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Reidemeister torsion, peripheral complex and
Alexander polynomials of hypersurface complements

YONGQIANG LIU

LAURENŢIU MAXIM

Let f W CnC1 ! C be a polynomial that is transversal (or regular) at infinity. Let
U DCnC1 nf �1.0/ be the corresponding affine hypersurface complement. By using
the peripheral complex associated to f , we give several estimates for the (infinite
cyclic) Alexander polynomials of U induced by f , and we describe the error terms
for such estimates. The obtained polynomial identities can be further refined by using
the Reidemeister torsion, generalizing a similar formula proved by Cogolludo and
Florens in the case of plane curves. We also show that the above-mentioned peripheral
complex underlies an algebraic mixed Hodge module. This fact allows us to construct
mixed Hodge structures on the Alexander modules of the boundary manifold of U .

32S25; 32S55, 32S60

1 Introduction

1.1 Background

Let f W CnC1!C be a polynomial map, and set F0 D f
�1.0/ and U DCnC1 nF0 .

The topological study of the hypersurface F0 and of its complement U is a classical
subject going back to Zariski. Libgober [19; 20; 21] introduced and studied Alexander-
type invariants associated to the hypersurface complement U , as induced by f . For
F0 a plane curve [19; 20], or a hypersurface with only isolated singularities, including
at infinity [21], Libgober obtained a divisibility result, asserting that the only (possibly)
non-trivial global Alexander polynomial of U divides the product of the local Alexander
polynomials associated with each singular point (including at infinity).

More recently, the second author [25] used the intersection homology theory to provide
generalizations of these results to the case of hypersurfaces with arbitrary singularities,
provided that the defining equation f is transversal at infinity (ie the hyperplane at
infinity is generic with respect to the projective completion of F0 ). In particular, he
proved a general divisibility result (see [25, Theorem 4.2]) relating the global and
local Alexander polynomials. Furthermore, Dimca and Libgober [10] showed that for
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a polynomial transversal at infinity there exist canonical mixed Hodge structures on
the (torsion) Alexander invariants of the hypersurface complement. For more results
related to Alexander-type invariants for complements of hypersurfaces with non-isolated
singularities, see Dimca and Maxim [11] and Liu [23].

A different approach to the study of Alexander polynomials relies on the use of
Reidemeister torsion. Milnor [26; 27] showed that the Alexander polynomial of a
link coincides with the Reidemeister torsion of the link complement. This approach
was further developed by Turaev [33] for the classical Alexander polynomial, and by
Lin [22] and Wada [34] for twisted Alexander polynomials. Kirk and Livingston [18]
extended this theory to any finite CW complex; in particular, they generalized Milnor’s
duality theorem for Reidemeister torsion.

Cogolludo and Florens [5] studied twisted Alexander polynomials of plane algebraic
curves by using the Reidemeister torsion, and obtained a polynomial identity involving
global and local twisted Alexander polynomials. Specializing their result to the classical
case (of the trivial representation), one obtains a geometric interpretation of Libgober’s
divisibility result.

Let us assume from now on that f is transversal at infinity. One of the goals of this
paper is to provide a generalization to hypersurfaces with non-isolated singularities of
the Cogolludo–Florens identity for Alexander polynomials (see [5, Corollary 5.8]). Our
main tool will be the Cappell–Shaneson peripheral complex [4] associated to f . In
more detail, we give a new description of the peripheral complex, from which we deduce
several error estimates for the Alexander polynomials of the complement. Moreover,
by exploiting the relation between the Alexander polynomials and Reidemeister torsion
(see Kirk and Livingston [18, Theorem 3.4]), we show how these estimates can be
further refined by using the intersection form appearing in the duality for Reidemeister
torsion.

Our new description of the peripheral complex can also be used to show that the
peripheral complex underlies an algebraic mixed Hodge module. In particular, after
explaining the relation between the peripheral complex and the boundary manifold
of the complement U , we obtain mixed Hodge structures (MHS) on the Alexander
modules of this boundary manifold.

1.2 Main results

Unless otherwise specified, all homology and cohomology groups will be assumed to
have Q–coefficients.

Let f W CnC1!C be a degree-d polynomial. We say that f is transversal (or regular)
at infinity if f is reduced and the projective closure V of F0 in CPnC1 is transversal
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in the stratified sense to the hyperplane at infinity H D CPnC1 nCnC1 . Consider
the infinite cyclic cover Uc of U corresponding to the kernel of the linking number
homomorphism

f�W �1.U/! �1.C
�/D Z

induced by f . Then, under the deck group action, each homology group Hi.Uc/

becomes a � WDQŒt; t�1�–module, called the i th Alexander module of the hypersurface
complement U . For f transversal at infinity, Maxim [25, Theorem 3.6] showed that
Hi.Uc/ is a torsion �–module for i �n. We denote by ıi.t/ the corresponding (global)
Alexander polynomial.

Let N be an open regular neighbourhood of V [H in CPnC1 (see Durfee [14]).
Set U0DCPnC1nN . Then U0 is homotopy equivalent to U , and the boundary @U0 is a
.2nC1/–dimensional real manifold, called the boundary manifold of U . The inclusion
@U0 ,! U0 is an n–homotopy equivalence (see Dimca [8, Proposition (5.2.31)]).
Moreover, we have an epimorphism

�W �1.@U0/ �� �1.U0/D �1.U/
f�
�� �1.C

�/D Z;

which defines the infinite cyclic cover .@U0/
c of @U0 . The related intersection form

�� 2 Q.t/ for the pair .U0; @U0/ is defined on HnC1.Uc
0
/; see [18] or Section 5.3

below.

The peripheral complex R� associated to f (see [4; 25] or Definition 2.5 below) is a
torsion �–module sheaf complex, which plays a key role in Maxim’s generalizations
of Libgober’s results to the case of hypersurfaces with non-isolated singularities. Our
first result is the following (see Proposition 6.1 and Corollaries 3.3 and 6.2):

Theorem 1.1 Assume that the polynomial f W CnC1 ! C is transversal at infinity.
Then:

(a) There are �–module isomorphisms

Hi..@U0/
c/ŠH 2nC1�i.CPnC1

IR�/ for all i

and, in particular, Hi..@U0/
c/ is a torsion �–module. Moreover, the zeros of the

Alexander polynomial associated to Hi..@U0/
c/ are roots of unity for all i , and have

order d except for i D n. Finally, Hi..@U0/
c/ is a semi-simple �–module for i ¤ n.

(b) The peripheral complex R� (when regarded as a complex of Q–vector sheaves) is
a (shifted) mixed Hodge module, hence the vector spaces Hi..@U0/

c/ inherit mixed
Hodge structures from R� for all i . Moreover, for i ¤ n, the mixed Hodge structure
on Hi..@U0/

c/ is compatible with the �–action, ie t W Hi..@U0/
c/!Hi..@U0/

c/ is a
mixed Hodge structure homomorphism.
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Let hDfd be the top-degree part of f , with corresponding Milnor fibre FhDfhD 1g,
and denote by hi.t/ the Alexander polynomial (or order) associated to the torsion
�–module Hi.Fh/. On the other hand, let  fQCnC1 be the nearby cycle complex
associated to f , and denote by  i.t/ the corresponding Alexander polynomial of
H 2nC1�i

c .F0;  fQCnC1/. Liu [23, Theorem 1.1] studied the relation between the
polynomials  i.t/ and the Alexander polynomials ıi.t/ of the hypersurface comple-
ment U . In particular, he showed that  i.t/D ıi.t/ for i < n, and ın.t/ divides  n.t/.
With the above notations, we have the following result, which establishes a more precise
relationship between the polynomials ın.t/ and  n.t/ (see Theorem 7.1):

Theorem 1.2 Assume that the degree-d polynomial f W CnC1!C is transversal at
infinity. Let �� be the intersection form for .U0; @U0/ induced by � . Then

hn.t/ � n.t/D ı
2
n.t/ � det.��/:

Moreover, we have the degree estimates1

deg.det.��//� 2d ��;

where �D j�.U/j is the absolute value of the Euler characteristic of U .

As an application to the case of polynomials with only isolated singularities, we obtain
the following generalization of [5, Corollary 5.8], and a new obstruction on the (degree
of the) intersection form:

Corollary 1.3 Let f W CnC1 ! C be a degree-d polynomial that is transversal at
infinity. Assume that the hypersurface F0 D ff D 0g has only isolated singularities.
Then we have the polynomial identity

(1-1) .t � 1/.�1/nC1.1C�.U//.td
� 1/� �

Y
p2Sing.F0/

�p.t/D ın.t/
2
� det.��/;

where �p.t/ is the top local Alexander polynomial associated to the point p2Sing.F0/

and � D ..d � 1/nC1C .�1/n/=d . Moreover, the degree of the polynomial det.��/ is
even.

