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Estimating the number of Reeb chords using a
linear representation of the characteristic algebra

GEORGIOS DIMITROGLOU RIZELL

ROMAN GOLOVKO

Given a chord-generic, horizontally displaceable Legendrian submanifold ƒ�P �R
with the property that its characteristic algebra admits a finite-dimensional matrix
representation, we prove an Arnold-type lower bound for the number of Reeb chords
on ƒ . This result is a generalization of the results of Ekholm, Etnyre, Sabloff
and Sullivan, which hold for Legendrian submanifolds whose Chekanov–Eliashberg
algebras admit augmentations. We also provide examples of Legendrian submanifolds
ƒ of Cn �R , n� 1 , whose characteristic algebras admit finite-dimensional matrix
representations but whose Chekanov–Eliashberg algebras do not admit augmentations.
In addition, to show the limits of the method of proof for the bound, we construct a
Legendrian submanifold ƒ�Cn�R with the property that the characteristic algebra
of ƒ does not satisfy the rank property. Finally, in the case when a Legendrian
submanifold ƒ has a non-acyclic Chekanov–Eliashberg algebra, using rather ele-
mentary algebraic techniques we obtain lower bounds for the number of Reeb chords
of ƒ . These bounds are slightly better than the number of Reeb chords it is possible
to achieve with a Legendrian submanifold whose Chekanov–Eliashberg algebra is
acyclic.

53D12; 53D42

1 Introduction

1.1 Geometric background

The contactization of an exact symplectic 2n–manifold .P; d�/ is a contact manifold
P �R equipped with the contact structure � WD ker.dzC �/, where z is a coordinate
on R. Let ƒ be an n–dimensional submanifold of P � R. We say that ƒ is a
Legendrian submanifold if and only if Txƒ� �x for all x 2ƒ. A smooth 1–parameter
family of Legendrian submanifolds is called a Legendrian isotopy. We will always
assume that .P; d�/ has finite geometry at infinity.

We note that if ƒ� P �R is a Legendrian submanifold, then double points of the so-
called Lagrangian projection …LW P �R! P defined by …L.x; z/D x correspond
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bijectively to integral curves of @z in P � R having endpoints on ƒ. The vector
field @z is the Reeb field of the contact form dzC � and its integral curves having
endpoints on ƒ are called Reeb chords on ƒ. The set of Reeb chords on ƒ will
be denoted by Q.ƒ/. We say that ƒ is chord-generic if all self-intersections of the
Lagrangian immersion …L.ƒ/ are transverse double points, which, in the case when
ƒ is closed, in particular implies that jQ.ƒ/j < 1. Note that the chord-generic
Legendrian embeddings of a closed manifold form an open and dense subset of the
space of Legendrian embeddings.

From now on we assume that all Legendrian submanifolds are closed, orientable,
connected and chord-generic, unless stated otherwise.

A Legendrian submanifold ƒ � P � R is called horizontally displaceable if the
projection …L.ƒ/ can be completely displaced off of itself by a Hamiltonian isotopy.

Observe that in the case .P; d�/D .T �M; d�M /, where �M is the so-called Liouville
form, the bundle projection pW T �M !M induces the natural projection …F W T

�M �

R!M �R defined by …F .x; z/ D .p.x/; z/. This projection is called the front
projection. As a special case, this also applies to the standard symplectic vector
space .Cn D T �Rn;�d.y1dx1 C � � � C yndxn// (where we usually use minus the
Liouville form).

There are two “classical” invariants for a Legendrian submanifold ƒ�Cn �R which
are invariant under Legendrian isotopy: the Thurston–Bennequin number tb.ƒ/ and
the rotation class r.ƒ/. The Thurston–Bennequin number of a homologically trivial
Legendrian ƒ�P �R was first defined in the case nD 1 by Bennequin [3], and inde-
pendently by Thurston, and then extended to the case when n� 1 by Tabachnikov [30].
One may define it by tb.ƒ/ WD lk.ƒ;ƒ0/, where ƒ0 is a sufficiently small push-off
of ƒ along the Reeb vector field. The rotation class r.ƒ/ of a Legendrian submanifold
ƒ� P �R is defined as the homotopy class of the complex bundle monomorphism
Tƒ˝C! � � TP induced by the differential of the inclusion (together with some
choice of compatible almost complex structure on P ). We refer to Ekholm, Etnyre
and Sullivan [8] for more details.

Legendrian contact homology is a modern invariant of Legendrian submanifolds
in P � R. It is a variant of the symplectic field theory introduced by Eliashberg,
Givental and Hofer [13]. Independently, for Legendrian knots in C�R, it was defined
by Chekanov [4]. This invariant associates a differential graded algebra (DGA) denoted
by A.ƒ/ to a Legendrian submanifold ƒ, sometimes called the Chekanov–Eliashberg
algebra of ƒ. A.ƒ/ is a non-commutative unital differential graded algebra over a
field F freely generated by elements of Q.ƒ/. The differential @.a/ of a generator
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a 2Q.ƒ/ is given by a count of rigid pseudo-holomorphic disks for some choice of
compatible almost complex structure, and is then extended using the Leibniz rule.

We will use the version of Legendrian contact homology for Legendrian submanifolds
of P �R, which was developed by Ekholm, Etnyre and Sullivan [10]. It was shown
there that the homology of .A.ƒ/; @/, the so-called Legendrian contact homology
of ƒ, is independent of the choice of an almost complex structure and invariant under
Legendrian isotopy.

We now sketch the definition of the differential, as given in [10]. For a generic tame
almost complex structure J on P , we define

@.a/D
X

dimMaIbIA.ƒIJ /D0

.�1/.n�1/.jajC1/#.MaIbIA.ƒIJ //b;

where b D b1 � � � bm is a word of Reeb chords. Here MaIbIA.ƒIJ / is the moduli-
space of J–holomorphic disks in P having boundary on …L.ƒ/, a positive boundary
puncture mapping to a, negative boundary punctures mapping to b1; : : : ; bm (in that
order relative to the oriented boundary with the positive puncture removed), and being
in the relative homology class A 2 H2.P;…L.ƒ//. We refer to Section 3.3 for the
definition of positive and negative punctures.

The Maslov class of a Legendrian submanifold ƒ is a cohomology class �.ƒ/ in
H 1.ƒIZ/ that assigns to each 1–dimensional homology class the Maslov index of a
path representing that class; see eg [8]. In the case when the Maslov class vanishes,
the Chekanov–Eliashberg algebra of a one-component Legendrian submanifold has a
canonical grading in Z. In general, the Chekanov–Eliashberg algebra of an oriented
one-component Legendrian submanifold has a canonical grading in Z2 .

Given a Chekanov–Eliashberg algebra .A.ƒ/; @/ over a field F , an augmentation of
.A.ƒ/; @/ is a unital algebra chain map "W .A.ƒ/; @/! .F ; @D 0/, ie an algebra map
satisfying ".1/ D 1 and " ı @ D 0. If ".c/ D 0 for jcj ¤ 0, c 2 Q.ƒ/, we say that
" is graded. If .A.ƒ/; @/ admits an augmentation (which is not always the case),
then we can follow the linearization procedure due to Chekanov to produce a complex
spanned as a vector space by the Reeb chords. We first define a tame automorphism
�"W .A; @/! .A; @/ with �".c/DcC".c/. Then we define .C.ƒ/; @" WD .�"ı@ı��1

" /
1
/,

where C.ƒ/ is the F–vector space spanned by the elements of Q.ƒ/. The homology
of .C.ƒ/; @"/ is called the linearized Legendrian contact homology of ƒ.

Observe that an augmentation can be seen as a 1–dimensional linear representation of
A.ƒ/ which satisfies the additional property that " ı @D 0. A k–dimensional linear
representation �W A.ƒ/!Mk.F/ is called graded if �.c/D 0 for jcj ¤ 0, c 2Q.ƒ/.
We will be interested in such representations satisfying the additional condition �ı@D0.
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Assume that we are given a Legendrian submanifold ƒ � .P � R; dz C �/ with
Chekanov–Eliashberg DGA .A.ƒ/; @/. Ng [24] defined the so-called characteristic
algebra of ƒ, which is given by Cƒ WDA.ƒ/=I , where I denotes the two-sided ideal
of A.ƒ/ generated by f@.c/gc2Q.ƒ/ . If two submanifolds ƒ and ƒ0 are Legendrian
isotopic, then Cƒ and Cƒ0 become isomorphic after stabilizations by free products with
suitable finitely generated free algebras, as follows from [24, Theorem 3.4] together
with [10, Theorem 1.1].

