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Torus knots obtained by twisting torus knots

SANGYOP LEE

A twisted torus knot is obtained from a torus knot by adding a number of full twists
to some adjacent strands of the torus knot. In this paper, we show that if a twisted
torus knot is a torus knot, then the number of added full twists is generically at most
two in absolute value. We also show that this bound is the best possible by classifying
twisted torus knots for which the upper bound is attained.
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1 Introduction

Let p; q be relatively prime positive integers and let T .p; q/ denote a torus knot in
S3 of type .p; q/; that is, T .p; q/ is a knot on the boundary of a standard solid torus
in S3 , wrapping around the solid torus p times in the longitudinal direction and q

times in the meridional direction. Let V1 be the solid torus and V2 the complementary
solid torus; that is, S3 D V1[V2 and V1\V2 is a torus containing T .p; q/. Take an
unknotted circle C wrapping around r (2� r � pC q ) adjacent strands of T .p; q/

and intersecting each solid torus Vi (i D 1; 2) in a @–parallel arc. For any nonzero
integer s , the result of .�1=s/–surgery on C is S3 again. (For surgery coefficients,
we refer to Rolfsen [16].) However, the surgery changes T .p; q/ into a new knot,
called a twisted torus knot and written as T .p; q; r; s/. See the first picture in Figure 6,
which illustrates T .8; 3; 5;�2/, and see also Lee [10] for a more detailed definition.

Twisted torus knots are interesting in both Dehn surgery and Heegaard splitting theory.
These knots were introduced by Dean [3; 4] for his study on Seifert-fibered surgery
on knots. Also, these knots were used to give examples of knots having the super
additivity of tunnel number under connected sum (see Morimoto, Sakuma and Yokota
[14]). There are many other interesting results on twisted torus knots; see the references
in [10].

Recently, there has been interest in studying the knot types of twisted torus knots. It
is completely determined which twisted torus knots are unknotted [10]. There are
infinitely many twisted torus knots which are satellite knots (see Morimoto and Yamada
[15] and Lee [8]), but it is known that the number of added full twists must be small
(see Lee [9]).
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In this paper, we are interested in determining four numbers .p; q; r; s/ for which
T .p; q; r; s/ is a torus knot. Note that if r D p then the knot type of T .p; q/ is
easy to determine: in this case, if .p; q; s/D .n; n� 1;�1/ for some integer n then
T .p; q; r; s/ is a trivial knot, and otherwise it a torus knot. Because the knot type of
T .p; q; r; s/ is completely determined in [8; 10] when r is divisible by q , we focus
on the case where r ¤ p and r is not a multiple of q .

Theorem 1.1 Let p; q; r; s be integers satisfying the following conditions:

� p; q are relatively prime, and 1� q < p .

� 2� r � pC q , r is not a multiple of q , and r ¤ p .

� s ¤ 0.

Suppose that T .p; q; r; s/ is a torus knot. Then jsj � 2. Moreover, if jsj D 2 then
.p; q; r; s/D .2n˙1; n; n˙1;�2/ and T .p; q; r; s/DT .2n˙1;�2/ for some positive
integer n.

Combining Theorem 1.1 with the main results in [9] and [10] we obtain the following
corollary.

Corollary 1.2 Let p; q; r; s be as in Theorem 1.1 and suppose that jsj � 3. Then
T .p; q; r; s/ is a hyperbolic knot.

Some figures in this paper are best viewed in color: readers are recommended to view
them in an electronic version.

2 Lemmas

Throughout this paper, we write K D T .p; q/ and K0 D T .p; q; r; s/, and we assume
that K0 is a torus knot. Note that q � 2 by the hypothesis that r is not a multiple of q .

Let V1;V2;C be as in the previous section. Let M D S3 � int N.K [ C / and
Wi D Vi \M D Vi � int N.K[C / for i D 1; 2. Then M is a compact 3–manifold
bounded by two boundary tori, say @K M.D @N.K// and @C M.D @N.C //, and Wi is
a genus two handlebody for each i D 1; 2. Let @X WiD @X M \Wi for each X DK;C .
Then @X Wi is an annulus in @Wi and its core Xi is a simple closed curve in @Wi .

Given a 3–manifold Q with a simple closed curve ` in @Q, we use QŒ`� to denote
the result of adding a 2–handle to Q along the curve `. Note that Wi ŒCi � is the solid
torus Vi .
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For slopes ˛X in @X M , we define M.K;C I˛K ; ˛C / to be the 3–manifold obtained
from M by gluing a solid torus along @X M in such a way that ˛X bounds a meridian
disk of the solid torus for each X DK;C . We similarly define M.˛C / to be the result
of gluing a solid torus only on @C M with slope ˛C .

Lemma 2.1 For each i D 1; 2, either Wi ŒKi � is @–irreducible or it is a solid torus.
Moreover, the following hold.

(1) W1ŒK1� is a solid torus if and only if r �˙1 or ˙q mod p .

