ . Pictorially,

(6-1) D �! t

� �
:

Consider the contractible chain complex Cone.� Id/D P.1;1;�1/! tP.1;1;�1/ . Using
the second equation above and from gluing on the contractible chain complex it follows
that 13 is homotopic to � �

� �
t

� �

by Lemma 4.24. Using the triangle (6-1) above and reassociating allows us to write
this complex in terms of the projectors P.1;�1;1/DP.1;�1/t1, P.1;1;�1/ and P.1;1;1/ .
The identity object 13 is homotopy equivalent to R3 .� �

� �
D P.1;�1;1/ P.1;1;1/

P.1;1;�1/
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The maps above are compositions of inclusions of tails and differentials from chain
complexes of projectors.

6.3 Four strands

In the previous section we obtained a resolution of the identity on three strands. The
identity object 14 on four strands is given by the union of the identity object on three
strands together with an extra strand, 14 D 13 t 11 . Applying �t 1 to the resolution
of identity in the previous section we obtain the diagram pictured below:

'

� �
� �

Now Lemma 3.8 implies that the fourth universal projector P4 D P.1;1;1;1/ can be
chosen to be equal to the cone P3 t 1! tP.1;1;1;�1/ ,

D �! t

� �
:

Using Lemma 4.24 we can add the contractible chain complex

Cone.� Id/D P.1;1;1;�1/! tP.1;1;1;�1/

to the decomposition above to obtain a homotopy equivalent complex on the left-hand
side below:� �

� �
t

� �

� � � Id

Š

� �

� �

� �
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Reassociating allows us to replace P.1;1;1/ t 1 in the resolution of identity and yields
the isomorphic complex containing the projector P4 on the right-hand side above.
Unfortunately, we aren’t done because our resolution of identity still consists of terms
which do not factor through universal projectors. In order to replace the two offending
terms, P.1;1;�1/ t 1 and P.1;�1;1/ t 1, a bit of work remains. The process by which
we replace P.1;1;�1/ t 1 will illustrate the general strategy.

We can construct the following chain complex:

t t2 � � �

t t2 t3 � � �

t2 t3 t4 � � �

:::
:::

:::

In the more concise bracket notation, this chain complex is

P.1;�1;1;1/ D

� �
:

Notice the top row of this bicomplex is P.1;�1;1/t1; in bracket notation, this is
� �

.
The columns of the bicomplex P.1;1;�1;1/ are given by .

We define P.1;�1;1;�1/ to be the tail of the bicomplex P.1;1;�1;1/ : the subcomplex
consisting of all rows beyond the first (shifted down by 1). In bracket notation,
P.1;�1;1;�1/D

� �
. The vertical differential of the bicomplex P.1;1;�1;1/ determines

a map ıW P.1;�1;1/ t 1! P.1;�1;1;�1/ such that P.1;�1;1;1/ D Cone.ı/: In pictures,� �
D

� �
�! t

� �
:

By Lemma 4.24 we add the contractible chain complex Cone.� Id/D P.1;�1;1;�1/!

tP.1;�1;1;�1/ to our decomposition above and reassociate. The identity object 14 is
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homotopy equivalent to the left complex pictured below. The complex on the right is
obtained by reassociating.

P.1;�1;1;�1/

tP.1;�1;1;�1/

P.1;�1;1/ t 1

P.1;1;1;�1/

P.1;1;�1/ t 1

P.1;1;1;1/

� Id

Š

P.1;�1;1;�1/ P.1;�1;1;1/ P.1;1;1;1/

P.1;1;�1/ t 1

P.1;1;1;�1/

We still have to replace the subcomplex P.1;1;�1/ t 1 with a complex that factors
through P2 . In order to accomplish this task we construct a chain complex

P.1;1;�1;�1/ D

� �
and a chain map  W P.1;1;�1/ t 1! P.1;1;�1;�1/ so that

P.1;1;�1;1/ D Cone. /D
� �

:

The complex P.1;1;�1/ t 1D
� �

can be written as an iterated cone:� �
D

����
! t

�
! t2

�
! t3

�
! � � �

�
We can also write

D �! t

� �
:

(In the formula above, a degree shift of Œ2�=Œ3� has been omitted, following the con-
vention in Definition 3.5.) Using this map we now construct a new triangle of the
form � �

D

� �
�! t

�� ��
This process is also carried out in Theorem 7.4. We use double brackets above to em-
phasize that the term on the left is a convolution of convolutions and also to distinguish
it from the complex

� �
which is the tail of .
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The first step is to form the cone on the first term of P.1;1;�1/ t 1:

� � �

� �
Reassociating shows that the first term in this complex agrees with the desired complex.
Now assume by induction that we can form a chain complex in which the first N terms
of P.1;1;�1/ t 1 have been written in this way:

� � �

� � � � � �
We draw the diagonal arrows to emphasize that the maps in this construction necessarily
propagate in a non-trivial way.

