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On the notions of suborbifold and orbifold embedding

JOSEPH E BORZELLINO

VICTOR BRUNSDEN

The purpose of this article is to investigate the relationship between suborbifolds
and orbifold embeddings. In particular, we give natural definitions of the notion of
suborbifold and orbifold embedding and provide many examples. Surprisingly, we
show that there are (topologically embedded) smooth suborbifolds which do not arise
as the image of a smooth orbifold embedding. We are also able to characterize those
suborbifolds that can arise as the images of orbifold embeddings. As an application,
we show that a length-minimizing curve (a geodesic segment) in a Riemannian
orbifold can always be realized as the image of an orbifold embedding.

57R18; 57R35, 57R40

1 Introduction

The purpose of this article is to investigate some of the difficulties and subtleties
associated with the study of the differential topology of smooth orbifolds. It will be
no surprise to anyone who has taken more than a cursory look at orbifolds that the
goal of extending the most basic notions from the differential topology of manifolds
to orbifolds has not been achieved in a universally accepted manner in the nearly 60
years since Satake [17; 18] introduced V–manifolds (now orbifolds as popularized
by Thurston [19]). In the six decades since they were introduced, there has been a
proliferation of definitions and ad hoc refinements each used to overcome some inherent
difficulty unearthed while attempting an orbifold generalization of a manifold result.
These challenges are readily acknowledged by experts and often provide the inspiration
for new research on orbifolds. In fact, it has been humorously mentioned that there
exists today a partial ordering for the plethora of definitions related to orbifolds, and that
one can only imagine what an application of Zorn’s lemma might yield! The aim here
is much less ambitious. Our goal is to expose and investigate in detail the subtle notion
of suborbifold and its relation to the natural idea of an orbifold embedding. Some of
the particular difficulties involving the notion of suborbifolds and orbifold embeddings
have already been noted in the orbifold literature; see Borzellino and Brunsden [4; 5;
6], Chen and Ruan [9] and Adem, Leida and Ruan [1], and more recently Lerman [14],
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Choi [11] and Cho, Hong and Shin [10]. For manifolds, it is a fundamental result
of differential topology that submanifolds are precisely the images of embeddings;
see Hirsch [12, Theorem 3.1]. In fact, many authors use this characterization as the
definition of submanifold. Our main result identifies necessary and sufficient conditions
which characterize precisely when a suborbifold can be realized as the image of an
orbifold embedding. Unlike the case for manifolds, we also show that suborbifolds
exist which are not the images of orbifold embeddings.

Theorem 1 Let P be a smooth suborbifold of a smooth orbifold O .

(1) There exists an orbifold P 0 and a topological embedding of underlying spaces
�W XP0 !XO so that �.XP0/DXP if and only if P is saturated.

(2) There exists a complete orbifold embedding ?� D .�; fzixg; f‚�;xg/W P 0 ! O
covering � if and only if P is both saturated and split.

The definitions of what it means for a suborbifold to be saturated or split appear in
Section 2.1. The definition of complete orbifold map appears in Section 3.1.

As an application of Theorem 1 to length-minimizing geodesics in Riemannian orbifolds,
we have the following corollary which follows from the characterization of length-
minimizing geodesic segments found in Borzellino [2; 3].

Corollary 2 Let O be a Riemannian orbifold and let X �XO be the underlying point
set of a length-minimizing curve joining two points of O . Then there is a suborbifold
P�O whose underlying space XP DX is the image of a complete orbifold embedding.

2 Orbifold background

Although there are many references for this background material, we will use our
previous work [5; 7] as our standard reference. While much of what we discuss here
works equally well for smooth C r orbifolds, to simplify the exposition, we restrict
ourselves to smooth C1 orbifolds. Throughout, the term smooth means C1 . This
results in no loss of generality [5, Proposition 3.11; 13]. Note that the classical definition
of orbifold given below is modeled on the definition in Thurston [19] and that these
orbifolds are referred to as classical effective orbifolds in [1].

