
msp
Algebraic & Geometric Topology 15 (2015) 2919–2946

On the transfer reducibility
of certain Farrell–Hsiang groups

CHRISTOPH WINGES

We show how the existing proof of the Farrell–Jones conjecture for virtually poly-Z–
groups can be improved to rely only on the usual inheritance properties in combination
with transfer reducibility as a sufficient criterion for the validity of the conjecture.

18F25; 54H25, 55U10

1 Introduction

The Farrell–Jones conjecture predicts that a certain assembly map

˛G
VCyc W H

G
n .EVCycGIK�1A /!Kn.A�G G=G/

is an isomorphism for all discrete groups G and small additive G –categories A; there
is also an L–theoretic version of the conjecture which replaces the nonconnective
K–theory spectrum of Pedersen and Weibel [22] by Ranicki’s ultimate lower L–groups
(see eg Ranicki [24, Section 17] and Carlsson and Pedersen [9, Section 4]). These
conjectures have received a lot of attention since their introduction by Farrell and
Jones [14] due to their intimate relation with other prominent conjectures such as the
Borel and Novikov conjectures. See Lück and Reich [16] for a survey.

While the conjectures are still wide open in general, substantial progress has been
made on the question in which special cases the conjectures hold. Among the most
notable classes of examples, one finds hyperbolic (see Bartels, Lück and Reich [7])
and CAT.0/–groups (see Bartels and Lück [4] and Wegner[28]), virtually poly-Z–
groups [2], lattices in virtually connected Lie groups (see Bartels, Farrell and Lück [2]
and Kammeyer, Lück and Rüping [15]), a large number of linear groups (see Bartels,
Lück, Reich and Rüping [8]), and solvable groups (see Wegner [29]).

Normally, the proofs can be broken down into several steps. Starting from the most
general case, one uses certain inheritance properties of the conjectures to reduce the
proof to simpler instances. These are then dealt with by proving that the groups
under consideration satisfy the assumptions of an abstract criterion which has been
independently shown to imply the conjecture.
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These criteria include two prototypical examples. First, there is the notion of transfer
reducibility which was used to prove the case of hyperbolic groups and then generalized
to also cover CAT.0/–groups. Second, the property of being a Farrell–Hsiang group
(an abstraction of the arguments employed by Farrell and Hsiang in [11; 12; 13]
and further exploited by Quinn [23]) was considered to obtain proofs for virtually
poly-Z–groups.

The goal of the present article is to show that the K– and L–theoretic Farrell–Jones
conjectures for virtually poly-Z–groups [2, Theorem 1.1] can be deduced relying
entirely on transfer reducibility as a sufficient criterion, bypassing any use of the
Farrell–Hsiang method (ie the results of Bartels and Lück in [5]). This illustrates
that being transfer reducible is not a concept inherently concerned with nonpositive
curvature conditions, as the original examples of transfer reducible groups, namely
hyperbolic and CAT.0/–groups, might suggest.

As a consequence of our results, the proofs of the Farrell–Jones conjecture for lattices
in virtually connected Lie groups by Bartels, Farrell and Lück [2, Theorem 1.2] and
Kammeyer, Lück and Rüping [15] also become independent of the Farrell–Hsiang
method (eg the proof of Theorem 1.2 in [2] only requires the validity of the conjecture
for CAT.0/–groups as additional input).

It should be pointed out that the results of this article cannot be considered a simpli-
fication of the existing proofs, as the arguments that go into the verification of the
Farrell–Hsiang condition still have to be employed. However, it does serve the purpose
of unifying the existing proofs; the results of [5] are not needed anymore.

Virtually cyclic groups form a notable exception to the slogan that “Farrell–Hsiang
groups are transfer reducible”. The reduction to the family of (possibly infinite)
hyperelementary groups presented by Quinn [23, Proposition 3.1.1] and Bartels, Farrell
and Lück [2, Section 8] cannot be obtained with the methods of this article.

We proceed as follows: In Section 2 and Section 3, we formulate a strengthening of the
Farrell–Hsiang condition and prove that all groups which satisfy this stronger condition
are transfer reducible in a very strict sense. Once this has been done, we give a quick
review of the structure of the proof of [2, Theorem 1.1] in Section 4. This serves the
purpose of singling out all instances of the Farrell–Hsiang condition that appear in
the proof. In the remaining sections Section 5 and Section 6, we will present proofs
that the classes of groups isolated in Section 4 all satisfy our stronger version of the
Farrell–Hsiang condition. The appendix reviews a theorem of Oliver [19] concerning
fixed-point free actions of finite groups on finite, contractible complexes which is
required for the discussion in Section 3.
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The author expects that the results proved in this article will also have applications in
the algebraic K–theory of spaces; these will be presented elsewhere.
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2 Resolving fixed points of group actions on
simplicial complexes

Our strategy is not to come up with entirely new proofs whenever we wish to replace
an invocation of the Farrell–Hsiang method. Instead, we will relate (a variant of) the
Farrell–Hsiang condition to the notion of transfer reducibility, and then improve the
existing verifications of the Farrell–Hsiang condition.

The major difference between the proofs of the Farrell–Jones conjecture in Bartels,
Lück and Reich [7] and Bartels and Lück [5] lies in the construction of the transfer
maps. While the proof in [7] exploits the existence of a compact transfer space, the
Farrell–Hsiang method relies on a discrete G –set for the transfer and uses an algebraic
result due to Swan [27, Corollary 4.2(c) and Proposition 1.1] as additional input.

In this section, we prove a result on the space level which is analogous to Swan’s
induction theorem. This will enable us to produce appropriate transfer spaces.

The objects of interest are G–simplicial complexs; these are (abstract) simplicial
complexes X equipped with a G –action such that whenever a group element g fixes a
simplex x D fx0; : : : ;xng in X , then gxi D xi for all 0� i � n. Note that for such a
complex, the entire group action is encoded in the action of G on the set of 0–simplices
X0 . The geometric realization of a G –simplicial complex is a G –CW–complex.

2.1 Definition Let X be a G–simplicial complex. A set of resolution data .R; �0/

for X is a G–simplicial complex over X0 , ie a map of G–simplicial complexes
�0W R!X0 , where we regard the set of vertices X0 as a 0–dimensional G –simplicial
complex.

If .R; �0/ is a set of resolution data for some G–simplicial complex X , the fiber
��1

0
.x/ of �0 is a Gx –simplicial complex for each x 2X0 . We denote this complex

by R.x/.
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2.2 Definition Let X be a G –simplicial complex and .R; �0/ be a set of resolution
data for X . We define a simplicial complex X ŒR; �0� as follows: The set of vertices is
given by R0 . A set yDfy0; : : : ;yng spans an n–simplex in X ŒR; �0� if the following
holds:

� For every x 2X0 , the set y \R.x/0 is either empty or a simplex in R.x/.
� The set �0.y/ is a simplex in X .

The group G acts on X ŒR; �0� by

g � fy0; : : : ;yng WD fgy0; : : : ;gyng:

The map �0 induces a map of simplicial complexes

�W X ŒR; �0�!X; y 7! �0.y/;

which we call the resolution of X by .R; �0/.

It is easy to check that X ŒR; �0� is indeed a G–simplicial complex and that � is a
map of G –simplicial complexes. Let us observe that any simplex y 2X ŒR; �0� can be
partitioned into

y D
a

x2�0.y/

y \R.x/0:

In particular, a subgroup of G can only appear as a stabilizer of X ŒR; �0� if it is a
stabilizer group of some R.x/.