(2) W2ŒK2� is a solid torus if and only if r �˙1 or ˙p mod q .

Proof We break .S3;C / up into .V1;V1\C / and .V2;V2\C /. Consider the case
i D 2 only. (The case i D 1 is similar.) We first show that we may assume r < p .
Suppose that r > p . Then V2 \ C is a @–parallel arc in V2 running over r.> p/

strands of K . By applying an isotopy in V2 as shown in Figure 1, which illustrates
the case .p; q; r/D .7; 5; 8/, one can deform V2\C to an arc running over r 0.< p/

strands of K . Note that r 0 � r mod q .

Figure 1

For the remainder of this proof, we assume r < p . Consider the knots K00;C 00 in
Figure 2 lying on a genus two Heegaard surface † which splits S3 into two handle-
bodies H1;H2 . Using [10, Lemma 6.4], one can see that H2ŒK

00� is homeomorphic
to W2ŒK2�. (There is a typo in the statement of the lemma: “Hi � int.K0 [C 0/” in
the third line must be replaced by “Hi � int.N.K0/[N.C 0//”.) It follows from [4,
Theorem 3.4] that W2ŒK2� is a solid torus if and only if r �˙1 or ˙p mod q .

In order to complete the proof, we need only to show that if W2ŒK2� is @–reducible then
it is a solid torus. Suppose that W2ŒK2�ŠH2ŒK

00� is @–reducible. By Jaco’s handle
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Figure 2

addition theorem [7], @H2�K00 is compressible in H2 . We can take a nonseparating
compressing disk for @H2 �K00 . Cutting H2 along the compressing disk, we get a
solid torus whose boundary contains K00 .

If K00 is isotopic to a core of the solid torus, then W2ŒK2�ŠH2ŒK
00� is a solid torus

and we are done. Suppose otherwise. Then K00 represents a proper power of a primitive
element of �1.H2/ (note that �1.H2/ is a free group on two generators, say x;y in
Figure 2). After the possible replacement of x by x�1 or y by y�1 , we may assume
that the exponents of the primitive element are all positive. It is known that a primitive
element of a rank two free group with positive exponents has one generator which
appears solely with exponent C1, and that the primitive element can also be cyclically
permuted so that the exponents of the other generator differ by at most one [2]; it is
easy to see that a proper power of a primitive element also has this property. The proof
of [4, Theorem 3.4] was completed by using only this property of primitive elements
and hence the proof goes through verbatim to show that K00 represents a proper power
of a primitive element of the free group �1.H2/ if and only if r �˙1 or ˙p mod q .
However, the necessary condition holds only if K00 represents a primitive element of
�1.H2/ by [4, Theorem 3.4]. This implies that K00 cannot represent a proper power
of a primitive element.

Lemma 2.2 If jsj � 2, then K0.pq C r2s/ is a Seifert fiber space with orbifold
S2.p; q; jsj/ and Wi ŒKi � is a solid torus for each i D 1; 2, where K0.pqC r2s/ is the
3–manifold obtained by Dehn surgery on K0 with slope pqC r2s .

Proof Let J�1=s denote the solid torus glued in M.K;C Ipq;�1=s/ along the torus
@C M . Note that slope pq is the cabling slope associated to the torus knot K . Using a
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Rolfsen twist [16], one easily sees that

K0.pqC r2s/DM.K;C Ipq;�1=s/DWi ŒKi �[ .Wj ŒKj �[J�1=s/;

where fi; j g D f1; 2g and the union Wj ŒKj �[J�1=s is taken along the annulus @C Wj

wrapping around the solid torus J�1=s jsj times in its longitudinal direction. Let T be
the common boundary torus of Wi ŒKi � and Wj ŒKj �[J�1=s .

We claim that T is incompressible in Wj ŒKj �[J�1=s . First, note that Wj ŒKj � ŒCj �D

Wj ŒCj � ŒKj �D Vj ŒKj � is a once-punctured lens space L.p; q/ or L.q;p/ depending
on whether j D 1 or j D 2. Thus if Wj ŒKj � is a solid torus then Wj ŒKj �[ J�1=s

is a Seifert fiber space over the disk with two exceptional fibers because the annulus
@C Wj wraps around each of the solid tori Wj ŒKj � and J�1=s at least two times in the
longitudinal direction. It follows that T is incompressible in Wj ŒKj �[J�1=s . Suppose
that Wj ŒKj � is not a solid torus. Then Wj ŒKj � is @–irreducible by Lemma 2.1 and hence
the annulus @C Wj is incompressible in Wj ŒKj �. Also, the annulus is incompressible
in J�1=s since it wraps around J�1=s at least two times in the longitudinal direction.
Thus T is incompressible in Wj ŒKj �[J�1=s , since otherwise by the incompressibility
of @C Wj there would be a compressing disk for T lying entirely in either Wj ŒKj � or
J�1=s but missing @C Wj .

