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Even triangulations of n–dimensional pseudo-manifolds

J HYAM RUBINSTEIN

STEPHAN TILLMANN

This paper introduces even triangulations of n–dimensional pseudo-manifolds and
links their combinatorics to the topology of the pseudo-manifolds. This is done via
normal hypersurface theory and the study of certain symmetric representation. In
dimension 3 , necessary and sufficient conditions for the existence of even triangula-
tions having one or two vertices are given. For Haken n–manifolds, an interesting
connection between very short hierarchies and even triangulations is observed.

57M25, 57N10, 57M60, 57Q15

1 Introduction

Aitchison, Matsumoto and Rubinstein [2] discuss immersed hypersurfaces in cubed
n–manifolds of non-positive curvature in terms of a holonomy representation into the
symmetric group on n letters. A necessary and sufficient condition to have such a
representation is for each codimension–2 face of the cubing to have even order. Joswig
and Izmestiev [17; 12] study n–dimensional polytopes and PL manifolds in terms of
the symmetric group on nC 1 letters, also obtaining representations if and only if all
codimension–2 faces have even order.

This paper synthesises these ideas into a theory for singular triangulations of n–
dimensional pseudo-manifolds in which all codimension–2 faces have even order.
From these even triangulations, we obtain representations of fundamental groups into
the symmetric group on nC 1 letters as well as induced representations into other
symmetric groups, and are able to obtain topological information from the combinatorics
of a triangulation. For instance, if the even triangulation has at most n vertices, then the
representation (and hence the fundamental group) is non-trivial. The material described
so far can be found in Section 2.

In Section 3, we give a new treatment of normal hypersurfaces in n–dimensional
pseudo-manifolds, including both an algebraic as well as a geometric viewpoint. We
show that evenness is a necessary and sufficient condition for certain canonical normal
hypersurfaces to be immersed without branching. Moreover, linking the existence of
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certain embedded hypersurfaces to symmetric representations, we are able to show
that if an even triangulation has exactly one vertex, then the fundamental group is
non-cyclic.

We then focus on the case of 3–manifolds. Even triangulations with at least four
vertices can be constructed for all closed 3–manifolds, so the cases of interest are those
with fewer vertices. In Section 4, we show that if the number of vertices of an even
triangulation of the closed, orientable 3–manifold M is exactly

three
two
one

9=; then �1.M / has an epimorphism onto

8<:
C2 or C3

C2 or Alt.4/
C2 �C2; C4; Alt.4/ or Sym.4/

unless, in the case of two vertices, three faces in the triangulation form a spine for
L.3; 1/ and, in particular, M has L.3; 1/ as a summand in its prime decomposition.

Having established these necessary conditions for a 3–manifold to admit an even
triangulation with few vertices, we also give sufficient conditions. We establish that
if H1.M;Z2/ ¤ 0 (ie �1.M / has an epimorphism onto C2 ), then M has an even
triangulation with two vertices; and if �1.M / has an epimorphism onto C2 �C2 or
C4 , then M has an even triangulation with one vertex.

There has been much recent interest in Z2 –homology, giving useful topological prop-
erties of 3–manifolds. For instance, Z2 –homology has been studied in the context of
searching for incompressible surfaces, bounds on Z–homology and hyperbolic volume;
see for example Agol, Culler and Shalen [1; 8], Lackenby [19; 20] and Shalen and
Wagreich [28]. A key result due to Lubotzky [21] is that any complete hyperbolic 3–
manifold of finite volume has a finite sheeted covering so that the rank of Z2 –homology
is arbitrarily large. Our results therefore show that any closed hyperbolic 3–manifold
has a finite sheeted covering with a 1–vertex even triangulation.

We return to arbitrary dimensions in Section 5, where an interesting connection between
very short hierarchies and even triangulations is observed.

In a follow-up paper (work in progress), the authors, together with M Bökstedt, construct
CAT(0) structures on triangulated n–manifolds using Euclidean metrics on n–simplices.
To verify that the metrics indeed satisfy sufficient conditions to be CAT(0), it turns out
to be very convenient to assume that the underlying triangulations are even.

In a further paper [26], the authors generalise the trisections of 4–manifolds due to
Gay and Kirby [9] to multisections of n–manifolds. A suitable evenness condition on
the triangulations allows us to construct these multisections, and yields a construction
of non-positively curved cubed manifolds.

Algebraic & Geometric Topology, Volume 15 (2015)



Even triangulations of n–dimensional pseudo-manifolds 2949

Acknowledgements The authors are partially supported under the Australian Research
Council’s Discovery funding scheme (project number DP130103694). The authors
thank the Mathematical Sciences Research Centre at Tsinghua University, the Centre
for Advanced Study at Warsaw University of Technology, and the Max Planck Institute
for Mathematics at Bonn, where parts of this work have been carried out, for their
hospitality.

2 Symmetric representations and normal hypersurfaces

Motivating examples are discussed in Section 2.1 and revisited in Section 2.4. The
definition of an even triangulation is given in Section 2.2. In Section 2.3, we generalise
Joswig’s group of projectivities from combinatorial manifolds to triangulated pseudo-
manifolds, and obtain first topological information from even triangulations with few
vertices. In Section 2.5, we introduce symmetric representations arising from partitions.

2.1 Examples

The key idea to construct representations is as follows. Given a (possibly singular)
triangulation of the n–dimensional manifold M , pick one n–simplex as a base, label its
corners and then reflect this labelling across its codimension–one faces to the adjacent
n–simplices. (This is illustrated for 3–simplices in Figure 1.)

0 0

1 1 22

33

'�

� '� .�/

Figure 1: Reflecting the labelling across a facet: The labelling of the tetrahe-
dron on the left is reflected across facet � to the tetrahedron on the right.

This induced labelling is then propagated further across faces, and if one returns to the
base simplex, one obtains a permutation of its labels. If all .n�2/–simplices have even
degree, this yields a representation of the fundamental group of M into Sym.nC 1/.
This will now be illustrated with some 3–dimensional examples, before we give the
formal treatment and produce some general results.
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(a) Quaternionic space
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(b) Figure eight knot complement

Figure 2: A closed spherical manifold and a hyperbolic knot complement

Example 1 (Quaternionic space) Quaternionic space S3=Q8 has a triangulation with
two tetrahedra and one vertex; see Figure 2 (a). Denoting the tetrahedra �0D Œ0; 1; 2; 3�

and �1 D Œ0
0; 10; 20; 30�, the faces are identified in pairs:

F3W Œ0; 1; 2�! Œ30; 00; 10�; F2W Œ0; 1; 3�! Œ10; 20; 00�;

F1W Œ0; 2; 3�! Œ20; 00; 30�; F0W Œ1; 2; 3�! Œ30; 20; 10�:

The labelling of �0 can be reflected to �1 via F3 , giving the assigment 30! 0, 00! 1,
10! 2 and 20! 3. Composing with F�1

2
, F�1

1
, and F�1

0
respectively results in three

permutations of the vertices of �0 . We obtain

F�1
2 F3 7! .02/.13/; F�1

1 F3 7! .03/.12/; F�1
0 F3 7! .01/.23/:

These compositions of face pairings generate the fundamental group of S3=Q8 . There
are three edges in the triangulation, all having degree four. The product of the reflections
across the faces incident with an edge therefore gives the trivial permutation. So we
obtain a natural homomorphism �1.S

3=Q8/DQ8! Sym.4/ with image isomorphic
with C2 �C2 .

Example 2 (A lens space) The lens space L.4; 1/ has a triangulation with just one
tetrahedron Œ0; 1; 2; 3� and face pairings Œ0; 1; 2�! Œ3; 0; 1� and Œ0; 2; 3�! Œ3; 1; 2� (see
Figure 5). Both give the permutation .0321/. Since the degrees of the two edges are 2

and 4 respectively, this again corresponds to a homomorphism �1.L.4; 1//! Sym.4/,
which in this case is a homomorphism onto the subgroup isomorphic to C4 generated
by .0321/.
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The construction also applies to ideal triangulations, where the simplices glue up to a
pseudo-manifold and the complement of the set of vertices is a non-compact manifold
whose fundamental group is again generated by certain products of face pairings.

Example 3 (The figure-eight knot complement) The complement M of the figure-
eight knot in S3 has an ideal triangulation with two ideal tetrahedra and one ideal
vertex; see Figure 2 (b). Denoting the tetrahedra �0D Œ0; 1; 2; 3� and �1D Œ0

0; 10; 20; 30�,
the faces are identified in pairs:

F3W Œ0; 1; 2�! Œ30; 10; 20�; F2W Œ0; 1; 3�! Œ00; 10; 20�;

F1W Œ0; 2; 3�! Œ00; 10; 30�; F0W Œ1; 2; 3�! Œ00; 20; 30�:

The labelling of �0 is again reflected to �1 via F3 , giving the assignment 30 ! 0,
10! 1, 20! 2 and 20! 3. Composing with F�1

2
, F�1

1
, and F�1

0
respectively results

in three permutations of the vertices of �0 . We obtain

F�1
2 F3 7! .032/; F�1

1 F3 7! .03/.12/; F�1
0 F3 7! .013/:

In this case, there are two edges of degree 6, so again the products of the reflections
across all faces abutting an edge (counted with multiplicity) are trivial, and we obtain a
homomorphism from �1.M /! Sym.4/ with image isomorphic with Alt.4/.
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Figure 3: The Whitehead link complement

Example 4 (The Whitehead link complement) The complement M of the White-
head link in S3 has an ideal triangulation with four ideal tetrahedra and two ideal
vertices; see Figure 3. Choosing the left-most ideal tetrahedron as a base, the canonical
symmetric representation has image a non-normal Klein four group in Sym.4/; namely
h.01/; .23/i.
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2.2 Pseudo-manifolds and even triangulations

Let z� be a finite union of pairwise disjoint, oriented Euclidean n–simplices with
the standard simplicial structure. Every k –simplex � in z� is contained in a unique
n–simplex �� . An .n�1/–simplex in z� is termed a facet and a 0–simplex a corner. A
facet (or corner) � has a unique opposite corner (or facet) �� n � . To simplify notation,
we will not distinguish between a singleton and its element.