If X is n–dimensional and there is some k such that the dimension of R.x/ is
at most k for all x , it follows that the dimension of X ŒR; �0� can be bounded by
.nC 1/.kC 1/� 1D nkC nC k .

A map of sets of resolution data is a map �0W .R; �0/! .R0; �0
0
/ of G–simplicial

complexes over X0 , ie a map of G –simplicial complexes � W R!R0 such that �0 D

�0
0
ı�0 . Note that such a map necessarily restricts to a map of Gx –simplicial complexes

�0.x/W R.x/ ! R0.x/ for each x 2 X0 . Every map of sets of resolution data �0

induces a canonical map � W .X ŒR; �0�; �/! .X ŒR0; �0
0
�; �0/ of G –simplicial complexes

over X .

2.3 Remark Let X be a G –simplicial complex and let .R; �0/ be a set of resolution
data for X . Define jX;R; �0j as the set of formal finite convex combinations

jX;R; �0j WD

�X
x2X0

�x � �x

ˇ̌̌
�x � 0; fx j �x ¤ 0g 2X;

X
x2X0

�x D 1; �x 2 jR.x/j
�
:
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Define

F W jX ŒR; �0�j ! jX;R; �0j;
X

y2R0

�y �y 7!
X

x2X0

�x �

� X
y2��1

0
.x/

�y

�x
�y

�
;

where �x WD
P

y2��1
0
.x/ �y . Since we think of points in jX;R; �0j as finite sums

by ignoring all terms whose coefficient is zero, we do not worry about the fact that
�y=�x is undefined when �x D 0.

Write �x D
P

y2R.x/0 �x;y �y . Then we can also define

F 0W jX;R; �0j ! jX ŒR; �0�j;
X

x2X0

�x � �x 7!

X
y2R0

��0.y/��0.y/;y �y:

Then F and F 0 are mutually inverse bijections. This will turn out to be a more
convenient model for jX ŒR; �0�j. In particular, the `1 –metric on jX ŒR; �0�j induces
a metric d1 on jX;R; �0j via F 0 .

2.4 Proposition Let X be a G–simplicial complex and let .R; �0/ and .R0; �0
0
/

be sets of resolution data for X . Suppose that �0W .R; �0/! .R0; �0
0
/ is a map of

sets of resolution data such that the restriction �0.x/W R.x/! R0.x/ is a homotopy
equivalence (in the nonequivariant sense) for all x 2X0 .

Then the induced map � W X ŒR; �0� ! X ŒR0; �0
0
� is a homotopy equivalence in the

nonequivariant sense.

Proof Choose a homotopy inverse fx W jR0.x/j! jR.x/j to j�0.x/j for every x 2X0 ,
and let Hx W jR.x/j�Œ0; 1�!jR.x/j and H 0x W jR0.x/j�Œ0; 1�!jR0.x/j be homotopies
witnessing fx ı j�0.x/j ' idjR.x/j and j�0.x/j ıfx ' idjR0.x/j , respectively.

Using the alternative description of jX ŒR; �0�j from Remark 2.3, we can define a
(nonequivariant) map

f W jX;R0; �00j ! jX;R; �0j;
X

x

�x � �x 7!

X
x

�x �fx.�x/:

Similarly, there are induced homotopies H W jX;R; �0j � Œ0; 1� ! jX;R; �0j and
H 0W jX;R0; �0

0
j � Œ0; 1� ! jX;R0; �0

0
j, and it is easy to check that these witness

f ı j� j ' idjX ;R;�0j
and j� j ıf ' idjX ;R0;�0

0
j , respectively.

2.5 Corollary Let X be a G –simplicial complex and .R; �0/ be a set of resolution
data on X . Suppose that R.x/ is contractible for all x 2 X0 . Then the resolution
X ŒR; �0�!X is a (nonequivariant) homotopy equivalence.
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We can use this construction to reduce the size of the stabilizers of a G–simplicial
complex incrementally. Specifically, we will give an answer to the question of what the
smallest possible stabilizers of a finite group action on a finite, contractible complex are.

2.6 Definition Let Cyc denote the family of finite cyclic groups. For a given prime
p , we let

Cycp WD

�
H

ˇ̌̌̌
There is an extension 1! P !H ! C ! 1

such that P is a finite p–group and C 2 Cyc.

�
denote the class of groups which are cyclic mod p .

Finally, we call

Dr WD

�
G

ˇ̌̌̌
There is an extension 1!H!G!Q! 1 such that H 2 Cycp

and Q is a finite q–group for some primes p and q .

�
the Dress family.

2.7 Remark Recall that a finite group G is hyperelementary if there is an extension
1! C !G!Q! 1 such that C is cyclic and Q is a q–group for some prime q .
Hence, every finite hyperelementary group is also a Dress group.

2.8 Definition Let G be a finite group. Define the depth of G to be

d.G/ WD sup
�

n

ˇ̌̌̌
There is a properly descending chain of subgroups
G1 ¡G2 ¡ � � �¡Gn in G .

�
:

Observe that it is easy to find upper bounds for the depth of a finite group. If jGj D
p

k1

1
� � �p

kr
r is the prime factorization of the order of G , the depth of G cannot exceed

k1C � � �C kr C 1.

2.9 Theorem (Oliver) There exists a monotonely increasing, affine linear function
bdW NC!NC such that for every finite group G 62 Dr , there is a finite, contractible
G –simplicial complex X with X G D∅ whose dimension is bounded by bd.d.G//.

Proof Excluding the dimension bound, this is stated as one of the main results of [19].
Nevertheless, the proof given by Oliver can be seen to provide the claimed bound. A
short review of the proof which makes this explicit can be found in the appendix.

2.10 Corollary For every finite group G , there is a finite, contractible G –simplicial
complex X whose stabilizers lie in Dr and whose dimension is bounded byX

∅¤M�f1;:::;d.G/g

Y
m2M

bd.m/� 2d.G/
� bd.d.G//d.G/:
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Proof Define for any positive natural number d

ı.d/ WD
X

∅¤M�f1;:::;dg

Y
m2M

bd.m/:

If d.G/D 1, there is nothing to show. So write d.G/D d C 1 > 1. We can assume
without loss of generality that G 62 Dr . Theorem 2.9 asserts the existence of a finite,
contractible G–simplicial complex X 0 which does not have a global fixed point and
whose dimension is bounded by bd.d.G//. Picking a set of representatives fxigi2I

for the G–orbits in X 0
0

fixes a G–equivariant bijection X 0
0
Š
`

i2I G=Gxi
, where

each Gxi
is a proper subgroup of G . For each i 2 I , there is by induction a finite,

contractible Gxi
–simplicial complex R.xi/ whose stabilizers lie in Dr and whose

dimension is bounded by ı.d/. Then the projection maps prW R.xi/ ! Gxi
=Gxi

induce a set of resolution data

�0W RD
a
i2I

G �Gxi
R.xi/

`
i2I G�Gxi

pr
����������!

a
i2I

G �Gxi
Gxi

=Gxi

Š
�!

a
i2I

G=Gxi
ŠX 00:

Then X WDX 0ŒR; �0� is a finite G –simplicial complex whose stabilizers lie in Dr . It
is contractible by Corollary 2.5. As observed earlier, its dimension is bounded by

bd.d C 1/ � ı.d/C bd.d C 1/C ı.d/

D bd.d C 1/ �

� X
∅¤M�f1;:::;dg

Y
m2M

bd.m/
�
C bd.d C 1/C ı.d/

D

X
∅¤M�f1;:::;dg

�
bd.d C 1/ �

Y
m2M

bd.m/
�
C bd.d C 1/C ı.d/

D

X
∅¤M�f1;:::;dC1g;

dC12M

Y
m2M

bd.m/C ı.d/

D

X
∅¤M�f1;:::;dC1g;

dC12M

Y
m2M

bd.m/C
X

∅¤M�f1;:::;dC1g;
dC1 62M

Y
m2M

bd.m/

D

X
∅¤M�f1;:::;dC1g

Y
m2M

bd.m/D ı.d C 1/:

The weaker bound can be obtained from this by estimating m�d.G/ and jM j�d.G/.