Note that there is a one-to-one correspondence between (graded) linear representa-
tions �W A.ƒ/ ! Mk.F/ satisfying � ı @ D 0 and (graded) linear representations
Cƒ!Mk.F/. Again, [24, Theorem 3.4] together with [10, Theorem 1.1] shows the
following important invariance result:

Proposition 1.1 The property of having a characteristic algebra admitting a (graded) k–
dimensional representation is invariant under Legendrian isotopy and independent of the
choice of almost complex structure used in the definition of the Chekanov–Eliashberg
algebra.

The front S1–spinning is a procedure defined by Ekholm, Etnyre and Sullivan [8] which,
given a Legendrian submanifold ƒ � Cn �R, produces a Legendrian submanifold
†S1ƒ � CnC1 �R diffeomorphic to ƒ� S1 . The second author [17] generalized
this construction to a notion of the front Sm–spinning for m 2N . Given a Legendrian
submanifold ƒ � Cn � R, this construction produces a Legendrian submanifold
†Smƒ�CnCm �R diffeomorphic to ƒ�Sm . Observe that the front Sm–spinning
construction can be seen as a particular case of the Legendrian product construction
defined by Lambert-Cole [21].

1.2 Algebraic background

In this section, we recall several definitions from non-commutative ring theory that
will become useful later.

Definition 1.2 A ring R satisfies
� the invariant basis number (IBN) property if the left-modules Rn and Rm are

isomorphic if and only if mD n;
� the rank property if from the existence of an epimorphism Rn!Rm of free

left modules it follows that n�m;
� the strong rank property if from the existence of monomorphism Rn!Rm of

free left modules it follows that n�m.

The following three remarks, which describe basic properties of these three conditions,
can all be derived using elementary algebra.
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Remark 1.3 Let f W R! S be a (unital) ring homomorphism. If S satisfies the rank
property (the IBN property), then R satisfies the rank property (the IBN property).
Unfortunately, the same principle does not hold for the strong rank property in general.

Remark 1.4 For a unital ring we have the implications

strong rank property D) rank property D) IBN property:

In general, none of the reversed implications are true.

Remark 1.5 A ring R fails to satisfy the rank property if and only if there exist natural
numbers m > n and matrices A, B over R of sizes m� n and n�m, respectively,
such that AB D Im .

1.3 Results

Many important techniques in symplectic and contact topology are designed to capture
quantitative properties of dynamical systems induced by, say, a Hamiltonian flow or a
Reeb flow. The problem of finding closed orbits of a Hamiltonian vector field and a
Reeb vector field can in turn be related to the problems of finding intersections between
Lagrangian submanifolds and Reeb chords on Legendrian submanifolds, respectively.
Several examples of rigidity phenomena have been established in different settings,
where the numbers of such intersection points, or chords, are strictly greater than the
numbers predicted by topology alone. Often these estimates are proven using different
variants of Floer homology.

1.3.1 The first lower bounds Gromov’s theorem [18, Theorem 2.3.B1 ] implies that
any horizontally displaceable Legendrian submanifold must have at least one Reeb
chord. Note that this estimate is already highly non-trivial in general.

In even dimensions, there is a lower bound obtained from topology alone. Assume
that we are given a chord-generic, horizontally displaceable, orientable Legendrian
submanifold ƒ � P � R, where dim P D 2n and n D 2k is even. The Whitney
self-intersection index of …L.ƒ/ is equal to .�1/kC1 1

2
�.ƒ/, as follows from purely

topological considerations; see Audin [2, Proposition 0.4] for P DCn . In particular,
…L.ƒ/ has at least 1

2
j�.ƒ/j double points, and hence jQ.ƒ/j � 1

2
j�.ƒ/j. In the case

when P DC2k , [8, Proposition 3.2(2)] shows moreover that tb.ƒ/D .�1/kC1 1
2
�.ƒ/.
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1.3.2 Arnold’s inequality For some time it was expected that a horizontally dis-
placeable, chord-generic, Legendrian submanifold would have at least as many Reeb
chords as half the sum of its Betti numbers. This type of inequality is in line with other
conjectures due to Arnold [1], and it is usually referred to as Arnold’s inequality or
an Arnold-type inequality. This inequality is however not fulfilled in general; we refer
to Section 1.3.3 for references to counter-examples belonging to the so-called flexible
side of contact geometry.

On the other hand, it has been shown that the inequality is fulfilled for certain natural
Legendrian isotopy classes. In the case when the Chekanov–Eliashberg algebra of
ƒ� P �R admits an augmentation, the inequality was originally proven by Ekholm,
Etnyre and Sullivan [9]. A “graded” refinement of this result is also a consequence of
the (considerably stronger) duality result for linearized Legendrian contact homology
due to Ekholm, Etnyre and Sabloff [7]. In this paper, we show that the requirement of
having an augmentation can be relaxed considerably in the proof of the above inequality.

Theorem 1.6 Let ƒ � P �R be an n–dimensional horizontally displaceable Leg-
endrian submanifold which is chord-generic. If its characteristic algebra Cƒ admits a
k–dimensional representation �W Cƒ!Mk.F/ for some field F , then the following
inequality holds:

(1-1) 1

2

X
i2I

bi �

X
i2I

ci ;

where bj WD dimF Hj .ƒIF/, cj is the number of Reeb chords on ƒ of grading j and
I 2 f2Z; Zn2Zg.

In addition, if � is a graded representation, then the following refinement of the previous
inequality holds:

(1-2) bi � ci C cn�i

for all i satisfying 0� i � n.

Remark 1.7 In the case when char F ¤ 2, we must make the additional assumption
that ƒ is spin in order for its Chekanov–Eliashberg algebra to be well-defined with
coefficients in F .

To provide interesting examples of Legendrian submanifolds satisfying the assump-
tions of the theorem we will proceed as follows. In the literature, there are many
computations of Chekanov–Eliashberg algebras of Legendrian knots in C �R. We
provide higher-dimensional examples by using the front Sm–spinning construction.
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The Chekanov–Eliashberg algebra of the S1–spinning of a 1–dimensional Legendrian
knot was computed in terms of the Chekanov–Eliashberg algebra of the original knot
by Ekholm and Kálmán [12]. In Section 3, we provide a part of this computation in the
general case. Even though we do not compute the full Chekanov–Eliashberg algebra
of the Sm–spinning of a general Legendrian submanifold ƒ, we are able to establish
the following result:

Theorem 1.8 A Legendrian submanifold ƒ�Cn�R and its Sm–spinning †Smƒ�

CnCm �R satisfy the following relations:

(1) The Chekanov–Eliashberg algebra of †Smƒ admits a (graded) augmentation in
a unital ring R if and only if that of ƒ admits a (graded) augmentation in R.

(2) The characteristic algebra of †Smƒ admits a (graded) k–dimensional represen-
tation if and only if that of ƒ admits a (graded) k–dimensional representation.

(3) The Chekanov–Eliashberg algebra of †Smƒ is acyclic if and only if that of ƒ
is acyclic.

Sivek [29] has provided examples of Legendrian knots in C �R whose characteristic
algebras admit 2–dimensional, but not 1–dimensional, representations over Z2 . In
Section 4, we apply the front Sm–spinning construction to these knots and other knots
constructed from them and, using Theorem 1.8, we prove the following:

Theorem 1.9 Fix a product S WD Sm1 � � � ��Sms of spheres. There exists an infinite
family of Legendrian embeddings ƒi �C1Cm1C���Cms �R, i D 1; 2; : : : , of S1 �S

which are in pairwise different Legendrian isotopy classes and whose characteris-
tic algebras all admit finite-dimensional matrix representations over Z2 , but whose
Chekanov–Eliashberg algebras do not admit augmentations to unital commutative rings.
In particular, Theorem 1.6 can be applied to these Legendrian submanifolds.

Observe that the condition that there exists a finite-dimensional representation of Cƒ
over a field F is a natural condition that can be used to define the notion of rank for free
Cƒ–Cƒ0 –bimodules in the case when ƒ0 is Legendrian isotopic to ƒ. It also allows
us to write rank inequalities for long exact sequences of such free finite-rank Cƒ–Cƒ0 –
bimodules. These rank inequalities play a crucial role in the proof of Theorem 1.6. We
do not know if this restriction on Cƒ can be weakened. On the other hand, in Section 5
we show that there are examples of Legendrian submanifolds of Cn �R with a “wild”
behavior of Cƒ . More precisely, there are n–dimensional Legendrian submanifolds ƒ
with non-trivial Cƒ for which there exists a monomorphism (epimorphism) from
a free Cƒ–Cƒ0 –bimodule of rank k to a free Cƒ–Cƒ0 –bimodule of rank l , where
k > l (k < l ). In other words, we prove the following:
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Theorem 1.10 Given any n� 1, there exists a Legendrian submanifold ƒ�Cn �R
whose characteristic algebra Cƒ ¤ 0 does not satisfy the rank property.