Let ˆ be a family of orientation-reversing affine isomorphisms pairing the facets in z�,
with the properties that ' 2ˆ if and only if '�1 2ˆ, and every facet is the domain of
a unique element of ˆ. The elements of ˆ are termed face pairings.

The quotient space yM D z�=ˆ with the quotient topology is then a closed, orientable
n–dimensional pseudo-manifold, and the quotient map is denoted pW z�! yM . The
triple T D .z�;ˆ;p/ is a (singular) triangulation of yM . The set of non-manifold
points of yM is contained in the .n� 3/–skeleton. (See Seifert and Threfall [27].) If
nD 2, then yM is a surface. We will always assume that yM is connected. In the case
where yM is not connected, the results of this paper apply to its connected components.

The quotient space yM is studied via the map pW z�! yM . The image of a k –simplex
under p is termed a k –singlex in M . The degree of the k –singlex � is the degree of
the restriction pW p�1.�/! � . We term � even if its degree is even, and we term the
triangulation of yM even if every .n� 2/–singlex is even.

Denote yM .k/ the image of the k –skeleton of z� under the projection map, and M D
yM n yM .0/ . The pseudo-manifold yM is often referred to as the end-compactification

of M . Denoting the restrictions of ˆ and p to z�n z�.0/ by the same letters, the triple
T D .z� n z�.0/; ˆ;p/ is an ideal (singular) triangulation of M . The dual .n� 1/–
skeleton in yM is called a spine for M , as M retracts onto this spine. Hence these two
have isomorphic fundamental groups, whilst the fundamental group of yM is a quotient
thereof. The dual graph or dual 1–skeleton of the triangulation is the 1–skeleton of
the dual .n� 1/–skeleton. It has one vertex for each n–singlex (which is identified
with its barycentre) and one edge for each .n� 1/–singlex.

As indicated, the adjective singular is usually omitted, and we will not need to distin-
guish between the cases of a simplicial or a singular triangulation.

2.3 Symmetric representations

Given the facet � , denote '� the face pairing with domain � . Following Joswig [17],
the facet � defines the perspectivity p� W �� ! �'� .�/ by the following action on the
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vertices:

(2-1) v 7!

�
'� .v/ if v 2 �;
�'� .�/ n'� .�/ otherwise.

A perspectivity acts like a reflection across a facet (see Figure 1). The definition implies
that

p'� .�/ ıp� W �� ! ��

is the identity.

A facet path from facet � to � 0 is a finite sequence

(2-2) 
 D .�0; �
0
1; �1; : : : ; �

0
k ; �k ; �

0
kC1/;

where �0 D � , � 0
kC1
D � 0 , and � 0j ; �j are distinct facets contained in a common n–

simplex �j and � 0
jC1
D '�j .�j / for all j 2 f0; : : : kg. Again following Joswig [17],

we define the projectivity

p
 W ��0
! �� 0

kC1
; p
 D p�k

ı � � � ıp�1
ıp�0

:

In the case where �0 D �kC1 , the facet path 
 is termed a facet loop. In this case, the
projectivity p
 is a permutation of the vertices of �0 , and termed a projectivity of yM
based at �0:

Using concatenation as the group operation, the set of all projectivities of yM based at
�0 forms a subgroup of Sym.�0/, which is denoted …. yM ; �0/.

If 
 is any facet path from �0 to another n–simplex � , then

…. yM ; �/D p
…. yM ; �0/p
�1 :

It follows that …. yM ; �/ can be identified with a subgroup of the symmetric group on
nC 1 letters, Sym.nC 1/, up to inner automorphisms of Sym.nC 1/.

From now on, we will only address the case n� 3, as modifications are required for
surfaces, and our methods do not yield interesting results in this case.

Let x0 be the image in yM of the barycentre of �0 . Then for each loop in yM based at
x0 and contained in the dual graph of the triangulation, we obtain a facet loop based
at �0 obtained by recording the sequence of facets which the loop crosses. Whence
there is a well-defined projectivity p
 based at �0 associated with any loop 
 in the
dual 1–skeleton. The fundamental group of M is finitely presented with generators
represented by loops in the dual 1–skeleton, and relators arising from the cells in the
dual 2–skeleton.
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Lemma 5 (Canonical symmetric representation) Suppose n� 3. The assignment

�1.M;x0/ 3 Œ
 �! p
 2 Sym.�0/

is a well-defined homomorphism if and only if the triangulation of yM is even.

Proof Since every element in the fundamental group is represented by a simplicial
path in the dual 1–skeleton, and all relations arise from the cells in the dual 2–skeleton,
it remains to show that the homomorphism is well defined if and only if the degree of
each .n� 2/–cell in yM is even.

A loop 
 in the dual 1–skeleton based at x0 and abutting the cell c in the dual 2–
skeleton represents the trivial element in �1.M Ix0/. The associated element �.
 / 2
Sym.�0/ is trivial if and only if the degree of the .n�2/–cell dual to c is even. Similarly,
given any cell c in the dual 2–skeleton, choose a path ˛ in the dual 1–skeleton from
x0 to the barycentre of an n–singlex incident with c and a loop ˇ abutting c . Then
0D Œ˛ˇ�Œ˛��1 , and the associated permutation is trivial if and only if the degree of the
.n� 2/–cell dual to c is even. Hence all relators in the fundamental group give trivial
images in Sym.�0/ if and only if the triangulation is even.

Remark 6 The homomorphism �1.M;x0/ 3 Œ
 �! p
 2 Sym.�0/ factors through
�1. yM ;x0/ if the link of each vertex has trivial fundamental group (for instance, is
an .n� 1/–sphere). Simple examples where it does not factor are given by the ideal
triangulations of knot and link complements in the 3–sphere (see Example 3).

Remark 7 If a triangulation is not even, one can use the null-homotopic loops with
non-trivial projectivities to construct canonical branched coverings; see Izmestiev and
Joswig [12] for an application.

Proposition 8 (Few vertices implies non-trivial representation) If the vertices v and
v0 of the n–simplex �0 have the same image in yM under the map pW z�! yM , then
there is Œ
 � 2 �1.M;x0/ with p
 .v/D v

0 . In particular, if an even triangulation has
fewer than nC 1 vertices, then the canonical symmetric representation has non-trivial
image, and so the fundamental group of M is non-trivial.

Proof The identification of v and v0 arises from some facet loop 
 based at �0 . If
v ¤ v0 , then the associated permutation p
 is non-trivial.

For example, this shows that the n–sphere does not admit an even triangulation with
fewer than nC 1 vertices. However the double of an n–simplex is an even degree
triangulation of Sn with exactly nC 1 vertices.
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Corollary 9 If the canonical symmetric representation has trivial image, then the
vertices in yM can be consistently labelled f1; 2; : : : ; nC 1g and there must be at least
nC 1 vertices.

2.4 Examples (revisited)

The next step in our program is again introduced with an informal discussion and some
3–dimensional examples, which are then distilled into an algebraic theory in arbitrary
dimensions.

Given a closed, triangulated 3–manifold M , place three quadrilateral discs in each
tetrahedron, one of each type as shown in Figure 4, such that the result is a (possibly
branched immersed) surface in M .

000

111

222

333

Figure 4: The three types of quadrilaterals in a 3–simplex

If one chooses a labelling of the three quadrilateral discs, one can again propagate
the labelling chosen in some base tetrahedron across all faces to a labelling of the
quadrilaterals in the adjacent tetrahedra. As before, if the degree of each edge in the
triangulation is even, there is an associated representation into the symmetric group
Sym.3/ on three letters. (Even degree also implies that the surface has no branch points,
and hence is immersed.) We will show that this representation, denoted � , is induced
by the canonical symmetric representation � , and that its image is related to the number
of components of the surface. But first, we discuss the geometric manifestation of this
induced representation in our examples.

Example 10 (Quaternionic space) The quadrilateral surface in the triangulation of
quaternionic space has three components; each is an embedded Klein bottle meeting
each tetrahedron in exactly one quadrilateral disc. If one chooses a labelling in a base
tetrahedron and propagates it, one obtains the trivial permutation associated to each
generator of the fundamental group since otherwise one would obtain a contradiction to
the fact that each component meets each tetrahedron in exactly one quadrilateral disc.

Algebraic & Geometric Topology, Volume 15 (2015)



2956 J Hyam Rubinstein and Stephan Tillmann

Example 11 (A lens space) The quadrilateral surface in L.4; 1/ has two components:
one is an embedded Klein bottle and the other is an immersed projective plane; see
Figure 5. Labelling the quadrilateral discs in �0 respectively r (red), b (blue) and
g (green), one obtains labels of the normal arcs on each face and is interested in the
effect of the face pairings on the labels. Suppose that the labels are Œ0; bI 1; r I 2;g�
on face Œ0; 1; 2�. We have Œ0; bI 1; r I 2;g� ! Œ3;gI 0; r I 1; b� and Œ0;gI 2; bI 3; r � !
Œ3; bI 1;gI 2; r �. Whence r is fixed (corresponding to the Klein bottle) and g and b

are transposed by each face pairing, giving a representation �1.L.4; 1//! Sym.3/
with image isomorphic with C2 .

00

11 22

33

Figure 5: The embedded Klein bottle in L.4; 1/ is shown on the left, and the
immersed projective plane on the right.

Example 12 (The figure-eight knot complement) The quadrilateral surface has one
component of Euler characteristic �2. Choosing a labelling in one tetrahedron and
propagating, it is not difficult to compute that the image is isomorphic with C3 . The
whole class of once-punctured torus bundles, into which this example fits, is discussed
in the next example.