Definition 3 An n–dimensional smooth orbifold O , consists of a paracompact, Haus-
dorff topological space XO , called the underlying space, with the following local
structure. For each x 2XO and neighborhood U of x , there is a neighborhood Ux�U ,
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an open set zUx diffeomorphic to Rn , a finite group �x acting smoothly and effectively
on zUx which fixes 02 zUx , and a homeomorphism �x W

zUx=�x!Ux with �x.0/Dx .
These actions are subject to the condition that for a neighborhood Uz �Ux with corre-
sponding zUzŠRn , group �z and homeomorphism �z W

zUz=�z!Uz , there is a smooth
embedding z zx W

zUz!
zUx and an injective homomorphism �zx W �z!�x so that z zx

is equivariant with respect to �zx (that is, for  2 �z; z zx. � zy/D �zx. / � z zx.zy/

for all zy 2 zUz ), such that the following diagram commutes:

zUz

z zx //

��

zUx

��
zUz=�z

 zxD
z zx=�z //

�z

��

zUx=�zx.�z/

��
zUx=�x

�x

��
Uz

� // Ux

We will refer to the neighborhood Ux or . zUx; �x/ or . zUx; �x; �x; �x/ as an orbifold
chart, and write Ux D

zUx=�x . In the 4–tuple notation, we are making explicit the
representation �x W �x! Diff1. zUx/. The isotropy group of x is the group �x . The
definition of orbifold implies that the germ of the action of �x in a neighborhood of
the origin of Rn is unique, so that by shrinking zUx if necessary, �x is well-defined
up to isomorphism. The singular set of O is the set of points x 2O with �x ¤ feg.
More detail can be found in [5].

2.1 Smooth suborbifolds

Originally, in [19], the notion of an m–suborbifold P of an n–orbifold O required P
to be locally modeled on Rm �Rn modulo finite groups. That is, the local action on
Rm is induced by the local action on Rn . As interest in the differential topology of
orbifolds grew, it was discovered early, for instance in [4], that this definition was too
restrictive to admit, for example, the diagonal embedding of an orbifold as a suborbifold
of the product orbifold. Other authors [1; 9; 10] overcame this difficulty by defining
their suborbifolds explicitly as images of their particular notion of orbifold embedding
in analogy with the case of manifolds. In [6], we defined a notion of suborbifold which
is general enough to include the diagonal embedding as a suborbifold of the product,
but is independent of our notion of orbifold embedding which we recall in Section 3.
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Using our definition of suborbifold we can also easily identify those suborbifolds in
the original sense of Thurston [19]. We refer to them as full suborbifolds. Recall the
definition of suborbifold from [6]:

Definition 4 An (embedded) suborbifold P of an orbifold O consists of the following:

(1) A subspace XP �XO equipped with the subspace topology

(2) For each x 2 XP and neighborhood W of x in XO there is an orbifold chart
. zUx; �x; �x; �x/ about x in O with Ux � W , a subgroup ƒx � �x of the
isotropy group of x in O and a �x.ƒx/ invariant submanifold zVx �

zUx ŠRn ,
so that . zVx; ƒx=�x; �xjƒx

;  x/ is an orbifold chart for P , where �x D f 2

ƒx W �x. /j zVx
D Idg. (In particular, the intrinsic isotropy subgroup at x 2 P is

ƒx=�x ).

(3) For each x in P , Vx D  x. zVx=�x.ƒx//D Ux \XP is an orbifold chart.

Implicit in this definition is the requirement that the invariant submanifolds zVx be
smooth, and that the collection of charts f. zVx; ƒx=�x; �xjƒx

;  x/g satisfy the com-
patibility conditions of Definition 3, thus giving P the structure of a smooth orbifold.
Condition (2) of this definition is not very restrictive as we shall see later in this
section. Thurston’s notion of suborbifold [19] is equivalent to adding the condition
that ƒx D �x at all x in the underlying topological space of P , and so we make the
following definition:

Definition 5 P � O is a full suborbifold of O if P is a suborbifold with ƒx D �x

for all x 2 P .