No Dehn surgery on a torus knot yields a separating incompressible torus, so T is
compressible in Wi ŒKi � and by Lemma 2.1 Wi ŒKi � must be a solid torus. Since the
index i can take any value 1 or 2, both of W1ŒK1� and W2ŒK2� are solid tori. Since
W1ŒK1� ŒC1� is a once-punctured lens space L.p; q/, W1ŒK1� is a fibered solid torus
over D2.p/ with C1 a fiber. Similarly, W2ŒK2� is a fibered solid torus over D2.q/

with C2 a fiber and hence W2ŒK2�[ J�1=s is a Seifert fiber space over D2.q; jsj/

with C2 a fiber. The two curves C1 and C2 are isotopic along the torus @J�1=s in
W1ŒK1�[ .W2ŒK2�[J�1=s/DK0.pqC r2s/, hence the result follows.

Lemma 2.3 jsj � 3.

Proof Recall that r ¤ p and r is not a multiple of q . Thus M is a hyperbolic 3–
manifold by [10, Proposition 5.7]. The manifolds M.1=0/ and M.�1=s/, the exteriors
of the torus knots K and K0 , are annular, so we have jsj D�.1=0;�1=s/� 5 by [5].
Moreover, if jsj D 4 or 5, then both M.1=0/ and M.�1=s/ must be toroidal (see the
remark following [6, Theorem 1.1]). However, the exterior of a torus knot cannot be
toroidal and hence jsj ¤ 4; 5 and the result follows.

A braid knot (in this paper a knot which is a closed braid will be called so) is a fibered
knot if all of its crossings have the same sign [17] and its genus is easily calculated:
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if b is the number of strands of the braid and c is the number of crossings, then the
Euler characteristic � of a fiber surface and the genus g of the knot are respectively
given by �D b� c and g D .1� bC c/=2.

Lemma 2.4 If jsj � 2, then s D�2 or s D�3.

Proof Suppose that s D 2 or 3. We first claim that T .p; q; r; s/ is a positive braid
knot, a braid knot with all crossings positive. If r < p , then T .p; q; r; s/ is the knot
obtained by closing the braid shown in Figure 3(a), where the box with an integer pair
.a; b/ denotes an .a; b/–torus braid. If r > p , then by performing an isotopy one can
see that T .p; q; r; s/ is the knot obtained by closing the braid shown in Figure 3(b).
For example, see Figure 4 which illustrates a sequence of isotopies for the case that
.p; q; r; s/D .7; 5; 9; s/.

Figure 3

Since T .p; q; r; s/ is a positive braid knot, it is a fibered knot. Let F be a fiber
surface. Then �.F /D b� c , where b is the number of strands of the closed positive
braid presentation of T .p; q; r; s/ given in Figure 3 and c is the number of crossings
in the presentation. If r < p , then using Figure 3(a), one easily sees that �.F / D
p� ..p� 1/qC .r � 1/rs/. If r > p , then from Figure 3(b) one gets b D r and

c D.r � 1/rsC .r �p/pC .pC q� r � 1/.pC q� r/

C .pC q� r/.r � q/D r2s� rsCpq�p� qC r;
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Figure 4

hence

�.F /D r � .r2s� rsCpq�p� qC r/D p� ..p� 1/qC .r � 1/rs/:

By Lemma 2.2, K0.pqC r2s/ is a Seifert fiber space with orbifold S2.p; q; s/. A
simple calculation shows that

jpqC r2sj �p� q� sC�.F /D .r � 1/s > 0:

This shows that K0DT .p; q; r; s/ is not a torus knot by [4, Lemma 5.1], a contradiction.

Hereafter, we assume s D�2 or �3. Since K0.pqC r2s/ is a Seifert fiber space with
orbifold S2.p; q; jsj/, there are six possibilities for the knot type of K0 ,

(2-1) K0 D T .p; "q/; T .p; "s/ or T .q; "s/;

where "D˙1. Also, if we let K0D T .x; "y/ and fx;y; zg D fp; q; sg, then x;y and
z must satisfy

(2-2) jpqC r2s� "xyj D jzj:

Lemma 2.5 r < p .

Proof Assume r > p . First, suppose K0 D T .p; "q/. Then

jpqC r2s� "pqj D jsj:

This is impossible because

jpqC r2s� "pqj � r2
jsj � 2pq > 2p2

� 2pq D 2p.p� q/� 4> jsj:
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Next, suppose K0 D T .p; "s/. Then

jpqC r2s� "psj D q:

This is also impossible because

jpqC r2s� "psj � r2
jsj �pq�pjsj> p.pjsj � q� jsj/

> p.2p� q� 3/D p..p� q� 1/C .p� 2//� p.p� 2/� p > q:

Finally, suppose K0 D T .q; "s/. Then

jpqC r2s� "qsj D p:

This is also impossible because

jpqC r2s� "qsj � r2
jsj �pq� qjsj> r2

jsj �pq�pjsj

> p.pjsj � q� jsj/ > p.2p� q� 3/� p:

Therefore we must have r < p .