1Recall that the total degree of a Laurent polynomial in QŒt; t�1� is defined as the difference between
the highest and the lowest power of t (with non-zero coefficients). In particular, unit elements ctk (c 2Q ,
k 2 Z) of QŒt; t�1� have total degree zero. The total degree of a product of Laurent polynomials is the
sum of the total degrees of the factors. The degree of an element P=Q 2Q.t/ (with P , Q 2QŒt; t�1�) is
defined as the difference between the total degrees of P and Q .
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1.3 Summary

The paper is organized as follows.

In Section 2, we recall the definition and main results on the Alexander modules,
peripheral complex and the Sabbah specialization complex. In Section 3, we give
a new description of the peripheral complex associated with a hypersurface. As a
byproduct, we show that the peripheral complex underlies a (shifted) algebraic mixed
Hodge module. In Section 4, we give several estimates for the Alexander polynomials
of the hypersurface complement and study the error terms for such estimates. Section 5
recalls the basic constructions and main results on the Reidemeister torsion of a finite
CW complex, and in particular, the duality theorem and the intersection form for the
torsion. In Section 6, we introduce the boundary manifold @U0 of the hypersurface
complement, and we describe its (linking number) Alexander modules Hi..@U0/

c/ in
terms of the peripheral complex. In particular, we endow these Alexander modules
Hi..@U0/

c/ with mixed Hodge structures. Finally, Section 7 is devoted to the proof of
both Theorem 1.2 and Corollary 1.3.
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2 Preliminaries

2.1 Alexander modules

Let f D f .x1; : : : ;xnC1/W C
nC1!C be a reduced degree-d polynomial map, and

set F0 D f
�1.0/ and U D CnC1 n F0 . We say that f is transversal at infinity if

the projective closure V of F0 in CPnC1 is transversal in the stratified sense to the
hyperplane at infinity H DCPnC1 nCnC1 D fx0 D 0g. If f is transversal at infinity,
the affine hypersurface F0 is homotopy equivalent to a bouquet of n–spheres, ie

(2-1) F0 '

_
�

Sn;
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where � denotes the number of spheres in the join (see [13, page 476]). It is shown there
that � can be determined topologically as the degree of the gradient map associated to
the homogenization zf of f .

We have a surjective homomorphism: �1.U/!�1.C
�/DZ induced by f , which shall

be called the linking number homomorphism (see [8, pages 76–77] for a justification
of terminology). Let us consider the corresponding infinite cyclic cover Uc of U .
Then, under the deck group action, every homology group Hi.Uc ;Q/ becomes a
� WDQŒt; t�1�–module.

Definition 2.1 The �–module Hi.Uc/ is called the i th Alexander module of the
hypersurface complement U .

When Hi.Uc/ is a torsion �–module, we denote by ıi.t/ the corresponding Alexander
polynomial (also called order by Milnor [28]). Since U has the homotopy type of a
finite .nC1/–dimensional CW complex, Hi.Uc/D 0 for i > nC 1 and HnC1.Uc/ is
a free �–module. Hence the only interesting Alexander modules Hi.Uc/ appear in the
range 0� i � n, and the following result holds:

Theorem 2.2 [25, Theorems 3.6 and 4.1] Assume that f W CnC1!C is a reduced,
degree-d polynomial that is transversal at infinity. Then Hi.Uc/ is a finitely generated
semi-simple torsion �–module for 0 � i � n, and the roots of the corresponding
Alexander polynomial ıi.t/ are roots of unity of order d .

Remark 2.3 Maxim [25] showed that H0.Uc/Š �=.t � 1/, and HnC1.Uc/ is a free
�–module of rank j�.U/j. On the other hand, by using the additivity of the Euler
characteristic, it is easy to see from (2-1) that �.U/D .�1/nC1�. Therefore

(2-2) HnC1.Uc/Š ��:

2.2 Linking number local system

Let us consider the local system L on U with stalk � , and representation of the
fundamental group defined by the composition

�1.U/
f�
�! �1.C

�/ �! Aut.�/;

with the second map being given by 1Z 7! t . Here t is the automorphism of � given
by multiplication by t . L shall be referred to as the linking number local system.

If A� is a complex of �–sheaves, let DA� denote its Verdier dual. Then we have that

DLŠ LopŒ2nC 2�;
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where Lop is the local system obtained from L by composing all �–module structures
with the involution t 7! t�1 .

In terms of the local system L, we have the �–module isomorphisms [25, Corollary 3.4]

(2-3) H 2nC2�i
c .U ;L/ŠHi.U ;L/ŠHi.Uc/

for all i . Similarly,

(2-4) Hi.U ;Lop/ŠHi.Uc/;

where � denotes the composition with the involution t 7! t�1 . By using the universal
coefficient theorem (eg see Banagl [1, Theorem 3.4.4]), we also obtain

(2-5) H iC1.U IL/Š Free.HiC1.U ;Lop//˚Torsion.Hi.U ;Lop//:

2.3 The peripheral complex

For any complex algebraic variety X and any ring R, we denote by Db
c .X;R/ the

derived category of bounded, cohomologically R–constructible complexes of sheaves
on X . For a quick introduction to derived categories, the reader is advised to consult
Dimca [9].

By choosing a Whitney stratification of V and using the transversal hyperplane at infin-
ity H , we obtain a stratification of the pair .CPnC1;V [H /. Then, for any perversity
function Np , the intersection homology complex IC �

Np.CPnC1;L/ 2 Db
c .CPnC1; �/

is defined by using Deligne’s axiomatic construction (see Banagl [1] or Goresky and
MacPherson [15]). In this paper, we mainly use the indexing conventions from [15]. In
particular, we have the normalization property IC �

Np.CPnC1;L/jU Š LŒ2nC 2�.

Let us recall the following result:

Theorem 2.4 [25, Lemma 3.1] Assume that the polynomial f W CnC1 ! C is
transversal at infinity. Let j be the inclusion of U in CPnC1 . Then we have quasi-
isomorphisms in Db

c .CPnC1; �/

IC �m.CPnC1;L/Š j!LŒ2nC 2�;(2-6)

IC �Nl
.CPnC1;L/ŠRj�LŒ2nC 2�;(2-7)

where the middle and logarithmic perversities are defined as m.s/D Œ.s � 1/=2� and
Nl.s/D Œ.sC1/=2�. (Note that m.s/CNl.s/D s�1, ie m and Nl are superdual perversities,
in the sense of [4].)
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In the above notations, the Cappell–Shaneson superduality isomorphism can be stated
as (see [4, Theorem 3.3])

(2-8) IC �m.CPnC1;L/op
Š D.IC �Nl

.CPnC1;L//Œ2nC 2�;

where, if A is a complex of sheaves, Aop is the �–module obtained from the �–module
A by composing all module structures with the involution t 7! t�1 .

Definition 2.5 The peripheral complex R� 2Db
c .CPnC1; �/ is defined by the distin-

guished triangle (see [4])

(2-9) IC �m.CPnC1;L/! IC �Nl
.CPnC1;L/!R�Œ2nC 2�

Œ1�
! ;

or, using Theorem 2.4, by

(2-10) j!L!Rj�L!R�
Œ1�
! :

Then, up to a shift, R� is a self-dual (ie R� Š DR�opŒ�2n� 1�), torsion (ie the stalks
of its cohomology sheaves are torsion modules), perverse sheaf on CPnC1 (see [25,
Section 3.2]). In fact, R� has compact support on V [H and

(2-11) R�jV[H Š .Rj�L/jV[H :

Remark 2.6 The peripheral complex R� as defined here corresponds to R�Œ�2n� 2�

in the notations of Cappell and Shaneson; see [4] or [25].

2.4 The Sabbah specialization complex

The Sabbah specialization complex [29] (see also its reformulation by Budur [3])
can be regarded as a generalization of Deligne’s nearby cycle complex. For a quick
introduction to the theory of nearby cycles, the reader is advised to consult Dimca [9]
and Massey [24].

Let us recall the relevant definitions. Consider the commutative diagram of spaces and
maps

F0
i //

f

��

CnC1

f

��

Uloo

f

��

Uc�oo

Of
��

f0g // C C�oo �C�;y�oo

where y� is the universal covering of the punctured disk C� and the right-hand square
of the diagram is cartesian.
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Definition 2.7 The Sabbah specialization functor of f is defined by

 S
f D i�Rl�R�!.l ı�/

�
W Db

c .C
nC1;Q/!Db

c .F0; �/;

and we call  S
f

QCnC1 the Sabbah specialization complex.

Remark 2.8 The definition of the Sabbah specialization complex is slightly different
from that of the nearby cycle complex, where R�! is replaced by R�� .

In the following we write Q for the constant sheaf QCnC1 on CnC1 .

Consider the natural forgetful functor

forW Db
c .F0; �/!Db

c .F0;Q/;

which maps a torsion �–module sheaf complex to its underlying Q–complex. Let
 fQ be the Deligne nearby cycle complex associated to f . It is known that one has a
non-canonical isomorphism (see [2, page 13])

(2-12) for ı S
f .Q/Š  fQŒ�1�:

The next result is a direct consequence of [3, Lemma 3.4(b)].