When necessary for clarity, we will use the notation �x;O to denote the intrinsic isotropy
of a point x in an orbifold O , and use the subscript O as well on needed subgroups
of �x;O . Observe that in the case of a suborbifold P �O we always have the exact
sequence of groups

1 �!�x;O �!ƒx;O � �x;O �! �x;P �! 1;

where �x;P denotes the intrinsic isotropy group of P at x .

In characterizing those suborbifolds that are images of orbifold embeddings, we need
the following two definitions.
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Definition 6 We say that P � O is a split suborbifold of O if the exact sequence
above is (right) split for all x 2P . That is, there is a group homomorphism � W �x;P!

ƒx;O such that the composition q ı � D Id, where qW ƒx;O ! �x;P is the quotient
homomorphism:

1 // �x;O // ƒx;O
q // �x;P
�
jj

// 1:

Note that if P �O is split, we have ƒx;O Š�x;O Ì�x;P , a semidirect product, and
in the case that the groups are abelian ƒx;O Š�x;O ��x;P , the direct product. Of
course, if �x;O or �x;P is trivial, then P is split as well.

Definition 7 We say that P � O is a saturated suborbifold of O if for each x 2 P
and zy 2 zVx , we have that .�x;O � zy/\ zVx Dƒx;O � zy .

The saturation condition can be thought of as a kind of orbit maximality condition on
the group ƒx;O � �x;O relative to the invariant submanifold zVx . Observe that, by
definition, every full suborbifold is automatically saturated.

Example 8 Let Q D R=Z2 be the smooth orbifold (without boundary), where Z2

acts on R via  �xD�x . The underlying topological space XQ of Q is Œ0;1/ and the
isotropy subgroups are feg for x 2 .0;1/ and Z2 for x D 0. Let ODQ�Q be the
smooth product orbifold (without boundary). See [5, Definition 2.12]. The underlying
space for O can be identified with the closed first quadrant and the singular points of
O lie in one of three connected singular strata: the positive x axis, the positive y axis
(corresponding to those points with Z2 isotropy), and the origin which has Z2 �Z2

isotropy. Then P D f0g �Q is a full (and thus, saturated) suborbifold of O . To see
this, note that �.0;0/;P ŠZ2 , �.0;0/;O ŠZ2�Z2 , and that �.0;0/;O D f 2 �.0;0/;O W
 jf0g�R D Idg Š Z2 . Thus, �.0;0/;P Š �.0;0/;O=�.0;0/;O . Similarly, P DQ� f0g is
a full suborbifold. Each of these suborbifolds is split as well. See Figure 1.

Q O
P

Z2
Z2 �Z2

Q
OP

Z2
Z2

Figure 1: Examples 8 and 9
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Example 9 Let Q and O be as in Example 8. Then P D f1g �Q is a full (thus,
saturated), split suborbifold of O . In this case, note that �.1;0/;P Š Z2 , �.1;0/;O Š
Z2 , and that �.1;0/;O D f 2 �.1;0/;O W  jf1g�R D Idg D feg. Thus, �.1;0/;P Š
�.1;0/;O=�.1;0/;O . See Figure 1.

Example 10 [5, Example 2.15] Let Q and O be as in Example 8. Then the diagonal
P D diag.Q/Df.x;x/ W x 2Qg�O is a suborbifold. Here, �.0;0/;P ŠZ2 , �.0;0/;OŠ
Z2�Z2 , and �.0;0/;ODf 2�.0;0/;O W jdiag.R/�R2D IdgDfeg. Note that �.0;0/;P ©
�.0;0/;O=�.0;0/;O . Thus, P is not a full suborbifold. However, P is split and saturated
since �.0;0/;P Šƒ.0;0/;O=�.0;0/;O , where Z2 Šƒ.0;0/;O � �.0;0/;O is the diagonal
embedding of Z2 ,! Z2 �Z2 given by  7! .;  /. See Figure 2.