Lemma 2.6 If p > 2q; r D p� q and s < 0, then T .p; q; r; s/ is a fibered knot and
its fiber surface has Euler characteristic � given by the formula

�D .p� q/� ..p� q� 1/.�spC .s� 2/q/C .p� 2q/q/:

Proof Since p > 2q , r D p � q > q . There is an isotopy deforming T .p; q; r; s/

to the closure of the braid in Figure 5. See Figure 6, which illustrates the case that
p D 8; q D 3; r D 5; s D�2.

Figure 5

All crossings of the braid knot are negative, so the braid knot is fibered. Since the braid
knot has p� q strands and .p� q � 1/.�spC .s � 2/q/C .p� 2q/q crossings, the
Euler characteristic � of a fiber surface is given by the formula

�D .p� q/� ..p� q� 1/.�spC .s� 2/q/C .p� 2q/q/:
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Figure 6

3 The case s D�3

We will show that s¤�3 by ruling out all possibilities for K0 listed in Equation (2-1).
For the sake of contradiction we assume that s D�3 throughout this section.

Recall that given a knot, if an arc is added to the knot to form a spatial graph whose
complement is an open handlebody of genus two, then the arc is called an unknotting
tunnel for the knot. A knot in S3 is called a .1; 1/–knot if there exists a decomposition
of S3 into two solid tori such that the intersection of the knot with each solid torus is a
single @–parallel arc. A part of a core of each solid torus in the decomposition becomes
an unknotting tunnel for the .1; 1/–knot when the arc of intersection of the knot with
the solid torus is isotoped so as to meet the core in a subarc. Such an unknotting tunnel
is called a .1; 1/–tunnel.

Unknotting tunnels for torus knots were classified in [1] and [11]. Given a torus knot
T .a; b/, there is a torus in S3 containing T .a; b/ and splitting S3 into two solid tori,
inner and outer. The middle tunnel for T .a; b/ is represented by a spanning arc of
a cabling annulus in the complement of T .a; b/. The inner/outer tunnel for T .a; b/

is represented by a properly embedded arc ˛ in the inner/outer solid torus such that
the union of the arc with one of two parts of T .a; b/ cut off by @˛ is isotopic to a
core of the solid torus. It is easy to see that the inner/outer tunnel for a torus knot is a
.1; 1/–tunnel.

To proceed, we need to prepare the following technical lemma.

Lemma 3.1 For .2/–.4/ of the following statements, suppose that n is any positive
integer which is not a multiple of 3.
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(1) T .5; 2; 3;�3/¤ T .5;�3/.
(2) T .12; 7; 5;�3/¤ T .n; 3/.
(3) T .14; 9; 5;�3/¤ T .n; 3/.
(4) T .18; 11; 7;�3/¤ T .n; 3/.

Proof (1) By an isotopy, one can deform T .5; 2; 3;�3/ to a 3–braid knot with 12

crossings, all having negative signs. See Figure 7. Thus T .5; 2; 3;�3/ is a fibered knot
and its genus is 1

2
.1�3C12/D5. However, the genus of T .5;�3/ is 1

2
.5�1/.3�1/D4,

so T .5; 2; 3;�3/¤ T .5;�3/.

Figure 7

(2) Applying the same argument as in the proof of [3, Lemma 3.1.1], one can
show that T .a; b; c; d/ and T .b; a; c; d/ are isotopic if c < a and c < b . Hence
T .12; 7; 5;�3/ D T .7; 12; 5;�3/. Using a deformation, one can also see that the
arc � shown in Figure 8 (a) is an unknotting tunnel for T .7; 12; 5;�3/. Let 
and  0 be two subarcs of T .7; 12; 5;�3/ cut off by @� . Consider two knots  [ �
and  0 [ � , which are shown in Figure 8 (b), (c). They are the twisted torus knots
T .4; 7; 3;�3/DT .7; 4; 3;�3/ and T .3; 5; 2;�3/DT .5; 3; 2;�3/, which are nontriv-
ial knots by [10, Theorem 1.1]. Since both knots  [ � and  0[ � are nontrivial, � is
not a .1; 1/–tunnel for T .7; 12; 5;�3/ by [13, Proposition 1.3]. However, it is easy to
see that T .n; 3/ satisfies condition (iii) of [12, Theorem 3.3], so the middle tunnel for
T .n; 3/ is isotopic to either inner or outer tunnel. It follows that any tunnel for T .n; 3/

is a .1; 1/–tunnel. This implies that T .12; 7; 5;�3/D T .7; 12; 5;�3/¤ T .n; 3/.

