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The LS category of the product of lens spaces

ALEXANDER N DRANISHNIKOV

We reduce Rudyak’s conjecture that a degree-one map between closed manifolds
cannot raise the Lusternik–Schnirelmann category to the computation of the category
of the product of two lens spaces Ln

p �Ln
q with relatively prime p and q . We have

computed cat.Ln
p �Ln

q/ for values p , q > n=2 . It turns out that our computation
supports the conjecture.

For spin manifolds M we establish a criterion for the equality cat M D dim M � 1 ,
which is a K–theoretic refinement of the Katz–Rudyak criterion for cat M D dim M .
We apply it to obtain the inequality cat.Ln

p �Ln
q/ � 2n� 2 for all odd n and odd

relatively prime p and q .

55M30; 55N15

1 Introduction

This paper was motivated by the following conjecture of Rudyak:

Conjecture 1.1 [19] A degree-one map between closed manifolds cannot raise the
Lusternik–Schnirelmann category.

It is known that degree-one maps f W M !N between manifolds tend to have domain
more complex than their image. The Lusternik–Schnirelmann category is a numerical
invariant that measures the complexity of a space. Thus, Rudyak’s conjecture that
cat M � cat N for a degree-one map f W M !N is quite natural. Rudyak (see also
the book by Cornea, Lupton, Opera and Tanré [7, page 65]) obtained some partial
results supporting the conjecture. In particular, he proved the following:

Theorem 1.2 [19] Let f W M ! N be a degree-˙1 map between closed, stably
parallelizable n–manifolds, n� 4, such that 2 cat N � nC 4. Then cat M � cat N .

In this paper we reduce Rudyak’s conjecture to the following question about the LS
category of the product of two n–dimensional lens spaces (nD 2k � 1).
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Problem 1.3 Do there exist n and relatively prime p and q such that

cat.Ln
p �Ln

q/ > nC 1 ?

We show that an affirmative answer to this problem gives a counterexample to Rudyak’s
conjecture.

This paper is devoted to computation of the category of the product Ln
p � Ln

q of
lens spaces for relatively prime p and q . Here we use the shorthand notation Ln

p D

Ln
p.`1; : : : ; `k/ for a general lens space of dimension nD 2k�1, defined for the linear

Zp –action on Sn �Ck determined by the set of natural numbers .`1; : : : ; `k/ with
.p; `i/D 1 for all i .

The obvious inequality cat X � dim X and the cup-length lower bound (see Proposition
2.9) give the estimates

.�/ nC 1� cat.Ln
p �Ln

q/� 2n:

In this paper we prove that, for fixed n, the lower bound is almost always sharp.

Theorem 1.4 For every nD 2k � 1 and primes p , q � k , p ¤ q , for all lens spaces
Ln

p and Ln
q ,

cat.Ln
p �Ln

q/D nC 1:

This result still leaves some hope to have cat.Ln
p �Ln

q/ > nC 1 for small values of p

(especially for p D 2) for some lens spaces.

In the second part of the paper we make an improvement of the upper bound in .�/.
The first improvement comes easily by virtue of the Katz–Rudyak criterion [13]: for
a closed m–manifold M the inequality cat.M / � m � 1 holds if and only if M

is inessential. We recall that Gromov calls a m–manifold M inessential if a map
uW M ! B� that classifies its universal covering can be deformed to the .m�1/–
dimensional skeleton B�.m�1/ . Since for relatively prime p and q the product
Ln

p �Ln
q is inessential, we have cat.Ln

p �Ln
q/� 2n� 1. In the paper we improve this

inequality to the following:

Theorem 1.5 For all odd n and odd relatively prime p and q ,

cat.Ln
p �Ln

q/� 2n� 2:

For that we study a general question: when is the LS category of a closed spin m–
manifold M less than m�1? We prove in Theorem 6.6 that for a closed m–manifold M

with �2.M /D0, the inequality cat M �m�2 holds if and only if the map uW M!B�
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can be deformed to the .m�2/–dimensional skeleton B�.m�2/ . A deformation of a
classifying map of a manifold to the .m�2/–skeleton B�.m�2/ is closely related to
Gromov’s conjecture on manifolds with positive scalar curvature and it was investigated
by Bolotov and Dranishnikov [3]. Combining this with some ideas from [3], we produce
a criterion for when a closed spin m–manifold M has cat M �m� 2. The criterion
involves the vanishing of the integral homology and ko–homology fundamental classes
of M under a map classifying the universal covering of M .

Theorem 1.6 (Criterion) If M is a a closed, spin, inessential m–manifold with
�2.M /D 0, then

cat M � dim M � 2

if and only if j�u�.ŒM �ko/D 0, where j W B�! B�=B�.m�2/ is the quotient map.

Since a closed orientable manifold M is inessential if and only if u�.ŒM �/ D 0 in
H�.B�/ — see Babenko [1] — the Katz–Rudyak criterion for orientable manifolds
can be rephrased as follows: cat M �m� 1 if and only if u�.ŒM �/D 0. Thus, our
criterion is a further refinement of the Katz–Rudyak criterion.