Q
O

P

Z2
Z2 � Z2 �Z2

feg

S

S
O

feg � Z2

Figure 2: Examples 10 and 11

Example 11 Let O be as in Example 8. Consider the circle S�O of radius 1 centered
at .2; 1/. Then S is a suborbifold of O that is not a full suborbifold. To see this, just
note that at the point x D .2; 0/ 2O any lift of S to zUx ŠR2 in a neighborhood of
x , cannot be an invariant submanifold unless we choose ƒx;O D feg. In this case,
we see that the intrinsic isotropy group of S at x is trivial which it must be since
S is actually a compact 1–dimensional manifold. That is, a compact 1–dimensional
orbifold with trivial orbifold structure. It is easy to see that S is saturated and split as
well. See Figure 2.

Each of the previous examples will be seen to be the image of an orbifold embedding
in Section 3.2. However, the following three examples of suborbifolds will be shown
not to be the image of an orbifold embedding.

Example 12 Let ODC2=Z4 , where Z4 acts on C2 via the matrix group

Z4 Š

( 
ik 0

0 .�1/k

!
W k 2 f0; 1; 2; 3g

)
:
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Then P D .f0g�C/=Z4ŠC=Z2 is a full, (hence, saturated) suborbifold of O . In this
case, for xD .0; 0/, we have �x;OŠZ2 , ƒx;OD�x;OŠZ4 , and �x;P ŠZ2 . Hence,
the corresponding suborbifold exact sequence for P is 1! Z2 ! Z4 ! Z2 ! 1

which is clearly not split.

The next example illustrates how flexible the seemingly straightforward definition of
suborbifold actually is.

Example 13 Consider the 2–dimensional orbifolds O1 DC DC=Z1;O2 DC=Z2 ,
O3 D C=Z4 , and O4 D C=Z8 . Here Zk acts on C via multiplication by e2�i=k ,
z 7! e2�i=kz . According to Definition 4, we have O1�O2�O3�O4 as suborbifolds.
The underlying topological spaces XOn

are all (topologically) homeomorphic, to a
standard cone over a circle. It is easily checked that none of these is a saturated
suborbifold of one of the others and since �0;On

D feg, Om � On , .m < n/ are all
split suborbifolds.

Example 14 Let O and P be as in Example 12. Let QD diag.P/Df.x;x/2O�O W
x 2 Pg. Let R D O �O . Let x D .0; 0/. Then �x;R Š Z4 � Z4 . Analogous to
Example 10, we see that �x;Q Š Z2 , ƒx;R Š Z4 , and �x;R Š Z2 . Thus, Q is not
split in R and is not a full suborbifold of R. On the other hand, it is not hard to see
that Q is saturated in R.

Our last example shows that even though the underlying space of a smooth orbifold
(without boundary) may be topologically embedded as a subspace of the underlying
space of another smooth orbifold, this subspace (with its independent orbifold structure)
may not be a suborbifold of the ambient orbifold.

Zp

Q

Figure 3: Example 15

Example 15 Let O be a so-called Zp –teardrop, and let QDR=Z2 be as in Example 8,
a smooth one-dimensional orbifold (without boundary). Let XQ�XO be topologically
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embedded as a half-interval starting at the point x . See Figure 3. As a nontrivial
1–orbifold, the intrinsic isotropy group for Q at x must be Z2 . Thus the order of the
ambient isotropy group �x;O must be even. We conclude that Q is not a suborbifold of
O when p is odd. Of course, if p is even, then it is possible for Q to be a suborbifold
of O which is saturated and split and thus an embedded suborbifold.

3 Smooth mappings between orbifolds

In the literature, there are four related definitions of maps between orbifolds which are
based on the classical Satake–Thurston approach to orbifolds via atlases of orbifold
charts. In this paper, we use the notion of complete orbifold map. It is distinguished
from the other notions of orbifold map in that it keeps track of all defining data. All
other notions of orbifold map descend from the complete orbifold maps by forgetting
information. In the special case of embeddings, however, the property of being an
embedding passes down from the complete orbifold maps to the level of orbifold maps.
This observation requires only an understanding on how these two notions of orbifold
map are related to one another. We point this out explicitly in our exposition below.
We refer the reader to [7] for the necessary background details and in what follows we
use the notation of [5, Section 2].