Example 13 (Once-punctured torus bundles) A nice class of examples is the class of
canonical triangulations of the once-punctured torus bundles over the circle. (See [11].)
These all have the property that they are ideal triangulations for which all edges are of
even degree and there is a single ideal vertex. There are different behaviours of the
symmetric representation � . For the figure-eight knot complement given from above,
the monodromy of the bundle has trace 3 and the canonical triangulation gives rise to
the representation � into Sym.3/ with image C3 and the symmetric representation �
with image Alt.4/. In this case, there are no elements of H1.M;Z2/ other than coming
from the meridian which is a boundary element. There are many other examples of
this type in the class of once-punctured torus bundles.

The monodromy of a punctured torus bundle M maps to an element of SL.2; 2/Š
Sym.3/. It is not difficult to verify for the canonical triangulations that the induced
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symmetric representation � has image which is cyclic of order the same as that of
the image of the monodromy in SL.2; 2/. The reason is that if we pass to the cyclic
covering space zM corresponding to the kernel, then clearly the monodromy has
image the identity element in SL.2; 2/. But then H1. zM ;Z2/ has rank 3 and the
quadrilateral surface splits into three embedded non-orientable components. In general,
the quadrilateral surface has one, two or three components which are all non-orientable,
and the symmetric representation � has image Alt.4/, D4 or C2 �C2 respectively.

Remark 14 (Minimal triangulations) Even triangulations and quadrilateral surfaces
seem to play a special role in the search for minimal triangulations of closed 3–
manifolds; see [13; 15; 16]. However, it is not true that if a 3–manifold satisfies the
conditions required to have a one-vertex even triangulation, then amongst its minimal
triangulations there is one of this type; see Example 45.

2.5 Symmetric representations from partitions

Returning to the case of arbitrary dimension and continuing in the notation from
Section 2.2–2.3, suppose that the triangulation of yM is even. The n–simplex �0

is identified with the set f1; 2; : : : ; nC 1g, and we denote the canonical symmetric
representation �W �1.M /! Sym.nC 1/.

Taking a partition of �0 , one can act on this by the induced representation. For the
purpose of this paper, the treatment is restricted to partitions into two sets, one of size
k and the other of size n� kC 1. For instance,

ff1; 2; : : : ; kg; fkC 1; : : : ; nC 1gg

7! ff�.1/; �.2/; : : : ; �.k/g; f�.kC 1/; : : : ; �.nC 1/gg:

This gives an induced representation �D �kjn�kC1W �1.M /! Sym.N /, where N D�
nC1

k

�
unless the two sets are of equal size, in which case N D 1

2

�
nC1

k

�
since the order

of the two sets in the partition does not matter. The order of the two sets in the partition
being irrelevant also implies that one may assume k � .nC1/=2. Moreover, we require
k > 1, since the induced representation for k D 1 is conjugate to � .

It follows that there are b.n� 1/=2c induced representations from partitions into two
sets. For n� 5, there are at least two. For n� 4, we always have nC1<N . We now
discuss the cases of lowest dimension.

For nD 4, there is a unique induced representation, �2j3 , arising from a subdivision
into sets of sizes 2 and 3 respectively, with target Sym.10/.

For nD 3, there is a unique induced representation, arising from a subdivision into two
sets of size 2. The target of the induced representation is Sym.3/. This is the only case
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where N < nC 1. Moreover, it is easy to see the relationship between the canonical
and the induced representations:

Proposition 15 Let K be the Klein 4–subgroup of Sym.4/ and pW Sym.4/!Sym.3/
be the epimorphism with kernel K . Then �2j2 D p ı � .

Proof Identifying the partition ffa; bg; fc; dgg with the permutation .ab/.cd/, the
action of Sym.4/ on the partitions is identified with its action on K by conjugation.
The kernel of this action is K .

3 Normal hypersurface theory

We define normal hypersurface theory in arbitrary dimensions, and show that evenness
is a necessary and sufficient condition for immersion of certain hypersurfaces, and
the symmetric representations give such conditions for embedding. This also gives
further results linking the topology of the manifold with the combinatorics of an even
triangulation.

3.1 Algebraic notions

Continuing in the notation from Section 2.2, but not assuming that our triangulation is
even, we now define a generalisation of normal surface theory to arbitrary dimensions.

Let � D f1; 2; : : : ; nC 1g be an n–simplex. A .k; n� k C 1/–normal disc type or
normal disc type in � is a partition into two subsets

ffa1; a2; : : : ; akg; fakC1; : : : ; anC1gg;

where we assume that 1 � k � .nC 1/=2. Geometrically, a .k; n� k C 1/–normal
disc is viewed as a properly embedded linear cell in the standard n–simplex separating
the vertices into two sets as indicated by the partition (see below). For instance, .1; 2/–
normal discs are usually termed normal arcs, .1; 3/–normal discs are normal triangles
and .2; 2/–normal discs are normal quadrilaterals. The normal discs defined here
correspond to normal isotopy classes of the usual geometric objects.

Introduce one real variable x� for each normal disc type � in z�. Notice that a normal
disc in � meets any subsimplex of � in a normal disc or the empty set. Associated
with each normal disc type � of each facet � of z�, there is one matching equation
E� defined as follows

(E�)
X

�W�\�D�

x� D
X

�W�\'� .�/D'� .�/

x� ;
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where in both sums � ranges over all normal disc types in z�. The matching equations
for � and '� .�/ are identical.

Given any .k; n� kC 1/–normal disc type � , there is a solution x to the matching
equations with entries in f0; 1g. This solution can be generated using perspectivities
as follows. For any facet � of � , the perspectivity p� takes the partition � to the
partition p� .�/ of �'� .�/ , and these two partitions satisfy the matching equation E�
for each normal disc type � of � . One now needs to propagate this process, inductively
applying perspectivities until all matching equations are satisfied (in particular, the
perspectivity p� may need to be applied multiple times during this process). All normal
disc types generated by this process are .k; n� kC 1/–normal disc types, and more
than one normal disc type supported by � may be obtained. However, the process
will terminate as there are only finitely many .k; n� kC 1/–normal disc types, and
the resulting collection of normal disc types satisfies all matching equations. This
process clearly generates the solution to the matching equations having smallest weight
amongst all solutions with x� D 1 and only involving .k; n�kC1/–normal disc types.
In particular, this argument yields the following lemma:

Lemma 16 (.k; n� k C 1/–solutions) Define x D .x�/ by x� D 1 if � is of type
.k; n� kC 1/, and x� D 0 otherwise. Then x is a solution to the matching equations.

The lemma gives a lower (albeit poor) bound on the dimension of the solution space of
the matching equations. This space is well understood for dimensions 3 (see [18; 29])
and 4 (see [5]), and a general treatment would be a rewarding task. The above set-up is
inspired by [6].

3.2 Geometric notions

Whilst the partition into two subsets is convenient to work with algebraically, we now
define normal discs, which geometrically realise the partitions. Suppose that each sim-
plex � in z� is isometric with a regular Euclidean simplex, and identify its set of vertices
with f1; 2; : : : ; nC1g. The normal disc type �Dffa1; a2; : : : ; akg; fakC1; : : : ; anC1gg

is represented by the convex hull � of the set of midpoints of all edges in � that have
one endpoint in fa1; a2; : : : ; akg and the other in fakC1; : : : ; anC1g. We claim that
this is topologically an .n� 1/–dimensional ball, namely the intersection of � with a
hyperplane disjoint from the two subsimplices given by the partition and meeting the
complementary edges in their mid-points. The following argument is due to Jonathan
Spreer. We may assume that � lies in the hyperplane x1C � � �CxnC1 D 1 in RnC1

and has its vertices on the coordinate axes (with xj corresponding to aj ). The above
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set of midpoints then lies in the intersection of the two hyperplanes defined respectively
by

x1C � � �Cxk D
1
2

and xkC1C � � �CxnC1 D
1
2
:

In fact, each of these equations can be viewed as the barycentric coordinates of a
simplex in the respective subsimplices spanned by the two sets of vertices, and the
normal disc is isomorphic to the convex polytope obtained by taking their product,
namely �k�1 � �n�k .

We call � the standard normal .n� 1/–disc in � representing � . More generally, a
normal .n�1/–disc of type � is a properly embedded PL .n�1/–cell that is normally
isotopic to � . Here, a normal isotopy (homotopy) is an isotopy (homotopy) of yM
which leaves all singlices invariant.

Lemma 17 (Branched immersed normal hypersurfaces) Each solution x D .x�/�
with non-negative integers to the system of all matching equations corresponds to a
branched immersion of an .n� 1/–dimensional pseudo-manifold into yM . We will call
this a branched immersed normal hypersurface of yM .

Proof Given the solution x , we will build a (non-unique) .n�1/–dimensional pseudo-
manifold H and a branched immersion f W H ! yM . The argument is a generalisation
of the one given in [7] for the case nD 3.

The solution x determines an abstract collection C of normal discs by taking x� copies
of the normal disc corresponding to the standard normal disc type � . If � meets
the facet � in �, then the standard normal disc � meets � in the standard normal
disc �. The face pairing '� gives an affine isomorphism between � and '� .�/.
Since x satisfies the equation E� , we can pair all boundary facets of normal discs
in C corresponding to � bijectively with the boundary faces of normal discs in C
corresponding to '� .�/. Doing this for all facets gives an .n� 1/–dimensional CW
complex H with empty boundary together with a natural map of H to yM mapping
each .n�1/–cell in H to the image of a normal disc in yM . This map is an immersion
on the complement of the .n� 2/–skeleton of H , and transverse to the 1–skeleton.
It hence is a branched immersion. Since each normal .n� 1/–ball can be subdivided
into .n� 1/–simplices (for instance, by coning to its barycentre), H is an .n� 1/–
dimensional pseudo-manifold.