The G–simplicial complex X from Corollary 2.10 will typically not be a model for
EDr G . See Oliver [20, bottom of page 93] for a proof of this.
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3 A variant of the Farrell–Hsiang condition

We are now ready to formulate our strengthening of the Farrell–Hsiang condition and
to relate it to the property of being transfer reducible. Whenever we speak about
generating sets of groups, we assume these to be symmetric for convenience.

3.1 Definition Let G be a group and S a finite generating set for G . Let F be a
family of subgroups of G .

Call .G;S/ a Dress–Farrell–Hsiang group of bounded depth with respect to F if there
exist N 2N and B 2N such that for every " > 0 there are:

� An epimorphism � W G� F to a finite group with depth d.F /� B .

� For every subgroup D � F with D 2 Dr a G–simplicial complex ED of
dimension at most N whose isotropy groups lie in F , and a D WD ��1.D/–
equivariant map fD W G ! ED such that d`

1

.fD.g/; fD.g
0// � " whenever

g�1g0 2 S .

3.2 Definition We say that .G;S/ is combinatorially transfer reducible with respect
to F if there exists � 2N such that for every " > 0 there are:

� A finite, contractible G –simplicial complex X of dimension at most � .

� A G –simplicial complex E of dimension at most � whose isotropy groups lie
in F .

� A map f W X !E which is S –equivariant up to ", ie such that

d`
1

.sf .x/; f .sx//� "

holds for all s 2 S and x 2X .

The Farrell–Hsiang condition of Bartels and Lück [5, Definition 1.1; 2, Definition 2.14]
and Bartels [1, Theorem C] can be obtained from Definition 3.1 by dropping the
assumption on d.F / and replacing the Dress family by the family of hyperelementary
subgroups of F . Hence, being a Dress–Farrell–Hsiang group of bounded depth implies
being a Farrell–Hsiang group (see Remark 2.7). Similarly, combinatorial transfer
reducibility is a very special case of the more general notions of transfer reducibility
explained in Bartels [1, Theorem A and Theorem B] (see also Bartels and Lück [4,
Definition 1.8; 6, Definition 0.4]).

It was shown by Bartels and Lück [5] that every Farrell–Hsiang group satisfies the
Farrell–Jones conjectures in algebraic K– and L–theory. The validity of the Farrell–
Jones conjecture for transfer reducible groups was established in Bartels, Lück and
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Reich [7] (for algebraic K–theory) and Bartels and Lück [4] (for L–theory); see [1,
Theorem A]. Hence, the Farrell–Jones conjecture is known to hold both for Dress–
Farrell–Hsiang groups and for combinatorially transfer reducible groups. As explained
in the introduction, the purpose of Theorem 3.4 below is to point out an alternative
proof of the conjecture for Dress–Farrell–Hsiang groups which uses only the results of
[7] and [4] instead of [5].

An immediate consequence of Corollary 2.10 is the following variant of the result
that finite groups satisfy the isomorphism conjecture with respect to the family of
hyperelementary subgroups [3, Theorem 2.9 and Lemma 4.1]:

3.3 Corollary Every finite group is combinatorially transfer reducible with respect to
Dr . In particular, the assembly map

˛G
Dr W H

G
n .EDr GIK�1A /!Kn.A�G G=G/

is an isomorphism for every finite group G and every small additive G –category A.

Proof Take X as in Corollary 2.10 and f D idX .

The more important observation is the following.

3.4 Theorem Let G be a group and S a finite generating set for G . Let F be a
family of subgroups of G . If .G;S/ is a Dress–Farrell–Hsiang group of bounded depth
with respect to F , then it is combinatorially transfer reducible with respect to F .

Proof Let N and B be the natural numbers whose existence is asserted in the
definition of a Dress–Farrell–Hsiang group of bounded depth. Fix " > 0, and pick
an appropriate epimorphism � W G � F to a finite group with d.F / � B . By
Corollary 2.10, there exists a finite, contractible F –simplicial complex X whose
dimension is bounded by ˇ WD 2B � bd.B/B (note that this bound only depends on B )
and whose isotropy groups lie in Dr . We equip X with a G –action by restricting the
F –action along � .

For the remainder of the proof, fix a representative of each G–orbit in X0 . These
choices induce a G –equivariant bijection

h0W

a
i2I

G=Di
Š
�!X0;

where for each i , the subgroup Di is the preimage under � of some Di � F with
Di 2 Dr . The bijection h0 allows us to define a G–simplicial complex Y with
Y0 D

`
i2I G=Di and a G –equivariant isomorphism hW Y !X which restricts to h0

on the vertex sets.
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Now use the Dress–Farrell–Hsiang assumption to pick for each i 2 I a G –simplicial
complex E0i whose dimension is at most N and whose isotropy groups lie in F , as well
as a Di –equivariant map f 0i W G ! E0i such that d`

1

.f 0i .g/; f
0

i .g
0// � " whenever

g�1g0 2 S . Define Ei WD G �Di
E0i and set E WD

`
i2I Ei . Let �0 denote the

composition

E D
a
i2I

G �Di
E0i

`
i G�

Di
pr

�������!

a
i2I

G �Di
Di=Di

Š
�!

a
i2I

G=Di D Y0;

where prW E0i ! Di=Di is the obvious projection map. Then �0 is G–equivariant,
so we have defined a set of resolution data .E ; �0/ for Y . Consider the resolution
�W Y ŒE ; �0�! Y . All isotropy groups of the G –simplicial complex Y ŒE ; �0� lie in F ,
and its dimension is bounded by � WD ˇN CˇCN . Observe that � depends only on
N and B .

We claim that there is a section f W jY j ! jY ŒE ; �0�j of j�j which is S –equivariant up
to "; for our argument, it is irrelevant that f is a section to �, but the f we define
will have this property. Once we have shown this, f ı jhj�1 is the map we require to
finish the proof.

Define
fi W G=Di!Ei ; gDi 7! .g; f 0i .g

�1//:

Observe that every point in jY j can be written asX
y2Y0

�y �y D
X
i2I

X
gDi2G=Di

�gDi
�gDi

for appropriate �gDi
. Hence, we can define a map bf W jY j ! jY; E ; �0j by

bf �X
i2I

X
gDi2G=Di

�gDi
gDi

�
WD

X
i2I

X
gDi2G=Di

�gDi
fi.gDi/:

This is well-defined because �.fi.gDi//D �.g; f
0

i .g
�1//D gDi . Set f WD F 0 ı bf ,

where F 0 is the bijection

jY; E ; �0j
Š
�! jY ŒE ; �0�j

from Remark 2.3.