It turns out that the vanishing of u�.ŒM �/ in H�.B�/ makes the primary obstruction
to a deformation of uW M ! B� to B�.m�2/ trivial. It is not difficult to show that
the second obstruction lives in the group of coinvariants �m.B�;B�/� ; see [3]. We
prove that the group of coinvariants �m.B�;B�

.m�2//� naturally injects into the
homotopy group �m.B�=B�

.m�2//. This closes a gap in the computation of the
second obstruction in [3]. Based on that injectivity result we use the real connective
K–theory to express the second obstruction in terms of the image of the ko–fundamental
class. The spin condition is needed for the existence of a fundamental class in ko-theory.

The new upper bound implies that cat.L3
p �L3

q/D 4 for all p and q . Note that for
prime p and q this fact can be also derived from Theorem 1.4.

We complete the paper with a proof of the upper bound formula for the category of a
connected sum of two manifolds:

Theorem 1.7 cat M # N �maxfcat M; cat N g:

Since we use this formula in the paper and its original proof in [16] does not cover all
cases, we supply an alternative proof.
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2 Preliminaries

2.1 LS category

The Lusternik–Schnirelmann category, for a topological space X , satisfies cat X � k if
there is a cover X DU0[� � �[Uk by kC1 open subsets each of which is contractible
in X . The subsets contractible in X will be called in this note X–contractible and
The covers of X by subsets contractible in X will be called categorical.

Let � D �1.X /. We recall that the cup product ˛ ^ ˇ of twisted cohomology classes
˛ 2H i.X IL/ and ˇ 2H j .X IM / takes values in H iCj .X IL˝M /, where L and
M are �–modules and L˝M is the tensor product over Z; see Brown [5]. Then
the cup-length of X , denoted as cl.X /, is defined as the maximal integer k such that
˛1^ � � �^˛k ¤ 0 for some ˛i 2H ni .X ILi/ with ni > 0. The following inequalities
give estimates on the LS category:

Theorem 2.1 [7] cl.X /� cat X � dim X:

2.2 Ganea–Schwarz approach to the LS category

Given two maps f1W X1! Y and f2W X2! Y , we set

Z D f.x1;x2; t/ 2X1 �X2 j f1.x1/D f2.x2/g

and define the fiberwise join, or join over Y , of f1 and f2 as the map

f1�Y f2W Z! Y; .f1�Y f2/.x1;x2; t/D f1.x1/D f2.x2/:

Let pX
0
W PX ! X be the Serre path fibration. This means that PX is the space of

paths on X that start at the base point x0 2 X , and pX
0
.˛/D ˛.1/ for ˛ 2 PX . We

denote by pX
n W Gn.X /!X the iterated fiberwise join of nC 1 copies of pX

0
. Thus,

the fiber Fn D .p
X
n /
�1.x0/ of the fibration pX

n is the join product �X � � � � ��X of
nC 1 copies of the loop space �X on X . So, Fn is .n�1/–connected. It is known
that Gn.X / is homotopy equivalent to the mapping cone of the inclusion of the fiber
Fn�1!Gn�1.X /.

When X DK.�; 1/, the loop space �X is naturally homotopy equivalent to � and
the space Gn.�/DGn.K.�; 1// has the homotopy type of a n–dimensional complex.

The proof of the following theorem can be found in [7]:

Theorem 2.2 (Ganea, Schwarz) For a CW space X , cat.X /� n if and only if there
exists a section of pX

n W Gn.X /!X .
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This theorem can be extended to maps:

Theorem 2.3 For a map f W Y ! X to a CW space X , cat.f / � n if and only if
there exists a lift of f with respect to pX

n W Gn.X /!X .

We recall that the LS category of a map f W Y ! X is the least integer k for which
Y can be covered by kC 1 open sets U0; : : : ;Uk such that the restrictions f jUi

are
null-homotopic for all i .

We use the notation ��.f / D ��.Mf ;X /, where Mf is the mapping cylinder of
f W X!Y . Then �i.f /D 0 for i �n amounts to saying that f induces isomorphisms
f�W �i.X /! �i.Y / for i < n and an epimorphism in dimension n.

Proposition 2.4 [8] Let fj W Xj ! Yj , 3� j � s be a family of maps of CW spaces
such that �i.fj /D 0 for i � nj . Then the joins satisfy

�k.f1 �f2 � � � � �fs/D 0

for k �minfnj gC s� 1.

2.3 The Berstein–Schwarz class

Let � be a discrete group and A be a �–module. By H�.�;A/ we denote the
cohomology of the group � with coefficients in A and by H�.X IA/ we denote the
cohomology of a space X with the twisted coefficients defined by A. The Berstein–
Schwarz class of a group � is a certain cohomology class ˇ� 2H 1.�; I.�//, where
I.�/ is the augmentation ideal of the group ring Z� ; see Berstein [2] and Schwarz [22].
It is defined as the first obstruction to a lift of B� DK.�; 1/ to the universal cover-
ing E� . The class ˇ� is defined by a cocycle ˇW E�.1/! I.�/. We note that the
1–skeleton of E� can be identified with the Cayley graph of � . For a fixed set S of
generators of � , the Cayley graph C D C.�;S/ has V D � as the set of vertices and
E D fŒ;  s� j  2 �; s 2 Sg as the set of edges.