Lemma 2.9 [23, Section 2.4] We have a quasi-isomorphism in Db
c .F0; �/,

(2-13) R�jF0
Š  S

f Q:

Moreover, we have the distinguished triangle in Db
c .C

nC1; �/,

(2-14) l!L!Rl�L! i! 
S
f Q

Œ1�
! :

3 Peripheral complex as a mixed Hodge module

In this section, we give a new characterization of the peripheral complex and show
that (up to a shift) it underlies a mixed Hodge module. For a quick introduction to the
category of mixed Hodge module, the reader is advised to consult Saito [30].

Let hD fd be the top-degree part of f , with corresponding Milnor fibre FhDfhD 1g.
Then, it is shown by Maxim [25] that R�jH nH\V is a local system L.h/ with stalk
�=.td � 1/ placed in degree 1, ie

(3-1) R�jH nH\V Š L.h/Œ�1�:
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Theorem 3.1 Assume that the polynomial f W CnC1 ! C is transversal at infinity
and let V be the projective completion of F0 D ff D 0g. Let iv be the inclusion of
F0 into V and ih be the inclusion of H nV \H into H . Then

R�jV ŠRiv� 
S
f Q;(3-2)

R�jH ŠRih�L.h/Œ�1�:(3-3)

Proof Let us only prove (3-2), as (3-3) can be obtained in a similar manner. Consider
the following commutative diagram of inclusions:

U l //

k0

��

j

&&

CnC1

k
��

CPnC1 nV
l 0 // CPnC1

Since V intersects H transversally, there exists a base change isomorphism associated
with this diagram (see Schürmann [32, Lemma 6.0.5]),

(3-4) l 0! ıRk 0� DRk� ı l!:

Let v be the inclusion of V into CPnC1 . Note that Rl 0�Rk 0�L D Rj�L and, by
Section 2.3, we have that R�jV D .Rj�L/jV . Then we have a distinguished triangle

(3-5) l 0! Rk 0�L!Rl 0�k
0
�L! v!.R�jV /

Œ1�
! :

Using the base change isomorphism (3-4) and the commutativity of the above diagram,
the distinguished triangle (3-5) can be written as

(3-6) Rk�l!L!Rk�Rl�L! v!.R�jV /
Œ1�
! :

Recall now that there is a distinguished triangle (2-14)

(3-7) l!L!Rl�L! i! 
S
f Q;

where i is the inclusion of F0 into CnC1 . By applying the functor Rk� to this triangle,
we obtain the distinguished triangle

(3-8) Rk�l!L!Rk�Rl�L!Rk�i! 
S
f Q

Œ1�
! :

So, by comparing the two triangles (3-6) and (3-8), we get the quasi-isomorphism

(3-9) v!.R�jV /ŠRk�i! 
S
f Q:
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Since F0 is closed in CnC1 , we have i!DRi� . So, for iv the inclusion of F0 into V ,
we have v ı iv D k ı i , hence

(3-10) Rk�i! 
S
f QDRk�Ri� 

S
f QDRv�Riv� 

S
f Q:

Finally, by applying v� to (3-9), and using (3-10) and the standard identities v�v! D id
and v�Rv� D id, we get

(3-11) R�jV ŠRiv� 
S
f Q:

The result of Theorem 3.1 above can be used to endow the peripheral complex with
a mixed Hodge module structure. Recall that there is a natural forgetful functor
forW Db

c .X; �/! Db
c .X;Q/, which assigns to a torsion complex of �–sheaves its

underlying Q–complex. In what follows, we will use the same notation for a �–complex
A� and for its underlying Q–complex for.A�/.

After applying the forgetful functor to (3-2) and using (2-12), we obtain the quasi-
isomorphism of complexes of Q–sheaves

(3-12) R�jV ŠRiv� fQŒ�1�:

Also note that the local system L.h/ 2Db
c .H nH \V;Q/ is induced by the natural

d –fold cover map pW Fh! .H nV \H / or, more precisely,

(3-13) L.h/ŠRp�QFh
2Db

c .H nH \V;Q/:

Remark 3.2 Since hDfd is a degree-d homogeneous polynomial function on CnC1 ,
the hypersurface Vh D fhD 0g � CPnC1 is already transversal to the hyperplane at
infinity H D fx0 D 0g. Let R�

h
be the peripheral complex associated to h. Then (3-3)

implies that R�jH DR�
h
jH .

We can now prove the following result:

Corollary 3.3 The peripheral complex R� underlies a (shifted) algebraic mixed Hodge
module.

Proof For the purpose of this proof only, we switch to the perverse conventions used
in Saito’s theory, according to which R�ŒnC 1� is a perverse sheaf on CPnC1 . All
sheaf complexes appearing in this proof will be complexes of Q–sheaves (ie we apply
the forgetful functor to all �–sheaf complexes).

Consider the inclusions H nV \H
s
,! V [H

r
 - V , and the associated distinguished

triangle in Db
c .V [H;Q/

(3-14) s!R�jH nV\H ŒnC 1�!R�ŒnC 1�! r�R�jV ŒnC 1�
Œ1�
! :
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Recall that R�jH nV\H Š L.h/Œ�1�, while by (3-12) we have R�jV ŠRiv� fQŒ�1�.
Since R�jH nV\H ŒnC 1� Š L.h/Œn� is a perverse sheaf on H n V \H and s is a
quasi-finite affine map, it follows from [9, Corollary 5.2.17] that s!R�jH nV\H ŒnC 1�

is a perverse sheaf on V [H . Moreover, we deduce by (3-13) that L.h/Œn�, hence also
s!R�jH nV\H ŒnC 1�, underlie algebraic mixed Hodge modules. Since QŒnC 1� is a
perverse sheaf on CnC1 underlying a mixed Hodge module, and the functor  f Œ�1� pre-
serves perverse sheaves (and mixed Hodge modules), it follows that . f Œ�1�/.QŒnC1�/

is a perverse sheaf on F0 underlying a mixed Hodge module. Moreover, as iv is a quasi-
finite affine morphism, it follows as above that R�jV ŒnC1�ŠRiv�. f Œ�1�/.QŒnC1�/

is a perverse sheaf on V underlying a mixed Hodge module. Finally, since r is proper,
r! D r� preserves perverse sheaves and mixed Hodge modules, so r�R�jV ŒnC 1� is a
perverse sheaf on V [H underlying a mixed Hodge module.

The above considerations show that R�ŒnC 1� can be regarded as an extension of
perverse sheaves, both of which underlie mixed Hodge modules. So R�ŒnC 1� is an
element in the first Yoneda extension group Y Ext1.For.C /;For.A// for suitable mixed
Hodge modules C and A as described above, where ForW MHM! PervQ denotes the
forgetful functor assigning to a mixed Hodge module the corresponding rational sheaf
complex. Since Yoneda Ext groups Y Exti agree with the derived category Ext groups
Exti D Hom.�;�Œi �/ for noetherian or artinian abelian categories such as MHM or
PervQ , and the forgetful functor

ForW Exti.C;A/! Exti.For.C /;For.A//

is surjective for all i for given mixed Hodge modules A and C (see [31, Theorem 2.10]),
it follows that R�ŒnC 1� underlies a mixed Hodge module.

4 Error estimates for Alexander polynomials

In this section, we give several error estimates for Alexander polynomials of hypersur-
face complements.

Proposition 4.1 In our notations, we have �–module isomorphisms

(4-1) H 2nC1�i.CPnC1
IR�/Š

�
Hi.Uc/ i < n;

H2n�i.Uc/ i > n;

and an exact sequence of �–modules for i D n:

(4-2) 0! ��! ��˚Hn.Uc/!H nC1.CPnC1
IR�/!Hn.Uc/! 0:

Algebraic & Geometric Topology, Volume 15 (2015)



Reidemeister torsion and Alexander polynomials of hypersurface complements 2767

Proof Consider the distinguished triangle

Rj!L!Rj�L!R�
Œ1�
!

of Definition 2.5. By applying the hypercohomology with compact support functor, we
have the long exact sequence

� � � !H 2nC1�i.CPnC1
IR�/!H 2nC2�i.CPnC1

IRj!L/

!H 2nC2�i.CPnC1
IRj�L/! � � � :

The claim follows from the above sequence together with the following �–isomorphisms
from Section 2.2:

H 2nC2�i.CPnC1
IRj!L/ŠH 2nC2�i

c .U IL/ŠHi.Uc/;

H 2nC2�i.CPnC1
IRj�L/ŠH 2nC2�i.U IL/

Š

8<:
0 i < nC 1;

��˚Hn.Uc/ i D nC 1;

H2nC1�i.Uc/ i > nC 1:

Recall that ıi.t/ denotes the Alexander polynomial associated to the Alexander module
Hi.Uc/ (i � n). Let ri.t/ be the Alexander polynomial of the torsion �–module
H 2nC1�i.CPnC1IR�/. The above proposition yields the following relationship be-
tween the polynomials ri and ıi :

Corollary 4.2 We have

(4-3) ri.t/D

�
ıi.t/ i < n;

ı2n�i.t/ i > n;

and ın.t/ � ın.t/ divides rn.t/.