Let �D
P

y �y ��y and # D
P

y �y �#y be arbitrary points in jY; E ; �0j. Then we have

d`
1

.F 0.�/;F 0.#//D
X
e2E0

j��0.e/��0.e/;e ���0.e/#�0.e/;ej:
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Using the triangle inequality, we can bound this byX
e2E0

j��0.e/��0.e/;e ���0.e/#�0.e/;ej

�

X
e2E0

j��0.e/��0.e/;e ���0.e/#�0.e/;ejC

X
e2E0

j��0.e/#�0.e/;e ���0.e/#�0.e/;ej

D

X
y2Y0

�
�y �

X
e2E.y/0

j�y;e �#y;ej

�
C

X
y2Y0

�
j�y ��y j �

X
e2E.y/0

#y;e

�
D

X
y2Y0

�y � d
`1

.�y ; #y/C
X

y2Y0

j�y ��y j:

We will now use this estimate to prove that the map f is S –equivariant up to ". Let
s 2 S . Then we have

d`
1

�
s �f

�X
i2I

X
gDi2G=Di

�gDi
gDi

�
; f

�
s �
X
i2I

X
gDi2G=Di

�gDi
gDi

��

D d`
1

�
F 0
�X

i2I

X
gDi2G=Di

�s�1gDi
.g; f 0i .g

�1s//

�
;

F 0
�X

i2I

X
gDi2G=Di

�s�1gDi
.g; f 0i .g

�1//

��
�

X
i2I

X
gDi2G=Di

�s�1gDi
d`

1�
.g; f 0i .g

�1s//; .g; f 0i .g
�1//

�
C

X
i2I

X
gDi2G=Di

j�s�1gDi
��s�1gDi

j

� "

since the `1 –metric is G –invariant and s�1gg�1 D s�1 2 S . So f is S –equivariant
up to ", and the same is true about f ıjhj�1 since h is an isomorphism of G –simplicial
complexes.

4 Overview of the Bartels–Farrell–Lück–Quinn argument

To keep the exposition in this and the following two sections short, we do not elaborate
on a number of arguments which are carried out in full detail in Bartels, Farrell and
Lück [2]; the reader is advised to keep a well-read copy of [2] close-by.

We are now going to give an outline of the proof of Theorem 1.1 in [2]. There are two
classes of groups which play a particularly prominent role:
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A group � is called crystallographic if it contains a normal subgroup A which is
finitely generated and free abelian such that A has finite index and equals its own
centralizer in � . The subgroup A is unique; the rank of � is defined to be the rank of
A, and equals the virtual cohomological dimension of � (see [2, Section 3.1]).

The second important class of groups is that of special affine groups; these are those
groups � for which there is an extension

1!‚! �!�! 1

and an action �0W � �Rn!Rn by affine motions such that the restriction of �0 to ‚
is a cocompact, isometric and proper action, and � is either infinite cyclic or infinite
dihedral. A special affine group � is irreducible if for every epimorphism �!� 0 onto
a virtually finitely generated abelian group � 0 , the virtual cohomological dimension of
� 0 is at most 1.

The proof of the Farrell–Jones conjecture for virtually poly-Z–groups in [2] makes
heavy use of a number of inheritance properties of the conjecture. In order to keep
the exposition short, we do not recall these here, but refer the reader instead to [2,
Section 2.3] for a quick overview.

Let G be a virtually poly-Z–group. Using the transitivity principle, the proof can
proceed by induction on the virtual cohomological dimension of G . One may assume
that vcd.G/� 2. Then there is an extension

1!G0!G
pr
�! �! 1

in which G0 is either finite or a virtually poly-Z–group which satisfies vcd.G0/ �

vcd.G/ � 2, and � is a crystallographic or a special affine group. If V is a virtu-
ally cyclic subgroup of � , its preimage under pr is a virtually poly-Z–group with
vcd.pr�1.V // < vcd.G/. So one only needs to prove the conjecture for � .

4.1 Claim Every crystallographic group satisfies the Farrell–Jones conjecture.

4.2 Claim Every irreducible special affine group satisfies the Farrell–Jones conjecture.

Assuming the two claims, we need only consider the case that � is a special affine group
which is not irreducible. Pick an epimorphism pW �! � 0 , where � 0 is some virtually
finitely generated abelian group with vcd.� 0/� 2. For any virtually cyclic subgroup V

of � 0 , the preimage p�1.V / is a virtually poly-Z–group with vcd.p�1.V //< vcd.G/.
This leaves the final case:
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4.3 Claim Every virtually finitely generated abelian group satisfies the Farrell–Jones
conjecture.

In fact, the three claims also rely on each other: The proof of Claim 4.1 and Claim 4.3 is
dealt with simultaneously as follows (see also Quinn [23], especially Proposition 2.4.1).
One proceeds by induction over the virtual cohomological dimension of a virtually
finitely generated abelian group � as well as the smallest order of a finite group F

which fits into an exact sequence 1! Zvcd.�/! � ! F ! 1; call the order of the
group F the holonomy of � .

One may assume that vcd.�/ � 2. Since there is an epimorphism with finite kernel
onto a crystallographic group with the same virtual cohomological dimension, the
Transitivity Principle serves to reduce the proof to the following claim:

4.4 Claim Every crystallographic group � with vcd.�/� 2 satisfies the isomorphism
conjecture with respect to the family of all subgroups G � � which satisfy one of the
following conditions:

� vcd.G/ < vcd.�/.

� vcd.G/D vcd.�/ and the holonomy of G is smaller than the holonomy of � .

This takes care of Claim 4.1 and Claim 4.3. Once this has been done, the transitivity
principle may be invoked another time to see that it suffices to show the following
claim to finish the proof.

4.5 Claim Every irreducible special affine group satisfies the isomorphism conjecture
with respect to the family of virtually finitely generated abelian groups.

The upshot of this discussion is that we will have to provide proofs for Claim 4.4 and
Claim 4.5 which avoid the use of the Farrell–Hsiang method.

5 Transfer reducibility of crystallographic groups

Let us fix the following notational conventions: Recall that every crystallographic
group � fits into a short exact sequence

1!A! �
pr
�! F ! 1

with A a finitely generated, free abelian group which equals its own centralizer, and F

a finite group. Observe that there is always a canonical action of F on A by considering
the conjugation actions of arbitrary lifts of elements of F under pr.
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Let s 2 N . Then we denote by As the quotient A=sA. Since sA is also normal
in � , we define �s to be the quotient �=sA. We let �sW �� �s be the projection
map. Moreover, the epimorphism pr induces a surjective homomorphism prsW �s�F

whose kernel is precisely As .

The normal subgroup A is isomorphic to Zn , where n is the rank of � . Consequently,
As Š Zn=sZn Š .Z=s/n . It follows that j�sj D jAsj � jF j D sn � jF j. Therefore, it
suffices to bound the number of prime factors in s (counted with their multiplicities) if
we want to bound the depth of the finite quotient �s .

We will make regular use of the following observation:

5.1 Lemma Let G be a finite group, and suppose there is a normal series P 0EH 0EG

such that P 0 is a p–group, H 0=P 0 is cyclic and G=H 0 is a q–group, ie G lies in Dr .

Then there is a normal series P EH EG such that P is a p–group, H=P is cyclic,
G=H is a q–group and neither p nor q divide the order of H=P . Moreover, H is
isomorphic to a semidirect product P ÌH=P , the subgroup P is normal in G and G

is q–hyperelementary mod p .

Proof Let �1W H
0 ! H 0=P 0 be the projection. Since H 0=P 0 is cyclic, there is a

unique cyclic p–Sylow group Sp in H 0=P 0 ; so H 0=P 0 decomposes as a direct product
H 0=P 0 Š Sp �C 0 . Set P WD ��1

1
.Sp/. Then P is a normal p–group in H 0 , and the

quotient H 0=P is isomorphic to C 0 .

If pD q , we set H WDH 0 and are done. Otherwise, let �2W H
0!H 0=P Š C 0 be the

projection, and let Sq be the unique q–Sylow group of C 0 . We have an isomorphism
C 0 Š C �Sq . Set H WD ��1

2
.C /.