Note that the 1–skeleton of B� can be identified with the wedge of circles labeled
by S . Then the 1–skeleton E�.1/ of the universal covering equals the Cayley graph
C D C.�;S/. In that case the cocycle ˇ takes every edge Œa; b�� C to b� a 2 I.�/.

Here is a more algebraic definition of ˇ� . Consider the cohomology long exact
sequence generated by the short exact sequence of coefficients

0 �! I.�/ �! Z�
�
�! Z �! 0;
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where � is the augmentation homomorphism. Then ˇ� D ı.1/ equals the image of the
generator 1 2H 0.� IZ/D Z under the connecting homomorphism

ıW H 0.� IZ/!H 1.� I I.�//:

It follows from the definition of the connecting homomorphism ı (snake lemma) that
ı.1/ is defined by the above cocycle ˇ .

Theorem 2.5 (Universality [9; 22]) For any cohomology class ˛ 2H k.�;L/ there
is a homomorphism of �–modules I.�/k !L such that the induced homomorphism
for cohomology takes .ˇ�/k 2H k.� I I.�/k/ to ˛ , where I.�/k D I.�/˝� � �˝I.�/

and .ˇ�/k D ˇ� ^ � � �^ˇ� .

Corollary 2.6 [22] The class .ˇ�/nC1 is the primary obstruction to a section of
pB�

n W Gn.�/! B� .

Corollary 2.7 For any group � , its cohomological dimension can be expressed as

cd.�/Dmaxfn j .ˇ�/n ¤ 0g:

Corollary 2.8 cl.Ln
p/D n:

Proof For any lens space Ln
p the inclusion Ln

p ! BZp to the classifying space
as the n–skeleton takes .ˇZp

/n to a nonzero element ˇn . Since cd.Zp/ D 1, we
obtain .ˇZp

/n¤0. Since the restriction to the n–skeleton is injective on n–dimensional
cohomology groups, the result follows.

Proposition 2.9 cl.Ln
p �Ln

q/� nC 1:

Proof Let ˛ 2H n.Ln
q/D Z be a generator. Then, in view of the Kunneth formula

for local coefficients [4], the cross product

ˇn
�˛ 2H 2nC1.Ln

p �Ln
qI I.Zp/

n/

is nontrivial for the above ˇ 2H 1.Ln
pI I.Zp//.
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3 Some examples of degree-one maps

Let M be an oriented manifold and k 2Znf0g; by kM we denote the connected sum
M # � � � # M of jkj copies of M , taken with the opposite orientation if k is negative.
For an odd n and natural p > 1 we denote by Ln

p a lens space, ie the orbit space
Sn=Zp for a free linear action of Zp D Z=pZ on the sphere Sn .

Theorem 3.1 For m, n 2 2N C 1 and any relatively prime numbers p and q there
are k , l 2 Z such that the manifold

M D k.Lm
p �Sn/ # l.Sm

�Ln
q/

admits a degree-one map �W M !N onto N DLm
p �Ln

q .

Proof Take k and l such that lpCkq D 1. Let f W Sm!Lm
p and gW Sn!Ln

q be
the projections to the orbit space for the Zp and Zq free actions, respectively. We may
assume that the above connected sum is obtained by taking the wedge of jkjC jl j � 1

spheres of dimension mC n� 1 embedded in one of the summands and gluing all
other summands along those spheres. Consider the quotient map

 W k.Lm
p �Sn/ # l.Sm

�Ln
q/!

_
k

.Lm
p �Sn/_

_
l

.Sm
�Ln

q/

that collapses the wedge of those .mCn�1/–spheres to a point. Let the map

�W
_
k

.Lm
p �Sn/_

_
l

.Sm
�Ln

q/!Lm
p �Ln

q

be defined as the union
� D

[
k

.1�g/[
[

l

.f � 1/:

Note that the degree of f � 1 is p , the degree of 1�g is q and the degree of � ı 
is lpC kq D 1.

Proposition 3.2 For m� n, cat.k.Lm
p �Sn/ # l.Sm �Ln

q//D nC 1:

Proof It follows from the cup-length estimate that cat.Sm �Ln
q/� nC 1 and, gen-

erally, cat.k.Lm
p �Sn/ # l.Sm �Ln

q//� nC 1 when l ¤ 0. By the product formula,
cat.Sm �Ln

r /� nC 1. Thus, cat.Sm �Ln
r /D nC 1. Then, by the sum formula [16]

(see Theorem 7.1),

cat.k.Lm
p �Sn/ # l.Sm

�Ln
q//� nC 1:
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Now one can see the connection between Rudyak’s conjecture and Problem 1.3. If
there exist relatively prime p and q and odd n such that cat.Ln

p �Ln
q/ > nC 1, then

the map of Theorem 3.1 will be a counter-example to Rudyak’s conjecture.

Remark In Theorem 3.1 one can use fake lens spaces. Since every fake lens space is
homotopy equivalent to a lens space [23] and the LS category is a homotopy invariant,
it suffices to consider only the classical lens spaces.