(3), (4) For both .a; b; c/D .14; 9; 5/ and .18; 11; 7/, the torus knots T .a; b; c;�3/

and T .b; a; c;�3/ are isotopic. One can see that the arc � in Figure 9 is an un-
knotting tunnel for T .b; a; c;�3/. For .a; b; c/ D .14; 9; 5/, the tunnel � splits
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Figure 8

T .b; a; c;�3/ D T .9; 14; 5;�3/ into two twisted torus knots T .7; 11; 4;�3/ and
T .2; 3; 1;�3/, both of which are nontrivial knots by [10, Theorem 1.1] (note that
T .2; 3; 1;�3/ is a trefoil knot). For .a; b; c/ D .18; 11; 7/, then the tunnel splits
T .b; a; c;�3/ D T .11; 18; 7;�3/ into two twisted torus knots T .8; 13; 5;�3/ and
T .3; 5; 2;�3/, both of which are nontrivial knots by [10, Theorem 1.1] again. Apply-
ing the same argument as in (2), one can show that T .a; b; c;�3/¤ T .n; 3/ for both
.a; b; c/D .14; 9; 5/ and .18; 11; 7/.

By Lemma 2.2, W1ŒK1� is a solid torus. By Lemmas 2.1 and 2.5, we have r D p� 1

or p� q .

Lemma 3.2 K0 ¤ T .p; "q/.

Proof Assume for contradiction that K0 D T .p; "q/. Then (2-2) implies

(3-1) jpq� 3r2
� "pqj D 3:
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Figure 9

Since r > 1 by hypothesis, we must have "D�1. If r D p� 1, then p� q � 2 (and
hence p � 4) by the hypothesis that r is not a multiple of q . Thus we get

jpq� 3r2
� "pqj D 3p2

� 6pC 3� 2pq D p2
� 6pC 3C 2p.p� q/

� p2
� 6pC 3C 4p D p.p� 2/C 3> 3;

which gives a contradiction.

Suppose r D p� q . From Equation (3-1) we get

3.p� q/2 D 2pq˙ 3:

One can see that even the congruence equation 3.p � q/2 � 2pq � 3 mod 4 has no
solution in integers p; q . Thus we must have

3.p� q/2 D 2pqC 3;

which is equivalent to 3p2C 3q2 D 8pq C 3. Dividing both sides by 3pq , we get
p=qC q=p D 8=3C 1=.pq/ > 8=3. Noting that the function t C 1=t is increasing for
t � 1, one sees that p=q > 2. By Lemma 2.6 our knot T .p; q; r; s/ is a fibered knot
and

�.F /D .p� q/� ..p� q� 1/.3p� 5q/C .p� 2q/q/

D .p� q/� .3p2
� 8pqC 3q2

Cpq� 3pC 5q/

D .p� q/� .3Cpq� 3pC 5q/D 4p� 6q�pq� 3;
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where F is a fiber surface. Since our knot K0 D T .p; q; r; s/ was assumed to be the
torus knot T .p; "q/, we must have �.F /DpCq�pq and hence 4p�6q�pq�3D

pC q�pq , giving 3p D 7qC 3. Solving the simultaneous equations

3.p� q/2 D 2pqC 3;

3p D 7qC 3;

we get .p; q/D .1; 0/ or .�20;�9/, both of which are absurd.

Lemma 3.3 K0 ¤ T .p; 3"/.

Proof Assume for the sake of contradiction that K0 D T .p; 3"/. Then

(3-2) jpq� 3r2
� 3"pj D q:

If r D p � 1, then r D p � 1 > p � 2 � q and Equation (3-2) gives .p ˙ 1/q D

3p2� 6pC 3C 3"p , so

.pC 1/.p� 2/� .p˙ 1/q D 3p2
� 6pC 3C 3"p � 3p2

� 9pC 3;

which yields 2.p� 2/2 � 3 and hence p D 3, contradicting p � qC 2� 4.

Suppose r D p � q . From Equation (3-2) we get 3.p � q/2 � pq C 3"p D "0q , or
equivalently

(3-3) p.q� 3"C "0/D .p� q/.3p� 3qC "0/;

where "0 D ˙1. Since p and p � q are relatively prime, p divides 3p � 3q C "0

and hence it divides 3q� "0 . Put 3q� "0 D kp.k D 1; 2/. Then Equation (3-3) gives
p.q�3"C"0/D .p�q/.3�k/p or equivalently q�3"C"0D ..3q�"0/=k�q/.3�k/.
Solving this equation, we get

q D
�3k"C 3"0

.3� k/2� k
and p D

3q� "0

k
;

which yields

.p; q/D

8<:
.5; 2/ if .k; "; "0/D .1;�1; 1/;

.4; 3/ if .k; "; "0/D .2; 1; 1/;

.14; 9/ if .k; "; "0/D .2; 1;�1/:

Thus K0DT .5; 2; 3;�3/ or T .14; 9; 5;�3/ because r¤1. This contradicts statements
(1) and (3) of Lemma 3.1.