We claim that H is normal in G . Let h 2H , g 2 G , and suppose that ghg�1 62H .
Since H 0 is normal in G , we know that ghg�1 2 H 0 . The order of ghg�1 equals
the order of h, so we conclude from p ¤ q that no power of q divides the order of
ghg�1 . Since we assumed that ghg�1 62H , this element maps to a nontrivial element
in H 0=H Š Sq ; but then there must be some power of q which divides the order of
ghg�1 , which is a contradiction.

Set Q WDG=H . The order of this group is given by

jQj D
jGj

jH j
D
jH 0j � jG=H 0j

jH j
D
jP j � jC j � jSqj � jG=H

0j

jC j � jP j
D jSqj � jG=H

0
j;

so P EH EG is the desired normal series.

The Schur–Zassenhaus theorem [25, Theorem 9.3.6] states that H is a semidirect
product. While this also implies that P is normal in G , we prove normality by hand.
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Let x 2 P and g 2 G , and suppose that gxg�1 62 P . Since H is normal, we know
that gxg�1 2 H . So gxg�1 defines a nontrivial element in H=P . In particular,
there is some prime l ¤ p which divides the order of gxg�1 ; this is a contradiction
since jgxg�1j D jxj is a p–power. Moreover, the kernel of the natural surjection
G=P�G=H is isomorphic to H=P , so G=P is q–hyperelementary.

5.2 Lemma (cf Bartels–Farrell–Lück [2, Lemma 3.8]) The group Z2 Ì� id Z=2 is
a Dress–Farrell–Hsiang group of bounded depth with respect to VCyc (relative to an
arbitrary finite generating set).

Proof Set � WD Z2 Ì� id Z=2, and let

1! Z2 i
�! �

pr
�! Z=2! 1

be the obvious short exact sequence. Let d� be the word metric with respect to some
chosen finite generating set S of � . The map evW �!R2 which evaluates the natural
� –action on R2 at the point 0 is a quasi-isometry, so we can find positive constants
C1 and C2 such that for all 
1; 
2 2 �

deuc.ev.
1/; ev.
2//� C1 � d�.
1; 
2/CC2

holds. Let " > 0. Pick three pairwise distinct odd prime numbers p1 , p2 , p3 which
satisfy

pi �
8 � .C1CC2/

2

"2
:

Set s WD p1p2p3 , so �s WD .Z=sZ/2 Ì� id Z=2. This fits into an exact sequence

1! .Z=s/2! �s

prs
��! Z=2! 1:

Since j�sj D 2 � .p1p2p3/
2 , the depth of �s is uniformly bounded.

Let D��s be a subgroup which lies in Dr . Then there is a normal series Q0ED0ED

such that Q0 is a q0 –group, D=D0 is a q1 –group, and D0=Q0 is a cyclic group of
order prime to q0 and q1 . Assume without loss of generality that p3 62 fq0; q1g, and
consider the projection � W �s� �p3

. Then �.D\ .Z=s/2/ is a cyclic subgroup of
.Z=p3/

2 � �p3
.

If �.D\ .Z=s/2/ is nontrivial, use [2, Lemma 3.7] to find a homomorphism r W Z2!

Z such that the kernel of the mod p3 –reduction of r equals �.D \ .Z=s/2/, and
rR D r ˝Z R satisfies deuc.rR.x1/; rR.x2// �

p
2p3 � d.x1;x2/ for all x1;x2 2 R.

Otherwise, let r W Z2! Z be the projection onto the first factor.

Set D WD ��1
s .D/. Then r.D\Z2/� p3Z, and the argument proceeds precisely as

in [2, Lemma 3.8] from here on.
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5.3 Proposition (cf Bartels–Farrell–Lück [2, Lemma 3.15]) Let � be a crystallo-
graphic group of rank 2 which possesses a normal infinite cyclic subgroup. Let F be
the family of subgroups of � which contains all virtually cyclic groups as well as all
groups which do not surject onto F under pr.

Then � is a Dress–Farrell–Hsiang group of bounded depth with respect to F (relative
to an arbitrary finite generating set).

Proof We will have to use the following facts which are proved at the beginning of
the proof of Lemma 3.15 in [2]:

� A decomposes uniquely into a direct sum Z1˚Z2 of two infinite cyclic and
F –invariant subgroups.

� F is either Z=2 or Z=2�Z=2.

If Z is either Z1 or Z2 , this is a normal subgroup of � (since it is F –invariant). Let
y�Z W �� �=Z and �Z W A�A=Z be the projection maps. Furthermore, there is an
epimorphism y�Z W �=Z��Z onto �Z 2 fZ;ZÌ� id Z=2g since �=Z is virtually
cyclic; the kernel of y�Z is finite, and the restriction �Z of y�Z to A=Z is injective.
Set

y�Z WD y�Z ı
y�Z W ���Z ;

�Z WD �Z ı �Z W A!AZ :

Subject to some choice of finite generating set of � , there is a word metric d� on � .
Let evZ W �Z !R be the map which is given by evaluating the natural �Z –action on
R at 0. Equip R with the simplicial structure whose set of vertices is fn=2 j n 2 Zg.

Then there are positive constants C1 and C2 such that for every F –invariant, infinite
cyclic subgroup Z of A and all 
1 , 
2 2 � we have

d`
1

.evZ ı y�Z .
1/; evZ ı y�Z .
2//� C1 � d�.
1; 
2/CC2:

Fix " > 0 and choose two odd prime numbers p1 and p2 such that

pi �
2 � .C1CC2/

"

holds. Let s WD p1p2 . Consider a subgroup D � �s which lies in Dr , and assume
without loss of generality that prs.D/D F . Pick a normal series Q0 ED0 ED such
that Q0 is a q0 –group, D=D0 is a q1 –group and D0=Q0 is a cyclic group of order
prime to q0 and q1 .
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If q0 2 fp1;p2g, say q0 D p2 , consider the projection � W �s � �p1
. Then �.D/

is hyperelementary, and the argument on page 352 of [2] shows that �.D/\Ap1
is

cyclic.

If q0 62 fp1;p2g, the group D\As is q1 –hyperelementary. In case q1 is one of p1

and p2 , let us say that q1 D p1 . Otherwise, D\As is even cyclic. In both cases, let
� W �s� �p2

be the projection. Then �.D/\Ap2
is cyclic.

In all cases we have considered, we have been able to find a prime p 2 fp1;p2g such
that �.D/\Ap is cyclic, where � W �s� �p is the canonical projection. Note that
� ı�s D �p . Set D WD ��1

s .D/. It follows that there is j 2 f1; 2g such that

D\A� ��1
s .��1.�.D///\AD ��1

p .�.D/\Ap/� �
�1
p .�p.Zj //:

Hence, �Zj
.D\A/� p.A=Zj /. The remainder of the proof is as in [2, Lemma 3.15].

5.4 Proposition Let � be a crystallographic group of rank at least 2 which does not
contain a normal infinite cyclic subgroup. Let F be the family of all subgroups of
� whose virtual cohomological dimension is smaller than that of � or which do not
surject onto F under pr.

Then � is a Dress–Farrell–Hsiang group of bounded depth with respect to F (relative
to an arbitrary finite generating set).

An important ingredient in the proof of Proposition 5.4 is the following mild general-
ization of the second part of Quinn [23, Proposition 2.4.2].

5.5 Lemma Let � be an arbitrary crystallographic group. Let p1 and p2 be prime
numbers which do not divide jF j, and let r > 0 be a natural number. Set s WD pr

1
pr

2
.

Suppose that D � �s is in Dr such that prs.D/D F and D\As is nontrivial.