4 On the category of the product of lens spaces

Let Ǹ D .`1; : : : ; `k/ be a set of mod p integers relatively prime to p . The lens space
L2k�1

p . Ǹ/ is the orbit space of the action of Zp D hti on the unit sphere S2k�1 �Ck

defined by the formula

t.z1; : : : ; zk/D .e
2�i`1=pz1; : : : ; e

2pii`k=p/:

We note that for all k the lens spaces L2k�1
p . Ǹ/ have a natural CW complex structure

with one cell in each dimension up to 2k � 1 such that L2k�1
p . Ǹ/ is the .2k�1/–

skeleton of L2kC1
p . Ǹ; `kC1/. If ˛W Zp �S2k�1! S2k�1 is a free action which is not

necessarily linear, its orbit space is called a fake lens space and is denoted by L2k�1
p .˛/.

We recall that a closed, oriented n–manifold M is called inessential — see Gro-
mov [12] — if a map uW M ! B� DK.�; 1/ that classifies its universal cover can be
deformed to the .n�1/–dimensional skeleton B�.n�1/ . It is known that a closed, ori-
ented n–manifold M is essential if and only if u�.ŒM �/¤ 0, where ŒM � 2Hn.M IZ/
denotes the fundamental class [1; 3].

We note that cat M D dim M if and only if M is essential [13]. Clearly, every lens
space Ln

p is essential. In particular, cat Ln
p D n. Since Zp ˝Zq D 0 for relatively

prime p and q , the product Lm
p �Ln

q is inessential. Hence, cat.Lm
p �Ln

q/�mCn�1

for all p and q .

4.1 Stably parallelizable lens spaces

First we do our computation for stably parallelizable lens spaces.

Proposition 4.1 For lens spaces Lm
p and Ln

q with m � n and .p; q/D 1 which are
homotopy equivalent to stably parallelizable manifolds,

cat.Lm
p �Ln

q/D nC 1:

Algebraic & Geometric Topology, Volume 15 (2015)
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Proof Let

�W M D k.Lm
p �Sn/ # l.Sm

�Ln
q/!N DLm

p �Ln
q

be the map of degree one from Theorem 3.1. Suppose that Lm
p and Ln

q are homo-
topy equivalent to stably parallelizable manifolds N m

p and N n
q , respectively. Then

there are homotopy equivalences hW M 0 D k.N m
p � Sn/ # l.Sm �N n

q / ! M and
h0W N DLm

p �Ln
q!N 0DN m

p �N n
q . Since a connected sum and the product of stably

parallelizable manifolds are stably parallelizable (see for example [14]), the manifolds
M 0 and N 0 are stably parallelizable. Assume that cat.Lm

p �Ln
q/� nC 2. Then

2 cat N 0 D 2 cat.Lm
p �Ln

q/D 2.nC 2/�mC nC 4D dim.Lm
p �Ln

q/C 4:

By Theorem 1.2 applied to the map h0 ı� ıhW M 0!N 0 from Theorem 3.1, we obtain
a contradiction:

nC 2D cat N D cat N 0 � cat M 0
D cat M D nC 1:

Since all orientable 3-manifolds are stably parallelizable, we obtain:

Corollary 4.2 For relatively prime p and q ,

cat.L3
p �L3

q/D 4:

There is a characterization of stable parallelizability of lens spaces [10]: the lens space
L2k�1

p .`1; : : : ; `k/ is stably parallelizable if and only if p � k and `2j
1 C� � �C `

2j

k
D

0 mod p for j D1; 2; : : : ;
�

1
2
.k�1/

�
. We recall that two lens spaces L2k�1

p .`1; : : : ; `k/

and L2k�1
p .`0

1
; : : : ; `0

k
/ are homotopy equivalent [17] if and only if the mod p equation

`1`2 � � � `k D˙ak`01`
0
2 � � � `

0
k

has a solution a 2 Zp . These conditions imply that a lens space is rarely homotopy
equivalent to a stably parallelizable one. Nevertheless, Ewing, Moolgavkar, Smith and
Stong [10] showed that, for each nD 2k � 1, for infinitely many primes p there are
stably parallelizable lens spaces Ln

p . Clearly, there are more chances for the existence of
stably parallelizable fake lens spaces with given n and p . Thus, Kwak [15] proved that
for every odd nD 2k�1 and p� k there is a fake n–dimensional stably parallelizable
lens space. Since every fake lens space is homotopy equivalent to a lens space — see
Wall [23] — we obtain that for every nD 2k � 1 and p � k there is a lens space Ln

p

homotopy equivalent to a stably parallelizable manifold.
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4.2 Category of classifying maps

We recall that any map uW X ! B� DK.�; 1/ of a CW complex X that induces an
isomorphism of the fundamental group classifies the universal covering zX , ie zX is
obtained as the pull-back of the universal covering E� of B� by means of u. We
call such a map a classifying map of X .

Proposition 4.3 Let uW X ! B� be a map classifying the universal covering of a
CW complex X . Then the following are equivalent:

(1) cat.u/� k .

(2) u admits a lift u0W X !Gk.�/ of u with respect to p�n W Gk.�/! B� .

(3) u is homotopic to a map f W X ! B� with f .X /� B.k/ .

Proof (1)D) (2) is a part of Theorem 2.3.