The original motivation for defining the notion of complete orbifold map was to make
meaningful and well-defined certain geometric constructions involving orbifolds and
their maps. The need to be careful in defining an adequate notion of orbifold map was
already noted in the work of Moerdijk and Pronk [15] and Chen and Ruan [8] and was
missing from Satake’s original work on V–manifolds [17; 18]. More recently, Pohl [16]
developed another notion of orbifold morphism to address some inconsistencies in
earlier work using the groupoid approach to orbifolds.

3.1 Mappings between orbifolds

Definition 16 A C1 complete orbifold map ?f D .f; f zfxg; f‚f;xg/ between smooth
orbifolds P and O consists of the following:

(1) A continuous map f W XP !XO of the underlying topological spaces.

(2) For each y 2 P , a group homomorphism ‚f;y W �y! �f .y/ .

(3) A smooth ‚f;y –equivariant lift zfy W
zUy!

zVf .y/ , where . zUy ; �y/ is an orbifold
chart at y and . zVf .y/; �f .y// is an orbifold chart at f .y/. That is, the following
diagram commutes:
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zUy

zfy //

��

zVf .y/

��
zUy=�y

zfy=‚f;y.�y/ //

��

zVf .y/=‚f;y.�y/

��
zVf .y/=�f .y/

��
Uy

f // Vf .y/

(?4) (Equivalence) Two complete orbifold maps

?f D .f; f zfxg; f‚f;xg/ and ?g D .g; fzgxg; f‚g;xg/

are considered equivalent if for each x 2P , zfxD zgx as germs and ‚f;xD‚g;x .
That is, there exists an orbifold chart . zUx; �x/ at x such that zfxj zUx

D zgxj zUx

and ‚f;x D‚g;x . Note that this implies that f D g .

The set of smooth complete orbifold maps from P to O will be denoted by C1?Orb.P;O/.
For P compact (without boundary), C1?Orb.P;O/ carries the structure of a smooth
Fréchet manifold [7].

The following condition can replace (?4) in Definition 16:

(4) (Equivalence) Two complete orbifold maps

.f; f zfxg; f‚f;xg/ and .g; fzgxg; f‚g;xg/

are considered equivalent if for each x 2 P , zfx D zgx as germs. That is, there
exists an orbifold chart . zUx; �x/ at x such that zfxj zUx

D zgxj zUx
(which as before

implies f D g ).

Here we have dropped the requirement that ‚f;x D‚g;x . If we do this, we recover
the notion of orbifold map .f; f zfxg/ which appeared in [5, Section 3]. Thus, the set
of orbifold maps C1Orb.P;O/ can be regarded as the equivalence classes of complete
orbifold maps under the less restrictive set-theoretic equivalence (4). For P compact
(without boundary), C1Orb.P;O/ carries the structure of a stratified space whose strata
are modeled on smooth Fréchet manifolds [7].

Algebraic & Geometric Topology, Volume 15 (2015)



2796 Joseph E Borzellino and Victor Brunsden

3.2 Orbifold embeddings

Definition 17 A complete orbifold map ?f D .f; f zfxg; f‚f;xg/ between smooth
orbifolds P and O is a complete orbifold embedding if the map f W XP ! XO
is a topological embedding of the underlying spaces, each of the homomorphisms
‚f;y W �y ! �f .y/ is injective and the ‚f;y –equivariant local lifts zfy W

zUy!
zVf .y/

are smooth embeddings on each chart.