Then there is i 2 f1; 2g such that �.D/\A=pr
i A contains a nontrivial F –invariant

cyclic subgroup, where � is the canonical projection �s� �pr
i

.

Proof Pick a normal series Q0 ED0 ED such that Q0 is a q0 –group, D=D0 is a
q1 –group, and D0=Q0 is a cyclic group whose order is coprime to q0 and q1 .

Suppose q0 2 fp1;p2g, say q0 D p1 . Consider the projection � W �s� �pr
1

. Then
�.Q0/ is trivial, so �.D/ is a hyperelementary subgroup of �pr

1
which surjects with

a nontrivial kernel onto F . Apply [23, Proposition 2.4.2] to obtain the claimed result.

If q0 62 fp1;p2g, then Q0 injects into F via prs and D\As is q1 –hyperelementary.
If also q1 62 fp1;p2g, then D \ As D D0 \ As is a nontrivial cyclic group. Let
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p 2 fp1;p2g be a divisor of the order of D \ As , and let � W �s � �pr be the
projection. Then �.D/\Apr is a nontrivial cyclic group. Since it equals the kernel of
the surjection �.D/� F , it is also F –invariant.

Now suppose q1 2 fp1;p2g, say q1 D p1 . Then prs.D0/D F .

In case D0 \ As is nontrivial, the projection � W �s � �pr
2

maps D \ As to the
nontrivial cyclic group �.D0 \As/. This group is normal in �.D/ D �.D0/, and
since �.D0/ also surjects onto F , it is also F –invariant.

In case D0 \As is trivial, prs restricts to an isomorphism D0 Š F , and D \As is
a q1 –group isomorphic to D=D0 . It follows that D ŠD0 �D=D0 . The projection
� W �s��pr

1
maps D isomorphically to a subgroup of �pr

1
; the kernel of the surjection

�.D/� F is a nontrivial q1 –group (isomorphic to D=D0 ). In particular, there is a
nontrivial, normal and cyclic subgroup of the kernel. This subgroup is then also normal
in �.D/ because �.D/ is the direct product of the kernel and F ; in particular, it is
F –invariant.

Proof of Proposition 5.4 (cf [2, Section 3.3]) Let d� be the word metric on � with
respect to some finite generating set S . Let evW �!Rn be the map that is given by
evaluating the natural � –action on Rn at 0. There are positive constants C1 and C2

such that
deuc.ev.
1/; ev.
2//� C1 � d�.
1; 
2/CC2

for all 
1; 
2 2 � .

Fix " > 0. Pick a simplicial structure on Rn such that Rn is a � –simplicial complex.
Then there is ı > 0 such that

deuc.x1;x2/� ı ) d`
1

.x1;x2/� "

for all x1;x2 2Rn .

Write jF jD 2k �l with l a nonnegative odd natural number and k a nonnegative natural
number. Using Dirichlet’s theorem [26, IV.4.1], pick two distinct prime numbers p1

and p2 such that

pi ��1 mod 4l; pi �
C1CC2

ı
; pi � jF j:

In particular, jF j is coprime to both p1 and p2 . Set r WD '.jF j/, where ' is Euler’s
'–function. Then

pr
i � 1 mod jF j:

Put s WD pr
1
pr

2
. Note that the depth of �s can be uniformly bounded, independent of

the choice of p1 and p2 .
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Consider a subgroup D � �s which lies in Dr . We may assume that prs.D/ D F .
Since � contains no normal infinite cyclic subgroup, it follows from Lemma 5.5 in
combination with [23, Proposition 2.4.2] that D\As is trivial.

The proof continues as in [2, Section 3.3] from this point on to show that � is a
Dress–Farrell–Hsiang group of bounded depth with respect to F .

Proposition 5.3 and Proposition 5.4 in conjunction with Lemma 5.2 prove Claim 4.4
by virtue of the transitivity principle. As was explained in Section 4, Claim 4.1 and
Claim 4.3 follow from this.

6 Transfer reducibility of irreducible special affine groups

We shall now deal with Claim 4.5.

6.1 Theorem Every irreducible special affine group � is a Dress–Farrell–Hsiang
group of bounded depth with respect to the family of virtually finitely generated abelian
groups.

The main technical ingredient for the proof of Theorem 6.1 is the following generaliza-
tion of Bartels, Farrell and Lück [2, Section 4.4]:

6.2 Lemma There is a natural number B such that for all natural numbers o; � there
are r; s 2N such that s � 1 mod o and for all M 2 GLn.Z/ the following holds:

(1) The order of GLn.Z=s/ divides r ; so the semidirect product .Z=s/n ÌMs
Z=r is

defined, where Ms denotes the reduction of M modulo s . Let � be the projection
.Z=s/n ÌMs

Z=r ! Z=r .

(2) The order of .Z=s/n ÌMs
Z=r contains at most B prime factors, counted with

their multiplicities.

(3) All subgroups G � .Z=s/n ÌMs
Z=r which lie in Dr have one of the following

properties:

(a) There is some �0� � which divides s such that �0� 1 mod o and G\.Z=s/n�
�0.Z=s/n .

(b) ŒZ=r W �.G/�� � .
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Proof Let us first explain how to obtain the bound on the number of prime factors
in the order of .Z=s/n ÌMs

Z=r . Suppose s is a product of pairwise distinct prime
numbers s D p1 � � �pk . Then Z=s Š Z=p1 � � � �Z=pk as rings. Since the diagram

Mn.Z=s/ Mn.Z=p1/� � � � �Mn.Z=pk/

Z=s Z=p1 � � � � �Z=pk

Š

dets detp1
� � � � � detpk

Š

commutes and .Z=p1� � � �Z=pk/
� D .Z=p1/

�� � � �� .Z=pk/
� , the top isomorphism

induces an isomorphism

GLn.Z=s/
Š
�! GLn.Z=p1/� � � � �GLn.Z=pk/:

Define a polynomial On.X / 2 ZŒX � by

On.X / WD .X
n
� 1/.X n

�X / � � � .X n
�X n�1/:

Then On.p/ is the order of GLn.Z=p/ for any prime p , and consequently we have

jGLn.Z=s/j DOn.p1/ � � �On.pk/:

In order to bound the number of prime factors in this expression, we rely on the
following generalization of Dirichlet’s theorem:

6.3 Theorem (Miech [17]) Let f .X / 2 ZŒX � be a polynomial. Let � and � be
natural numbers with .�; �/D 1. Then there is a constant K > 0 such that there are
infinitely many primes p with the property that p� � mod � and the number of prime
factors of f .p/, counted with their multiplicities, is bounded by K .

Applying this theorem to On.X / with �D 1 and �D o, we obtain a positive number
K and an infinite set of primes P such that for all p 2 P , we have that p � 1 mod o

and On.p/ has at most K prime factors, counted with their multiplicities.

Let us now pick three distinct prime numbers p1 , p2 and p3 from P such that each of
them is greater than � . Set s WD p1p2p3 and r WD jGLn.Z=s/j � s . Then s � 1 mod o

and the order of Ms clearly divides r . Since

j.Z=s/n ÌMs
Z=r j D sn

� s � jGLn.Z=s/j D .p1p2p3/
nC1
� jGLn.Z=s/j;

our preliminary considerations apply to show that the order of .Z=s/nÌMs
Z=r contains

at most B WD 3.nC 1/C 3K prime factors (counted with their multiplicities).
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What we have to check is that every subgroup G � .Z=s/n ÌMs
Z=r which lies in

Dr has the desired properties. The proof is a direct adaptation of the arguments in [2,
Lemma 4.18–4.21].

Fix a generator t of Z=r . Then every element of .Z=s/n ÌMs
Z=r can be written in

the form vtj for some v 2 .Z=s/n and some j 2N .