Set

'.t/D
rn.t/

ın.t/ � ın.t/
:

Let Fh denote as before the Milnor fibre associated to the polynomial h D fd , the
top-degree part of the polynomial f . Let hi.t/ be the Alexander polynomial associated
to Hi.Fh/. Then it was shown in [25, Theorem 4.7] that hi.t/D ıi.t ) for i < n, and
ın.t/ divides hn.t/. Set

'1.t/D
hn.t/

ın.t/
:
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Similarly, we let  i.t/ denote the Alexander polynomial associated to the torsion
�–module H 2nC1�i

c .F0I 
S
f

Q/. It was shown in [23, Theorem 1.1] that  i.t/D ıi.t )
for i < n, and ın.t/ divides  n.t/. Set

'2.t/D
 n.t/

ın.t/
:

As can be seen from their definitions, the polynomials '1.t/ and '2.t/ can be regarded
as error estimates for the Alexander polynomial ın.t/. The above polynomial invariants
are related by the following result:

Theorem 4.3 Assume that the polynomial f W CnC1 ! C is transversal at infinity.
With the above notations, we have the equalities

rn.t/D hn.t/ � n.t/D hn.t/ � n.t/;(4-4)

'.t/D '1.t/ �'2.t/D '1.t/ �'2.t/:(4-5)

Remark 4.4 Since the polynomials hi.t/, ıi.t/ and  i.t/ are products of cyclo-
tomic polynomials (eg see [23]), the involution operation � keeps these polynomials
unchanged.

In the course of proving Theorem 4.3, we need the following technical result:

Lemma 4.5 We have the �–module isomorphisms, for all i ,

H 2nC1�i
c .H nV \H IR�/ŠHi.Fh/;(4-6)

H 2nC1�i.H IR�/ŠHi.Fh; @Fh/;(4-7)

H 2nC1�i.V \H IR�/ŠHi�1.@Fh/:(4-8)

Proof Choose coordinates Œx0; : : : ;xnC1� for CPnC1 , so that H D fx0 D 0g is the
hyperplane at infinity. Then O D Œ0; : : : ; 0; 1� corresponds to the origin in CnC1 .
Define

˛W CPnC1
!RC; ˛ WD

jx0j
2PnC1

iD0 jxi j
2
:

Note that ˛ is a well-defined, real analytic and proper function satisfying

0� ˛ � 1; ˛�1.0/DH and ˛�1.1/DO:

Since ˛ has only finitely many critical values, there exists � sufficiently small that the
interval .0; �� contains no critical values. Set

U� D ˛
�1Œ0; �/:
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Then U� is a tubular neighbourhood of H in CPnC1 , and note that CPnC1 nU� is a
closed large ball of radius .1� �/=� in CnC1 . Set

U �� D ˛
�1.0; �/D U� nH:

Let us now consider the commutative diagram of inclusions

U ��
c //

u

��

CnC1

k

��

Uloo

j}}
U�

p // CPnC1

and restrict the distinguished triangle (3-6) over U� . We get a triangle

(4-9) p�Rk�l!L! p�Rk�Rl�L! p�v!.R�jV /
Œ1�
! ;

where v denotes as before the inclusion of V in CPnC1 . Let us first give geometric
interpretations to all �–modules appearing in the hypercohomology long exact sequence
associated to (4-9). First note that

p�Rk�l!LŒ2nC 2�
.1/
Š Ru�c

�l!LŒ2nC 2�

.2/
Š Ru�c

�k�k!l!LŒ2nC 2�

Š Ru�c
�k�j!LŒ2nC 2�

.3/
Š Ru�u

�p�ICm.CPnC1;L/

Š Ru�ICm.U
�
� ;L/;

where (1) follows from the base change isomorphism p!Rk� DRu�c
! (together with

p! D p� and c! D c� , as p and c are both open inclusions), for (2) we use the known
identity k�k! Š id, and (3) follows from Theorem 2.4.

Set
S1 D ˛

�1.�0/

for 0< �0 < �. Then we get, as in [25, Theorem 4.7],

H 2nC1�i.U�Ip
�Rk�Rl!L/ Š H�i�1.U �� I ICm.U

�
� ;L//

.1/
Š H�i�1.S1I ICm.U

�
� ;L/jS1/

Š Hi.S1 nS1\V IL/
.2/
Š Hi.Fh/;
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where (1) follows from [17, Lemma 8.4.7(c)], and (2) follows from the fact that
V intersects H transversally. In fact, the corresponding infinite cyclic cover of
S1 n S1 \ V is homotopy equivalent to Fh ; see [25, Proposition 4.9]. Also note
that ICm.U

�
� ;L/jS1 Š ICm.CPnC1;L/jS1 . Similarly, by using Theorem 2.4 and

duality, we have

H 2nC1�i.U�Ip
�Rk�Rl�L/ŠH�i�1.S1I ICNl.CPnC1;L/jS1/ŠHi.Fh; @Fh/:

So, by comparing the hypercohomology long exact sequence associated to (4-9) with
the homology long exact sequence induced by the natural inclusion @Fh! Fh and
using the above calculations, we get the �–module isomorphism

(4-10) H 2nC1�i.S1IR�jS1/ŠHi�1.@Fh/:

Recall that the triangle (3-6) was obtained from (3-5) by a base change isomorphism,
so the associated hypercohomology long exact sequences for the restrictions of these
triangles over U� coincide. Note that [17, Lemma 8.4.7(a)] shows that, for any
F � 2Db

c .CPnC1/, there is an isomorphism

(4-11) H�.U�IF �/ŠH�.H IF �/:

So, by restricting (3-5) over H we get the same hypercohomology long exact sequence
as for restricting (3-5) and (3-6) over U� . Let ihv be the inclusion of H \V into H .
By using the proper base change isomorphism [9, Theorem 2.3.26] for the diagram

H nH \V
ih //

��

H

��

H \V
ihvoo

��
U k0 // CPnC1 nV

l 0 // CPnC1 V;
voo

we have (using the notations of Theorem 3.1)

.Rl 0! Rk 0�L/jH DRih!..Rk 0�L/jH nH\V /DRih!.R�jH nH\V /;(4-12)

.Rv!.R�jV //jH DRihv!.R�jH\V /:(4-13)

So, the hypercohomology long exact sequence associated to the restriction of the
triangle (3-5) over H becomes

� � �!H 2nC1�i
c .H nV \H IR�/!H 2nC1�i.H IR�/!H 2nC1�i.V \H IR�/!� � � :
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Therefore, by the above calculations for the restriction of (3-6) over U� , we get the
�–module isomorphisms

H 2nC1�i
c .H nV \H IR�/ŠHi.Fh/;

H 2nC1�i.H IR�/ŠHi.Fh; @Fh/;

H 2nC1�i.V \H IR�/ŠHi�1.@Fh/

for all i .

Proof of Theorem 4.3 Let us consider the long exact sequence of hypercohomology
with compact supports for the peripheral complex R� with respect to the inclusions

F0 ,! V [H  -H:

By using duality and [25, Theorem 4.7], we have that

Hi.Fh; @Fh/ŠH2n�i.Fh/ŠH2n�i.Uc/

for i > n. On the other hand, [23, Theorem 1.1] yields that

H 2nC1�i
c .F0I 

S
f Q/ŠHi.Uc/

for i < n. By using Proposition 4.1 and vanishing results for perverse sheaves on affine
spaces, we obtain the �–module isomorphisms

H 2nC1�i
c .F0I 

S
f Q/ŠH 2nC1�i.V [H IR�/ for i < n;(4-14)

H 2nC1�i.V [H IR�/ŠH 2nC1�i.H IR�/ŠHi.Fh; @Fh/ for i > n;(4-15)

and a short exact sequence for i D n,

(4-16) 0!H nC1
c .F0I 

S
f Q/!H nC1.V [H IR�/!H nC1.H IR�/! 0:

Similarly, for the inclusions .H n V \H / ,! V [H  - V , there is a short exact
sequence

(4-17) 0!H nC1
c .H nV \H IR�/!H nC1.V [H IR�/!H nC1.V IR�/! 0:

By using (4-7) and duality, the Alexander polynomial associated to H nC1.H IR�/
is hn.t/. Moreover, since

D. S
f Q/D . S

f Q/opŒ2nC 1�;

we have by Theorem 3.1 that

(4-18) H nC1.V IR�/ŠH nC1.V I iv� 
S
f Q/ŠH nC1.F0I 

S
f Q/

ŠH nC1
c .F0I . 