We say that partitions � and ! of the vertices of � are compatible if we can write
�D fA;Bg and ! D fC;Dg with C �A and B �D . Since a normal homotopy fixes
all vertices of � , there are disjoint normal discs of types � and ! in � if and only if �
and ! are compatible.
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Lemma 18 (Embedded normal hypersurfaces) Suppose xD .x�/� is a solution with
non-negative integers to the system of all matching equations. Then x corresponds
to an embedding of an .n� 1/–dimensional pseudo-manifold into yM if and only if
for each n–simplex � in z� and all partitions � and ! of the vertices of � , we have
x� ¤ 0 and x! ¤ 0 only if � and ! are compatible.

Proof The forwards direction follows from the discussion before the lemma. For the
converse, notice that if for each n–simplex � we have x� ¤ 0 and x! ¤ 0 only if �
and ! are compatible, then we can place a pairwise disjoint collection of normal discs
in � , taking x� parallel copies of � for each � . The matching equations ensure that
(after a normal isotopy of each n–simplex) these can be glued along the facets using
the face pairings.

3.3 Conditions for immersion or embedding

For the .k; n� kC 1/–solutions described in Lemma 16, there is a unique branched
immersed normal hypersurface with this coordinate, as the weights are all zero or one.
We call these the .k; n� kC 1/–hypersurfaces in yM . The .1; n/–hypersurface is the
union of all vertex links, and can hence be represented by an embedding. The next
result shows that even triangulations give a necessary and sufficient condition to rule
out branching when k > 1.

Lemma 19 (.k; n� kC 1/–hypersurface is immersion) Suppose k > 1. Then the
.k; n� kC 1/–hypersurface with normal coordinate x is an immersion if and only if
the triangulation is even.

Proof Suppose �n�2 is an .n�2/–singlex in yM , and let � be an n–singlex incident
with �n�2 . Then there is a .k; n� kC 1/–normal disc type � in � with the property
that its restriction to �n�2 is a .k � 1; n� k/–normal disc type. The .k; n� kC 1/–
hypersurface is not branched along the intersection of �n�2 with � if and only if � is
identified to itself upon a single circuit around �n�2 . But since the two vertices of �
not in �n�2 are contained in different sets of the partition, and identifications along
facets are realised by perspectivities, this is the case if and only if the degree of �n�2

is even. Whence the branch locus of the hypersurface is empty if and only if the degree
of each .n� 2/–face is even.

Now that evenness is a necessary and sufficient condition for immersion, we can
link the induced representations to embeddings. The induced representation � D

�kjn�kC1W �1.M / ! Sym.N /, where N is as in Section 2.5, clearly leaves the
.k; n� kC 1/–hypersurface invariant, and the next result determines its relationship
with the hypersurface.
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Proposition 20 (Trivial induced representation implies embedding) Suppose yM
has an even triangulation and k > 1. Then �kjn�kC1 leaves each component of the
.k; n� k C 1/–hypersurface Q invariant. Moreover, im.�kjn�kC1/ is trivial if and
only if Q has N components. Each of these components is an embedded normal
hypersurface in yM .

Proof If Q0 is a component of Q and meets some n–singlex, � , in i normal discs,
i 2 f0; 1; : : : ;N g, then the same is true for each n–singlex meeting � in a face since
each .k; n� k C 1/–normal disc meets each facet of each n–singlex. Since M is
connected, the same is true for every n–singlex in the triangulation (and in particular
i ¤ 0 if Q0 ¤∅). It follows immediately that Q has N components if and only if
each component Q0 of Q meets each n–singlex in one normal disc. This clearly also
implies if Q has N components that each such component is embedded.

It was observed that perspectivities encode the information about identifications of
normal discs along their boundary faces. It follows that two .k; n� k C 1/–normal
disc types in �0 are in the same component of Q if and only if there is a projectivity
taking one to the other. The action of projectivities on the .k; n� kC 1/–normal disc
types in �0 is precisely the action of �kjn�kC1 .

The following result has been sharpened based on comments by an anonymous referee.

Corollary 21 Suppose M is a closed n–manifold, which has an even triangulation
with one vertex and im.�kjn�kC1/ is trivial for some k > 1. If n� k is even, then
H1.M IZ2/ has rank at least n; and if n�k is odd, then H1.M IZ2/ has rank at least
n� 1. In particular, �1.M / is non-cyclic.

Proof The edges in M are loops and generate �1.M /, where the vertex of the
triangulation is chosen as a base-point. Each component Qj of the embedded .k; n�
kC 1/–hypersurface defines an element of Hn�1.M IZ2/, and meets each edge loop
in either one or no point. We therefore obtain the element j̨ of H 1.M IZ2/, which
is Poincaré dual to Qj , by taking the intersection numbers of Qj with the edges.
Considering the edge loops incident with a single vertex v of a single n–simplex �
in z� gives the result as follows. There are n edges of � that are incident with v .
Choosing a .k � 1/–simplex in � incident with v amounts to choosing k � 1 edges
incident with v . The dual cohomology class sends these k � 1 edges to 0 and the
remaining n�kC1 edges to 1. We may identify the restriction of this homology class
with an element of Zn

2
, with the coordinate axes represented by the edges incident with

v . A lower bound on the dimension of H 1.M IZ2/ is then given by a lower bound on
the rank (over Z2 ) of the matrix V whose rows are all vectors having k � 1 entries
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equal to zero and n� k C 1 entries equal to one. Suppose
P
�jvj D 0 is a linear

combination of the columns of V giving the zero vector. By construction, the sum
of any n� kC 1 of the coefficients �j must equal 0. However, there are such sums
of coefficients that differ in only one summand, hence all coefficients must be equal.
Now if n� kC 1 is odd, this implies that all coefficients must be zero, and hence the
rank of V is n. If n� kC 1 is even, then setting �j D 1 for all j gives the unique
non-trivial linear combination

P
�jvj D 0, and hence the rank of V is n� 1.

Remark 22 More generally, a function in the number of embedded components of
the .k; n� kC 1/–hypersurface gives a lower bound on the rank of H1.M IZ2/; this
number is in turn the number of .k; n� kC 1/–disc types that is fixed by �kjn�kC1 .
In particular, if M has finite fundamental group of odd order, then no component of
the hypersurface is embedded.

Corollary 23 Suppose M is a closed n–manifold with an even triangulation with one
vertex. If the fundamental group of M is finite and of order a prime power, then the
prime is less than or equal to nC 1.

Proof This follows from the fixed point congruence for p–groups: if the prime is
bigger than nC 1, then �kjn�kC1 fixes at least one .k; n� kC 1/–normal disc type
since p does not divide the total number of .k; n�kC1/–normal disc types. Whence
H1.M IZ2/ has rank at least 1, and so p D 2< nC 1.

We end this section with some examples, which focus on the particularly interesting
case, where the partition is (as close as possible to) half-half.

Example 24 Suppose yM is a 3–dimensional pseudo-manifold. Then Q is obtained
by placing three quadrilateral discs in each tetrahedron, one of each type, such that the
result is a (possibly branched immersed) normal surface. The above implies that Q

consists of three embedded surfaces if and only if every edge has even degree and the
induced representation �2j2 has trivial image. In our applications to 3–manifolds in
Section 4, we will pass to a finite covering space corresponding to the kernel of �2j2 .
In this covering space, the hypersurface lifts to 3 connected components, and each
component is hence an embedded hypersurface in the cover.

Example 25 Consider the case of a 4–manifold. In the covering space, in which
�2j3 has trivial image, the components of Q are 3–manifolds. These 3–manifolds
are unions of 3–cells, which are products �2 � �1 , ie triangular prisms, and divide
the 4–manifold into two regions. One is a 4–dimensional handlebody, ie a connected
sum of copies of S1 �B3 . The other has a 2–dimensional spine. There are ten such
triangular prisms corresponding to the 2j3 partitions of 5 vertices.
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Example 26 Consider the case of 5–dimensional pseudo-manifolds. The hypersurface
Q consists of 4–cells which are products �2 � �2 . The boundary of such a 4–cell is
a copy of S3 tiled with six copies of a triangular prism �2 � I . These prisms form
two solid tori giving the standard Heegaard splitting of S3 . The 4–cells are glued
together along the triangular prisms to form the hypersurface Q. In the covering space,
where the symmetric representation has trivial image, each component Q0 of Q is an
embedded 4–manifold with an even cell decomposition. So there are an even number
of 4–cells around each square or triangular face.

Moreover, Q0 bounds one or two regions R;R0 with 2–dimensional spines, depending
on whether Q is one-sided or two-sided. So this is the 5–dimensional equivalent of a
one- or two-sided Heegaard splitting. Moreover the inclusion maps �1.Q0/! �1.R/

and �1.Q0/! �1.R
0/ are injections in both the one- and two-sided cases. (Here

we are deleting any simplices for which the link is not a sphere to obtain an open
manifold.) The reason is that if a loop in Q0 bounds a disc in R or R0 , then the disc
can be pushed off the spine by transversality and hence into Q0 . So if Q0 bounds two
regions and neither �1.Q0/! �1.R/ nor �1.Q0/! �1.R

0/ are onto, then �1.M /

is an amalgamated free product.

Example 27 The observations in Example 26 extend in an interesting way to all
odd-dimensional pseudo-manifolds. In particular if M is a .2k � 1/–dimensional
pseudo-manifold, then passing to the covering space corresponding to the kernel of
�kjk , each component Q0 of the hypersurface Q is embedded and one- or two-
sided, bounding one or two regions R;R0 with k –dimensional spines. Consequently
the inclusion map induces injections �j .Q0/! �j .R/ and �j .Q0/! �j .R

0/ for
1� j � k � 2.

4 Closed 3–manifolds with even triangulations

Suppose M is a closed 3–manifold. We already know that if there are at most three
vertices in an even triangulation of M , then the canonical symmetric representation into
Sym.4/ has non-trivial image. Considering the quotients of Sym.4/ and its non-trivial
subgroups, this implies H1.M;Z2/ ¤ 0 or H1.M;Z3/ ¤ 0. It turns out that the
interplay between the canonical and the induced symmetric representations gives more
information when there are just one or two vertices. This is done in Section 4.2–4.1.