One should observe that the condition that the equivariant local lifts zfx are embeddings
automatically implies that the corresponding homomorphisms ‚f;x are injective: If
there exists  2 �x with ‚f;x. /D feg, then equivariance of zfx yields zfx. � zy/D

‚f;x. / � zfx.zy/ D zfx.zy/ for all zy 2 zUx . Since zfx is an embedding this implies
that  D feg, and thus ‚f;x is injective. Thus the condition that ‚f;y be injective is
redundant for embeddings. As a consequence, there is a sensible definition of orbifold
embedding in the category of orbifold maps as well:

Definition 18 An orbifold map f D .f; f zfxg/ between smooth orbifolds P and O
is an orbifold embedding if the map f W XP !XO is a topological embedding of the
underlying spaces, and on each chart, the ‚f;y –equivariant local lifts zfy W

zUy!
zVf .y/

are smooth embeddings.

The following example from [7, Section 2] is illustrative.

Example 19 Let QDR=Z2 be as in Example 8. Consider the inclusion (embedding)
f W Q!Q�Q�Q, y 7! .y; 0; 0/, where zfx.zy/D .zy; 0; 0/. Note that zf0 is equivariant
with respect to both ‚f;0. /D .; e; e/ and ‚0

f;0
. /D .; ;  /. Thus, we have two

distinct complete orbifold embeddings

?f D .f; f zfxg; f‚f;xg/ and ?f
0
D .f; f zfxg; f‚

0
f;xg/

which represent the same orbifold embedding f D .f; f zfxg/. In each case, observe that
both ‚f;x and ‚0

f;x
are injective confirming the remarks which followed Definition 17.

For open embeddings, that is, in the case where dim.P/D dim.O/, it is useful to note
that the phenomenon in Example 19 cannot occur [7, Section 4]. To see this, note that
if two complete orbifold embeddings

?f D .f; f zfxg; f‚f;xg/ and ?f
0
D .f; f zfxg; f‚

0
f;xg/

represent the same orbifold embedding f D .f; f zfxg/, then equivariance of zfx implies

zfx. � zy/D‚f;x. / � zfx.zy/D‚
0
f;x. / �

zfx.zy/
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for all zy 2 zUx and  2 �x . Thus

Œ‚0f;x. /
�1‚f;x. /� � zfx.zy/D zfx.zy/:

Openness of the embedding implies that there exists zy such that zfx.zy/ is not a singular
point of zVf .x/ . This implies that ‚0f;x. /

�1‚f;x. /D e since �f .x/ acts effectively,
whence ‚f;x D‚0f;x and ?f D ?f

0 .

4 Proof of Theorem 1 and Corollary 2

Proof of part (1) For each x 2 XP , let . zUx; �x;O; �x; �x/ be an orbifold chart for
O about x . Let zVx �

zUx , ƒx;O , �x;O ,  x , and �x;P be as in the definition of
suborbifold. Denote by zix W zVx ,! zUx the inclusion map.

Let qx W
zUx=ƒx;O! zUx=�x;O be the natural quotient map and define

�0x D �x ı qx ı zix=ƒx;OW zVx=ƒx;O! Ux

as in this commutative diagram:

zVx

zix //

��

zUx

��
zVx=ƒx;O

zix=ƒx;O //

�0
xD�xı qxızix=ƒx;O

""

zUx=ƒx;O

qx

��
zUx=�x;O

�x

��
Ux

For zy 2 zVx , let ƒx;O.zy/D f 2 �x;O W  � zy 2 zVxg. Then

ƒx;O �
\
zy2 zVx

ƒx;O.zy/:

By definition, P is saturated if and only if ƒx;O � zy Dƒx;O.zy/ � zy for all zy 2 zVx . We
claim that �0x is a homeomorphism onto its image if and only if P is saturated. To see
this, note that P is not saturated if and only if there exists x 2 XP and ı 2 �x;O so
that for some zy 2 zVx , ı � zy 2 zVx , but ı � zy ¤ � � zy for any � 2ƒx;O . Thus, zz D ı � zy
satisfies ƒx;O � zz¤ƒx;O � zy . Since �0x.ƒx;O � zz/D �

0
x.ƒx;O � zy/, because zy and zz are
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in the same orbit under the full group �x;O , we see that �0x is not a homeomorphism.
Thus, we have shown that if �0x is a homeomorphism, then P is saturated. To show
that P is saturated implies �0x is a homeomorphism, note that �0x is clearly continuous,
and since �x;O is finite, �0x is open. As shown above, P saturated implies that �0x is
injective.