(2)D) (3) Since Gk.�/ has the homotopy type of a k –dimensional complex, the
map p�

k
can be deformed to a map p0 with the image in B�.k/ . Then we can take

f D p0 ıu0 .

(3)D) (1) For a map f W X ! B� with f .X / � B.k/ homotopic to u we obtain
cat.u/D cat.f /� cat B�.k/ � k .

Theorem 4.4 Let X be an n–dimensional CW complex with a classifying map
uW X ! B� having cat u � k and with .n�k/–connected universal covering zX .
Then cat X � k .

Proof Note that the map pX
k

factors through the pull-back, pX
k
D p0 ı q :

Gk.X /
q
//

pX
k ##

Z
f 0
//

p0

��

Gk.�/

p�
k

��

X
u
// B�

The condition cat u� k implies that u has a lift u0W X !Gk.�/, uD p�
k

u0 . Hence,
p0 admits a section sW X ! Z . Since X is n–dimensional, to show that s has a
lift with respect to q it suffices to prove that the homotopy fiber F of the map q is
.n�1/–connected. Since �i.X /D 0 for 1< i � n�k , B� is aspherical and u induces
an isomorphism of the fundamental groups, we obtain �i.u/D 0 for i � n� kC 1.
Hence, �i.�u/D 0 for i � n� k . Then, by Proposition 2.4, �i.�kC1�u/D 0 for
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i � .n� k/C .k C 1/� 1 D n. The commutative diagram generated by q and the
fibrations pk

X
and p0 ,

� � � // �i.�kC1�.X // //

�kC1�u

��

�i.Gk.X // //

q�

��

�i.X / //

1
��

� � �

� � � // �i.�kC1�.B�// // �i.Z/ // �i.X / // � � � ;

and the five lemma imply that �i.q/D 0 for i � n. Hence, �i.F /D 0 for i � n� 1.

Thus, s admits a homotopy lift. Therefore, pX
k

has a homotopy section and, hence, it
admits a section. Therefore, by Theorem 2.2, cat X � k .

4.3 The main computation

Proposition 4.5 For any two lens spaces Ln
p.
Ǹ/ and Ln

p. N�/, there is a map

f W Ln
p.
Ǹ/!Ln

p. N�/

that induces an isomorphism of the fundamental groups.

Proof Let q1W S
n! Ln

p.
Ǹ/ and q2W S

n! Ln
p. N�/ be the projections onto the orbit

spaces of the corresponding Zp –actions. We note that Ln
p. N�/ is the n–skeleton

in LnC2
p . N�; 1/. Let Nq2W S

nC2!Ln
p.�; 1/ be the corresponding projection:

Sn

q1

��

Sn �SnC2 //oo

q

��

SnC2

Nq2

��

Ln
p.
Ǹ/ Sn �Zp

SnC2p1
oo

p2
// LnC2. N�; 1/

Since in the Borel construction for the diagonal Zp action on Sn�SnC2 the projection
p1 is .nC1/–connected, it admits a section sW Ln

p.
Ǹ/! Sn �Zp

SnC2 . Then f is a
cellular approximation of p2 ı s .

Theorem 4.6 For every odd nD 2k � 1 and distinct primes p , q � k ,

cat.L2k�1
p �L2k�1

q /D nC 1:

Proof Let Ln
p D Ln

p.
Ǹ/ and Ln

q.
Ǹ0/ for Ǹ D .`1; : : : ; `k/ and Ǹ0 D .`0

1
; : : : ; `0

k
/.

By Kwak [15, Theorem 3.1] there are stably parallelizable fake lens spaces Ln
p.˛/

and Ln
q.˛
0/. By Wall’s theorem they are homotopy equivalent to lens spaces Ln

p. N�/

and Ln
q. N�
0/ for some N� and N�0 . By Proposition 4.1, cat.Ln

p. N�/�Ln
q. N�
0//D nC 1.

Algebraic & Geometric Topology, Volume 15 (2015)



2994 Alexander N Dranishnikov

By Proposition 4.3, there is a classifying map uW Ln
p. N�/�Ln

q. N�
0/! BZ.nC1/

pq . By
Proposition 4.5 there are maps fpW L

n
p!Ln

p. N�/ and fqW L
n
q!Ln

q. N�
0/ that induce

an isomorphism of the fundamental groups. Therefore,

u0 D u ı .fp �fq/W L
n
p �Ln

q! BZ.nC1/
pq

is a classifying map for Ln
p�Ln

q . Hence, cat.u0/�nC1. Since the universal covering of
the space Ln

p�Ln
q is .n�1/–connected, by Theorem 4.4 we obtain cat.Ln

p�Ln
q/�nC1.

By Proposition 2.9, cat.Ln
p �Ln

q/D nC 1.

Remark When p and q are relatively prime but not necessarily prime we can prove
the equality cat.Ln

p � Ln
q/ D nC 1 with a stronger restriction p , q � nC 3. We

do not present the proof, since it is more technical. It consists of computation of
obstructions for deforming a classifying map uW Ln

p �Ln
q ! BZpq to the .nC1/–

skeleton. Vanishing of the first obstruction happens without any restriction on p and q .
Since it is a curious fact on its own it is presented in the next section. The higher
obstructions vanish due to the fact that cohomology groups of Zpq are pq–torsions
and a theorem of Serre [20] that states that the group �nCk.S

n/ has zero r–torsion
component for k < 2r � 4.