After determining these properties of closed 3–manifolds having even triangulations,
we turn to the question of existence of such triangulations on given 3–manifolds. We
build explicit even triangulations of 3–manifolds with small numbers of vertices, which
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arise naturally as duals to 1– and 2–sided Heegaard splittings and also in covering
spaces. We then show that if a 3–manifold has an even triangulation, then it also
has one obtained from our constructions. We wish to emphasise that not all even
triangulations arise from our constructions—this would be too much to expect—but
that they represent the most common cases.

A brief discussion of similar applications to ideal triangulations can be found in
Remark 47.

4.1 Even triangulations with two vertices

An important construction of closed orientable 3–manifolds is in terms of Heegaard
splittings and one-sided Heegaard splittings. Recall that a Heegaard splitting is a
representation of the manifold by gluing two homeomorphic handlebodies together
along their boundary surfaces, by an orientation-reversing homeomorphism. A one-
sided Heegaard splitting (see [23]) is obtained by gluing a handlebody to itself by an
orientation-reversing involution without fixed points on the boundary of the handlebody.

Theorem 28 Suppose that M is a closed, orientable 3–manifold, which admits an
even triangulation T with exactly two vertices. Then there are three possibilities.

(1) H1.M;Z2/¤ 0.

(2) H1.M;Z2/D 0 and there is an epimorphism of �1.M / onto Alt.4/.

(3) Three faces in the triangulation form a spine for the lens space L.3; 1/; see
Figure 6(b). In particular, M has L.3; 1/ as a summand in its prime decomposi-
tion.

Proof We first use the symmetric representations � D �2j2W �1.M / ! Sym.3/
and �W �1.M / ! Sym.4/ described above to determine under which conditions
H1.M;Z2/¤ 0.

Up to isomorphism, there are four possible images of � namely f1g, C2 , C3 and
Sym.3/. Similarly, there are nine possible images of � , namely the same as for � and
K , C4 , D4 , Alt.4/ and Sym.4/, where K is the Klein 4–group, and D4 the dihedral
group of order 8. There is a homomorphism of �1.M / onto C2 in all cases except
when the image of � is f1g, C3 , or Alt.4/. So we conclude that either H1.M;Z2/¤ 0

or there is a mapping of �1.M / onto Alt.4/ except if the image of � is f1g or C3 . In
these two remaining cases the image of � is isomorphic with the image of � since we
exclude conclusions (1) and (2).

If � (and hence �) has trivial image, each component of the .2; 2/–hypersurface is an
embedded surface, meeting each tetrahedron in exactly one quadrilateral disc. Each
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of these quadrilateral surfaces is a Heegaard splitting which could be one-sided or
two-sided. If any one of these is one-sided, then H1.M;Z2/¤ 0 (by taking a loop
intersecting a one-sided surface in a single point). On the other hand, we claim that not
all three surfaces can be two-sided. By our assumption T has two vertices v , and v0 .
Notice that the collection of edges disjoint from one of the quadrilateral surfaces must
form two wedges of circles based at v and v0 respectively, if this quadrilateral surface
is two-sided. But if this is true for all three surfaces, we find that the one-skeleton of
T is disconnected, since there are no edges running from v to v0 . So we also have
H1.M;Z2/¤ 0 when the image of � is f1g.

It remains to consider the case, where H1.M;Z2/D 0 and the image of � (and hence
of �) is C3 , so the quadrilateral surface Q is connected.

Assume first that Q is one-sided. We claim that in this case, � maps �1.M / onto
Alt.4/, contrary to assumption. By assumption, � maps �1.M / onto C3 . In the
associated covering space zM of M , the quadrilateral surface zQ has three embedded
components, which are all one-sided and permuted by the covering transformation. Now
choose a base tetrahedron �0 in M and a lift Q�0 in zM . Label the corners of �0 and lift
the labelling to Q�0 . For each component of zQ, one can choose an orientation reversing
loop based at the barycentre of Q�0 and contained in the dual 1–skeleton of zT . Under
the symmetric representation of �1. zM /, this loop maps to a product of two disjoint
transpositions, corresponding to the involution of Q�0 stabilising the quadrilateral of
the chosen component of zQ in Q�0 and interchanging the quadrilaterals of the two
other components. Proposition 20 implies that the induced symmetric representation of
�1. zM / is trivial, and hence the image of the symmetric representation of �1. zM / is
the Klein four group by Proposition 15. But the action of loops in zM on corners of Q�0

descends to the same action of their images on the corners of �0 . Whence the image
of the symmetric representation � of M is generated by the Klein four group and a
3–cycle, and hence Alt.4/. This contradicts our hypothesis.

Hence Q must be orientable. Now T has two vertices, which we denote by v; v0 .
Suppose there is a tetrahedron � with two vertices identified with v and two with v0 .
Then there are opposite edges of � which are edge loops e based at v and e0 based at
v0 . We claim that in this case, either e or e0 has oriented intersection number ˙2 with
Q, depending on how the loops and surface are oriented. This is easy to see, since
if we orient the two quadrilaterals in � which both cross e; e0 then the signs of the
crossings must be the same on one of the two edges and opposite on the other. So
H1.M;Z/ has an element of infinite order generated by Q, and hence H1.M;Z2/¤0;
a contradiction.

The same argument applies if there is a tetrahedron � with all vertices identified with
v or all vertices identified with v0 .
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In the remaining case, all tetrahedra must have the same labelling with, say, one vertex
identified with v and three vertices identified with v0 . (There cannot also be tetrahedra
with three vertices identified with v and one with v0 , since then faces of the two
types of tetrahedra do not match and the manifold would be disconnected). Hence the
triangulation can be viewed as a double-cone on a one-vertex triangulated 2–complex
X , which consists of all the triangular faces with vertices identified to v0 . Moreover,
X is a spine for M .

Lift to the 3–fold covering space zM of M corresponding to the symmetric repre-
sentation � of �1.M / onto C3 . In zM , the lifted quadrilateral surface zQ has three
components, labelled 0; 1; 2. Now we can also label the edges of the lifted triangulation
zT by 0; 1; 2, where an edge is labelled i if it is disjoint from the component i of
zQ. The action of C3 cyclically permutes the components of zQ, and hence the labels

of the edges. Denote the covering transformations on zM by f1;g;g2g. Without
loss of generality, the covering action and edge labellings can be chosen so that
g.0/D 1;g.1/D 2;g.2/D 0, ie g acts as the 3–cycle .012/.

Each component of zQ is a surface homeomorphic to Q and hence is orientable. Since
X is a spine for M , �1.X / is isomorphic with �1.M / and so maps onto C3 . Hence
we can find a generator, which is an edge loop e in X , which maps to a non-trivial
element of C3 . Now e lifts to edges joining different vertices in zX , the lift of X to
zM . Choose a lift Qe of e . Without loss of generality, we may assume that Qe has label

0. The endpoints of Qe are distinct lifts of v0 . We can denote one of them Qv0 such that
the other is g Qv0 . Next, choose a face � in M containing e , lift it to a face Q� in zM .
Then the remaining vertex of Q� is a lift, denoted Qv , of v .

Now the triangulation of zM has the six vertices Qv , g Qv , g2 Qv , Qv0 , g Qv0 , and g2 Qv0 .
Consider a tetrahedron Q� in zM containing Q� . This tetrahedron has vertices at Qv , Qv0 ,
g Qv0 and last vertex Qu 2 fQv0;g Qv0;g2 Qv0g. We first show that QuD g2 Qv0 .

If Qu¤g2 Qv0 , then it follows from Proposition 8 that the image of the canonical symmetric
representation of zM is non-trivial. Since the induced symmetric representation of zM
is trivial, this implies that there is a loop Q
 in zM with image a product of disjoint
transpositions. Whence the image of the canonical symmetric representation of M

contains this permutation, contradicting the fact that its image is isomorphic with C3 .
This shows that QuD g2 Qv0 .

The pairs of opposite edges in Q� are labelled 0; 1; 2. We already know that QeD Œ Qv0;g Qv0�Q�
has label 0. Our strategy is to show that the graph �0 consisting of all edges labelled
0 is connected. This implies that the component of zQ dual to these edges is a 1–sided
Heegaard splitting surface, giving the desired contradiction. Denote C the connected

Algebraic & Geometric Topology, Volume 15 (2015)



2968 J Hyam Rubinstein and Stephan Tillmann

component of �0 containing Qe . It therefore suffices to show that �0 D C , and for this
equality, it suffices to show that all six vertices are in C .

We distinguish two cases, depending on the labels of the remaining edges of Q� .

(1) Suppose that the remaining edges of Q� have the following labels: Œ Qv; Qv0�Q� has label
2 and Œ Qv;g Qv0�Q� has label 1. Since g2.1/D 0, applying g2 to Œ Qv;g Qv0�Q� gives an edge
labelled 0 running from g2 Qv to Qv0 . Similarly, since g.2/D 0, applying g to Œ Qv; Qv0�Q�
gives an edge labelled 0 running from g Qv to g Qv0 . In particular, C of �0 contains
g Qv;g2 Qv; Qv0 and g Qv0 .

Since QuD g2 Qv0 , then due to the edge in Q� opposite Qe we know that g2 Qv0 and Qv are in
the same connected component of �0 , and it remains to show that one of these vertices
is in C . Now there is an edge of Q� with label 2 and endpoints g Qv0 and g2 Qv0 . Applying
g shows that g2 Qv0 is in C , and hence C contains all vertices.