Let us first consider the case of a subgroup H � .Z=s/n ÌMs
Z=r which is cyclic

mod p for some prime p . Choose an extension 1! P ! H ! C ! 1 such that
C is cyclic, P is a p–group, and p does not divide the order of C . Let c 2 C be a
generator, and pick a preimage vtj under the epimorphism H ! C . Since p does
not divide jC j, the element d WD cjP j is another generator of C , and �..vtj /jP j/D d .
Write .vtj /jP j D wt l . Set x WD .wt l/Œ�.H /W�.P/� .

Suppose that H \ .Z=s/n ¤ P \ .Z=s/n . By definition, x lies in the kernel of �jH ,
which is H \ .Z=s/n . Its image in C is d Œ�.H /W�.P/� ¤ 0, so x does not lie in
P \ .Z=s/n . Let s0 be the order of x . Then s0 divides jC j; in particular, p does not
divide s0 . Note that s0 divides s ; write s D � � s0 . By the definition of s , the numbers
� and s0 are coprime. Let

k WD
jGLn.Z=s/j

gcd.jGLn.Z=s/j; s0/
:

Then k� and s0 are still coprime. Consequently, .wt l/k�Œ�.H /W�.P/� D xk� ¤ 0. On
the other hand, one can compute as in [2, Lemma 4.19] that .wt l/sr 0 is the trivial
element, so sr 0 does not divide k�Œ�.H /W�.P /�. Dividing by k� on both sides, we
get s0r − Œ�.H /W�.P /�, where r is some natural number containing only prime factors
which are also prime factors of s0 . Therefore, there is some i 2 f1; 2; 3g and a natural
number N � 1 such that pi j s

0 , pN
i j s

0r , and pN
i − Œ�.H /W�.P /�. Since s0 is a

divisor of jH j, the prime pi divides jH j.

It follows that r D sr 0 is divisible by pN
i . As p does not divide s0 , we must have

p ¤ pi . In particular, ŒZ=r W�.P /� is also divisible by pN
i . Since Œ�.H /W�.P /� is

only divisible by primes which are also prime factors of jC j, the equality

ŒZ=r W�.H /� � Œ�.H /W�.P /�D ŒZ=r W�.P /�

implies that pi divides ŒZ=r W�.H /�; in particular, ŒZ=r W�.H /�� pi � � .

Thus, we have shown that for every subgroup H which is cyclic mod p for some
prime p , there is an extension 1! P !H ! C ! 1 with C a cyclic group, P a
p–group such that p − jC j, and one of the following statements is true:

� H \ .Z=s/n D P \ .Z=s/n .
� There is i 2 f1; 2; 3g such that p ¤ pi , pi j jH j and pi j ŒZ=r W�.H /�.
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We are now going to use this to show the actual claim. So let G 2 Dr be a subgroup
of .Z=s/n ÌMs

Z=r . Pick an extension 1!H !G!Q! 1 such that H is cyclic
mod p for some prime p and Q is a q–group. If p ¤ q , we may assume that q

does not divide jH j. Note that both ŒG \ .Z=s/nWH \ .Z=s/n� and Œ�.G/W�.H /� are
q–powers. Choose an extension 1! P !H ! C ! 1 with the properties we had
just discussed.

Assume first that H \ .Z=s/n D P \ .Z=s/n . Then jG \ .Z=s/nj D pkql for some
natural numbers k and l . Choose i such that p ¤ pi ¤ q . Let 
 be a generator of
Z=s , and let .g1; : : : ;gn/ 2 G \ .Z=s/n be an arbitrary element. There are natural
numbers aj such that gj D 


aj . It follows that 
 aj pkql

D 0, so aj is divisible by pi .
This shows that G \ .Z=s/n � pi.Z=s/n . Note that by our initial choice of pi 2 P , it
is automatically true that pi � � , pi divides s , and pi � 1 mod o.

Consider now the case that H \ .Z=s/n ¤ P \ .Z=s/n , so there is some i such that
p ¤ pi , pi j jH j and pi j ŒZ=r W�.H /�. We must also have q ¤ pi . Since

ŒZ=r W�.G/� � Œ�.G/W�.H /�D ŒZ=r W�.H /�;

the prime pi must divide ŒZ=r W�.G/�, so ŒZ=r W�.G/� � pi � � . This finishes the
proof.

Proof of Theorem 6.1 We have to introduce some additional notation. Recall that
we can write � as an extension 1! ‚! � ! �! 1 of a crystallographic group
‚ by � 2 fZ;D1g. Let A be the unique normal, free abelian subgroup of ‚ which
equals its own centralizer. Set Q WD �=A. As before, set As WDA=sA for any positive
integer s . Note that As is isomorphic to .Z=s/n . Moreover, the virtually cyclic group
Q has a normal, infinite cyclic subgroup C �Q. Let F be the finite quotient Q=C ,
and denote for any positive integer r the quotient Q=rC by Qr . As described in [2,
page 359], there is a certain semidirect product As Ì�r;s

Qr whenever r divides the
order of aut.As/, and one can construct a projection map �r;sW �!As Ì�r;s

Qr . If
G �As Ì�r;s

Qr is any subgroup, write G for the preimage ˛�1
r;s .G/.

First, we observe that given � 2N , there are natural numbers r; s 2N such that

(1) s � 1 mod jH 2.QIA/j.

(2) jaut.As/j j r .

(3) For every subgroup G � As Ì�r;s
Qr which lies in Dr , one of the following

holds:
� The order of H 1.pr.G/IA/ and H 2.pr.G/IA/ is finite and there is k 2N

such that k divides s , k is at least � , k � 1 mod jH 1.pr.G/IA/j, k �

1 mod jH 2.QIA/j, k � 1 mod jH 2.pr.G/IA/j, and G \A� kA.
� ŒDW�.pr.G//�� � .
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This is nontrivial, but one can copy the proof of [2, Lemma 4.22] verbatim, noticing
that the only part of the proof which is specific to hyperelementary subgroups is the
invocation of [2, Proposition 4.10], which we can replace by Lemma 6.2. Observe that

jAs Ì�r;s
Qr j D jAsj � jQr j D j.Z=s/

n
j � jZ=r j � jF j:

Since we used Lemma 6.2 to choose r and s , we know that j.Z=s/nj � jZ=r j contains
at most B prime factors. Moreover, the order of F DQ=C does not depend on any
of the choices we made, and thus always contains the same number of prime factors.
In total, this gives us a uniform bound on the number of prime factors occurring in
the order of jAs Ì�r;s

Qr j, counted with their multiplicities, and thus on the depth of
As Ì�r;s

Qr .

Now the proof can be finished by arguing precisely as in the proof of [2, Proposi-
tion 4.41].

Appendix: On the proof of Oliver’s theorem

As promised, we are now going to review the proof of Oliver’s Theorem 2.9 to show the
existence of the function bd. The outline of the proof is basically that of Oliver [19],
with some additional input from Oliver [21]. However, we will deviate from the
treatment in [19] at the end to get a better grip on the dimension bound.

Let G be a finite group throughout. Let �.G/ be the Burnside ring of G . We think
about elements in �.G/ as equivalence classes of finite G –CW–complexes, where the
relevant equivalence relation �� is the following: Two finite G–CW–complexes X

and Y are �–equivalent, X �� Y , if and only if �.X H /D �.Y H / for all subgroups
H �G , where � denotes the Euler characteristic of a finite CW–complex. The disjoint
union and product operations induce the ring structure on �.G/. See Oliver [20,
page 90] and tom Dieck [10] for more information on this description of �.G/.