This result shows that it is unlikely that the method in the proof of Theorem 1.6 can
be used to prove an Arnold-type inequality for a general horizontally displaceable
Legendrian submanifold having a Chekanov–Eliashberg algebra which is not acyclic.

1.3.3 A failure of Arnold’s inequality There are examples of horizontally displace-
able Legendrian submanifolds ƒ�P �R for which Arnold’s inequality is not satisfied.
Observe that all known examples have an acyclic Chekanov–Eliashberg algebra.

The first example of a Legendrian submanifold for which Arnold’s inequality does not
hold was provided by Sauvaget [28], who constructed a genus-two Legendrian surface
in C2 �R having only one transverse Reeb chord.

Loose Legendrian submanifolds is a class of Legendrian submanifolds defined by
Murphy [23], who showed they satisfy an h-principle. Since these submanifolds
belong to the flexible domain of contact geometry, one does not expect them to satisfy
any rigidity phenomena. Observe that the Chekanov–Eliasbherg algebra of a loose
Legendrian submanifold is acyclic (with or without Novikov coefficients). Using
this h-principle, together with the h-principle for exact Lagrangian caps as shown
in [14], Ekholm, Eliashberg, Murphy and Smith [6] provided many examples of exact
Lagrangian immersions with few double points. We present here a weaker form of
their result.

Theorem 1.11 [6] Suppose that ƒ is a smooth closed n–dimensional manifold
for which Tƒ˝ C is a trivial complex bundle. There exists a loose, horizontally
displaceable, chord-generic, Legendrian embedding ƒ�Cn �R satisfying8<:

1� jQ.ƒ/j � 2 if n is odd;
jQ.ƒ/j D 1

2
j�.ƒ/j if n is even and �.ƒ/ < 0;

1
2
j�.ƒ/j � jQ.ƒ/j � 1

2
j�.ƒ/jC 2 if n is even and �.ƒ/ > 0:

Some rather basic algebraic considerations show the following (very) slight improve-
ment of the lower bound in the case when a Legendrian submanifold has a non-acyclic
Chekanov–Eliashberg algebra.

Proposition 1.12 Suppose that ƒ�P�R is a horizontally displaceable, chord-generic
n–dimensional Legendrian submanifold whose characteristic algebra is non-trivial, but
does not admit any finite-dimensional representations. It follows that

jQ.ƒ/j � 3:
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Moreover, if nD 2k , we have the bound

jQ.ƒ/j � 1
2
j�.ƒ/jC 2

under the additional assumptions that ƒ is orientable and either

(1) �.ƒ/� 0, or

(2) �.ƒ/D 0 and all generators have non-negative grading.
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2 Proof of Theorem 1.6

The proof uses the same construction and idea as Ekholm, Etnyre and Sabloff [7].
In other words, we consider the two-copy link ƒ[ƒ0 constructed as follows. First,
identify a neighborhood of ƒ with a neighborhood of the zero-section ƒ � J 1.ƒ/

using the standard neighborhood theorem for Legendrian submanifolds. Using this
identification, the section j 1f �J 1.ƒ/ can be considered as a Legendrian submanifold
ƒ00 � P �R, where f W ƒ! R is a C 2–small Morse function. ƒ0 is now obtained
from ƒ00 by a translation sufficiently far in the positive Reeb direction, so that there
are no Reeb chords starting on ƒ0 and ending on ƒ. Observe that …L.ƒ

0/ may still
be assumed to be arbitrarily close to …L.ƒ/ in C 1–norm, and hence that there is a
canonical bijective correspondence Q.ƒ/'Q.ƒ0/ of Reeb chords.

By topological considerations of the disks involved in the Chekanov–Eliashberg algebra
of ƒ[ƒ0 , we see that there is a filtration

.A.ƒ[ƒ0/; @/� � � � � .A.ƒ[ƒ0/1; @/� .A.ƒ[ƒ0/0; @/;

where .A.ƒ[ƒ0/i ; @/ is spanned by words containing at most i letters corresponding
to mixed chords having starting point on ƒ and endpoint on ƒ0 . We can thus define
the quotient complex

.A.ƒ;ƒ0/; @/ WD .A.ƒ[ƒ0/1; @/=A.ƒ[ƒ0/0;
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which we identify with the vector space over F spanned by words of the form acb ,
where a is a word of Reeb chords on ƒ, c is a Reeb chord starting on ƒ and ending
on ƒ0 , and b is a word of Reeb chords on ƒ0 . In fact, this F–vector space is naturally
a free A.ƒ/–A.ƒ0/–bimodule spanned by the set Q.ƒ;ƒ0/ of Reeb chords starting
on ƒ and ending on ƒ0 . However, the differential is in general not a morphism of
bimodules.

From the existence of �W Cƒ!Mk.F/ and the fact that ƒ and ƒ0 are Legendrian
isotopic, it follows from Proposition 1.1 that there exists a linear representation
�0W Cƒ0 !Mk.F/ as well. Let C.ƒ;ƒ0/ denote the free Cƒ–Cƒ0 –bimodule generated
by Q.ƒ;ƒ0/. Similarly, let C�.ƒ;ƒ0/ denote the free Mk.F/–Mk.F/–bimodule
generated by Q.ƒ;ƒ0/. Observe that the compositions

A.ƒ/
�ƒ
�! Cƒ

�
�!Mk.F/;

A.ƒ0/
�ƒ0

�! Cƒ0
�0
�!Mk.F/;

where �ƒ and �ƒ0 are the quotient projections, induce a commutative diagram

A.ƒ;ƒ0/ // //

@
��

C.ƒ;ƒ0/ //

��

C�.ƒ;ƒ0/

��
A.ƒ;ƒ0/ // // C.ƒ;ƒ0/ // C�.ƒ;ƒ0/;

where all maps are F–linear and the horizontal maps are the induced natural A.ƒ/–
A.ƒ0/–bimodule morphisms. The middle vertical map is a uniquely determined
morphism of Cƒ–Cƒ0 –bimodules induced by the differential @, as follows from the
Leibniz rule

@.acb/D @ƒ.a/cbC .�1/jacjac@ƒ0.b/C .�1/jaja@.c/b

together with the fact that @ƒ.a/ and @ƒ0.b/ are in the kernels of the projection
to the respective characteristic algebras. It follows that the rightmost vertical map
is uniquely determined by the requirement of being an Mk.F/–Mk.F/–bimodule
morphism making the diagram commutative.

Remark 2.1 In the case when kD1, the rightmost vertical map is simply the linearized
differential with respect to the augmentation �W A.ƒ [ƒ0/! F that is defined as
follows: � vanishes on generators corresponding to chords starting on ƒ and ending
on ƒ0 , while it takes the value � ı�ƒ and �0 ı�ƒ0 on generators corresponding to
chords on ƒ and ƒ0 , respectively.
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The assumption of horizontal displaceability implies that there is a Legendrian isotopy
ƒt [ƒ

0
t for which ƒ0 [ƒ

0
0
D ƒ[ƒ0 and such that there are no chords between

ƒ1 and ƒ0
1

. The invariance proof of Ekholm, Etnyre and Sullivan [10] implies that,
after a finite number of stabilizations by the direct sum of a trivial complex with two
generators, the complex .A.ƒ;ƒ0/; @/ is isomorphic to the stabilization of a trivial
complex. It follows that the same is true for the complex .C�.ƒ;ƒ0/; @/. In particular,
the latter complex is acyclic as well.

Observe that there is a natural isomorphism

ˆW Mk.F/˝Mk.F/
op
!Mk2.F/

of F–algebras determined by taking the values ˆ.A˝B/.v˝w/ WDA.v/˝BT .w/

and then extended by linearity for v;w 2 Fk and A;B 2 Mk.F/, where we have
used an identification Fk ˝Fk ' Fk2

. The considerations of the set Q.ƒ;ƒ0/ in [7,
Section 3.1] show that

C�.ƒ;ƒ0/DQ˚ C˚P;
where

QDMk2.F/˚Q.ƒ/; C DMk2.F/˚Crit.f /; P DMk2.F/˚Q.ƒ/:

Here, Q and P are both generated by subsets of Q.ƒ;ƒ0/ which are in canonical
bijection with Q.ƒ/, and C is generated by Reeb chords which are in canonical
bijection with the critical points of f .