S
f Q/op/;
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where the last isomorphism follows from duality and the universal coefficient theorem.
So, the Alexander polynomial associated to H nC1.V IR�/ is  n.t/.

Since R� is supported on V [H , the result follows now by using the multiplicativity of
the Alexander polynomials associated to the short exact sequences (4-16) and (4-17).

We conclude this section with the following degree estimate:

Proposition 4.6 Assume that the polynomial f W CnC1!C is transversal at infinity.

(a) We have the degree estimates

deg'2 � deg'1 � d ��;

hence
deg' � 2d ��;

where �D j�.U/j and d is the degree of f .

(b) If F denotes the generic fibre of f , then Fh and F have isomorphic Z–
homology groups.

(c) Let zf be the homogenization of f , with corresponding Milnor fibre zF D
f zf D 1g. Then, if � D 0, the spaces Uc , F , Fh and zF are all homotopy
equivalent to each other.

Proof (a) Let zFt be the Milnor fibre of zf defined by f zf D tg for small enough t 2C� .
Clearly, zFt is homotopy equivalent to zF . Without loss of generality, t can be chosen so
that Ft D f

�1.t/ is the generic fibre of f , hence Ft is smooth. Since V intersects H

transversally, the hyperplane fx0 D 0g in CnC2 and its parallel hyperplane fx0 D 1g

are both generic for zFt in the sense of [13]. It follows that, up to homotopy, zFt is
obtained from either the Milnor fibre Fh of hD fd , or from the generic fibre Ft , by
attaching d �� cells of dimension nC 1 [13, Proposition 9]. On the other hand, [23,
Corollary 6.5] shows that there exists a natural map from Uc to zF , which induces
an .nC1/–homotopy equivalence and, in particular, we have that Hn.Uc/ŠHn. zF /.
These two facts together yield that deg'1 � d ��. Note also that by [23, Theorem 1.2]
we have that dim H n

c .F0;  fQ/ � dim Hn.Ft /. Therefore, deg'2 � deg'1 � d ��,
so deg' D deg'1C deg'2 � 2d ��.

(b) The above homotopy argument yields the following isomorphisms for i � n� 1:

Hi.Fh;Z/ŠHi. zF ;Z/ŠHi.F;Z/:

Since Fh and F are n–dimensional affine varieties, both of them have the homotopy
type of a finite n–dimensional CW complex. So Hn.Fh;Z/ and Hn.F;Z/ are free
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abelian groups, and it remains to show that they have the same rank. This is indeed
true, since the above discussion shows that �.Fh/D �.F /.

(c) If �D 0, then Fh and F are homotopy equivalent to zF . In particular, the natural
map from Uc to zF induces isomorphisms on all homology groups with Z–coefficients.
Since this map is already an .nC1/–homotopy equivalence, it follows by Hurewicz’s
theorem that Uc is homotopy equivalent to zF .

Remark 4.7 In fact, we proved the equalities

d ��� deg'1 D dim HnC1. zF /;(4-19)

dim Hn.F /� dim H n
c .F0;  fQ/D deg'1� deg'2:(4-20)

5 Reidemeister torsion and Alexander polynomials

5.1 Reidemeister torsion of chain complexes

In this section, we recall the definition and main results about the Reidemeister torsion,
for more details see Kirk and Livingston [18] and Cogolludo and Florens [5].

Let C� be a finite chain complex

C� D Cn
@ // � � �

@ // C0

with Ci finite-dimensional F–vector spaces and @ ı @D 0. Choose a basis ci for Ci ,
hi a basis for the homology Hi.C�/ and hi a lift of hi to Ci . Let bi be a basis for
Bi WD Image.@ WCiC1!Ci/ and ybi a lift of bi in CiC1 . If Zi denotes the i–cycles, by
using the inclusions Bi �Zi � Ci together with the isomorphisms Zi=Bi ŠHi.C�/

and Ci=Zi Š Bi�1 it follows that bihi
ybi�1 is a basis of Ci . Denote by Œa j b� the

determinant of the transition matrix from the basis a to the basis b.

Definition 5.1 [27] The torsion of .C�I c; h/ is defined as

(5-1) �.C�I c; h/D

nY
iD0

Œbihi
ybi�1 j ci �

.�1/i
2 F�=f˙1g:

The torsion does not depend on the choice of basis b and its lifts. It depends on the
choice of c and h as follows:

(5-2) �.C�I c
0; h0/D �.C�I c; h/

Y
i

�
Œh0i j hi �

Œc0i j ci �

�.�1/i

:
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5.2 Torsion and Alexander polynomials

Let X be a finite connected CW complex, with � D �1.X /. Fix an epimorphism
�W �!Z and note that � extends naturally to an epimorphism of algebras ZŒ��!ZŒZ�,
which we also denote by � . We identify ZŒZ� with the Laurent polynomial ring
ZŒt; t�1�. If zX ! X is the universal cover of X , then the cellular chain complex
C�. zX IQ/ is a QŒ��–module, freely generated by the lifts of the cells of X . Consider
the chain complex of the pair .X; �/ defined as the complex of QŒt; t�1�–modules

C
�
� .X IQŒt; t

�1�/ WDQŒt; t�1�˝QŒ�� C�. zX IQ/:

Let X c denote the infinite cyclic cover defined by the kernel of � . Then, under the
action of the deck group Z, the chain complex C�.X

c ;Q/ becomes a complex of
� WDQŒt; t�1�–modules that is canonically isomorphic to C

�
� .X IQŒt; t

�1�/.

Denote by Q.t/ the fraction field of QŒt; t�1� and define

C
�
� .X;Q.t//D C�.X

c ;Q/˝QŒt;t�1�Q.t/:

The i th homology of .X; �/ (also called the i th Alexander module) is defined to be the
QŒt; t�1�–module

H
�
i .X;QŒt; t

�1�/ WDHi.C
�
� .X IQŒt; t

�1�//ŠHi.X
c ;Q/;

and we extend the definition to H
�
i .X;Q.t// WDHi.C

�
� .X;Q.t///. Since QŒt; t�1� is

a principal ideal domain and Q.t/ is flat over QŒt; t�1�, it follows that

H
�
i .X;Q.t//DH

�
i .X;QŒt; t

�1�/˝Q.t/:

Note that the complex C
�
� .X IQ.t// is Q.t/–acyclic if H

�
i .X;QŒt; t

�1�/ is a torsion
�–module for all i .

We now define the Reidemeister torsion for the pair .X; �/. For this, we first note that
the complex C

�
� .X IQ.t// is based by construction.

Definition 5.2 Fix a basis for the homology H
�
� .X;Q.t//. The Reidemeister torsion

of .X; �/ with respect to this basis is defined as

��.X /D �
�
C
�
� .X;Q.t//

�
2Q.t/�:

We next indicate a basis-free definition for the Reidemeister torsion. Since QŒt; t�1�

is a PID, any QŒt; t�1�–module M has a decomposition into a direct sum of cyclic
modules. Recall that the order of M is defined as the product of the generators of the
torsion part. If the module M is free, the order is 1 by convention.
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Definition 5.3 The i th Alexander polynomial ı�i .X / of .X; �/ is defined to be the
order of the QŒt; t�1�–module H

�
i .X;QŒt; t

�1�/.

The torsion of .X; �/ can be computed in terms of the Alexander polynomials as
follows:

Theorem 5.4 [18, Theorem 3.4] Let ��.X / be the torsion of .X; �/ with respect to
some basis in homology. Then, up to multiplication by ctk (c 2Q� and k 2 Z), we
have that

(5-3) ��.X /D
Y

i

ı
�
2iC1

.X /

ı
�
2i
.X /

:

So we can regard the right-hand side of (5-3) as a basis-free definition of the Reide-
meister torsion.

5.3 Duality and intersection forms

Let X be a smooth compact 2m–dimensional manifold with boundary @X . Then it
is known that X has a PL structure and any two PL–triangulations have a common
linear subdivision which is PL. Endow X with the CW decomposition induced by one
of these. Since X is compact, the associated CW complex is finite. Note that @X
inherits the structure of a PL–manifold from X and the triangulations of X can be
used to define the chain complex C

�
� .X; @X;Q.t//. In this setting one can construct

non-singular Poincaré duality pairings for 0� i � 2m,

(5-4) H
�
i .X;Q.t//�H

�
2m�i

.X; @X;Q.t//!Q.t/:

The intersection form of .X; �/ is the sesquilinear form

(5-5) ��W H �
m.X;Q.t//�H �

m.X;Q.t//!Q.t/

defined by the composition

H �
m.X;Q.t//�H �

m.X;Q.t//!H �
m.X;Q.t//�H �

m.X; @X;Q.t//!Q.t/;

where the first map is induced by inclusion and the second map is the pairing (5-4).