Lemma 3.4 K0 ¤ T .q; 3"/.
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Proof Assume for the sake of contradiction that K0 D T .q; 3"/. Then

(3-4) jpq� 3r2
� 3"qj D p:

If r D p � 1, then r D p � 1 > p � 2 � q and Equation (3-4) gives .p � 3"/q D

3p2� 6p˙pC 3, so

.pC 3/.p� 2/� .p� 3"/q D 3p2
� 6p˙pC 3� 3p2

� 7pC 3;

which yields 2.p� 2/2C 1� 0, a contradiction.

Suppose r Dp�q . Then interchanging the roles of p and q in the proof of Lemma 3.3,
one can see that

p D
�3k"C 3"0

.3� k/2� k
and q D

3p� "0

k

for some integer k and "0D˙1. Since p>q , we must have k�4. Since r Dp�q�2

and q � 2, we get p � qC 2� 4. If .3� k/2� k � 0 then we get k D 4 or 5 since
k � 4. Otherwise, we have k � 6 and

4� p D
�3k"C 3"0

.3� k/2� k
�

3kC 3

.3� k/2� k
;

and solving these inequalities, we see that k must be equal to 6. Hence we can conclude
that k may have three values: 4; 5 or 6.

If k D 4, then pD 4"�"0 and qD 3"�"0 , so r Dp�qD "D˙1, a contradiction. If
kD6, then pD�6"C"0 and qD�3"C"0=3, so q cannot be an integer, a contradiction.
Suppose k D 5. Then p D 15"� 3"0 and q D 9"� 2"0 , so "D 1 and .p; q/D .12; 7/

or .18; 11/ depending on whether "0 D 1 or �1. Thus K0 D T .12; 7; 5;�3/ or
T .18; 11; 7;�3/. This contradicts statements (2) and (4) of Lemma 3.1.

4 The case s D�2

Throughout this section, we assume s D�2. We begin with an elementary number-
theoretic observation.

Lemma 4.1 Any positive integral solution to the equation xy � .x � y/2 D ˙1 is
given by x D fnC1 and y D fn�1 up to interchanging x and y , where fk is the k th

entry of the Fibonacci sequence defined by fkC1 D fk Cfk�1.f1 D f2 D 1/.

Proof Using Cassini identity fnC1fn�1 � f
2

n D .�1/n , one easily verifies that
.x;y/D .fnC1; fn�1/ (or .fn�1; fnC1/) is a solution.
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Conversely, suppose that .x1;y1/ is a positive integral solution. Clearly, x1 and y1 are
relatively prime. Without loss of generality, we may assume that x1 > y1 . Recursively
define

(4-1) xk D xk�1�yk�1 and yk D xk�1� 2yk�1

for each k � 2. Straightforward induction can be used to verify that .xk ;yk/ is a
solution to the equation xy � .x � y/2 D ˙1. Let m be the smallest integer for
which ymC1 � 0. By the choice of m, xm � 2ym D ymC1 � 0 and xm � ym D

.xm�1�ym�1/� .xm�1� 2ym�1/D ym�1 > 0. Hence we obtain

1� ym < xm � 2ym;

so xmym � 2. Since .xm;ym/ is a solution of the equation xy � .x � y/2 D ˙1,
.xm;ym/ satisfies x2

m C y2
m D 3xmym ˙ 1. Dividing both sides of the equation

x2
mC y2

m D 3xmym˙ 1 by xmym and noting that t C 1=t is an increasing function
for 1� t � 2, one sees that

5

2
D 2C

1

2
�

xm

ym
C

ym

xm
D 3˙

1

xmym
� 3�

1

xmym
�

5

2
:

Thus xm D 2D f3 and ym D 1D f1 .

The defining relation in Equation (4-1) can be converted into

xk�1 D 2xk �yk and yk�1 D xk �yk :

Using this relation, one can inductively deduce that xm�i D fiC3 and ym�i D fiC1

for 0� i �m� 1. Hence x1 D fmC2 and y1 D fm .

Recall that we have r D p� 1 or p� q by Lemmas 2.1, 2.2 and 2.5.

Lemma 4.2 If K0 D T .p; "q/, then K0 D T .5; 2; 3;�2/D T .5;�2/.

Proof Assume that K0 D T .p; "q/. Then

(4-2) jpq� 2r2
� "pqj D 2:

First, suppose r D p�1. Then Equation (4-2) gives .1�"/pq˙2D 2.p�1/2 . Since
r D p� 1> p� 2� q ,

2pqC 2� .1� "/pq˙ 2D 2.p� 1/2

D 2p2
� 4pC 2� 2p.qC 2/� 4pC 2D 2pqC 2:

Thus "D�1 and pDqC2.D rC1/. It follows that T .p; q; r; s/DT .rC1; r�1; r;�2/

and r is even. By an isotopy one can deform T .rC1; r �1; r;�2/ to the mirror image
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of the knot shown in Figure 10 (a). See Figure 10 (b), which illustrates the case that
r D 4. Thus the genus of T .r C 1; r � 1; r;�2/ is equal to

1� r C ..r � 1/2C 2.r � 2//

2
D
.r C 1/.r � 2/

2
:

However, the genus of T .p; "q/ is equal to 1
2
.p�1/.q�1/D 1

2
r.r�2/, a contradiction.