We note that Theorem 4.6 can be stated for all lens spaces Ln
p with values of n and p

for which there exists a stably parallelizable fake lens space Ln
p.˛/.

Problem 4.7 For which values of n and p is there a stably parallelizable fake lens
space Ln

k
.˛/?

This does not seem to happen very often when p D 2. At least, a real .2k�1/–
dimensional projective space is stably parallelizable if and only if k D 1, 2 or 4.

5 The Berstein–Schwarz class for the product of finite cyclic
groups

Let uW Ln
p �Ln

q ! BZpq be a classifying map. By Theorem 4.4 and the fact that
cat.Ln

p � Ln
q/ � nC 1, the condition cat.u/ � nC 1 is equivalent to the equality

cat.Ln
p �Ln

q/D nC 1. By Proposition 4.3 the inequality cat.u/� nC 1 is equivalent
to the existing of a lift u0 of u with respect to pnW GnC1.Zpq/! BZpq . In view
of Corollary 2.6 the primary obstruction to such a lift is u�.ˇnC2/, where ˇ is the
Berstein–Schwarz class of Zpq . We prove that this obstruction is always zero and even
more:
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Theorem 5.1 For all n and all relatively prime p and q ,

u�.ˇnC1/D 0:

Remark One can show that for sufficiently large p and q the higher obstructions are
trivial as well, since the homotopy groups of the fiber of p�n do not contain r–torsions
for large r . This would give a result similar to Theorem 4.6, which does not cover
small values of p .

We denote by Z.m/ the group ring ZZm of Zm , I.m/ its augmentation ideal,
�mW Z.m/ ! Z its augmentation, and ˇm its Berstein–Schwarz class. Let tm DP

g2Zm
g 2Z.m/. We use the same notation tm for a constant map tmW Zm!Z.m/

with the value tm . We note that the group of invariants of Z.m/ is Z generated by tm .
Thus, H 0.ZmIZ.m//D Z.

Proposition 5.2 Let p̌ denote the Berstein–Schwarz class for the group ZpDZ=pZ.
Then p̌ has order p and hence is q–divisible for any q relatively prime to p .

Proof Let t 2 Zp be a generator. We note that

H 0.ZpIZZp/D .ZZp/
Zp D Zh1C t C � � �C tp�1

i

is the group of invariants, which is isomorphic to the subgroup of ZZp generated
by 1 C t C � � � C tp�1 . Then the augmentation homomorphism �W ZZp ! Z in-
duces a homomorphism ��W H

0.ZpIZZp/ ! H 0.ZpIZ/ D Z that takes the gen-
erator 1 C t C � � � C tp�1 to p . Thus, p p̌ D pı.1/ D ı.p/ D 0 by exactness
of the cohomology long exact sequence associated with the coefficient sequence
0! I.p/! Z.p/! Z! 0.

Note that p̌ generates a subgroup G of order p in H 1.� I I.Z�//. Therefore it is
q–divisible for q with .p; q/D 1.

We recall that the cross product

H i.X IM /�H j .X 0IM 0/!H iCj .X �X 0IM ˝Z M 0/

is defined for any �1.X /–module M and �1.X
0/–module M 0 . Also we note that

H i.X IM ˚M 0/DH i.X IM /˚H i.X IM 0/:

Proposition 5.3 For relatively prime p and q there are k , l 2Z such that the Berstein–
Schwarz class p̌q is the image of the class

. p̌ � l; k �ˇq/ 2H 1.ZpqI I.p/˝Z.q//˚H 1.ZpqIZ.p/˝ I.q//
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under the coefficient homomorphism

�W I.p/˝Z.q/˚ Z.p/˝ I.q/! I.pq/� Z.pq/D Z.p/˝Z.q/

defined by the inclusions of the direct summands into Z.p/˝Z.q/ and the summation.

Proof Let k and l be such that kpC lq D 1.

The addition in Z.pq/ defines the commutative diagram

0 // I.pq/ // Z.pq/
�pq

// Z // 0

0 // I.p/˝Z.q/˚Z.p/˝ I.q/ //

�

OO

Z.pq/˚Z.pq/
˛
//

C

OO

Z.q/˚Z.p/ //

�pC�q

OO

0

which defines a commutative square for cohomology:

H 0.Zpq;Z/
ı

// H 1.Zpq; I.pq//

H 0.Zpq;Z.p/˚Z.q//
ı0
//

��

OO

H 1.Zpq; I.p/˝Z.q/˚Z.p/˝ I.q//

��

OO

The homomorphism � W Z.pq/! Z.p/˚Z.q/ defined on the basis as �.a� b/ D

.l tq; ktp/ is a cochain since it is Zpq –equivariant. It is a cocycle, since it is constant.
Note that .�pC �q/ı�.a�b/D kpC lqD 1 for any a 2Zp and b 2Zq . This means
that the cohomology class Œ� � is taken by �� to a generator 1 2 H 0.ZpqIZ/. Then

p̌q D ı.1/D �ı
0.Œ� �/.