Moreover, using appropriate choices of Maslov potentials, a generator qc 2Q corre-
sponding to the chord c 2Q.ƒ/ is graded by jqcj D jcj, a generator cx 2 C correspond-
ing to the critical point x is graded by jcxj D indexMorse.x/� 1, while a generator
qc 2 P corresponding to the chord c 2Q.ƒ/ is graded by jqcj D �jcjCn�2. Finally,
we may assume that the actions of the generators in Q are strictly greater than the
actions of the generators in C , which, in turn, are strictly greater than the actions of the
generators in P .

The analysis in [7, Theorem 3.6] moreover shows that, for a suitable choice of al-
most complex structure and metric on ƒ, the differential with respect to the above
decomposition is of the form

@D

0@� 0 0

� @f 0

� � �

1A;
where @f is the Morse differential induced by a Morse–Smale pair .f;g/ (where the
coefficients have been taken in Mk2.F/).
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The inclusion of subcomplexes

P � C˚P � .C�.ƒ;ƒ0/; @/

induces the long exact sequence

� � � !H�.P/!H�.C˚P/!H Morse
�C1 .f IMk2.F//!H��1.P/! � � �

in homology. Since the acyclicity of .C�.ƒ;ƒ0/; @/ implies that

H�.C˚P/'H�C1.Q/;

we obtain the long exact sequence

� � � !H�.P/!H�C1.Q/!H Morse
�C1 .f IMk2.F//!H��1.P/! � � � :

Exactness and the fact that all modules in the long exact sequence are finite-dimensional
F–vector spaces imply that we have the inequality

(2-1) dimF H Morse
i .f IMk2.F//� dimF Hi�2.P/C dimF Hi.Q/;

where we can compute the left-hand side to be

dimF H Morse
i .f IMk2.F//D k4 dimF H Morse

i .f IF/D k4bi ;

since we are using field coefficients and dimF Mk2.F/D k4 . On the other hand, we
also have the bounds

dimF Hi.Q/� dimF Qi D k4ci ;

dimF Hi�2.P/� dimF Pi�2 D k4cn�i ;

from which the sought inequality follows.

3 A partial computation of the Chekanov–Eliashberg
algebra for an Sm–spun Legendrian

In the following we let ƒ� P �R be an arbitrary closed chord-generic Legendrian
submanifold of the contactization of a Liouville domain. We prove here the following
relationship between the Chekanov–Eliashberg algebra of the Legendrian submanifold
Sm �ƒ� T �Sm �P �R and the Chekanov–Eliashberg algebra of ƒ:

Theorem 3.1 For a suitable almost complex structure on T �Sm �P and a suitable
Legendrian chord-generic perturbation L of Sm �ƒ � T �Sm � P �R, there is a
canonical inclusion

�W .A�.ƒ/; @ƒ/! .A�.L/; @L/
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of unital DGAs which, moreover, can be left-inverted by a unital DGA morphism

� W .A�.L/; @L/! .A�.ƒ/; @ƒ/:

If P D Cn , then the same is true for the corresponding Legendrian submanifold
obtained by an inclusion induced by an exact symplectic embedding

.T �Sm
�T Rn; d�Sm ˚ d�Rn/ ,! .T RnCm; d�RnCm/;

ie the Sm–spinning †Smƒ� J 1RnCm of ƒ.

Remark 3.2 Ekholm and Kálmán [12] computed the full Chekanov–Eliashberg algebra
of †S1ƒ in terms of the Chekanov–Eliashberg algebra of ƒ under the additional
assumption that dimƒD 1.

Note that Theorem 1.8 immediately follows from Theorem 3.1 using elementary
algebraic considerations.

We postpone the proof of Theorem 3.1 to Section 3.5. The idea is to find a geometric
correspondence between the pseudo-holomorphic disks defining the differential @ƒ and
those defining @L . This correspondence will be induced by the canonical projection
map T �Sm �P ! P for some sufficiently symmetric perturbation of L and choice
of almost complex structure. Even though not all disks in the definition of @L are
transversely cut out for these choices, we will show that the parts of the differential
needed to deduce the above result still will be determined by transversely cut-out disks.

3.1 Constructing the perturbation L of S m �ƒ

Consider the two antipodal points

N D .0; : : : ; 0; 1/ and S D .0; : : : ; 0;�1/

on the unit sphere Sm �RmC1 . We will take gW Sm! Œ0; 1� to be the Morse function
with two critical points obtained as the restriction of 1

2
.1 C xmC1/, where xmC1

denotes the last standard coordinate on RmC1 . The critical points of g are obviously
S and N with critical values g.S/D 0 and g.N /D 1, respectively. Moreover, we
have g ı r D g for any r 2 O.m/ � O.mC 1/, where we use O.m/ to denote the
orthogonal transformations of RmC1 that fix fN;Sg pointwise.

In the following we will let hW ƒ!R denote the z–coordinate restricted to ƒ�P�R.
In other words, �h is a primitive of � pulled back to ƒ. Consider the so-called
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Liouville flow �t W P ! P with respect to � , which is determined by the property that
.�t /�.�/D et� . One constructs a Legendrian isotopy Lt �T �Sm�P parametrized by

Sm
�ƒ! T �Sm

�P �R;

.q;x/ 7! .�h.x/det g.q/; �t g.q/.x/; h.x/et g.q//;

for which L0D Sm�ƒ. We will be interested in the Legendrian embedding L WDL�
for some sufficiently small � >0, which thus may be assumed to be arbitrarily C 1–close
to the Legendrian embedding Sm �ƒ.

Let
�T �Sm W T �Sm

�P ! T �Sm

denote the canonical projection. Under the assumption that ƒ is chord-generic, it
follows that L is chord-generic as well. The Reeb chords on L are all contained in
either ��1

T �Sm.S/ or ��1
T �Sm.N /, and we use QS and QN to denote the respective

sets of Reeb chords. Observe that there is a canonical bijection between each of these
subsets of Reeb chords on L with the Reeb chords on ƒ. More precisely, one can say
the following:

Lemma 3.3 The canonical bijection QS 'Q.ƒ/ preserves both the action and index
of the chords while, for the canonical bijection QN 'Q.ƒ/, the action is multiplied
by e� and the grading is increased by m.

3.2 A suitable almost complex structure

Here we construct an almost complex structure J on T �Sm �P that suits our needs.

3.2.1 An integrable almost complex structure on T �S m Let i denote the stan-
dard complex structure on

Am
1 D fz

2
1 C � � �C z2

mC1 D 1g �CmC1:

We will use the following explicit identification between T �Sm and Am
1

. Using
the round metric together with the canonical embedding Sm � RmC1 , we identify
.q;p/ 2 T �Sm with the tangent vector vp 2 TqSm � TqRmC1 . We now consider
the identification

‰W T �Sm
!Am

1 �CmC1;

.q;p/ 7!
p

1Ckvpk
2q � ivp:

It is readily checked that �.xC iy/ WD
p

1Ckyk2 is strictly plurisubharmonic on
.CmC1; i/, ie that �d.d� ı i/ is a Kähler form, and that moreover

‰�.�d� ı i/D �Sm ;
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where �Sm is the Liouville form on T �Sm .

Observe that the linear action of r 2 O.m C 1/ on RmC1 , which preserves Sm ,
extends to a complex linear action by r 2 U.mC 1/ on CmC1 which preserves both
Am

1
and Am

1
\Re.CmC1/. Since this action moreover preserves �, it is a Kähler

isometry of Am
1

. Finally, it can be checked that the corresponding action on T �Sm

induced by the identification ‰ coincides with the canonical symplectomorphism r� .

In conclusion, using i to denote the almost complex structure on T �Sm induced by
the above identification ‰ , we have shown:

Lemma 3.4 .T �Sm; i; d�Sm/ is a Kähler manifold for which each

r�W .T �Sm; i; d�Sm/! .T �Sm; i; d�Sm/; r 2O.mC 1/;

is a Kähler isometry.

3.2.2 A tame almost complex structure on T �S m�P Let JP be a fixed compat-
ible almost complex structure on .P; d�/. For simplicity we will assume that, outside
of a compact set, .P; d�/ is exact symplectomorphic to half a symplectization, where
JP moreover is cylindrical. In particular, the latter condition implies that the Liouville
flow �t W P ! P is a biholomorphism outside of some compact set.