After grouping the first N terms of the top and bottom rows within parentheses we
consider taking the cone on the N C 1st term:� �

� � �

� �
˛

ı
�h

After taking shifts into account, the composition ı ı˛ is a chain map of degree 0 and

ı ı˛ 2 Hom�
�� �

;

� ��
' 0:

The Hom–complex is contractible by Theorem 5.13. Proposition 4.22 allows us to
produce a chain complex with N C 1 terms of the desired form. This process is stable,
adding the N C 1st map does not change any maps which appear earlier, because in
Proposition 4.22, the map  is an extension of the map ˇ . Since there are countably
many terms we can use this process to produce the chain complex, P.1;1;�1;1/ , that we
want.
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By construction the top row is P.1;1;�1/ t 1 and so we define the bottom row to be
tP.1;1;�1;�1/ . The non-horizontal components of the differential yield a chain map

�W P.1;1;�1/ t 1! P.1;1;�1;�1/

such that P.1;1;�1;1/DCone.�/. Our program is resumed by replacing the P.1;1;�1/t1

term above. By introducing the contractible term

Cone.� IdP.1;1;�1;�1/
/D P.1;1;�1;�1/! tP.1;1;�1;�1/

to our last complex, we see that 14 is homotopy equivalent to the following diagram:

P.1;�1;1;�1/ P.1;�1;1;1/ P.1;1;1;1/

P.1;1;�1/ t 1

P.1;1;1;�1/

P.1;1;�1;�1/

tP.1;1;�1;�1/

�
� Id

We conclude by reassociating and using the Combing lemma 4.26 to exchange the
bad arrow P.1;�1;1;1/! P.1;1;�1;�1/ with an arrow P.1;�1;1;�1/! P.1;1;�1;�1/ that
respects the dominance order E on L4 (Definition 2.15). The object 14 is homotopic
to the following complexes:

P.1;�1;1;�1/ P.1;�1;1;1/ P.1;1;1;1/

P.1;1;�1;1/

P.1;1;1;�1/

P.1;1;�1;�1/

Š P.1;1;�1;�1/

P.1;�1;1;�1/ P.1;�1;1;1/ P.1;1;1;1/

P.1;1;�1;1/

P.1;1;1;�1/
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The end result is a resolution of identity on four strands in which all of the terms factor
through universal projectors of the form P4�2k for k D 0; 1; 2 and all maps between
terms respect the dominance order.

Vista 6.4 In order to accomplish our task, we needed two basic maneuvers. The
first was gluing a contractible chain complex onto our resolution without changing
the homotopy type using Lemma 4.24. The second was the construction of chain
complexes suitable for substitution. The first step is provided by Lemma 3.8, while
Proposition 4.22 and Theorem 5.13 allow us to construct more sophisticated sorts of
substitutions.

In order to construct the P� , a general version of the argument given above is carried
out in Section 7. The reader may refer to this section for intuition.

7 General construction of the resolution of identity

In this section we categorify the equations

1n D

X
�2Ln

p� and p�p� D ı��p�

of Theorem 2.20. This is accomplished by constructing chain complexes P� 2Kom.n/
for each sequence � 2 Ln which satisfy idempotence and orthogonality properties,
P� ˝ P� ' ı��P� . In the process of constructing the projectors P� , we build the
resolution of identity Rn ; a convolution of projectors P� which satisfies 1n'Rn . The
Euler characteristic K0.1n/D K0.Rn/ can be identified with the first equation above.

In Theorem 5.13, we showed that � 6E � implies Hom�.ŒQ� �; ŒQ� �/' 0, for each pair
of convolutions ŒQ� � 2 hQ�i and ŒQ� � 2 hQ�i. The theorem below exploits this
fact in order to build triangles relating convolutions in the hulls hQ��.C1/i, hQ��.�1/i

and hQ� t 1i. An immediate consequence is Corollary 7.2, which constructs chain
complexes P� 2 hQ�i. These chain complexes categorify the idempotents p� 2 TLn .