Let � denote the canonical involution on QŒt; t�1�. For each i and for a fixed basis
on H

�
i .X;Q.t//, we choose the dual basis on H

�
2m�i

.X; @X;Q.t// given by (5-4).
Then we have [18; 26] that

(5-6) ��.X; @X / � ��.X /D 1:

The following result will be useful later:
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Lemma 5.5 [5; 18] For any .X 2m; �/ as above such that X has the homotopy type
of an m–dimensional CW complex and C

�
� .@X;Q.t// is acyclic,

(5-7) ��.@X /D ��.X / � ��.X / � Œdet.��/�.�1/m :

6 Boundary manifold of a hypersurface complement

In this section, we define the boundary manifold of a hypersurface complement and
investigate its topology. We make use of the peripheral complex to study the linking
number infinite cyclic cover of the boundary manifold. In particular, by using results
from Section 3, we put mixed Hodge structures on the corresponding Alexander modules
associated to the boundary manifold.

Choose coordinates Œx0; : : : ;xnC1� for CPnC1 , and H D fx0 D 0g. Define

� W CPnC1
!RC; � D

j zf j2jx0j
2�PnC1

iD0 jxi j
2
�dC1

;

with zf denoting the homogenization of f (so that V is the zero set of zf in CPnC1 ).
Note that � is well-defined, it is real analytic and proper, and

��1.0/D V [H:

Since � has only finitely many critical values, there exists a positive real number "
sufficiently small that the interval .0; "� contains no critical values. Set

U0 D �
�1.Œ";C1//:

So U0 is the complement of the regular tubular neighbourhood of V [H in CPnC1 .

Moreover, U0 is a manifold with boundary, homotopy equivalent to U (eg see Dimca [8,
page 149]). Note that while U0 has the homotopy type of a finite .nC1/–dimensional
CW complex, its boundary @U0 is a smooth, compact, real (2nC1)-dimensional mani-
fold. The inclusion @U0 ,! U0 is an n–homotopy equivalence [8, Proposition (5.2.31)],
hence �i.@U0/D �i.U0/ for i < n, and we have an epimorphism �n.@U0/� �n.U0/.
Therefore

�W �1.@U0/ �� �1.U0/D �1.U/
f�
�� �1.C

�/D Z

is an epimorphism, which defines the infinite cyclic cover .@U0/
c of @U0 .

We refer to @U0 as the boundary manifold of the hypersurface complement U . For a
study of topological properties of such boundary manifolds, see Cohen and Suciu [6; 7].
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Proposition 6.1 We have the �–module isomorphisms

(6-1) H
�
i .@U0;QŒt; t

�1�/ŠHi..@U0/
c/ŠH 2nC1�i.V [H IR�/:

In particular, Hi..@U0/
c/ is a torsion �–module and C

�
� .@U0;Q.t// is Q.t/–acyclic.

Moreover, the zeros of the Alexander polynomial associated to Hi..@U0/
c/ are roots of

unity for all i , and have order d except for i D n. Finally, Hi..@U0/
c/ is a semi-simple

�–module for i ¤ n.

Proof We have the isomorphisms of �–modules (see [25, Corollary 3.4, Lemma 3.5])

IH m
i .CPnC1;L/ŠHi.U ;L/ŠHi.U0;L/ŠH

�
i . U0;QŒt; t

�1�/;(6-2)

IH
Nl

i .CPnC1
IL/ŠH BM

i .U IL/ŠH
�
i .U0; @U0IQŒt; t

�1�/;(6-3)

where H BM
� denotes the Borel–Moore homology and the last isomorphism in (6-3)

follows by Poincaré duality and homotopy equivalence. So, by comparing the homology
exact sequence (with QŒt; t�1�–coefficients) of the pair .U0; @U0/ with the hyper-
cohomology long exact sequence of the distinguished triangle defining the peripheral
complex, we obtain the isomorphism of �–modules

(6-4) H
�
i .@U0;QŒt; t

�1�/ŠH 2nC1�i.CPnC1
IR�/:

And, since R� is supported on V [H , we obtain the isomorphisms in (6-1). Moreover,
as R� is a �–torsion sheaf complex, (6-4) gives that Hi..@U0/

c/ŠH
�
i .@U0;QŒt; t

�1�/

is a �–torsion module. In particular, the chain complex C
�
� .@U0;Q.t// is Q.t/–acyclic.

The zeros of the corresponding Alexander polynomials are roots of unity since this is the
case for the Alexander polynomials associated to the modules H 2nC1�i.V [H IR�/
(eg see [25]). The remaining claims follow from Theorem 2.2 and Proposition 4.1.

The following result is a direct consequence of Proposition 6.1 and Corollary 3.3.

Corollary 6.2 The Alexander modules Hi..@U0/
c/ of the boundary manifold @U0 are

endowed with mixed Hodge structures induced from the peripheral complex for all i .
Moreover, for i ¤ n, this mixed Hodge structure is compatible with the �–action, ie
t W Hi..@U0/

c/!Hi..@U0/
c/ is a mixed Hodge structure homomorphism for i ¤ n.

Proof By Corollary 3.3, the peripheral complex R� underlies a (shifted) mixed
Hodge module. Hence, the Q–vector space isomorphism (underlying the �–module
isomorphism of Proposition 6.1)

(6-5) Hi..@U0/
c/ŠH 2nC1�i.V [H IR�/

defines a mixed Hodge structure on Hi..@U0/
c/ for all i .
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In order to prove the second claim, note that by [23] the mixed Hodge structure on

H 2n�i
c .F0I fQ/ŠHi.Fh/ for i < n

is compatible with the �–action. Then the isomorphism (4-14) shows that the resulting
mixed Hodge structure on Hi..@U0/

c/ has the same property for i < n.

By Alexander duality on H�.Fh/, the mixed Hodge structure on Hi.Fh; @Fh/ is
compatible with the �–action for i > n. Then, by using the isomorphism (4-15), the
resulting mixed Hodge structure on Hi..@U0/

c/ satisfies the same property for i >n.

Our next result gives a geometric interpretation of the homology of the boundary
manifold.

Let g D x0
zf be the homogeneous polynomial of degree d C 1 whose zero locus

is the divisor V [H . Consider the associated Milnor fibre Fg D fg D 1g and its
boundary manifold @Fg . Then there exists a natural .dC1/–fold covering map (see
[8, page 149])

(6-6) @Fg! @U0:

Proposition 6.3 The covering map (6-6) induces isomorphisms of Q–vector spaces

(6-7) Hi.@Fg/ŠHi.@U0/ for i ¤ n; nC 1:

Moreover, if the complex numbers �˛ D exp.2� i˛=.dC1//, with ˛D 1; 2; : : : ; d , are
not among the roots of  n.t/, then the isomorphism (6-7) holds for all i . In particular,
this is the case if �D 0 (eg f is homogeneous).

Proof Let N.�; i/ be the number of direct summands in the .t��/–torsion part
of Hi..@U0/

c IC/, ie the number of the Jordan blocks with eigenvalue � for the
automorphism on Hi..@U0/

c IC/ induced by the �–action. Define a rank-one local
system L� on @U0 by the composed map

�1.@U0/
�
�! Z �!C�;

where the last map is defined by 1Z 7! �. If �D 1, then L� D C . The Wang exact
sequence

� � � �!Hi..@U0/
c
IC/

t��
�!Hi..@U0/

c
IC/�!Hi.@U0IL�/�!Hi�1..@U0/

c
IC/�!� � �

yields (eg see [12, Theorem 4.2]) that

(6-8) dim Hi.@U0IL�/DN.�; i/CN.�; i � 1/
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for all i . On the other hand, by using the .dC1/–fold covering map (6-6), we have
that

(6-9) Hi.@FgIC/Š
M

�dC1D1

Hi.@U0IL�/:

If �d ¤ 1, then it follows from Proposition 6.1 that N.�; i/D 0 for i ¤ n. (Note that
gcd.d; dC1/D 1.) So, by using (6-8), we get the isomorphism (6-7) for i ¤ n, nC1.

Moreover, if the complex numbers �˛ D exp.2� i˛=.d C 1//, with ˛ D 1; 2; : : : ; d ,
are not among the roots of  n.t/, then the short exact sequence (4-16) shows that
N.�; n/D 0 for �2 f�˛ j ˛D 1; 2; : : : ; dg. So, in view of (6-8), the isomorphism (6-7)
holds also for i D n, nC 1. In particular, this is the case when �D 0, since by [23,
Proposition 4.2] it follows that  n.t/D hn.t/ has only roots of unity of order d .

Remark 6.4 The natural inclusion @U0 ,! U0 is an n–homotopy equivalence, and so
is the inclusion @Fg ,! Fg (see [8, Proposition (3.2.4)]). Then Proposition 6.3 yields
that Hi.Fg/ŠHi.U/ for i < n (compare with [10, Theorem 1.4]).

Example 6.5 Let V [H be the hypersurface in CPnC1 defined by gDx0x1 � � �xnC1 .
Then both @Fg and @U0 are homotopy equivalent to Sn � .S1/nC1 (see [8, Examples
(5.2.29)]).