For � > 0 sufficiently small, there is a tame almost complex structure J on T �Sm�P

determined by the requirement that the diffeomorphism

ˆW .T �Sm
�P; i ˚JP /! .T �Sm

�P;J /;

.q;p;x/ 7! .q;p; ��g.q/.x//;

is .i ˚JP ;J /–holomorphic. It follows that:

Lemma 3.5 The action

.r�; idP /W .T
�Sm

�P;J /! .T �Sm
�P;J /; r 2O.m/�O.mC 1/;

is J–holomorphic and fixes L. Moreover, there are holomorphic projections

z�P WD �P ıˆ
�1
W .T �Sm

�P;J /! .P;JP /;

�T �Sm W .T �Sm
�P;J /! .T �Sm; i/;

where
�T �Sm D �T �Sm ıˆ�1;

z�P .L/D…L.ƒ/� P;

and �P W T
�Sm �P ! P denotes the canonical projection.
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We let �mC1W C
mC1!C denote the holomorphic projection onto the last complex

coordinate; this projection induces a Lefschetz fibration

�mC1W A
m
1 !C

whose critical points are N and S with the critical values 1 and �1, respectively. We
will write

� WD �mC1 ı‰W T
�Sm

!C

for the induced Lefschetz fibration of T �Sm . The image of .� ı r� ı�T �Sm/.L/�C
for any r 2O.m/ is shown schematically in Figure 1.

Finally, the set �T �Sm.L/ is shown in Figure 3 in the case mD 1.

x

iy

�.�T�Sm.L//

1�1

e�=2�=2 maxƒ h

e�=2�=2 minƒ h

Figure 1: The image of L � T �Sm � P under the holomorphic projec-
tion � ı �T�Sm , where � W T �Sm ! C is the Lefschetz fibration as de-
scribed above. Here �.N /D 1 and �.S/D �1 . The arrow schematically
depicts the behavior of the boundary near the positive puncture for a J–
holomorphic disk having boundary on L and a positive puncture contained
inside ��1

T�Sm.S/ .

3.3 Transversality results

Recall that a pseudo-holomorphic disk

uW .D2; @D2/! .T �Sm
�P;L/

is said to have a positive (resp. negative) boundary puncture at p 2 @D2 if u.p/ is a
double point of L and the z–coordinate of L jumps to a higher value (resp. lower value)
at the puncture when traversing the boundary of the disk according to the orientation.

The following lemma is important and relates the transversality of a J–holomorphic
disk inside ��1.S/� T �Sm �P having boundary on L with the transversality of its
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projection to P , which is a JP –holomorphic disk having boundary on …L.ƒ/. Observe
that the analogous result for the corresponding disks inside ��1.N /� T �Sm �P is
false in general, which is the reason why computing the full differential @L in terms of
@ƒ is a more difficult problem.

Lemma 3.6 The J–holomorphic disk u D .S; Qu/ in T �Sm � P having boundary
on L is transversely cut out if and only if the JP –holomorphic disk Qu having boundary
on …L.ƒ/ is transversely cut out.

Proof We let zDQu and Du denote the linearizations of the Cauchy–Riemann operators
@JP

and @J at the solutions Qu and u, respectively. We also linearize the boundary
condition and we use ker zDQu and ker Du to denote the spaces of solutions to the
corresponding boundary value problems. From the definition of the index of a Fredholm
operator it follows that

dim ker zDQu � index zDQu;
dim ker Du � index Du;

with equality if and only if the corresponding solution is transversely cut out.

In this case, one checks that the Fredholm indices for the linearized boundary value
problems satisfy

index zDQu D index Du:

This can be seen by an explicit calculation utilizing Lemma 3.3 and the index formula
for the pseudo-holomorphic disks under consideration; see eg [8].

There is a projection

T z�P W �.u
�T .T �Sm

�P //! �.u�TP /

of sections, induced by the differential of z�P .

The “only if” part is straight-forward: the kernel of zDQu lifts to the kernel of Du

under T z�P . Hence, if Qu is not transversely cut out, ie if dim ker zDQu > index zDQu , it
follows that dim ker Du> index zDQuD index Du and u is not transversely cut out either.

We proceed to show that T z�P restricts to an injection

T z�P jker Du
W ker Du! ker zDQu:

Observe that the sought statement would follow from the injectivity of T z�P jker Du
.

Namely, ker zDQu D index zDQu implies that

ker Du � ker zDQu D index zDQu D index Du
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and hence that ker Du D index Du .

The fact that T z�P jker Du
is an injection is shown as follows (it can be seen as an

infinitesimal version of Lemma 3.7). Assume that we are given � 2 ker T z�P jker Du
.

The fact that � is in the kernel of T z�P implies that it can be considered as a holomorphic
map from the disk into

.TS .T
�Sm/; i/' .Cm; i/:

We consider the j th component �j of this map. There is a constant c > 0 for which
the following holds. Recall that hW ƒ!R is the z–coordinate of ƒ. Let pC and p� ,
with h.pC/ > h.p�/, be the two lifts of the double point p 2…L.ƒ/ which is the
image of the positive puncture of Qu. Further, let

hmax WD c max
ƒ

h; hmin WD c min
ƒ

h; hC WD c h.pC/; h� WD c h.p�/:

For a suitable choice of holomorphic coordinates and constant c > 0, the linearized
boundary condition implies that �j is contained inside the double cone CC[C� , where

CC WD fxC iy j y 2 Œhminx; hmaxx�; x � 0g �C and C� WD �CC;

as shown in Figure 2. Furthermore, �m necessarily vanishes at the positive puncture,
while it is asymptotic to the line

� y D h�x when approaching the positive puncture along the boundary in the
direction of the orientation, and

� y D hCx when approaching the positive puncture along the boundary against
the direction of the orientation.

The open mapping theorem implies that the interior of �m is mapped to either CC
or C� . Together with the asymptotics of �m at the positive puncture, the open mapping
theorem now shows that �m in fact must vanish identically. Hence � � 0, which
establishes the injectivity of T z�P jker Du

.

We continue to show that the above lemma can indeed be applied to the J–holomorphic
disks contributing to @L.s/ for s 2QS .

Lemma 3.7 Let u be a J–holomorphic disk in T �Sm �P having boundary on L

and exactly one positive boundary puncture. If the positive puncture of u is contained
in ��1

T �Sm.S/, then all of u is contained inside ��1
T �Sm.S/. In particular, such disks are

in bijective correspondence with the corresponding JP –holomorphic disks in P with
boundary on ƒ. Finally, given that JP is regular, it follows that these J–holomorphic
disks are transversely cut out as well.
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x

hC

hmax

h�
hmin

iy

1

CC

C�

Figure 2: The double cone C�[CC depicts the projection of the linearized
boundary condition near a puncture in ��1

T�Sm.S/ . The arrow shows the
behavior of a solution to the linearized problem along the boundary near the
positive puncture, given that it is non-vanishing.

Proof In the case m D 1, this follows eg from [9, Lemma 4.14]. We here provide
a proof of the general case. The idea is to study the image of �T �Sm ı u under the
Lefschetz fibration � W T �Sm!C . The image of L under this projection is shown in
Figure 1.

To that end, we first observe that � ı�T �Sm ıu is holomorphic. The asymptotics at
the positive puncture (see the arrow in Figure 1 for the projection of the boundary in
the case when the projection is non-zero) together with the open mapping theorem
implies that � ı�T �Sm ı u is constantly equal to �1 2 C in some neighborhood of
this puncture, and hence that � ı�T �Sm ıu��1.

Under the biholomorphism ‰ , the fiber ��1.�1/ � T �Sm gets identified with the
singular quadric

Q WD fz2
1 C � � �C z2

m D 0g\Am
1 �CmC1;

such that S is identified with the unique singular point .0; : : : ; 0;�1/ 2 Q. Since
�T �Sm ıu maps into this fiber and the boundary is mapped to

�T �Sm.L/\��1.�1/D fSg

(ie the singular point), the maximum principle now implies that �T �Sm ıu� S . In
other words, u is contained in ��1

T �Sm.S/.

Conversely, for each JP holomorphic disk Qu in P having boundary on …L.ƒ/ one
immediately constructs a J–holomorphic disk u D .S; Qu/ in T �Sm � P having
boundary on L.
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The transversality statement follows from Lemma 3.6 above.

Lemma 3.8 A non-constant J–holomorphic disk u in T �Sm � P with boundary
on L and exactly one positive puncture contained in ��1

T �Sm.N / has index

(3-1) index.u/D index.z�P ıu/Cm�Num;

where Nu is the number of negative punctures of u contained in ��1
T �Sm.N /.

If z�P ıu is non-constant, under the additional assumption that JP is a regular almost
complex structure it follows that

(3-2) index.u/�m�Num:

If z�P ıu� p 2 P is constant, it follows that u is a pseudo-holomorphic strip whose
negative puncture is contained in ��1

T �Sm.S/, both of whose punctures correspond
to p 2Q.ƒ/ and whose index satisfies

(3-3) index.u/Dm� 1� 0:

In the case mD 1 this strip is, moreover, transversely cut out.

Proof Formula (3-1) follows from a simple index calculation utilizing Lemma 3.3
and the index formula in [8].