Theorem 7.1 For each sequence � 2 Ln and convolution ŒQ� � 2 hQ�i, there exists a
convolution ŒQ��.�1/� 2 hQ��.�1/i and a chain map

ıW ŒQ� �t 1! ŒQ��.�1/�

of homological and internal degree zero such that

Cone.ı/ 2 hQ��.C1/i:
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The proof below is a generalization of the obstruction-theoretic argument used to
construct the map �W P.1;1;�1/ t 1! tP.1;1;�1;�1/ in Section 6.3. The convolution
ŒQ��.C1/� will be defined as Cone.ı/.

Proof Let S � hQ�i denote the collection of chain complexes for which the theorem
is true. In order to prove the theorem we show that Q� 2 S and that S is closed under
convolution. These two statements imply that hQ�i � S .

In order to show that Q� 2 S we must chase our own definitions. By definition, there
is a chain complex A� 2 Kom�.n/ such that Q� DA�˝Pk ˝A� where j�j D k . By
Lemma 3.8, there is a triangle PkC1 D Pk t 1

ı0

! tT where T denotes the tail of the
projector PkC1 . Setting ŒQ��.�1/� D .A� t 1/˝ T ˝ .A� t 1/ and ı D Id˝ı0˝ Id
shows that Q� 2 S .

The remainder of the proof shows that S is closed under convolutions. Suppose that
ŒQ� � 2 hQ�i is a convolution. So ŒQ� � D Tot.E/ where E D f.Ei/; qij g and the
Ei 2 hQ�i are chain complexes for which the theorem holds. By assumption there are
chain complexes Ti 2 hQ��.�1/i and maps

ıi W Ei t 1! Ti such that Cone.ıi/ 2 hQ��.C1/i:

We wish to define a chain complex ŒQ��.C1/� 2 hQ��.C1/i which, as a graded object, is
a sum of the complexes appearing in the diagram below:

E0 t 1 tE1 t 1 t2E2 t 1 � � �

tT0 t2T1 t3T2
� � �

ı0 ı1 ı2

The convolution ŒQ��.C1/� will be defined as a direct limit of truncations ŒQ��.C1/�Œ0;r � ,
see Definition 4.16. We proceed by induction on r .

If r D 0 then set ŒQ��.C1/�Œ0;0�DCone.ı0/. Assume that ŒQ��.C1/�Œ0;r � has constructed
and let ŒQ� t 1�Œ0;r � denote the corresponding truncation of ŒQ� �t 1, which appears
as the top row of ŒQ��.C1/�Œ0;r � . The differential on ŒQ� � t 1 gives a chain map
˛W ŒQ� t 1�Œ0;r �! tr ErC1 t 1. Let z be the composition of the maps in the diagram

ŒQ��.C1/�
�
�! ŒQ� t 1�Œ0;r �

˛
�! tr ErC1

.�1/r ırC1

�������! tr TrC1;

where � is the projection of ŒQ��.C1/�Œ0;r � onto its top row. By Theorem 5.13 the map
z belongs to a contractible Hom–space,

z 2 Hom�.ŒQ��.C1/�; t
r TrC1/' 0:
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Therefore, z D d.h/ is a boundary and Proposition 4.22 allows us to produce a chain
complex with r C 1 terms of the desired form.

ŒQ��.C1/�Œ0;r � trC1EiC1 t 1

trC2TrC1

˛ ı�

.�1/rC1ırC1

h

Observe that the differentials only point south or east. The new column in this complex
is trC1 Cone.ırC1/. Since � is the identity on the top row and zero on the bottom
row, the top row of this complex is the corresponding truncation of ŒQ� � t 1. This
construction is stable for the same reasons as in Section 6.3.

Defining ŒQ��.C1/� to be the limit of the resulting directed system completes the proof.

Corollary 7.2 For each sequence � 2 Ln , there exist a chain complex P� 2 hQ�i in
the hull of Q� and maps

ı�W P� t 1! tP��.�1/

such that P��.C1/ D Cone.ı�/.

The corollary below follows from the argument given above.

Corollary 7.3 For each n> 0 and each sequence � 2 Ln , the triangle

P� t 1D P��.�1/! P��.C1/

descends to Equation (2-8) of Section 2.14 in the Grothendieck group K0.Kom.n//.

The following theorem is a generalization of the resolution of identity found in
Section 6.3. This is the main result of this section.