Hence T .p; q; r; s/¤ T .p; "q/.

Figure 10

Next, suppose r D p� q . If "D 1, then Equation (4-2) implies r D 1, a contradiction.
Thus "D�1 and Equation (4-2) gives

pq� .p� q/2 D˙1:

By Lemma 4.1 we have pD fnC1 and qD fn�1 for some n� 4, where fk is the k th

Fibonacci number. By Lemma 2.6 the genus g of T .p; q; r; s/ is given by the formula

2g D 1� .p� q/C ..p� q� 1/.2p� 4q/C .p� 2q/q/

D 1�fnC .fn� 1/� 2fn�2Cfn�2fn�1:

On the other hand, the genus g0 of the torus knot T .fnC1;�fn�1/ is given by 2g0 D

.fnC1� 1/.fn�1� 1/. Catalan’s identity states that for all positive integers m and k

such that m> k the following holds:

f 2
m�fmCkfm�k D .�1/m�kf 2

k :
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Using Catalan’s identity, we get

2g0� 2g D fnC1fn�1�fnC1�fn�1Cfn� 2fn�2.fn� 1/�fn�2fn�1

D fnC1fn�1� 2fn�1C 2fn�2� 2fn�2fn�fn�2fn�1

D fnC1fn�1� 2fn�3� 2fn�2fn�fn�2fn�1

D fnC1fn�1� 2fn�3�fn�2fn�fn�2fnC1

D fnC1fn�1� 2fn�3�fn�2fnC2

D .fnC1fn�1�f
2

n /� 2fn�3C .f
2

n �fn�2fnC2/

D .�1/nf 2
1 � 2fn�3C .�1/n�2f 2

2

D 2.�1/n� 2fn�3;

which is equal to zero if and only if nD 4. Thus K0 D T .5; 2; 3;�2/ and it is easy to
see that T .5; 2; 3;�2/D T .5;�2/.

Figure 11
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Lemma 4.3 If K0 D T .p; 2"/, then K0 D T .2q˙1; q; q˙1;�2/D T .2q˙1;�2/.

Proof Assume that K0 D T .p; 2"/. Then

(4-3) jpq� 2r2
� 2"pj D q:

First, suppose r D p� 1. Then Equation (4-3) gives p.2p� 4C 2"� q/D˙q � 2.
Hence p divides q� 2 or qC 2. In the former case, q D 2 and 2p� 4C 2"� q D 0,
implying that pD 2 or 4, and this gives a contradiction because p and q are relatively
prime. In the latter, pD qC2 and 2p�4C2"�qD�1, implying that qD�1�2"� 1,
and this is also impossible because q � 2.

Next, suppose r D p� q . Then Equation (4-3) gives p.2p� 5qC 2"/D�q.2q˙ 1/.
Since p and q are relatively prime, p divides 2q˙ 1. Since p > q , p D 2q˙ 1 (and
r D q˙ 1).

If .p; q; r/ D .2q C 1; q; q C 1/, then an isotopy deforms T .p; q; r; s/ D T .2q C

1; q; qC 1;�2/ to the mirror image of T .qC 1; qC 2; q;�1/. See the upper pictures
in Figure 11, which illustrates the case that qD 4. A further isotopy deforms the mirror
image to T .2qC 1;�2/. See the lower pictures.

If .p; q; r/ D .2q � 1; q; q � 1/, then r < p and r < q , so we have T .p; q; r; s/ D

T .q;p; r; s/D T .q; 2q � 1; q � 1;�2/ by [3, Lemma 3.1.1]. By an isotopy, one can
deform T .q; 2q� 1; q� 1;�2/ to T .2q� 1; 2/. See Figure 12, which illustrates the
case that q D 5.

Figure 12
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Lemma 4.4 K0 ¤ T .q; 2"/.

Proof Assume for the sake of contradiction that K0 D T .q; 2"/. Then

(4-4) jpq� 2r2
� 2"qj D p:

First, suppose r Dp�1. Then Equation (4-4) gives �2."qC1/Dp.2p�4�q˙1/ >

2p�4�q�1� 2.qC2/�4�q�1D q�1> 0 and hence "D�1. Also, p divides
2.q�1/. Since p>2 and p> q�1, we must have pD 2.q�1/ and 2p�4�q˙1D1,
which yields 3q D 9˙ 1. This cannot happen.

Next, suppose r D p� q . Then Equation (4-4) gives p.2p� 5q˙ 1/D�2q.qC "/.
Since p and q are relatively prime, p divides 2.qC"/ and hence pD qC" or 2qC2".
If p D qC ", then "D 1 and r D p � q D 1, a contradiction. If p D 2qC 2", then
2p� 5q˙ 1D�q and hence 0D 2p� 5q˙ 1C q D 4"˙ 1, which is impossible.

Acknowledgements The author was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (NRF-2013R1A1A2A10064864).