7 Alexander polynomial estimates via Reidemeister torsion

In this section, we refine the error estimates for Alexander polynomials given in
Section 4 by making use of Reidemeister torsion and the intersection form.

Proposition 6.1 can be used to prove the following refinement of Theorem 4.3:

Theorem 7.1 Assume that the degree-d polynomial f W CnC1!C is transversal at
infinity. Let �� be the intersection form for .U0; @U0/ associated to � . Then, with the
notations from Section 4, we have

det.��/D '.t/;(7-1)

hn.t/ � n.t/D ı
2
n.t/ � det.��/:(7-2)

Moreover, deg.det.��//D deg'.t/� 2d ��, where �D j�.U/j.
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Proof By Theorem 5.4, we have

(7-3) ��.U0/D ��.U/D
nY

iD0

ıi.t/
.�1/iC1

:

Since U0 has the homotopy type of a finite .nC1/–dimensional CW complex and the
complex C

�
� .@U0;Q.t// is Q.t/–acyclic, Lemma 5.5 yields the Alexander polynomial

identity

(7-4) ��.@U0/D

nY
iD0

fıi.t/ � ıi.t/g
.�1/iC1

� Œdet.��/�.�1/nC1

:

On the other hand, by using Theorem 5.4 and Proposition 6.1, we have

(7-5) ��.@U0/D

2nY
iD0

ri.t/
.�1/iC1

:

Recall that, by (4-3), the polynomials ri.t/ and ıi.t/ are related by

(7-6) ri.t/D

�
ıi.t/ i < n;

ı2n�i.t/ i > n:

So, by plugging (7-5) and (7-6) into formula (7-4), we obtain

(7-7) rn.t/D ın.t/ � ın.t/ � det.��/:

Therefore,

(7-8) det.��/D
rn.t/

ın.t/ � ın.t/
D '.t/

and, by using Theorem 4.3 and Remark 4.4, we get the identity

(7-9) hn.t/ � n.t/D ı
2
n.t/ � det.��/:

The degree estimate deg.det.��//D deg' � 2d �� follows from Proposition 4.6.

Remark 7.2 Since V intersects H transversally, we can take the (closed) regular
neighbourhood N of V [H to be the union of a regular neighbourhood N.V / of V

with a tubular neighbourhood of the hyperplane at infinity (after rounding corners).
Then

(7-10) @U0 D
�
S2nC1

R
n .S2nC1

R
\N ı.V //

�
[ .BR \ @N.V //;

where BR is a closed large ball of radius R in CnC1 with boundary sphere S2nC1
R

. In
[25, Proposition 4.9] it is shown that the infinite cyclic cover of S2nC1

R
n.S2nC1

R
\N.V //

is homotopy equivalent to the Milnor fibre Fh . Moreover, if .BR \ @N.V //
c denotes
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the corresponding infinite cyclic cover of BR \ @N.V /, it follows as in Lemma 4.5
that

(7-11) Hi..BR \ @N.V //
c/ŠH 2nC1�i

c .F0;  
S
f Q/

for all i . These two facts together give a geometric interpretation of Theorem 7.1,
which is also consistent with the proof of [5, Theorem 5.6].

Remark 7.3 If �D 0, then the chain complex C
�
� .U0;Q.t// is Q.t/–acyclic, thus

the intersection pairing of Section 5.3 is trivial. In this case, we have det.��/ D 1.
This fact, coupled with the previous theorem, gives another proof of the result obtained
in [23], asserting that

(7-12) �D 0 D) ' D '1 D '2 D 1:

Example 7.4 If �D 0 (eg f is homogeneous), then ıi.t/D hi.t/ for all i . Then it
is known (see [8, (4.1.21)]) that

(7-13)
nY

iD0

hi.t/
.�1/iC1

D .td
� 1/��.Fh/=d :

So,

(7-14) ��.@U0/D .t
d
� 1/�2�.Fh/=d :

As an application of Theorem 7.1, we have the following:

Corollary 7.5 Assume that the polynomial f W CnC1! C is transversal at infinity
and the hypersurface F0 has only isolated singularities. Then

(7-15) .t � 1/�C.�1/nC1

.td
� 1/�

Y
p2Sing.F0/

�p.t/D ın.t/
2
� det.��/;

where �p.t/ is the (top) local Alexander polynomial associated to the singular point
p 2 Sing.F0/ and � D ..d � 1/nC1C .�1/n/=d . In particular, deg.det.��//D deg'
is even.

Proof We only need to compute the polynomials  n.t/ and hn.t/. For the case of
isolated singularities, we have by [23, Section 5.2.1] that

(7-16)  n.t/D .t � 1/�
Y

p2Sing.F0/

�p.t/;

while [8, Example (4.1.23)] provides another equality,

(7-17) hn.t/D .t � 1/.�1/nC1

.td
� 1/� ;
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where � D ..d � 1/nC1C .�1/n/=d . Then (7-15) follows from Theorem 7.1.

Since F0 has only isolated singularities, V \H is a smooth hypersurface in H . Then
fhCxd

0
D 0g is a smooth degree-d hypersurface in CPnC1 . By [8, Corollary (5.4.4)],

�.F0;  fQ/C�.H \V / equals the Euler characteristic number of any smooth degree-
d hypersurface in CPnC1 , so, in particular,

(7-18) �.F0;  f /C�.H \V /D �.fhCxd
0 D 0g/:

Note also that

(7-19) �.Fh/C�.H \V /D �.fhCxd
0 D 0g/:

By the last two identities, we get �.Fh/D �.F0;  fQ/, which shows that deg'1 D

deg'2 . So deg' D deg'1C deg'2 � 0 .mod 2/.

Remark 7.6 (a) When nD 1, Corollary 7.5 also follows from [5, Corollary 5.8].

(b) It would be interesting to see if the above property of (the degree of determinant
of) the intersection pairing remains valid if f has arbitrary singularities.

(c) For the case of isolated singularities, � is given by the formula

(7-20) �D .d � 1/nC1
�

X
p2Sing.F0/

�p;

where �p is the Milnor number of f at p (see [13]). Then the degree estimates of
Theorem 7.1, together with Corollary 7.5, yield that

2.d � 1/nC1
D 2 deg ın.t/C deg.det.��//� 2 deg ın.t/C 2d ��:

Therefore,

(7-21) deg ın.t/� .d � 1/nC1
� d ��:

In particular, we obtain a non-vanishing result for Hn.Uc/ for small �. Such examples
(with �D 1, 2) are given in [16].

Example 7.7 If F0 is smooth, then ın.t/ D 1 (see [21, Lemma 1.5]) and � D

.d � 1/nC1 . So, by Corollary 7.5, we conclude that

det.��/D .t � 1/.d�1/nC1C.�1/nC1

.td
� 1/� ;

where � D ..d � 1/nC1C .�1/n/=d .
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Example 7.8 In relation to Remark 7.6(c), consider the hypersurface in CP3 defined
by V D fx0x1x2Cx3

3
D 0g. Then V has only isolated singularities and it is known

that � D 2 for any generic hyperplane at infinity (see [16, Conjecture 20]). So,
deg ı2.t/� .3� 1/3� 3 � 2D 2.

Example 7.9 Consider the hypersurface in CP2 defined by V Dfx0x3
1
Cx4

1
Cx4

2
D0g.

The singular locus of V is just one point, p D Œ1; 0; 0�. Let H D fx0 D 0g be the
hyperplane at infinity. Note that V \H is a smooth hypersurface in H , hence V is
transversal to H . The link pair of the point p in .CP2;V / is obtained by intersecting
the affine variety x3

1
Cx4

1
Cx4

2
D 0 in C2 with a small sphere about the origin. Since

we work in a neighbourhood of the origin, by an analytic change of coordinates this
is the same as the link pair of the origin in the variety x3

1
Cx4

2
D 0. The polynomial

x3
1
Cx4

2
is weighted homogeneous with weighted degree 12 for the weight .4; 3/, and

the characteristic polynomial of the monodromy homeomorphism of the associated
Milnor fibration is .t4�t2C1/.t2�tC1/. So the link of the singular point is a rational
homology sphere, which in turn yields that F0 is a rational homology manifold. In
particular, ı1.1/¤ 0 (eg see [23, Corollary 5.4]). Also note that the local Alexander
polynomial of the link of the singularity has prime divisors, none of which divides t4�1.
Thus, they cannot be among the prime divisors of ı1.t/ (see [21]), hence ı1.t/D 1.
Equation (7-20) yields that �D 3. By Corollary 7.5, we conclude that

det.��/D .t � 1/4.t4
� 1/2.t4

� t2
C 1/.t2

� t C 1/:

Note also that gcd.12; 5/D 1, so it follows from by Proposition 6.3 that @Fg and @U0

have the same rational homology groups, where g D x0.x0x3
1
Cx4

1
Cx4

2
/.
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[6] D C Cohen, A I Suciu, Boundary manifolds of projective hypersurfaces, Adv. Math.
206 (2006) 538–566 MR2263714