Theorem 7.4 For each n > 0, there is a twisted complex Rn D f.P�/; d��g�2Ln
2

Tw Kom.n/ such that
1n 'Rn:

Proof When n D 1 we set R1 D 1. Assume by induction that there is a twisted
complex Rn�1D f.P�/; d��g�2Ln�1

such that 1n�1'Rn�1 . Placing a disjoint strand
next to everything yields

1n D 1n�1 t 1DRn�1 t 1D f.P� t 1/; d�� t 1g:
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Corollary 4.25 and Corollary 7.2 imply that we can replace each P�t1 with P��.�1/!

P��.C1/ obtaining an equivalence

1n '

�
P��.�1/

f�
�! P��.C1/;

�
dP��.�1/

0

f� dP��.C1/

��
Š fP��.˙1/; d

0
��g:

The right-hand side is a twisted complex indexed by elements of Ln . There may be
maps which do not respect the dominance order E on Ln . However, when � 6E � the
Hom–space from P� to P� is contractible:

Hom�.P�;P�/' 0:

Applications of the Combing lemma 4.26 allow us to exchange maps in fP��.˙1/; d
0
��g

which do not respect the dominance order for those that do. The resulting twisted
complex is the resolution of identity Rn .

Remark 7.5 When referring to a chain complex in Rn 2 Kom.n/ the resolution of
identity Rn is defined to be the convolution Tot.Rn/, see Definition 4.6.

Remark 7.6 In the Grothendieck group K0.Kom.n//, the resolution of identity
becomes the equation 1n D

P
�2Ln

p� from Section 2.14. From the discussion in
Section 2.10, we see that Rn categorifies the decomposition of V ˝n

1
into irreducible

representations.

Remark 7.7 In the decategorified setting, representations decompose into direct
sums of irreducible representations. After categorification we have learned that this
decomposition is maintained up to homotopy, but the irreducible components now have
non-trivial maps between them.

8 Higher-order projectors

In this section we will define the universal higher-order projectors and articulate the
sense in which the resolutions of identity Rn produced in Sections 6 and 7 yield
categorifications of the idempotents Pn;k defined in Section 2.10. While the axioms of
Definition 8.4 given below are sufficient to characterize the projectors Pn;k uniquely
up to homotopy, we will see that the Pn;k also satisfy a number of other useful
properties analogous to those enumerated in Section 2.14. We begin by introducing a
few definitions similar to those of Section 2.1.

Just as elements a 2 TL.n;m/ have a notion of through-degree (Definition 2.6), chain
complexes A 2 Kom.n;m/ have a corresponding notion of through-degree.
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Definition 8.1 Suppose that A 2 Cob.n;m/ is a Temperley–Lieb diagram. Then A

factors as a composition AD C ˝B , where

B �C 2 Cob.n; l/�Cob.l;m/:

The through-degree �.A/ of A is equal to the minimal l in such a factorization. If
A 2 Kom.n;m/ is a chain complex of Temperley–Lieb diagrams fAig, then �.A/D
maxi �.Ai/.

We now define subcategories Komk.n/ of Kom.n/. Elements of Komk.n/ will be
convolutions of complexes which factor through the universal projector Pk . If A 2

Komk.n/ then �.A/D k . Compare to Remark 2.8.

Definition 8.2 A chain complex C 2 Kom.n;m/ factors through Pk when there are
objects A 2 Kom.n; k/ and B 2 Kom.k;m/ such that

C ŠA˝Pk ˝B:

Let Komk.n;m/ � Kom.n;m/ be the full subcategory of convolutions of chain
complexes which factor through Pk . We have analogous notions of subcategories
Kom�;k.n;m/ and Tw Komk.n;m/ in Kom�.n;m/ and Tw Kom.n;m/ respectively.
See Section 4.1 for definitions of these categories.

The next lemma tells us that chain complexes which factor through various universal
projectors Pk compose in a predictable manner.

Lemma 8.3 For each A 2 Komk.n;m/ and B 2 Koml.m; r/, if k ¤ l then

B˝A' 0:

Proof Observe that composing complexes which factor through projectors Pk and
Pl with k ¤ l produces a complex containing a turnback; this is contractible by
Theorem 3.7. The composite twisted complex lies in the hull of a collection of
contractible complexes and therefore it is contractible by Lemma 4.18.

We will now state what is meant by universal higher-order projectors.