Suppose that z�P ıu is not constant. The inequality (3-2) follows from (3-1) together
with the inequality index.z�P ı u/ � 0. To see the latter inequality, recall that the
projection

z�P W .T
�Sm

�P;L/! .P;…L.ƒ//

is .J;JP /–holomorphic by Lemma 3.5, and that JP is regular by assumption, and
hence that the index of the solution is equal to the dimension of the moduli space in
which it is contained.

Suppose that z�P ı u is constant. First, it follows that we have u D . Qu;p/, where
p 2 …L.ƒ/ is a double point and QuW D2 ! T �Sm is holomorphic. It follows that
u must be a strip whose positive puncture (resp. negative puncture) is the puncture
in QN (resp. QS ) corresponding to p . From this fact we get (3-3).

Finally, the transversality claim in the case mD 1 follows by an explicit calculation
that is standard. To that end, observe that the strip Qu is an embedding of a shaded strip,
as shown in Figure 3.
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Recall that a broken J–holomorphic disk consists of a connected directed tree satisfying
the following conditions. Let V and E denote the vertex and edge sets of the tree,
respectively. First, each vertex v 2 V is assigned a J–holomorphic disk uv with
exactly one positive puncture. Second, each edge e 2 E , also called a node of the
broken configuration, is assigned a negative puncture qe of uv and a positive puncture
pe of uw , where v and w are the starting point and endpoint of e , respectively, and
for which uv.qe/D uw.pe/ is required to hold. By a positive (respectively, negative)
puncture of a broken J–holomorphic disk we mean a positive (respectively, negative)
puncture of one of the involved disks which does not correspond to any node.

Lemma 3.9 Assume that JP is regular. A broken J–holomorphic disk u in T �Sm�P

with boundary on L, exactly one positive puncture contained in ��1
T �Sm.N /, and all of

its negative punctures contained in ��1
T �Sm.S/, must be of positive index.

Proof Suppose that the broken disk consists of the J–holomorphic discs fuig
�C1
iD1

and fvig
�
iD1

, where ui has its positive puncture contained in ��1
T �Sm.N / and vi has

its positive puncture contained in ��1
T �Sm.S/. Furthermore, we may order the disks

fuig so that z�P ıui is constant if and only if k < i � �C 1 for some 0� k � �C 1.
Observe that �C � is the total number of nodes of the broken disk.

The index of the broken disk is computed to be

I WD �C

�C1X
iD1

index.ui/C�C

�X
iD1

index.vi/;

where Lemma 3.7 implies that �C
P�

iD1
index.vi/� 0.

In the case k D 0 Lemma 3.8 implies that � D 0 and, since �C � > 0 by assumption,
it follows that � > 0. In this case, (3-3) implies that

I � �C index.u0/D �C .m� 1/ > 0:

In the case k > 0, (3-2) and (3-3) show that

I � �C

�C1X
iD1

index.ui/� �C

kX
iD1

.m�mNui
/C .�C 1� k/.m� 1/

D �Cm

�
k �

kX
iD1

Nui

�
C .�C 1� k/.m� 1/:

Finally, the assumption that all negative punctures of the broken disk are contained in
��1

T �Sm.S/ together with the fact that the disks vi have all negative punctures contained
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in ��1
T �Sm.S/ by Lemma 3.7 gives the inequality � �

Pk
iD1 Nui

. In conclusion, we
have

�C

�C1X
iD1

index.ui/� �Cm.k � �/C .�C 1� k/.m� 1/Dm� 1C k > 0:

3.4 A sign computation in the case mD 1

Lemma 3.10 Let u be a J–holomorphic disk in T �S1 �P having boundary on L.
If the projection �T �S1 ıu is non-constant, then the image of �T �S1 ıu intersects the
interior of exactly one of the two subsets

T �
˚
.cos �; sin �/

ˇ̌
1
2
� � � � 3

2
�
	
� T �S1;

T �
˚
.cos �; sin �/

ˇ̌
�

1
2
� � � � 1

2
�
	
� T �S1:

Proof By Lemma 3.7, we may suppose that the positive puncture of the disk is con-
tained in ��1

T �S1.N /, since it would otherwise have a constant projection to S 2T �S1 .

Further, unless its projection to T �S1 is constant, an interior point of the disk cannot
be mapped into ��1

T �S1fS [N g, as follows from the open mapping theorem applied
to the holomorphic projection �T �S1 ı u. To that end, we refer to Figure 3 for a
description of the image of the boundary condition �T �S1.L/ under this projection.

�T�S1.L/

S1

T �S1

N

S

r

S1

N

S

Figure 3: The image of L�P�T �S1 under the projection �T�S1 . Observe
that �T�S1.L/ is invariant under r� , where r 2O.1/ .
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Lemma 3.11 The J–holomorphic involution .r�; idP / acts non-trivially on the J–
holomorphic disks in T �S1 �P having boundary on L and non-constant projection
to T �S1 .

In the case when ƒ is spin and the J–holomorphic disk uD . Qu;p/, p 2 P , is a non-
trivial strip in T �S1 �P with boundary on L, the involution applied to u moreover
reverses the coherent orientation.

Proof The first claim follows immediately from Lemma 3.10.

To check the effect on the coherent orientation of the moduli space containing a J–
holomorphic strip u as in the claim, we argue as follows. By Lemma 3.10 it follows
that u and r� ıu have homotopic boundaries after “capping off” the boundary with
a choice of capping path at each puncture. The claim follows since the involution
.r�; idP / restricts to an orientation-reversing involution on L and since it does not
fix u.

3.5 Proof of Theorem 3.1

We choose the perturbation L of Sm �ƒ as constructed in Section 3.1, for which we
have the decomposition Q.L/DQN tQS of the Reeb chords. The grading-preserving
bijection between the Reeb chords QS on L and the Reeb chords on ƒ, as established
in Lemma 3.3, thus induces a graded unital algebra inclusion

�W A�.ƒ/ ,!A�.L/:

Perturb the almost complex structure J constructed in Section 3.2 to a regular, almost
complex structure J 0 . For a sufficiently small such perturbation, Lemma 3.7 implies
that � is a chain map. Here we have used the fact that the number of solutions in a
transversely cut-out rigid moduli space stays the same after a sufficiently small such
perturbation.

Observe that � has a left inverse

� W A�.L/!A�.L/=hQN i DA�.ƒ/

on the algebra level, which is induced by the quotient with the two-sided ideal generated
by QN . We will show that, given that J 0 is sufficiently close to J , � is in fact a chain
map, from which the theorem follows.

The fact that � is a chain map is equivalent to @L preserving the two-sided ideal hQN i.
To that end, for each c 2QN , we need to show that @L.c/ may be assumed to consist
of a sum of words all which contain at least one letter from QN .
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Taking the limit J 0! J , the solutions of J 0–holomorphic disks converge to (possibly
broken) J–holomorphic disks by the Gromov–Floer-type compactness used in [10]. In
particular, if the set of (possibly broken) solutions of J–holomorphic disks is empty
for some specifications of the punctures, then the same is true for the corresponding
moduli space of J 0–holomorphic disks given that J 0 is a sufficiently small perturbation
of J . Lemma 3.9 implies that the set of broken J–holomorphic disks of index zero
which (after perturbing J ) could contribute to a term in the expression @L.c/ all have
at least one negative puncture in QN . In other words, the J 0–holomorphic disks that
contribute to words in the expression @L.c/ containing no letters from QN correspond
to unbroken J–holomorphic disks.

Case m� 2 Lemma 3.8 implies that there are no such unbroken disks of index zero,
which shows the claim.

Case m D 1 Lemma 3.8 implies that such disks of index zero are necessarily J–
holomorphic strips that are constant when projected to P . By Lemma 3.11, there are
exactly two such strips, which, moreover, are transversely cut-out solutions equipped
with opposite coherent orientations. In other words, they do not contribute to @.c/.

4 Examples beyond augmentable Legendrians

Recall that for Legendrian submanifolds whose Chekanov–Eliashberg algebra admits
an augmentation, (1-1) was proven by Ekholm, Etnyre and Sullivan [9]. Ekholm, Etnyre
and Sabloff [7] later improved it to (1-2) under the same assumptions. In addition,
given that ƒ is spin and has a Chekanov–Eliashberg algebra admitting an augmentation
into RD Z, Q, R or Zm , we may take bi WD rk Hi.ƒIR/ in the inequality.

There are certain examples of Legendrian knots in C�R due to Sivek [29], which will
be discussed below, whose characteristic algebras admit 2–dimensional representations
over Z2 , but no 1–dimensional representations over Z2 . We will use these examples to
construct Legendrian submanifolds ƒ�Cn�R having Chekanov–Eliashberg algebras
that do not admit augmentations in any unital commutative ring R, but for which there
exists a finite-dimensional representation � W Cƒ!Mk.Z2/ for some k > 1.