References
[1] M Boileau, M Rost, H Zieschang, On Heegaard decompositions of torus knot exteriors

and related Seifert fibre spaces, Math. Ann. 279 (1988) 553–581 MR922434

[2] M Cohen, W Metzler, A Zimmermann, What does a basis of F.a; b/ look like?,
Math. Ann. 257 (1981) 435–445 MR639577

[3] J C Dean, Hyperbolic knots with small Seifert-fibered Dehn surgeries, PhD the-
sis, University of Texas at Austin (1996) MR2694392 Available at http://
search.proquest.com/docview/304274520

[4] J C Dean, Small Seifert-fibered Dehn surgery on hyperbolic knots, Algebr. Geom. Topol.
3 (2003) 435–472 MR1997325

[5] C M Gordon, Boundary slopes of punctured tori in 3–manifolds, Trans. Amer. Math.
Soc. 350 (1998) 1713–1790 MR1390037

[6] C M Gordon, Y-Q Wu, Annular Dehn fillings, Comment. Math. Helv. 75 (2000)
430–456 MR1793797

[7] W Jaco, Adding a 2–handle to a 3–manifold: An application to property R , Proc.
Amer. Math. Soc. 92 (1984) 288–292 MR754723

[8] S Lee, Twisted torus knots T .p; qI kq; s/ are cable knots, J. Knot Theory Ramifications
21 (2012) MR2887898

[9] S Lee, Twisted torus knots with essential tori in their complements, J. Knot Theory
Ramifications 22 (2013) MR3092503

Algebraic & Geometric Topology, Volume 15 (2015)

http://dx.doi.org/10.1007/BF01456287
http://dx.doi.org/10.1007/BF01456287
http://www.ams.org/mathscinet-getitem?mr=922434
http://dx.doi.org/10.1007/BF01465865
http://www.ams.org/mathscinet-getitem?mr=639577
http://www.ams.org/mathscinet-getitem?mr=2694392
http://search.proquest.com/docview/304274520
http://search.proquest.com/docview/304274520
http://dx.doi.org/10.2140/agt.2003.3.435
http://www.ams.org/mathscinet-getitem?mr=1997325
http://dx.doi.org/10.1090/S0002-9947-98-01763-2
http://www.ams.org/mathscinet-getitem?mr=1390037
http://dx.doi.org/10.1007/s000140050135
http://www.ams.org/mathscinet-getitem?mr=1793797
http://dx.doi.org/10.2307/2045205
http://www.ams.org/mathscinet-getitem?mr=754723
http://dx.doi.org/10.1142/S0218216511009753
http://www.ams.org/mathscinet-getitem?mr=2887898
http://dx.doi.org/10.1142/S0218216513500417
http://www.ams.org/mathscinet-getitem?mr=3092503


2836 Sangyop Lee

[10] S Lee, Twisted torus knots that are unknotted, Int. Math. Res. Not. 2014 (2014) 4958–
4996 MR3264672

[11] Y Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988)
465–481 MR928492

[12] Y Moriah, E Sedgwick, Heegaard splittings of twisted torus knots, Topology Appl.
156 (2009) 885–896 MR2498921

[13] K Morimoto, M Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991)
143–167 MR1087243

[14] K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which
have the property “1C1D3”, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113–118
MR1356163

[15] K Morimoto, Y Yamada, A note on essential tori in the exteriors of torus knots with
twists, Kobe J. Math. 26 (2009) 29–34 MR2583175

[16] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Berkeley,
CA (1976) MR0515288

[17] J R Stallings, Constructions of fibred knots and links, from: “Algebraic and geometric
topology, Part 2”, (R J Milgram, editor), Proc. Sympos. Pure Math. 32, Amer. Math.
Soc. (1978) 55–60 MR520522

Department of Mathematics, Chung-Ang University
84 Heukseok-ro, Dongjak-gu, Seoul 156-756, South Korea

sylee@cau.ac.kr

Received: 30 June 2014 Revised: 4 August 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://www.ams.org/mathscinet-getitem?mr=3264672
http://dx.doi.org/10.1007/BF01388781
http://www.ams.org/mathscinet-getitem?mr=928492
http://dx.doi.org/10.1016/j.topol.2008.11.003
http://www.ams.org/mathscinet-getitem?mr=2498921
http://dx.doi.org/10.1007/BF01446565
http://www.ams.org/mathscinet-getitem?mr=1087243
http://dx.doi.org/10.1017/S0305004100074028
http://dx.doi.org/10.1017/S0305004100074028
http://www.ams.org/mathscinet-getitem?mr=1356163
http://www.ams.org/mathscinet-getitem?mr=2583175
http://www.ams.org/mathscinet-getitem?mr=0515288
http://www.ams.org/mathscinet-getitem?mr=520522
mailto:sylee@cau.ac.kr
http://msp.org
http://msp.org

	1. Introduction
	2. Lemmas
	3. The case s=-3
	4. The case s=-2
	References