Definition 8.4 A chain complex P 2 Kom.n/ is a k th universal higher-order projec-
tor if:

(1) The through-degree �.P / of P is equal to k .
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(2) P vanishes when the number of turnbacks is sufficiently high. For each l 2 ZC
and a 2 Cob.n; l/ if �.a/ < k then

a˝P ' 0 and P ˝ Na' 0:

(3) There exists a chain complex C 2Kom.n/ with �.C /<k and a twisted complex

D D 1n! C ! tP

such that
a˝D ' 0 and D˝ Na' 0

for all diagrams a 2 Cob.n;m/ such that �.a/� k .

For each sequence � 2 Ln , there is a complex Q� (see Definition 5.9) and if j�j D k

then Q� factors through Pk by construction. It follows that each object A 2 hQ�i

must factor through Pk . In particular, P� 2 Komj�j.n/ for each � 2 Ln .

As in Definition 2.23, the constituents of the higher-order projector Pn;k consist of
projectors P� with � 2 Ln;k . The categorical construction differs in that there are now
non-trivial maps between the components, P� . We extract Pn;k from the resolution of
identity in the definition below.

Definition 8.5 A k th universal higher-order projector Pn;k is the convolution of the
subcomplex formed by isotypic components in the resolution of identity,

Pn;k D

� M
�2Ln;k

P�; d��

�
:

Remark 8.6 The projector Pn;k is homotopy equivalent to the cone of the inclusion
map between relative truncations of Rn ; see Equation (8-1).

Theorem 8.7 The chain complexes Pn;k of Definition 8.5 are universal higher-order
projectors.

Before proving the theorem we record several observations. By construction Pn;k is
contained in the hull of the set Q D fQ� W � 2 Ln;kg. The next observation follows
from the discussion preceding the definition.

Observation 8.8 The k th universal higher-order projector factors through the universal
projector Pk . In particular, Pn;k 2 Komk.n/:
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Since each Pn;k is the restriction of the resolution of identity to the subcomplex
consisting of the P� with j�j D k we can write a resolution of identity purely in terms
of the higher-order projectors.

Observation 8.9 We have

1n ' Pn;n .mod 2/! � � � ! Pn;n�4! Pn;n�2! Pn;n:

The diagram on the right usually contains higher differentials, Pn;i ! Pn;j , when
i < j .

We are ready to prove that the chain complexes Pn;k extracted from the resolution of
identity above satisfy the properties listed in Definition 8.4.

Proof of Theorem 8.7 The first property, �.Pn;k/D k , follows from Observation 8.8
above.

Suppose that a 2 Cob.n; l/ is a diagram with �.a/ < k . Again, by Observation 8.8
the complex a˝Pn;k is contained in the hull of fa˝Q� W j�j D kg, but a˝Q� ' 0

because Q� factors through Pk . Each complex in the hull of a collection of contractible
complexes is contractible by Lemma 4.18.

Rotating distinguished triangles in Observation 8.9 above gives the homotopy equiva-
lence

1n! t.Pn;n .mod 2/! � � � ! Pn;k�2/! Pn;k ' Pn;kC2! � � � ! Pn;n:

Let D be the left-hand side of this equation and set C to be the middle term

C D t.Pn;n .mod 2/! � � � ! Pn;k�2/;

so that the third property follows.

We have seen that the chain complexes Pn;k defined above are k th universal higher-
order projectors. The next theorem states that each chain complex P satisfying the
properties of Definition 8.4 is homotopy equivalent to the chain complex Pn;k .

Theorem 8.10 If P 2 Kom.n/ is a k th universal higher-order projector then P is
homotopy equivalent to Pn;k of Definition 8.4.
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Proof Suppose that P 2 Kom.n/ satisfies properties (1)–(3) of Definition 8.4 above.
From Observation 8.9 we have the resolution of identity

1n ' Pn;n .mod 2/! � � � ! Pn;n�4! Pn;n�2! Pn;n:

Applying P ˝� above yields P D P ˝ 1n ' Pn;k ˝P . By property (3) there are
complexes C and D , where

D D 1n! C ! tP:

Since �.Pn;k/D k , property (3) also implies that Pn;k ˝D ' 0. Now Pn;k ˝D ' 0

tells us that

0' Pn;k ˝ 1n! Pn;k ˝C ! tPn;k ˝P D Cone.Pn;k ! Pn;k ˝P /

because Pn;k ˝C ' 0. However, since Cone.f /' 0 if and only if f is a homotopy
equivalence, the above equation implies that Pn;k˝P 'P and therefore Pn;k 'P .