Consider a Z.pq/–homomorphism N� W Z.p/�Z.q/!Z.pq/˚Z.pq/ defined by the
formula N�.a� b/D .a� l tq; ktp � b/. Since ˛. N�/D � , by the snake lemma ı0.Œ� �/
is defined by the 1–cocycle ı. N�/W C1! I.p/˝Z.q/˚Z.p/˝ I.q/. Note that the
cellular 1–dimensional chain group C1 is defined via the Cayley graph C of Zpq .

Note that the Cayley graph C.��� 0;S�e0[e�S 0/ of the product ��� 0 of two groups
with generating sets S and S 0 and units e 2 � and e0 2 � 0 equals the 1–skeleton of the
product of the Cayley graphs C.�;S/�C.� 0;S 0/. Thus, C D .C p�Zq/[.Zp�C q/,
where C p and C q are the Cayley graphs (cycles) for Zp and Zq , respectively. Note
that

ı. N�/.Œa1; a2�� b/D N�..a2� a1/� b/D N�.a2 � b/� N�.a1 � b/

D .a2 � l tq; ktp � b/� .a1 � l tq; ktp � b/D ..a2� a1/� l tq; 0/

D . p̌ � l tq/.Œa1; a2�� b/D . p̌ � l tq; ktp �ˇq/.Œa1; a2�� b/:
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Similarly, we have the equality for edges of the type a� Œb1; b2�. Here p̌ and ˇq

denote the canonical cochains that define the Berstein–Schwarz classes of Zp and Zq .

Thus, ı0.Œ� �/D . p̌ � l; k �ˇq/ in

H 1.Zpq; I.p/˝Z.q//˚H 1.Zpq;Z.p/˝ I.q//

DH 1.Zpq; I.p/˝Z.q/˚Z.p/˝ I.q//:

5.1 Proof of Theorem 5.1

We show that u�.ˇnC1
pq /D 0, where

uD ip � iqW L
n
p �Ln

q! BZp �BZq D BZpq

is the inclusion. Note that . p̌� l tq; ktp�ˇq/D p̌� l tqCktp�ˇq . Thus, it suffices
to show that u�. p̌ � l tqC ktp �ˇq/

nC1 D 0. Note that

u�. p̌ � l C k �ˇq/D i�p . p̌/� l C k � i�q .ˇq/:

Then .i�p . p̌/� lCk� i�q .ˇq//
nC1D .i�p . p̌/� l/nC1C .k� i�q .ˇq//

nC1CF , where
F consists of monomials containing both factors.

Claim 1 .i�p . p̌/� l/nC1 D 0 and .k � i�q .ˇq//
nC1 D 0.

Proof There is an automorphism of the coefficients

.I.p/˝Z.q//˝ � � �˝ .I.p/˝Z.q//! I.p/˝ � � �˝ I.p/˝Z.q/˝ � � �˝Z.q/

that takes .i�p . p̌/� l/nC1 to i�p . p̌/
nC1� lnC1D 0. Similarly, .k � i�q .ˇq//

nC1D 0.

Claim 2 .i�p . p̌/� l/A.k � i�q .ˇq//D 0 for any A.

Proof Indeed, since i�p . p̌/ is divisible by q (see Proposition 5.2),

.i�p . p̌/� l/A.k � i�q .ˇq//D
�

1

q
.i�p . p̌/� l/

�
Aq.k � i�q .ˇq//D 0:

Thus, F D 0 and the result follows.

6 On the category of ko–inessential manifolds

6.1 Deformation into the .n�2/–dimensional skeleton

We recall that a classifying map uW M ! B� of a closed orientable n–manifold M

can be deformed into the .n�1/–skeleton B�.n�1/ if and only if u�.ŒM �/D 0, where
ŒM � 2Hn.M IZ/ denotes an integral fundamental class; see Babenko [1]. In [3] we
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proved the following proposition, which sets the stage for computation of the second
obstruction.

Proposition 6.1 Every inessential n–manifold M with a fixed CW structure admits a
classifying map uW M ! B� with u.M /� B�.n�1/ and u.M .n�1//� B�.n�2/ .

We postpone the proof of the following lemma to the end of the section.

Lemma 6.2 For any group � and CW complex B� , for n � 5 the homomorphism
induced by the quotient map

p�W �n.B�;B�
.n�2//! �n.B�=B�

.n�2//

factors through the group of coinvariants as p� D Np� ı q� ,

�n.B�;B�
.n�2//

q�
�! �n.B�;B�

.n�2//�
Np�
�! �n.B�=B�

.n�2//;

where Np� is injective.

We recall that for a �–module M the group of coinvariants is M ˝Z� Z.

Remark In the proof of [3, Lemma 4.1] it was stated erroneously that Np� is bijective.
It turns out that the injectivity of Np� was sufficient for the proof of that lemma to be
carried out. Thus, due to Lemma 6.2 the results of [3] that depend on the lemma remain
intact.

Theorem 6.3 Let M be an n–manifold with a CW complex structure with one top-
dimensional cell. Suppose that a classifying map uW M ! B� satisfies the condition
u.M .n�1//� B�.n�2/ and let NuW M=M .n�1/ D Sn! B�=B�.n�2/ be the induced
map. Then the following are equivalent:

(1) There is a deformation of u in B� to a map f W M ! B�.n�2/ .