Now, since �x;O fixes zVx by definition, there is a natural identification I W zVx=ƒx;O$
zVx=.ƒx;O=�x;O/D zVx=�x;P and we have the following diagram:

zVx

zix //

��

zUx

��
zVx=ƒx;O

zix=ƒx;O //

�0
x

""

I

zUx=ƒx;O

qx

��
zVx=�x;P

 x

��

zUx=�x;O

�x

��
Vx

� // Ux

Let P 0 be the orbifold defined by the local charts . zVx; �x;P ; �
0
x;  x/, where �0x is

the induced action of �x;P on zVx by restricting �x to ƒx;O and the action to zVx .
The required topological embedding �W XP0 !XO with �.XP0/DXP is given in local
charts by: � D �0x ı I�1 ı �1

x W Vx ! Ux and is covered by the inclusion maps zix .
This completes the proof of part (1).

Proof of part (2) Let �x;P be a splitting of the exact sequence

1 // �x;O // ƒx;O
� � �x;O // �x;O

q // ƒx;O=�x;O �x;P //

�x;P

ii 1:

Let ‚�;x D �x;O ı �x;P W �x;P ! �x;O , where �x;O Dƒx;O ,! �x;O is the inclusion
map. ‚�;x is clearly an injective homomorphism and note that the existence of ‚�;x is
equivalent to the existence of �x;P . Let zix W zVx ,! zUx be the inclusion map. It is easy
to see that zix is ‚�;x –equivariant: Let zy 2 zVx and let  2�x;P . Then  � zyDzix. � zy/.
On the other hand, ‚�;x. / D ! for some ! 2 �x;O since q ı‚�;x D Id. Thus,
‚�;x. /� zyD!� zyD � zy , since !� zyD zy . Thus, ?�D .�; fzixg; f‚�;xg/W P 0!P�O is a
complete orbifold embedding that covers the topological embedding �W XP0!XP�XO .
This completes the proof of part (2).
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Proof of Corollary 2 X is the point set of a length-minimizing curve in O , so there
exists a unit-speed parametrization cW Œa; b�! O such that c.Œa; b�/D X . We show
that X is the underlying space of a suborbifold P � O that is saturated and split
and thus is the image of an orbifold embedding by Theorem 1. Fix t 2 Œa; b�, and let
x D c.t/. It follows from the characterization of length-minimizing geodesic segments
in [2, Theorem 3, page 32] or [3, Proposition 15] that c is contained in the closure
of single connected open stratum of O . That is, cj.a;b/ lies in a subspace of O with
constant isotropy. This implies that X has the structure of a suborbifold P �O . These
results also imply that �x;P D feg, and thus P has a trivial orbifold structure and so
P is split. Let zcx be a lift of c to zUx . Since �x;P D feg, we have ƒx;O � zy D zy for
all zy 2 zcx . If P were not saturated at x , then there exists s < s0 2 Œa; b� and  2 �x;O
with  � zcx.s/D zcx.s

0/. This implies that c contains a loop in O . This contradicts the
property that a length-minimizing curve c must minimize length between any of its
points. This contradiction implies P is saturated and thus, by Theorem 1, P is the
image of a complete orbifold embedding. This completes the proof of Corollary 2.

5 Table of examples and suborbifold properties

Here is a summary table of properties of suborbifolds possessed by the examples
presented in this article which show that all possible combinations of properties that
are not implied by others can occur:

suborbifold full saturated split image of orbifold embedding

Example 8 yes yes yes yes yes
Example 9 yes yes yes yes yes
Example 10 yes no yes yes yes
Example 11 yes no yes yes yes
Example 12 yes yes yes no no
Example 13 yes no no yes no
Example 14 yes no yes no no
Example 15 no — — — no
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