Now that existence and uniqueness have been shown, we continue our discussion with
a series of observations.

Proposition 8.11 The top projector Pn;n is a universal projector Pn .

Proof This can be seen indirectly by comparing the three properties in Definition 8.4
with those of Theorem 3.7. Alternatively, this can be seen directly by tracing through
the construction in either Section 6 or Section 7. See [8] for an extended discussion of
the axioms found in Theorem 3.7.

Remark 8.12 The universal projectors Pn;n of Theorem 3.7 were first categorified in
[8; 11; 24]. The bottom projectors P2n;0 2 Kom.n/ were categorified and related to
the Hochschild homology of Khovanov’s ring Hn in [23].

Proposition 8.13 The Pn;k are mutually orthogonal idempotents,

Pn;k ˝Pn;l ' ık;lPn;k :

Proof When k ¤ l the statement Pn;k ˝Pn;l ' 0 follows from Observation 8.8 and
Lemma 8.3 above. If k D l then considering the resolution of identity

1n ' Pn;n .mod 2/! � � � ! Pn;n�2! Pn;n;

composing with Pn;k gives Pn;k D Pn;k ˝ 1n ' Pn;k ˝Pn;k .

The proof of the proposition below is analogous to the proof of Proposition 2.27.

Algebraic & Geometric Topology, Volume 15 (2015)



2702 Benjamin Cooper and Matt Hogancamp

Proposition 8.14 Suppose that a 2 Kom.m; n/. Then

a˝Pm;k ' Pn;k ˝ a:

In pictures,

a

n; k

'

m; k

a

:

Theorem 5.13 implies that Hom–spaces between convolutions of Q� and Q� are
contractible when � 6E � . Since the complexes P� are convolutions of Q� and Pn;k is
constructed using P� with � 2 Ln;k ,

Hom�.Pn;i ;Pn;j /' 0 when j < i:

Theorem 4.20 implies that the differential graded algebra ED
L

i�j Hom�.Pn;i ;Pn;j /

is of fundamental importance. This algebra is a generalization of the endomorphism
algebras End�.Pn/. The precise nature of the algebra End�.Pn/ has been the focus of
a series of conjectures by Gorsky, Oblomkov, Rasmussen and Shende; see [12].

8.15 Postnikov decompositions

In this section we discuss a more algebraic characterization of the projectors Pn;k and
the resolution of identity Rn .

Definition 8.16 The resolution of identity Rn can be written as a convolution of
higher order projectors

1n 'Rn D Pn;n .mod 2/! � � � ! Pn;n�4! Pn;n�2! Pn;nI

see Observation 8.9. Truncating the diagram yields triangles of inhomogeneous idem-
potents

Rn DWn;k !Zn;k ;

where

Wn;k D Pn;n .mod n/! � � � ! Pn;k�2 and Zn;k D Pn;k! Pn;kC2! � � � ! Pn;n:

For each k , there is a canonical inclusion Zn;k !Zn;k�2 , which yields a triangle

(8-1) Pn;k�2!Zn;k !Zn;k�2:
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It follows from the triangles in Equation (8-1) that the inhomogeneous idempotents
Zn;k determine the higher-order projectors Pn;k up to homotopy. We will show that
the Zn;k can be characterized by localization.

Remark 8.17 For any object S , these triangles can be sewn together to obtain the
canonical decomposition pictured below:

� � � S ˝Zk

S ˝Pn;k�2

S ˝Zk�2

S ˝Pn;k�4

� � � S ˝Rn Š S

The picture above is a Postnikov-type decomposition. It is well known that such
decompositions can be constructed functorially using the language of quotients and
localization. In Proposition 8.22 we will show that the chain complex Zn;k determines
the Bousfield colocalization with respect to the k th layer of the through-degree filtration.

We must extend the category Kom.n/ so that certain limits are guaranteed to exist.

Definition 8.18 (HoC.n/) Let KomC.n;m/DKomC.Cob.n;m// be the closure of
Kom.n;m/ under small coproducts. We will use the abbreviations

KomC.n/D KomC.n; n/ and HoC.n/D Ho.KomC.n//:

The next definition should be compared to Remark 2.8.