(2) Suppose that the remaining edges of Q� have the following labels: Œ Qv; Qv0�Q� has label
1 and Œ Qv;g Qv0�Q� has label 2. Applying g to Œ Qv;g Qv0�Q� gives an edge labelled 0 running
from g Qv to g2 Qv0 . Similarly, applying g2 to Œ Qv; Qv0�Q� gives an edge labelled 0 running
from g2 Qv to g2 Qv0 . In particular, there is a connected component C 0 of �0 containing
the three vertices g Qv;g2 Qv and g2 Qv0 . We already know that C contains Qv0 and g Qv0 .
It therefore suffices to show that Qv is in C and C D C 0 . We again consider cases
depending on the remaining vertex of Q� .

Since Qu D g2 Qv0 and case (1) above leads to a contradiction, we know that either
C D �0 or every tetrahedron in zM must have four vertices labelled gk Qv; Qv0;g Qv0;g2 Qv0 ,
for k D 0; 1; 2. The method used so far merely leads to the conclusion that �0 has
at most two components; one with set of vertices f Qv0;g Qv0g, and the other with set
of vertices f Qv;g Qv;g2 Qv;g2 Qv0g. Denote Y the union of all tetrahedra in zM that are
incident with Qv . Then gkY is the union of all tetrahedra in zM that are incident with
gk Qv for k D 0; 1; 2. Since zM is connected, there is at least one edge, Qf , in the
intersection Y \gY \g2Y . Whence the orbit of Qf is also contained in the intersection.
Notice that the union Qf [g Qf [g2 Qf is an embedded circle in zM passing through the
vertices Qv0;g Qv0;g2 Qv0 .

Now Y can be viewed as a cone on a 2–complex (possibly with some boundary faces
identified). The cone structure of Y implies that there is a disc in the 2–skeleton of T
which is a cone on Qf [g Qf [g2 Qf with cone point Qv . This disc is clearly embedded
in zM and the covering map maps the interior of the disc injectively to M . Whence
the closed disc is mapped to a spine for L.3; 1/ in M . This is the third conclusion of
the theorem.

This concludes the proof of the theorem.
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Example 29 (Binary tetrahedral space) A nice example of a triangulation satisfying
the second possibility in the theorem is the binary tetrahedral space S3=T , where T

is the binary tetrahedral group of order 24. A fundamental domain for the action of T

on S3 is a regular spherical octahedron with all dihedral angles 2�=3. Opposite faces
are identified using a 2�=3 twist. If we cone the faces of the octahedron to a vertex in
its centre, we obtain a triangulation of the octahedron which glues up to a two vertex
triangulation of S3=T where all edges are of even order. There are 8 tetrahedra and
hence 24 quadrilaterals in the quadrilateral surface. Each surface has two vertices of
degree 4 and two of degree 6. Hence each contributes �1

6
to the Euler characteristic

which is therefore �4. The symmetric representation to C3 gives a 3–fold covering
space with fundamental group Q8 , the unit quaternions. (See [24] for properties of
this covering space.) The quadrilateral surface lifts to three Heegaard splittings which
are either one- or two-sided. The argument in Theorem 28 shows that these splittings
must be one-sided. It is not difficult to check that the three lifted quadrilateral surfaces
each compress to a (different) Klein bottle one-sided splitting for S3=Q8 .

Example 30 (Lens spaces and connected sums) We will describe infinitely many
even triangulations with two vertices of the lens space L.3; 1/ and connected sums of
this lens space with other 3–manifolds. These correspond to the third possibility of the
theorem. We begin with the simple two tetrahedron triangulation T of L.3; 1/ shown
in Figure 6 (a). To build T glue together two tetrahedra along three faces of each,
giving a cone on a 2–sphere which is the double of a triangle. Denote the interior vertex
of the 3–ball by v . Now fold the 2–sphere onto the spine of a lens space, ie the result
of identifying all the edges of a triangle together with the same orientation induced
from an orientation of the triangle. It is easy to see that the resulting triangulation of
L.3; 1/ has four edges of degrees 2; 2; 2; 6 and two vertices. (This also comes from
the classical description of lens spaces formed by a double cone where the top set of
faces is identified with the bottom set by rotations followed by reflections in the equator
of the double cone.)

We can build on this example in several ways. Let v0 denote the second vertex. Firstly,
notice that any two distinct edges from v to v0 form an embedded loop isotopic to a
core circle of the lens space, ie to the edge loop based at v0 . So any cyclic branched
cover of degree n over this loop will produce an even triangulation with two vertices
of L.3; 1/ with 2n tetrahedra.

Secondly, suppose we “split open” the triangulation T along a triangular face bounded
by two edges from v to v0 and the edge loop at v0 . This gives a triangulation of L.3; 1/

which has had an open 3–ball removed but has also been pinched so that two vertices
of the boundary 2–sphere are glued together. We can now glue on any 3–vertex even
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(a) Triangulation (b) Spine

Figure 6: The 2–vertex 2–tetrahedron even triangulation of L.3; 1/ and the
three-face spine.

triangulation of a closed 3–manifold M , which has similarly been split open along a
triangular face containing all three vertices. The result is a 2–vertex even triangulation
of a connected sum of L.3; 1/ with M .

4.2 Even triangulations with one vertex

Theorem 31 Suppose that M is a closed, orientable 3–manifold, which admits an
even triangulation T with exactly one vertex. Then there is an epimorphism of �1.M /

onto C2 �C2 , C4 , Alt.4/ or Sym.4/.

Proof As for Theorem 28, we start with the symmetric representations � and � . The
image of � is one of Sym.3/, C3 , C2 , f1g. Notice that if the quadrilateral surface Q

has three components, as occurs if the image of � is the trivial subgroup, then each of
these is a one-sided Heegaard splitting. The reason is that the spine of the complement
of each component must be connected, since there is only one vertex. So in this case,
we claim that H1.M;Z2/ has rank at least 2. To verify the claim, note the labelling
scheme for the quadrilaterals applied to the edges gives edge loops with distinct labels
dual to the three components of Q. So the classes of the edge loops give three different
elements of first homology with Z2 coefficients.

If the induced symmetric representation � has image C2 , then � has image C2 ,
C2�C2 , C4 or D4 . The conclusion of the theorem holds unless the image of � is C2 .
Since � also has image C2 , the image of � is generated by a 2–cycle and there are
two components of Q and one of these is embedded. As in the previous paragraph,
this surface must be a one-sided Heegaard splitting H for M . The double cover
zM associated to � is the same as the double cover corresponding to H . Since H

lifts to a 2–sided Heegaard surface in zM and meets each tetrahedron in exactly one
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quadrilateral, all tetrahedra in the cover have two corners at one of the vertices, Qv of
the cover, and two corners at the other vertex, g Qv , where g is a deck transformation,
and the pairs are separated by zH . The quadrilateral surface zQ in the cover has three
embedded components, and the other two components are 1–sided Heegaard surfaces
since their complementary spine contains both Qv and g Qv and hence is connected. These
components are permuted by the covering transformation. An orientation reversing
loop on either of them is mapped to a product of transpositions under the symmetric
representation of the cover, and hence we get the same product of transpositions by
applying � to the image of this loop in �1.M /. But this involution together with the
2–cycle shows that the image of � contains a group isomorphic with C2 �C2 or D4I

a contradiction.

Finally if the induced symmetric representation � has image Sym.3/ or C3 , then
consider the associated covering space zM of M . The quadrilateral surface separates
into three components in zM . If these are one-sided, then H1. zM ;Z2/ has an associated
subgroup of rank 2 and we get an associated representation � of �1.M / onto Sym.4/ or
Alt.4/ respectively, as in the proof of Theorem 28. Hence assume that the components
are orientable. We proceed as in the argument for Theorem 28 to analyse cases, noting
that the lifted triangulation zT has either six or three vertices respectively.

First suppose � has image C3 , so zT has three vertices. We denote these vertices
by Ov;g Ov;g2 Ov where f1;g;g2g denotes the covering transformations. Assume that a
component of the quadrilateral surface is a two-sided Heegaard splitting † for zM .
Then without loss of generality we can assume that Ov;g Ov are the vertices belonging to
one of the spines for † and g2 Ov is the vertex belonging to the other one. Also suppose
that the labelling of the edges in these spines is 0 and that the covering transformation
acts as .012/ on the labels. Suppose there is a tetrahedron Q�0 having a corner at Qv
and a corner at g2 Qv . Then there must be another corner at g2 Qv , and hence Qv and g2 Qv

are connected by both an edge labelled 1 and an edge labelled 2 in Q�0 . But applying
g2 to the former gives an edge labelled 0 connecting g2 Qv and g Qv , contradicting the
fact that they lie in disjoint spines. Hence, since the manifold is connected, there is
a tetrahedron Q�1 having a corner at g Qv and a corner at g2 Qv . Again, there is another
corner at g2 Qv , and we get edges labelled 1 and 2 respectively joining g Qv to g2 Qv . Now
applying g to the latter gives a contradiction.

In the last case, where the image of the induced symmetric representation � is Sym.3/,
we can apply Theorem 28. Namely first pass to the double covering zM corresponding
to the representation �1.M /! Sym.3/!C2 . Then the triangulation of M lifts to an
even triangulation of zM with two vertices and a symmetric representation with image
C3 . So we can apply Theorem 28 to conclude that in this case, either H1. zM ;Z2/¤ 0

or there is a representation of �1. zM / onto Alt.4/ or there is a connect summand
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which is a copy of L.3; 1/. In the first two cases it is straightforward, as in the above
argument for C2 , to deduce from the way that the representation arises that there is an
epimorphism of �1.M / onto one of C2 �C2 , C4 , Alt.4/, or Sym.4/.

If there is a connected summand which is a copy of L.3; 1/, then the argument in case
(2c) in the proof of Theorem 28 shows that all tetrahedra in the 2–vertex triangulation
of zM have one corner at the vertex Qv and three corners at the vertex Qv0 . But the
covering transformation interchanges the two vertices, and hence would take such a
tetrahedron to one with one corner at the vertex Qv0 and three corners at the vertex Qv .
So this case cannot occur.