Recall that the Kauffman bound

tb.ƒ/�min-dega Fƒ.a;x/� 1

is satisfied for any Legendrian knot ƒ � C �R, as shown by Rudolf [26], where
Fƒ.a;x/ is the so-called Kauffman polynomial for the underlying smooth knot of ƒ.
We will need the following strong condition for the existence of an augmentation.
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Proposition 4.1 (Rutherford [27]; Henry and Rutherford [19]) Let F be an arbitrary
field and ƒ�C �R a Legendrian knot. The Kauffman bound

tb.ƒ/�min-dega Fƒ.a;x/� 1

is an equality if and only if the Chekanov–Eliashberg algebra of ƒ defined with Novikov
coefficients F ŒH1.ƒ/� admits an ungraded augmentation into F .

Proof The proof is similar to the proof of [29, Proposition 3.2], which considers
the case F D Z2 . The Legendrian knot admits an ungraded ruling if and only if
the Kauffman bound is an equality, by [27, Theorem 3.1], and the existence of an
ungraded ruling is equivalent to the existence of an ungraded augmentation in F by [19,
Theorem 3.4] (given that the Chekanov–Eliashberg algebra is defined with Novikov
coefficients). See [22] for an alternative proof of the latter fact.

Remark 4.2 Regarding higher-dimensional representations of the characteristic alge-
bra, the following can be said. If the characteristic algebra Cƒ of a Legendrian knot
ƒ � C �R admits a finite-dimensional representation over Z2 , then ƒ maximizes
the Thurston–Bennequin invariant within its topological knot type [25, Theorem 1.2].
Furthermore, the existence of such a representation depends only on tb.ƒ/ and the
topological type of ƒ.

We first prove the following lemma, which shows how finite-dimensional representations
of characteristic algebras behave under the operation of connected sum, as defined by
Etnyre and Honda [16].

Lemma 4.3 Let ƒ1 an ƒ2 be two Legendrian knots in C �R.

(1) If the characteristic algebra Cƒi
admits a ki –dimensional (graded) representation

over a field F for ki � 1 and i D 1, 2, then Cƒ1#ƒ2
admits a k1k2 –dimensional

(graded) representation over F .

(2) If one of ƒi , i D 1, 2, satisfies the strict inequality

tb.ƒi/ <min-dega Fƒi
.a;x/� 1

for the Kauffman bound, then the Chekanov–Eliashberg algebra of ƒ1 #ƒ2 does
not admit an augmentation into any unital commutative ring R.

Proof We first prove .1/. Observe that there is an exact Lagrangian cobordism L

from ƒ1 t ƒ2 to ƒ1 # ƒ2 by eg [5] or [11]. It follows that there exists a unital
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algebra morphism fLW Cƒ1#ƒ2
! Cƒ1

˝ Cƒ2
. If �i W Cƒi

!Mki
.F/ is a (graded) ki –

dimensional representation of Cƒi
, then the pullback of the tensor product of (graded)

representations �1 and �2

.fL/
�.�1˝ �2/W Cƒ1#ƒ2

!Mk1k2
.F/

is a (graded) k1k2 –dimensional representation of Cƒ1#ƒ2
.

We then prove .2/. First, observe that for any unital commutative ring R there is a
maximal ideal m�R. Composing the augmentation to R with the quotient projection
R!R=m thus induces an augmentation into the field R=m. It thus suffices to show
the statement when RD F is a field.

Without loss of generality, we assume that the Kauffman bound for ƒ1 is not an
equality, ie that

tb.ƒ1/ <min-dega Fƒ1
.a;x/� 1:

In addition, tb.ƒ1 #ƒ2/D tb.ƒ1/C tb.ƒ2/C 1 [16, Lemma 3.3]. Hence, using the
Kauffman bounds for tb.ƒ1/ and tb.ƒ2/, we get that

tb.ƒ1 #ƒ2/D tb.ƒ1/C tb.ƒ2/C 1

<min-dega Fƒ1
.a;x/Cmin-dega Fƒ2

.a;x/� 1:

Further, as shown in [20], we have the equality

min-dega Fƒ1#ƒ2
.a;x/Dmin-dega Fƒ1

.a;x/Cmin-dega Fƒ2
.a;x/;

and hence we see that the Kauffman bound

tb.ƒ1 #ƒ2/ <min-dega Fƒ1#ƒ2
.a;x/� 1

for ƒ1 #ƒ2 is not an equality either. Consequently, Proposition 4.1 shows that the
Chekanov–Eliashberg algebra of ƒ1 #ƒ2 defined using Novikov coefficients does not
admit an augmentation into F . In particular, it follows that its Chekanov–Eliashberg
algebra defined without Novikov coefficients does not admit an augmentation either.

Example 4.4 Sivek [29] considered a Legendrian knot ƒp;�q , which is a Legendrian
representative of .p;�q/–torus knot with p� 3 odd and q>p . The front projection of
ƒ5;�8 is shown in Figure 4. Sivek proved that the characteristic algebra Cƒp;�q

admits a
representation �W Cƒp;�q

!Mk.Z2/ for kD 2 but not for kD 1; see [29]. In addition,
observe that the proof that Cƒp;�q

does not admit a 1–dimensional representation
over Z2 is based on the fact that the Kauffman bound of ƒp;�q is a strict inequality
�pq D tb.ƒp;�q/ < �pqC q�p ; see [15; 29]. Hence, using the same argument as
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Figure 4: The front projection of ƒ5;�8

in the proof of Lemma 4.3, one gets that Cƒp;�q
does not admit an augmentation into

a unital commutative ring. Observe that r.ƒp;�q/D q�p (if the orientation is such
that the cusps in the left part of Figure 4 are downward cusps). Since we will use it in
the proof of Theorem 1.9 below, observe that the Maslov class of ƒp;�q is given by
�.ƒp;�q/D 2.q�p/.

We now discuss another family of examples.

Example 4.5 Observe that from Example 4.4 and Lemma 4.3 we can get many
other examples of Legendrian knots ƒ whose characteristic algebras admit finite-
dimensional representations over Z2 , but whose Chekanov–Eliashberg algebras do not
admit augmentations in any unital commutative ring R. Say, consider ƒp;�q # T2;k ,
where T2;k is a Legendrian representative of torus .2; k/–knot — see Figure 5 — where

a1

a2

a3

a2k

a2kC1

Figure 5: The Lagrangian projection of T2;k
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p � 3 is odd and fixed, k 2 N is fixed and q > p . Since the Chekanov–Eliashberg
algebra of T2;k admits an augmentation into Z2 — see [11] — its characteristic algebra
has a 1–dimensional representation over Z2 . Then we apply Lemma 4.3 and see that
ƒp;�q # T2;k satisfies the sought properties. In addition, since r.T2;k/D 0, observe
that r.ƒp;�q # T2;k/D q�p and one can find infinitely many such knots which are
pairwise not Legendrian isotopic. We also note that the Maslov class �.ƒp;�q # T2;k/

equals 2.q�p/.

4.1 Proof of Theorem 1.9

Consider a family of Legendrian knots .zƒl/l2N satisfying the following three proper-
ties:

(1) �.zƒl1
/¤ �.zƒl2

/ whenever l1 ¤ l2 in N .

(2) A.zƒl/ does not admit an augmentation to any unital commutative ring R.

(3) C zƒl
admits a finite-dimensional representation �l W C zƒl

!Mk.Z2/, k > 1.

We can use a family zƒl WDƒp;�p�l , described in Example 4.4, with fixed p � 3 odd
and l 2N , or a family zƒl WDƒp;�p�l # T2;k , described in Example 4.5, where l 2N
and we have fixed p� 3 odd and k 2N . We also observe that any family of Legendrian
knots .ƒ0

k
/k2N such that A.ƒ0

k
/ admits an augmentation in Z2 and �.ƒ0

k1
/D�.ƒ0

k2
/

for all k1 , k2 2N will lead to a family .ƒl/l2N , where zƒl WDƒp;�p�l #ƒ0
k

, which
satisfies the sought properties.

We now define ƒl WD†Sms � � �†Sm1
zƒl . Observe that, from property (1) and the result

of Lambert-Cole [21], it follows that �.ƒl1
/¤�.ƒl2

/ for all l1¤ l2 in N . Therefore,
the ƒl are pairwise not Legendrian isotopic. From the first two parts of Theorem 1.8
and properties (2) and (3) it follows that Cƒl

admits a finite-dimensional representation
�l W Cƒl

!Mk.Z2/, k > 1, but that A.ƒl/ does not admit an augmentation to any
unital commutative ring R. Finally, we see that Theorem 1.6 is applicable to ƒl . This
finishes the proof.