[7] D C Cohen, A I Suciu, The boundary manifold of a complex line arrangement, from:
“Groups, homotopy and configuration spaces”, (N Iwase, T Kohno, R Levi, D Tamaki, J
Wu, editors), Geom. Topol. Monogr. 13 (2008) 105–146 MR2508203

[8] A Dimca, Singularities and topology of hypersurfaces, Springer, New York (1992)
MR1194180

[9] A Dimca, Sheaves in topology, Springer, Berlin (2004) MR2050072

[10] A Dimca, A Libgober, Regular functions transversal at infinity, Tohoku Math. J. 58
(2006) 549–564 MR2297199

[11] A Dimca, L Maxim, Multivariable Alexander invariants of hypersurface complements,
Trans. Amer. Math. Soc. 359 (2007) 3505–3528 MR2299465

[12] A Dimca, A Némethi, Hypersurface complements, Alexander modules and monodromy,
from: “Real and complex singularities”, (T Gaffney, M A S Ruas, editors), Contemp.
Math. 354, Amer. Math. Soc. (2004) 19–43 MR2087802

[13] A Dimca, S Papadima, Hypersurface complements, Milnor fibers and higher homotopy
groups of arrangments, Ann. of Math. 158 (2003) 473–507 MR2018927

[14] A H Durfee, Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276 (1983)
517–530 MR688959

[15] M Goresky, R MacPherson, Intersection homology, II, Invent. Math. 72 (1983) 77–
129 MR696691

[16] J Huh, Milnor numbers of projective hypersurfaces with isolated singularities, Duke
Math. J. 163 (2014) 1525–1548 MR3210967

[17] M Kashiwara, P Schapira, Sheaves on manifolds, Grundl. Math. Wissen. 292,
Springer, Berlin (1990) MR1074006

[18] P Kirk, C Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson–
Gordon invariants, Topology 38 (1999) 635–661 MR1670420

[19] A Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple
planes, Duke Math. J. 49 (1982) 833–851 MR683005

[20] A Libgober, Alexander invariants of plane algebraic curves, from: “Singularities, II”,
(P Orlik, editor), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 135–143
MR713242

[21] A Libgober, Homotopy groups of the complements to singular hypersurfaces, II, Ann.
of Math. 139 (1994) 117–144 MR1259366

[22] X S Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math.
Sin. .Engl. Ser./ 17 (2001) 361–380 MR1852950

Algebraic & Geometric Topology, Volume 15 (2015)

http://dx.doi.org/10.1016/j.aim.2005.10.003
http://www.ams.org/mathscinet-getitem?mr=2263714
http://dx.doi.org/10.2140/gtm.2008.13.105
http://www.ams.org/mathscinet-getitem?mr=2508203
http://dx.doi.org/10.1007/978-1-4612-4404-2
http://www.ams.org/mathscinet-getitem?mr=1194180
http://dx.doi.org/10.1007/978-3-642-18868-8
http://www.ams.org/mathscinet-getitem?mr=2050072
http://dx.doi.org/10.2748/tmj/1170347689
http://www.ams.org/mathscinet-getitem?mr=2297199
http://dx.doi.org/10.1090/S0002-9947-07-04241-9
http://www.ams.org/mathscinet-getitem?mr=2299465
http://dx.doi.org/10.1090/conm/354/06472
http://www.ams.org/mathscinet-getitem?mr=2087802
http://dx.doi.org/10.4007/annals.2003.158.473
http://dx.doi.org/10.4007/annals.2003.158.473
http://www.ams.org/mathscinet-getitem?mr=2018927
http://dx.doi.org/10.2307/1999065
http://www.ams.org/mathscinet-getitem?mr=688959
http://dx.doi.org/10.1007/BF01389130
http://www.ams.org/mathscinet-getitem?mr=696691
http://dx.doi.org/10.1215/00127094-2713700
http://www.ams.org/mathscinet-getitem?mr=3210967
http://dx.doi.org/10.1007/978-3-662-02661-8
http://www.ams.org/mathscinet-getitem?mr=1074006
http://dx.doi.org/10.1016/S0040-9383(98)00039-1
http://dx.doi.org/10.1016/S0040-9383(98)00039-1
http://www.ams.org/mathscinet-getitem?mr=1670420
http://dx.doi.org/10.1215/S0012-7094-82-04941-9
http://dx.doi.org/10.1215/S0012-7094-82-04941-9
http://www.ams.org/mathscinet-getitem?mr=683005
http://www.ams.org/mathscinet-getitem?mr=713242
http://dx.doi.org/10.2307/2946629
http://www.ams.org/mathscinet-getitem?mr=1259366
http://dx.doi.org/10.1007/s101140100122
http://www.ams.org/mathscinet-getitem?mr=1852950


Reidemeister torsion and Alexander polynomials of hypersurface complements 2785

[23] Y Liu, Nearby cycles and Alexander modules of hypersurface complements arXiv:
1405.2343

[24] D Massey, Notes on perverse sheaves and vanishing cycles arXiv:math/9908107

[25] L Maxim, Intersection homology and Alexander modules of hypersurface complements,
Comment. Math. Helv. 81 (2006) 123–155 MR2208801

[26] J Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962) 137–147
MR0141115

[27] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358–426 MR0196736

[28] J Milnor, Infinite cyclic coverings, from: “Conference on the topology of manifolds”,
Prindle, Weber & Schmidt, Boston (1968) 115–133 MR0242163

[29] C Sabbah, Modules d’Alexander et D–modules, Duke Math. J. 60 (1990) 729–814
MR1054533

[30] M Saito, Introduction to mixed Hodge modules, from: “Actes du colloque de théorie de
Hodge”, Astérisque 179–180, Soc. Math. France, Paris (1989) 145–162 MR1042805

[31] M Saito, Extension of mixed Hodge modules, Compositio Math. 74 (1990) 209–234
MR1047741

[32] J Schürmann, Topology of singular spaces and constructible sheaves, Monografie
Matematyczne 63, Birkhäuser, Basel (2003) MR2031639

[33] V G Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97–147,
240 MR832411 In Russian; translated in Russian Math. Surveys 41 (1986) 119–182

[34] M Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33
(1994) 241–256 MR1273784

School of Mathematical Sciences, University of Science and Technology of China
No 96, JinZhai Road, Hefei, 230026, China

Department of Mathematics, University of Wisconsin–Madison
480 Lincoln Drive, Office 713, Madison, WI 53706-1388, USA

liuyq@mail.ustc.edu.cn, maxim@math.wisc.edu

http://home.ustc.edu.cn/~liuyq/, http://www.math.wisc.edu/~maxim/

Received: 13 June 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://arxiv.org/abs/1405.2343
http://arxiv.org/abs/1405.2343
http://arxiv.org/abs/math/9908107
http://dx.doi.org/10.4171/CMH/46
http://www.ams.org/mathscinet-getitem?mr=2208801
http://dx.doi.org/10.2307/1970268
http://www.ams.org/mathscinet-getitem?mr=0141115
http://dx.doi.org/10.1090/S0002-9904-1966-11484-2
http://www.ams.org/mathscinet-getitem?mr=0196736
http://www.ams.org/mathscinet-getitem?mr=0242163
http://dx.doi.org/10.1215/S0012-7094-90-06030-2
http://www.ams.org/mathscinet-getitem?mr=1054533
http://www.ams.org/mathscinet-getitem?mr=1042805
http://www.numdam.org/item?id=CM_1990__74_2_209_0
http://www.ams.org/mathscinet-getitem?mr=1047741
http://dx.doi.org/10.1007/978-3-0348-8061-9
http://www.ams.org/mathscinet-getitem?mr=2031639
http://mi.mathnet.ru/umn1971
http://www.ams.org/mathscinet-getitem?mr=832411
http://iopscience.iop.org/0036-0279/41/1/R03
http://dx.doi.org/10.1016/0040-9383(94)90013-2
http://www.ams.org/mathscinet-getitem?mr=1273784
mailto:liuyq@mail.ustc.edu.cn
mailto:maxim@math.wisc.edu
http://home.ustc.edu.cn/~liuyq/
http://www.math.wisc.edu/~maxim/
http://msp.org
http://msp.org



	1. Introduction
	1.1. Background
	1.2. Main results
	1.3. Summary
	Acknowledgments

	2. Preliminaries
	2.1. Alexander modules
	2.2. Linking number local system
	2.3. The peripheral complex
	2.4. The Sabbah specialization complex

	3. Peripheral complex as a mixed Hodge module
	4. Error estimates for Alexander polynomials
	5. Reidemeister torsion and Alexander polynomials
	5.1. Reidemeister torsion of chain complexes
	5.2. Torsion and Alexander polynomials
	5.3. Duality and intersection forms

	6. Boundary manifold of a hypersurface complement
	7. Alexander polynomial estimates via Reidemeister torsion
	References