Definition 8.19 The category HoC.n/ is filtered by the through-degree � defined in
Definition 8.1. If Komk

C.n/ � KomC.n/ is the full subcategory consisting of chain
complexes of diagrams with through-degree less than k , then by setting

Hok
C.n/D Komk

C.n/

we obtain the filtration

� � � � Hok�1
C .n/� Hok

C.n/� HokC1
C .n/� � � � and HoC.n/D

[
k

Hok
C.n/:

The resolution of identity Rn and the projectors Pn;k exist in KomC.n/ and the
inhomogeneous projector Zn;k induces a functor

�˝Zn;k W HoC.n/! HoC.n/:

We would like to show that this functor is the universal functor which annihilates
subcategory Hok

C.n/. Before stating the proposition we recall some vocabulary.
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Definition 8.20 Let T be a triangulated category. Then LW T ! T is a localization
functor when L is exact and there is a map �W IdT ! L such that L�W L ! L2

is invertible and L� D �L. A functor LW T ! T is a colocalization functor when
LopW T op! T op is a localization functor.

Definition 8.21 Let LW T ! T be a colocalization functor. Then an object X 2 T is
L–acyclic when LX Š 0 and the kernel of L ker.L/� T is the subcategory formed
by all L–acyclic objects.

For further detail the reader may consult [20, Chapter 9].

Proposition 8.22 The functor determined by the inhomogeneous projector

�˝Zn;k W HoC.n/! HoC.n/

is a colocalization functor and ker.�˝Zn;k/D Hok
C.n/.

Proof The functor �˝Zn;k is exact because it commutes with cones and suspension.

If S 2 Hok
C.n/ then S is a chain complex consisting of diagrams with through-degree

less than k then the second property of Definition 8.4 implies that S ˝Zn;k Š 0.
Conversely, if S 2 HoC.n/ and S ˝Zn;k Š 0 then

S Š S ˝Zn;k ! S ˝Wn;k Š S ˝Wn;k

implies that �.S/ D �.S ˝Wn;k/ � �.Wn;k/ < k and therefore S 2 Hok
C.n/. We

conclude that ker.�˝Zn;k/D Hok
C.n/.

There is a canonical map jn;k W Zn;k!Rn . If S 2HoC.n/ then define �S W S˝Zn;k!

S by the composition 'S ı .IdS ˝jn;k/ where 'S W Rn˝ S �!� S . The naturality
of the map IdS ˝jn;k follows from the definition of monoidal structure. The map
'S is natural in S because it can be written as S ˝Rn D Cone.S ! CS / �!

� S

where CS is a contractible chain complex. Therefore, � is a natural transformation.
The properties of � follow from idempotence, Zn;k ˝Zn;k ŠZn;k , and associativity
relations.

Acknowledgements The authors would like to thank V Krushkal for his interest.
B Cooper was supported in part by the Max Planck Institute for Mathematics in Bonn.

Algebraic & Geometric Topology, Volume 15 (2015)



An exceptional collection for Khovanov homology 2705

References
[1] B Bakalov, A Kirillov, Jr, Lectures on tensor categories and modular functors, Uni-

versity Lecture Series 21, Amer. Math. Soc. (2001) MR1797619

[2] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9
(2005) 1443–1499 MR2174270

[3] J Bernstein, I Frenkel, M Khovanov, A categorification of the Temperley–Lieb alge-
bra and Schur quotients of U.sl2/ via projective and Zuckerman functors, Selecta Math.
5 (1999) 199–241 MR1714141

[4] A I Bondal, M M Kapranov, Framed triangulated categories, Mat. Sb. 181 (1990)
669–683 MR1055981 In Russian; translated in Math. USSR-Sb. 70 (1991) 93–107

[5] S Cautis, Clasp technology to knot homology via the affine Grassmannian arXiv:
1207.2074

[6] S Cautis, J Kamnitzer, Knot homology via derived categories of coherent sheaves, I:
the sl.2/–case, Duke Math. J. 142 (2008) 511–588 MR2411561

[7] D Clark, S Morrison, K Walker, Fixing the functoriality of Khovanov homology,
Geom. Topol. 13 (2009) 1499–1582 MR2496052

[8] B Cooper, V Krushkal, Categorification of the Jones–Wenzl projectors, Quantum
Topol. 3 (2012) 139–180 MR2901969

[9] B Cooper, V Krushkal, Handle slides and localizations of categories, Int. Math. Res.
Not. 2013 (2013) 2179–2202 MR3061937
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