5 Limitations of the argument

Note that our proof of Theorem 1.6 is based on the fact that if Cƒ admits a k–
dimensional representation � , then we can reduce the Cƒ–Cƒ0 –bimodule C.ƒ;ƒ0/ to
the Mk.F/–Mk.F/–bimodule C�.ƒ;ƒ0/, which leads to rank inequality (2-1) (which
in the simplest situation of a short exact sequence of finitely generated abelian groups is
equivalent to an application of the rank–nullity theorem). In order to have this type of
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Figure 6: The front projection of ƒm.10132/
defined by the braid words

4; 5; 3; 5; 3; 2; 4; 1; 3; 2; 4; 2; 5; 1; 3; 2; 4; 4; 3; 5; 4; 2; cf [29, Figure 2]

inequality for ranks of bimodules, the minimal imaginable requirement on Cƒ˝Cop
ƒ0

is
to have a well-defined notion of rank for free left Cƒ˝Cop

ƒ0
–modules (the so-called IBN

property) which, moreover, satisfies the property that the rank of a free module cannot
be exceeded by the rank of a free submodule (the so-called strong rank property).

Remark 5.1 Assume that we are given a Legendrian submanifold ƒ � P �R for
which Cƒ does not satisfy the rank property. From the fact that there exists a natural
unital homomorphism Cƒ! Cƒ˝ Cop

ƒ0
and Remark 1.3 it follows that Cƒ˝ Cop

ƒ0
does

not satisfy the rank property either. Hence, using Remark 1.4 it follows that Cƒ˝ Cop
ƒ0

in particular does not satisfy the strong rank property.

We now proceed to prove the following simple fact:

Fact 5.2 If R is a unital ring for which there exist elements x , y , p , q 2R satisfying

p.1�yx/q D 1 and xy D 1;

then R does not satisfy the rank property.

Proof Consider a column vector .x;p.1�yx//T and a row vector .y; .1�yx/q/.
It is easy to see that�

x

p.1�yx/

�
�
�
y .1�yx/q

�
D

�
xy .x�xyx/q

p.y �yxy/ p.1� 2yxCyxyx/q

�
D

�
1 0

0 1

�
;

and hence using Remark 1.5 we get that R does not satisfy the rank property.

We now discuss an example of a Legendrian knot ƒ�C �R for which Cƒ does not
satisfy the rank property.

Consider the Legendrian representative ƒm.10132/ of m.10132/ shown in Figure 6.
We recall some facts about its characteristic algebra Cƒm.10132/

DZ2hx1; : : : ;x25i=B ,
using the notation of [29], where B is a two-sided ideal generated by f@x1; : : : ; @x25g.
Setting x WD 1Cx5.x2Cx3/ and y WD x20 , Sivek [29] showed that xy D 1 and that
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the two-sided ideal I � Cƒm.10132/
generated by 1� yx coincides with Cƒm.10132/

.
Even more can be said: taking p WD x13Cx8.x2Cx3/ and q WD x18 , we moreover
have p.1�yx/q D 1. This follows from the formulas

@x22 D xq and @x23 D 1Cx11x22Cpq

in [29], taking into count that x11 vanishes in Cƒm.10132/
(as computed in [29, Sec-

tion 2.2]). Hence, using Fact 5.2, we see that Cƒm.10132/
does not satisfy the rank

property.

Note that it follows from Remark 5.1 that Cƒ˝ Cop
ƒ0

does not satisfy the strong rank
property for ƒDƒm.10132/ either.

Proof of Theorem 1.10 Assume that we are given a Legendrian knot zƒ�C�R for
which C zƒ does not satisfy the rank property. For example, zƒDƒm.10132/ .

We then use the spherical front spinning construction. For a given n 2 N , consider
†Sms � � �†Sm1

zƒ, where
Ps

iD1 miC1D n. Observe that from Theorem 3.1 it follows
that there is a homomorphism of unital algebras from C zƒ to C

†Sms ���†S
m1
zƒ

given by
the composition of homomorphisms

C zƒ! C
†

S
m1
zƒ
! � � � ! C

†Sms :::†S
m1
zƒ
:

Since C zƒ does not satisfy the rank property, it follows from Remark 1.3 that neither
does C

†Sms ���†S
m1
zƒ

. We define ƒ to be †Sms � � �†Sm1
zƒ.

We also observe that Remark 5.1 implies that Cƒ˝Cop
ƒ0

does not satisfy the strong rank
property. This finishes the proof.

Remark 5.3 If there exists an exact Lagrangian cobordism L from ƒ� to ƒC and
CƒC does not satisfy the rank property, then the same is true for Cƒ� . Recall that
L induces a unital DGA-morphism A.ƒC/ ! A.ƒ�/ and hence a unital algebra
morphism CƒC ! Cƒ� . Remark 1.3 now implies the claim.

Remark 5.4 Assume that we are given a Legendrian submanifold ƒ � P �R for
which Cƒ does not satisfy the rank property. It follows from Remark 1.3 that, even if
we try to reduce C.ƒ;ƒ0/ to another bimodule by using a homomorphism Cƒ! S

(where S is a unital ring), we will necessarily obtain a free bimodule over a ring which
does not satisfy the rank property.
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6 Proof of Proposition 1.12

We start by showing that there must exist at least three Reeb chords on a horizon-
tally displaceable Legendrian submanifold whose Chekanov–Eliashberg algebra is not
acyclic, but whose characteristic algebra admits no finite-dimensional representations.
In particular, we prove that the bound jQ.ƒ/j< 3 contradicts the hypothesis.

In the case when jQ.ƒ/jD1, the differential must be trivial, and hence the characteristic
algebra is free and obviously has a finite-dimensional representation.

In the case when jQ.ƒ/jD 2, the characteristic algebra is the quotient of the Chekanov–
Eliashberg algebra ha; bi, `.a/�`.b/, by the two-sided ideal generated by a polynomial
p.a/ (which is not a unit, by assumption). In other words, the characteristic algebra is
the free product F Œb��F Œa�=hp.a/i, which, hence, admits a unital projection

F Œb��F Œa�=hp.a/i ! F Œb��F Œa�=hp.a/; bi D F Œa�=hp.a/i

to a non-zero commutative unital algebra. Finally, observe that F Œa�=hp.a/i has a 1–
dimensional representation F Œa�=hp.a/i!

�
F Œa�=hp.a/i

�
=I , where I is any maximal

ideal of the commutative ring F Œa�=hp.a/i.

Remark 6.1 At least algebraically, there are examples of free DGAs with three
generators for which the homology is not acyclic but for which the characteristic algebra
admits no finite-dimensional representations. Consider the DGA generated by ha; b; ci
over a field of characteristic zero for which @.a/D@.b/D0 and @.c/D1�.ab�ba/. A
finite-dimensional unital representation of the characteristic algebra must send ab�ba

to the identity. Since the trace of a commutator vanishes, while the trace of the identity
is non-zero, such a representation cannot exist.

We now prove Proposition 1.12 in case (1). Let ceven and codd denote the number of
generators in even and odd degree, respectively. Using [8, Proposition 3.3] we can
express the Thurston–Bennequin number as

tb.ƒ/D .�1/.n�2/.n�1/=2.ceven� codd/D .�1/kC1.ceven� codd/:

Combining this with the identity

tb.ƒ/D .�1/kC1 1
2
�.ƒ/

from [8, Proposition 3.2(2)], we conclude that

ceven D
1
2
j�.ƒ/jC codd
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holds under the additional assumption that �.ƒ/� 0. Moreover, the equality codd D 0

implies that the differential is trivial and, hence, that there is a canonical (graded)
augmentation. We must therefore have codd � 1, from which it follows that

jQ.ƒ/j D coddC ceven D
1
2
j�.ƒ/jC 2codd �

1
2
j�.ƒ/jC 2:

The proof in case (2) is analogous. It suffices to consider the case �.ƒ/ < 0, for which
the above expressions yield

codd D
1
2
j�.ƒ/jC ceven:

The assumption that the Maslov class is non-vanishing, ie that the Chekanov–Eliashberg
algebra admits an integer-valued grading, together with the assumption that all gen-
erators are of non-negative degree, has the following strong implication. Given that
ceven D 0, the Chekanov–Eliashberg algebra actually vanishes in degree zero, from
which the existence of an augmentation follows (using the assumption that the DGA is
not acyclic). We must thus have ceven � 1, from which we obtain the sought inequality

jQ.ƒ/j D coddC ceven D
1
2
j�.ƒ/jC 2ceven �

1
2
j�.ƒ/jC 2:
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