Let �.G/��.G/ be the subset given by

�.G/ WD

�
x 2�.G/

ˇ̌̌̌
There is a finite contractible G –CW–complex
X with x D ŒX �� 1.

�
:

As Oliver observed in [20, page 90], this is an ideal in �.G/. Let ghG W �.G/! Z
be the “ghost map” which sends ŒX � to �.X G/. Then the image of �.G/ under ghG

is an ideal in Z; we let nG denote the unique nonnegative generator. One easily
observes that nG D 1 if there is a finite contractible G –CW–complex without a global
fixed point.

Another important concept is that of a resolving function:
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A.4 Definition [19, bottom of page 159] Let S.G/ denote the poset of subgroups
of G . A function 'W S.G/! Z is a resolving function if the following holds:

� ' is constant on conjugacy classes of subgroups.

� For all H �G , the order of the Weyl group ŒNG.H /WH � divides '.H /.

� If H 2 Cycp for some prime p , then
P

K�H '.K/D 0.

Every finite, contractible G–CW–complex X gives rise to a resolving function 'X

[19, Proposition 2 and Lemma 2]. The set

f'.G/ j ' is a resolving function for G g � Z

forms a subgroup, and we let rG denote the unique nonnegative generator of this group.
If ŒX �� 1 is a preimage of nG with respect to ghG , then nG D �.X

G/� 1D 'X .G/.
It follows that rG is always a divisor of nG .

A.5 Theorem (cf [19, Theorem 2]) If rG D 1 and G is not a p–group for any prime
p , then there is a finite, contractible G–CW–complex X without global fixed point
whose dimension is bounded by 4 � d.G/C 2.

As a first step towards Theorem A.5, one constructs a G–resolution Y , ie a finite,
n–dimensional and .n� 1/–connected G–CW–complex Y with Y G D∅ such that
Hn.Y IZ/ is a finitely generated projective ZŒG�–module. In addition, we will see that
the dimension n of Y can be bounded by 2 � d.G/.

To keep track of how the construction proceeds, we try to make the induction as explicit
as possible. Let S.G/ be again the poset (with respect to �) of subgroups of G . Define
the rank of a subgroup H �G to be

rk.H / WDmaxfrk.K/ jK 2 S.G/;K ©H gC 1;

where we let max∅ D 0. Note that the depth of G is precisely rk.f1Gg/, and that
conjugate subgroups have equal rank. For each r � d.G/, choose a linear order 4r

on the set of subgroups of rank r . Then

H 4H 0 ” rk.H / < rk.H 0/ or
�
rk.H /D rk.H 0/ and H 4rk.H / H 0

�
defines a linear order on S.G/. We write H �H 0 if H 4H 0 and H ¤H 0 .

The construction of Y proceeds inductively along the finite linear order .S.G/nf1g;�/.
By assumption, we may choose a resolving function ' on G with '.G/D�1. Then
we claim that for every H 2 S.G/ n f1g, there is a finite G –CW–complex Y .H / such
that the following holds:
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(1) The complex Y .H / contains only cells of type G=K for K ¤G and K 4H ;
in particular, it has no global fixed point.

(2) The dimension of Y .H / is bounded by 2 � rk.H /.

(3) For every K 4H , the dimension of the K–fixed point set Y .H /K is bounded
by 2 � rk.K/.

(4) �.Y .H /K /D 1C
P

K 0�K '.K0/ for all K 4H .

(5) If K 4 H is a p–group for some prime p , the K–fixed points Y .H /K are
Z=p–acyclic.

For the start of the induction, we can set Y .G/ WD ∅. Suppose that Y .H�/ has
been constructed for some subgroup H� �G . Let H be the immediate successor of
H� . If there is some conjugate gHg�1 of H such that gHg�1 � H , we may set
Y .H / WD Y .H�/. Suppose that no conjugate of H is �–smaller than H .

Assume first that H is no p–group. If nD 0, set Y .H / WD Y .H�/. Otherwise, we
can add cells of type G=H in sufficiently low dimensions to enforce condition (4)
without affecting the other properties.

So suppose now that H is a p–group for some prime p . Attach successively cells of
type G=H to Y .H�/ to construct a G–CW–complex Y 0 whose H –fixed point set
.Y 0/H has dimension bigger than the K–fixed point sets .Y 0/K for all K ©H and
is .dim.Y 0/� 1/–connected. We can arrange that dim.Y 0/ � 2 � rk.H /� 1. By the
argument on page 162 of [19], the top-dimensional homology Hdim.Y 0/.Y IZ=p/ is
free. This allows us to glue on a set of .dim.Y 0/C 1/–cells of type G=H to obtain a
finite G –CW–complex Y .H / whose dimension is bounded by 2 � rk.H / and which is
Z=p–acyclic. One checks that Y .H / has all other desired properties.

At the end of the induction, we have a finite G –CW–complex Y0 which has no global
fixed point, whose dimension n0 is bounded by 2�d.G/�2, whose fixed-point sets under
nontrivial p–groups are Z=p–acyclic and which satisfies �.Y H

0
/D 1C

P
K�H '.K/

for all H ¤ 1.

By another induction along the skeleta, we can glue on free G–cells to produce an
.n0C1/–dimensional and n0–connected G –CW–complex Y which has no global fixed
point and whose top-dimensional homology Hn0C1.Y IZ/ is finitely generated and
projective as a ZŒG�–module (see [19, Proof of Theorem 2] for the last claim). Setting
n WD n0C 1, we have found a G –resolution.

Theorem A.5 can be derived from the existence of a G –resolution Y as follows: Take
the join X 0 WD Y � Y . We will think about the join of two spaces Z and Z0 as
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.C.Z/�Z0/[Z�Z 0 .Z �C.Z0// via the homeomorphism

Z �Z0! .C.Z/�Z0/[Z�Z 0 .Z �C.Z0//;

.z; t; z0/ 7!

�
.z; .1� 2t; z0// 2Z �C.Z0/ t � 1

2
;

..z; 2t � 1/; z0/ 2 C.Z0/�Z t � 1
2
:

This description makes it obvious that X 0 is a G –CW–complex without a global fixed
point whose dimension can be bounded by 2nC 1 � 4 � d.G/C 1. Moreover, we
can use the given decomposition to apply the Seifert–van Kampen theorem, and then
proceed by induction with the Hurewicz theorem and Mayer–Vietoris sequence for
homology to show that X 0 is 2n–connected. The isomorphisms

H2nC1.X
0
IZ/

Š
�!H2n.Y �Y IZ/

Š
 �Hn.X

0
IZ/˝Z Hn.X

0
IZ/;

which can be assembled from the Mayer–Vietoris sequence and the Künneth Theorem,
are both ZŒG�–linear. We can now invoke Oliver and Segev [18, Proposition C.3] to
deduce that H2nC1.X

0;Z/ is a stably free ZŒG�–module. Hence, we can add free
.2nC 1/– and .2nC 2/–cells to produce a finite, contractible G–CW–complex X

without global fixed point whose dimension is bounded by 4 � d.G/C 2.

A.6 Corollary Suppose G is not a p–group for any prime p . Then the following are
equivalent:

(1) rG D 1.

(2) There is a finite, contractible G –CW–complex X with X G D∅ whose dimen-
sion is bounded by 4 � d.G/C 2.

(3) nG D 1.

Since Oliver has shown in [19, Theorem 5] that rG D 1 if and only if G 62 Dr ,
Theorem 2.9 follows from the well-known fact that every finite G–CW–complex is
G –homotopy equivalent to a finite G –simplicial complex of equal dimension, see eg
Oliver and Segev [18, Proposition A.4].
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