Example 32 (Klein bottle lens spaces and prism manifolds) Consider the lens space
L.4; 1/ with the 1–vertex triangulation T dual to the one-sided Heegaard splitting given
by a Klein bottle K . This means a solid torus Y is attached to K to form the lens space
(see [24]). To describe the triangulation, if we write �1.K/D fa; b W b

�1ab D a�1g

then the meridian disc for the solid torus Y has slope b2a. The union of K and the disc
form a spine and the triangulation is dual to this spine. The disc has even intersection
number with itself (it has a single self-intersection which is counted twice) and so the
triangulation T has a single tetrahedron, one vertex and all edges of even order. In
fact, this is the triangulation described in Example 2. In this case, �1.L.4; 1//D C4

so this illustrates the second case of Theorem 31. All the Klein bottle lens spaces
L.4k; 2k � 1/ and prism manifolds, ie the manifolds with Klein bottles and dihedral
or binary dihedral by cyclic finite fundamental groups have similar 1–vertex even
triangulations for the same reasons. For the dihedral case, there is a homomorphism of
the fundamental group to C4 and for the binary dihedral case to C2�C2 . See [24] for
more information about these manifolds and their one-sided splittings.

Example 33 In [25] a number of examples of 3–manifolds with one-sided Heegaard
splittings of cross-cap genus 3 are given. In particular, the class of Seifert fibered
spaces

fbI .o;0/I .2; 1/; .4k; 2k � 1/; .m; n/g

for 1 � k and 0 < n < m or .m; n/ D .1; 0/ are discussed and explicit one-sided
Heegaard diagrams drawn. (Here we are using the notation of [22]). Some of these
examples have finite fundamental group (cyclic or binary octahedral by cyclic), but most
have infinite fundamental group. Since the Heegaard diagrams have only two discs,
a necessary and sufficient condition for all edges to be even in the dual triangulation
is that the two discs have even intersection number. From the representation of the
homology classes of these discs in [25] one can compute that this occurs if and only if
mk is even. In this case, �1.M / maps onto C2 �C2 or C4 depending on whether m

or k is even respectively.
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Problem 34 If M has an even 1–vertex triangulation, is H1.M;Z2/ necessarily
non-trivial? We know this fails for 2–vertex triangulations, from Examples 29 and 30,
and the minimal 1–vertex triangulations of both the binary tetrahedral space and the
lens space L.3; 1/ have some edges of odd degree.

4.3 Existence of even triangulations with two vertices

A 3–manifold is irreducible, if every embedded 2–sphere bounds a 3–ball. A Heegaard
splitting is called irreducible if whenever a 2–sphere meets the Heegaard surface in a
single loop, then the loop bounds a disc in the Heegaard surface.

Theorem 35 Suppose M is a closed irreducible 3–manifold with a diagram for an
irreducible Heegaard splitting, satisfying the condition that every disc in the diagram
has even total intersection number with the other discs in the diagram. Then M admits
an even triangulation dual to the Heegaard diagram, which has exactly two vertices.
Moreover if M ¤RP3 , then the dual triangulation can be chosen to have no edges of
degree 2.

Proof Start with an irreducible Heegaard splitting † of a closed irreducible 3–
manifold M . We will assume for simplicity that M is orientable; the non-orientable
case is easier since then the homological condition we require, is satisfied automat-
ically. Let the two handlebodies for this splitting be denoted Y;Y 0 . Assume that
H1.M;Z2/¤ 0. We want to pick a Heegaard diagram D for this splitting with the
following property.

Let the diagram D consist of a complete system of meridian discs for Y (respectively
Y 0 ), given by D1;D2; : : :Dk (respectively D0

1
;D0

2
; : : :D0

k
), where k is the genus of

†, so that the total number of intersections of the boundary of any disc in D with all
the boundaries of the other system of discs is even.

We claim that the dual triangulation T to this Heegaard diagram (ie to the spine †[D )
has the property that all its edges are of even order and there are precisely two vertices.

Since the result of cutting open handlebody Y along the meridian discs D0
1
;D0

2
; : : :D0

k

is a ball, we get one vertex v dual to this ball and similarly a second vertex v0 dual to
the ball similarly obtained by cutting open the handlebody Y 0 along its meridian discs.
So there are exactly two vertices in T .

Secondly, there are three types of edges in T : dual to discs Di , dual to discs D0j and
dual to faces of the diagram D on †. The first two types of edges are of even order,
since their order is the same as the number of intersection points of the boundaries of
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the discs Di , and D0j with the other discs of D . By assumption, these numbers are all
even. Finally faces of the Heegaard diagram on † must be of even order, since arcs of
the faces alternate between meridian discs in the two systems. By choosing the discs
to have minimal intersection, we can assume that there are no faces of † of degree
two and all faces are discs, by the assumption that the splitting is irreducible and the
manifold is irreducible. Finally, if M ¤RP3 , then no edge of the first two types can be
of degree two either. The reason is that a degree two edge would correspond to a disc,
say Di , with boundary meeting all the discs D0j in a total of two points. Now if there
are two such discs, each met once, then there would be a trivial handle of the splitting,
contradicting our assumption that it is irreducible. If there are two intersections with a
single disc D0j , then it is easy to see that there is an embedded copy of RP2 obtained
by attaching a Möbius band in Y 0 to Di . But then since M is irreducible, we see that
it must be RP3 .

Remark 36 Notice that if we take the usual Heegaard diagram for RP3 using a
Heegaard torus, then the dual triangulation does have two vertices and all edges of
even order, but also there are edges of degree two.

Remark 37 If we take any irreducible Heegaard splitting for any irreducible closed
orientable 3–manifold and take two parallel copies of a complete system of meridian
discs for each handlebody, we get a triangulation with all edges having even order and
2kC 2 vertices, where k is the genus of the Heegaard splitting. This again shows that
to have an interesting theory, we need to restrict to small numbers of vertices. The case
of 1–vertex triangulations is particularly interesting, since minimal triangulations are
of this type (see [14]).

Remark 38 Another construction is given by a strongly irreducible Heegaard splitting
for a closed orientable 3–manifold. Recall that for such a splitting, every meridian disc
for one handlebody meets every meridian disc for the other handlebody. In this case,
pick two systems of meridian discs for the two handlebodies which each separate the
handlebodies into two 3–balls. Then the dual triangulation has four vertices. Moreover
every edge is of even order. For edges dual to faces on the Heegaard splitting, the
reason is as above. For edges dual to meridian discs, since the splitting is strongly
irreducible, each disc for one handlebody meets all the discs for the other handlebody.
Hence the boundary of such a disc is divided into an even number of arcs lying in the
two 3–balls. Hence the dual edges have even degree as claimed. This shows that even
triangulations possessing four vertices are very common.
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Theorem 39 Suppose that M is a closed, irreducible, orientable 3–manifold. If
H1.M;Z2/ is non-trivial, then M admits an even triangulation T with exactly two
vertices. Moreover this triangulation can be chosen as the dual to a Heegaard diagram. If
M ¤RP3 then the triangulation can also be chosen to not have any edges of degree 2.

Proof As in the proof of Theorem 35, we begin with an irreducible Heegaard splitting
† for M and a Heegaard diagram. The idea is to modify the Heegaard diagram by
disc band sums until we achieve the condition that each disc meets all the other discs
in an even total intersection.

Note firstly that band sums of the discs on either side of † correspond to row or column
operations on the square matrix of geometric intersection numbers of the discs. We can
use elementary algebra to reduce the matrix to a diagonal form, where each diagonal
element is a divisor of the next one down the main diagonal. For instance, the first
diagonal element is obtained by using Euclid’s algorithm for the greatest common
divisor of all the matrix entries, then the next diagonal element is the greatest common
divisor of the submatrix obtained by deleting the first row and column, and then one
keeps iterating this procedure.

Since H1.M;Z2/¤ 0 we see that the product of the diagonal entries must be even.
Hence the last diagonal entry is even. If we add all the rows (except the last one) to
the last row, it is easy to see the result is a matrix where all the column sums are even.
Then we can add all the columns (except the last column) to the last column and get in
addition that all the row sums are even. This completes the main result.

Exactly as in the previous section, if M ¤RP3 , then since the splitting is irreducible
we can arrange that no edge has degree 2.

Problem 40 Suppose M is a closed, irreducible, orientable 3–manifold and there is
a representation of �1.M / onto Alt.4/. Is there always a 2–vertex triangulation T
of M such that all the edges have even order and all the tetrahedra contain a single
copy of v and three copies of v0 , where v; v0 are the two vertices of T ? It was noted in
Example 29 that S3=T , where T is the binary tetrahedral group, satisfies the property
that T maps onto Alt.4/ and has such a triangulation. There is a family of generalised
binary tetrahedral groups of order 8 � 3k for k D 1; 2; 3 : : : which are fundamental
groups of elliptic 3–manifolds and all have representations onto Alt.4/. (See [22] for
more details.) Do these 3–manifolds also have even 2–vertex triangulations of this
type?
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4.4 Existence of even triangulations with one vertex

Theorem 41 Suppose M is a closed, irreducible, orientable 3–manifold with an
irreducible 1–sided Heegaard diagram such that every disc in the diagram has even
total intersection number with the other discs in the diagram. Then M admits an even
triangulation dual to the Heegaard diagram, which has exactly one vertex. Moreover if
M ¤L.4; 1/, then the dual triangulation can be chosen to have no edges of degree 2.

Proof This construction is very similar to the previous one of Theorem 35, so we just
give a summary. We start with a 1–sided Heegaard diagram D for a closed orientable
irreducible 3–manifold M . (See [23]). So there is an embedded 1–sided surface K

in M such that the closure of the complement M nK is a handlebody Y . Therefore
@Y is the orientable double covering zK of K . As before, the Heegaard diagram is
a complete set of meridian discs D1;D2; : : :Dk for Y , where k is the genus of @Y .
The triangulation T we are interested in is the dual to the Heegaard diagram, ie the
spine K[D . Note that now the complement of this spine is a single ball and so T is
a 1–vertex triangulation.

Next, the edges of T are either dual to meridian discs Di or to faces of the Heegaard
diagram on K . For the latter it is again easy to see that these are of even order. For if
we lift to the canonical double covering zM of M so that Y lifts to two handlebodies
and K lifts to its orientable double covering zK , we see that the faces in K lift to
faces in zK . The latter are of even order as before. Again we need to assume that we
have picked an irreducible 1–sided Heegaard splitting to ensure that all these faces are
discs. Moreover none of the faces will have order two if the discs are arranged to have
minimal intersection and self-intersection number.

Finally we see that if each disc Di has even total intersection with all the other discs
Dj for j ¤ i , then the dual edge to Di will have even order. The only thing we need to
take care of is self-intersections of @Di . But these are counted twice when computing
the degree of the edge dual to Di so we can ignore them. Finally no edge dual to a
disc can have degree two if the Heegaard splitting is irreducible. For if two discs meet
once, then there is a cancelling pair (see [3]). On the other hand, if two discs meet
twice, then again we are in the situation of having an embedded RP2 in the double
covering zM . Hence M DL.4; 1/.

Remark 42 The manifold RP3 is again a special case. Its unique irreducible 1–sided
Heegaard diagram has genus zero and so is not dual to a triangulation at all. See [3].
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Theorem 43 Suppose that M is a closed, irreducible, orientable 3–manifold such
that �1.M / maps onto either C2 �C2 or C4 . Then M admits an even triangulation
with exactly one vertex. Moreover this triangulation is dual to a 1–sided Heegaard
diagram.

Proof The idea is very similar to Theorem 39. Namely, since H1.M;Z2/¤ 0 we can
build a 1–sided Heegaard splitting K for M . The approach is then to do disc band
sums on the meridian discs for a disc diagram D to achieve that all discs have even
total intersection number with the other discs of the system. The main difficulty is that
we will have to work in the double covering zM and do disc moves equivariantly. It
turns out that these are just the same as doing simultaneous row and column operations
on a symmetric matrix.

So as before, denote the covering involution by g and assume that the handlebodies
for the 2–sided Heegaard splitting zK are denoted zY ;g. zY /. Note that D and T lift
to zD and zT . The former consists of two families of discs zD1; zD2; : : : zDk for zY and
g. zD1/;g. zD2/; : : :g. zDk/ for g. zY /. Clearly the geometric intersection matrix for this
disc system is symmetric, with the action of g interchanging rows and columns.

Now by our topological assumptions, we know that H1. zM ;Z2/¤ 0. Hence we know
that the intersection matrix has zero determinant working in Z2 . Our aim is to do row
and column operations simultaneously to convert the matrix to have all row sums (and
therefore also column sums) even. Then the dual triangulation will be g–equivariant,
with two vertices and all edges of even degree. The triangulation will project to a
triangulation of M with the required properties.

Consider the first column of the intersection matrix. If there is a one in this column,
we can permute rows to shift this to just below the main diagonal. (Recall that the
main diagonal entries are all zero, since the corresponding intersection numbers are
even). We can now zero out all the entries below so that there is a single one in the first
column, using row operations and the corresponding column operations. Otherwise all
the entries in this column are zero. By induction it follows that we can arrange that
all the entries which are not adjacent to the main diagonal, are zero, by following the
same procedure. Since row and column operations do not affect the determinant, it is
still zero in Z2 .

Note that each column and each row of our matrix has at most two 1 entries and all
other entries zero. Moreover if the matrix is non-zero, there are at least two columns
with a single 1 entry. If the matrix can be decomposed into diagonal blocks, we can
clearly work with the blocks individually. Note that at least one such block must have
determinant zero while the other blocks could have determinant 1. So in the case of
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blocks we have to explain how to deal with the blocks with non-zero determinant. To
start with, we assume there is a single block. In particular, this means we can assume
there are no columns with all zero entries.

We divide the argument into cases. For the first case, assume we have a k � k block
with k � 3 and the first and last column have a single 1 and all other columns have
two 1 entries. Perform the following column and row operation on the block. Add
copies of columns j for 2� j � k � 1 to column 1 and similarly for rows. It is easy
to verify that this produces a matrix where each row and column sum is even; in fact
there are precisely two 1 entries in each row and column.

Next, if we have a block matrix, possibly with some zero blocks, so long as the non-zero
blocks are of the form in the previous paragraph, clearly the same argument works.
So we are left with the case of some 2 � 2 blocks. Since the matrix has non-zero
determinant, there must be either some zero blocks or some k � k blocks with k � 3.
If there is a zero block, then a simple process converts a 2�2 block into a 3�3 block.
Namely add a column and row of the 2� 2 block to an adjacent zero block.

So the problem is reduced to a final case, where there is a combination of k �k blocks
and 2�2 blocks with no zero blocks. Consider the case of an adjacent 2�2 block and
a k�k block. Add a copy of each of the two columns of the 2�2 block to each of the
first and last columns of the k � k block and do similar row sums. It is easy to verify
that this converts all the four columns with a single 1 entry to have two 1 entries and
likewise for the rows. Hence this completes the proof in all cases.

As mentioned in the introduction, a key result due to Lubotzky [21] is that any complete
hyperbolic 3–manifold of finite volume has a finite sheeted covering so that the rank
of Z2 –homology is arbitrarily large. Theorem 43 therefore implies:

Corollary 44 Any closed hyperbolic 3–manifold of finite volume has a finite sheeted
covering with a 1–vertex even triangulation.

Example 45 The Seifert fibered space M D S2..2; 1/ .2; 1/ .2; 1// in the “Closed
orientable census” of Regina [4] has a unique minimal triangulation with four tetrahedra
and the degree sequence of the edges is 4; 5; 5; 5; 5. Now H1.M /D Z2˚Z6 , and
hence �1.M / maps onto C2 �C2 . Whence M has an even triangulation. An even
triangulation with six tetrahedra was found by applying Pachner moves to the minimal
triangulation; the degree sequence of the edges is 4; 4; 4; 4; 4; 4; 12. The edge of degree
12 meets each tetrahedron in a pair of opposite edges. The quadrilateral surface has two
components: an embedded Klein bottle and an immersed surface of Euler characteristic
�4. The Klein bottle meets each tetrahedron in the quadrilateral disc disjoint from the
degree 12 edge and is a 1–sided Heegaard splitting surface for M .
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Problem 46 Suppose M is a closed, orientable, irreducible 3–manifold and there is
a representation of �1.M / onto Alt.4/ or Sym.4/. Is there an even triangulation of
M with exactly one vertex? The binary tetrahedral and binary octahedral spaces are
interesting examples to resolve.

Remark 47 (Ideal triangulations) Many of the arguments used in this section work
when some or all of the vertex links have non-positive Euler characteristic, and hence
can be applied to general 3–dimensional pseudo-manifolds yM . However, more cases
arise as the number of ideal vertices in the cover may be smaller than the covering degree
times the number of ideal vertices in yM . Moreover, there are analogous constructions
of even ideal triangulations using 1–sided or 2–sided splittings into compression
bodies.

5 Very short hierarchies

Haken n–manifolds are defined in [10]. In particular, a closed orientable Haken n–
manifold can be cut open along a collection of embedded closed and compact orientable
hypersurfaces called a hierarchy to a collection of n–cells, termed Haken cells. These
cells have a boundary pattern given by a decomposition of the boundary of each cell
into polyhedra. The polyhedra are the intersections of the hypersurfaces of the hierarchy
with the boundary of the Haken cell.

We are especially interested in when the hierarchy is as “short as possible”. In dimension
three, such hierarchies are called very short. It is clear that we need to cut along at
least n collections of hypersurfaces, so when this number is sufficient, the hierarchy
is deemed very short. It is well-known that Haken 3–manifolds all have very short
hierarchies but in higher dimensions this is an open question.

We have the following interesting connection between very short hierarchies and even
triangulations.

A Haken n–cell coming from a very short hierarchy is an n–dimensional polytope
with the property that the codimension one faces can be n–coloured, so that no two
faces sharing a codimension two face have the same colour. In particular, we see that
at every vertex of the polytope, the faces take all possible n colours.

Now consider the dual triangulation to the cell structure of the boundary of an n–
dimensional polytope with such a colouring scheme. This is a triangulation of Sn�1

and the vertices are dual to the faces and hence are n–coloured so that no two vertices
at the ends of an edge have the same colouring. But this is precisely what we get
from our labelling scheme in Section 2. In particular, the triangulation must be even.
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Since the fundamental group of Sn�1 is trivial for n� 3, it follows that the canonical
symmetric representation has trivial image.

Conversely, suppose we start with any even triangulation of Sn�1 . The canonical
symmetric representation must have trivial image since the fundamental group is trivial.
Hence there is a labelling of the vertices of the type we want, so that any two vertices
at the ends of an edge have different labels. So if we consider the dual cell structure,
this can be viewed as the boundary of an n–polytope where the faces are n–coloured.
So this shows that Haken n–cells coming from very short hierarchies have boundaries
which are dual to even triangulations.

Finally, the Haken condition says that each pair of faces of the polytope meet in a
single .n� 2/–face and if three faces intersect in pairs in .n� 2/–faces then they meet
together in an .n� 3/–face. Translating this into a condition on the dual triangulation
means that no two edges share two vertices and if three edges have vertices in common,
then they are the boundary of a triangle.

So we can form a Haken n–manifold with a very short hierarchy by choosing a
collection of even triangulations of Sn�1 with the properties that no two edges share
two vertices and if three edges have vertices in common, then they are the boundary
of a triangle. We can then n–colour the dual cell decompositions and can glue these
together in a colour-preserving manner.

Example 48 For a simple example, consider gluing up a 3–cube to form a 3–torus.
The corresponding even triangulation of S2 is clearly an octahedron and the corre-
sponding colouring gives opposite vertices the same colour. The gluing then identifies
opposite vertices.
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