(2) Nu�.1/D 0 in �n.B�=B�
.n�2//, where 1 2 ZD �n.S

n/.

Proof The primary obstruction to deforming u to B�.n�2/ is defined by the cocycle

cu D u�W �n.M;M .n�1//! �n.B�;B�
.n�2//

with the cohomology class ou D Œcu� 2 H n.M I�n.B�;B�
.n�2///. By Poincaré

duality, ou is dual to the homology class PD.ou/ 2 H0.M I�n.B�;B�
.n�2/// D

�n.B�;B�
.n�2//� represented by q�u�.1/, where

q�W �n.B�;B�
.n�2//! �n.B�;B�

.n�2//�
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is the projection onto the group of coinvariants and

u�W �n.M;M .n�1//D Z! �n.B�;B�
.n�2//

is induced by u. We note that �n.B�;B�
.n�2//D�n.E�;E�

.n�2//. By Lemma 6.2
the homomorphism Np� is injective. Hence, Np�q�u�.1/D 0 if and only if ou D 0. The
commutative diagram

�n.M;M .n�1//
u�
//

D

��

�n.B�;B�
.n�2//

q�
// �n.B�;B�

.n�2//

Np�
��

Z
D

// �n.M=M .n�1//
Nu�
// �n.B�=B�

.n�2//

implies that Nu�.1/D Np�q�u�.1/:

6.2 ko–inessential manifolds

We recall that an orientable, closed n–manifold M is inessential if and only if
u�.ŒM �/D 0, where ŒM � 2Hn.M IZ/ is a fundamental class and uW M ! B� is a
classifying map. We call a closed spin n–manifold M ko–inessential if u�.ŒM �ko/D 0

in kon.B�/, where ko� denotes the real connective K–theory homology groups.

We recall that for every spectrum E there is a natural morphism S!E of the spherical
spectrum. This defines a natural transformation of corresponding (co)homology theories
�s
�! E� , where �s

� is the stable homotopy theory. In the case of ko� this natural
transformation induces an isomorphism �s

i .pt/! koi.pt/ for i D 0, 1, 2. It allows us
in some cases to reduce ko� problems to the stable homotopy groups.

We need the following proposition:

Proposition 6.4 [3] The natural transformation �s
�.pt/! ko�.pt/ induces an iso-

morphism �s
n.K=K

.n�2//! kon.K=K
.n�2// for any CW complex K .

We recall that spin manifolds are exactly those that admit an orientation in real connec-
tive K–theory ko� .

Theorem 6.5 A classifying map uW M ! B� of an inessential, closed, spin n–
manifold M , n > 3, is homotopic to a map f W M ! B�.n�2/ if and only if
j�u�.ŒM �ko/D 0 in kon.B�;B�

.n�2//, where ŒM �ko is a ko–fundamental class.
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Proof By Proposition 6.1 a classifying map u can be chosen to satisfy the condition
u.M .n�1//�B�.n�2/ . We show that Nu�.1/D 0 if and only if j�u�.ŒM �ko/D 0 and
apply Theorem 6.3.

The restriction n > 3 implies that Nu�.1/ survives in the stable homotopy group. In
view of Proposition 6.4, the element Nu�.1/ survives in the composition

�n.B�=B�
.n�2//! �s

n.B�=B�
.n�2//! kon.B�=B�

.n�2//:

The commutative diagram

�n.S
n/

Nu�
//

Š

��

�n.B�=B�
.n�2//

Š

��

�s
n.S

n/
Nu�
//

Š

��

�s
n.B�=B�

.n�2//

Š

��

kon.S
n/

Nu�
// kon.B�=B�

.n�2//

implies that Nu�.1/D 0 for kon if and only if Nu�.1/D 0 for �n .

From the diagram with the quotient map  W M !M=M .n�1/ D Sn

kon.M /
u�

//

 �
��

kon.B�/

j�
��

kon.S
n/

Nu�
// kon.B�=B�

.n�2//;

it follows that j�u�.ŒM �ko/D Nu� �.ŒM �ko/D Nu�.1/. Thus, j�u�.ŒM �ko/D 0 if and
only if Nu�.1/D 0 for n–dimensional homotopy groups.

For spin manifolds we prove the following criterion:

Theorem 6.6 For a closed spin n–manifold M with cat M � dim M � 2,

j�u�.ŒM �ko/D 0

in kon.B�;B�
.n�2//, where uW M ! B� classifies the universal cover of M and

j W .B�;∅/! .B�;B�.n�2// is the inclusion.

For a closed, spin, inessential n–manifold M with �2.M /D 0, cat M � dim M � 2

if and only if j�u�.ŒM �ko/D 0.
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Proof The inequality cat M � n�2 implies that the map u has a lift u0!Gn�2.B�/

with uD p�
n�2

u0 . Since Gn�2.B�/ is homotopy equivalent to an .n�2/–dimensional
complex, p�

n�2
can be deformed to p0W Gn�2.B�/ ! B�.n�2/ . Thus u can be

deformed to B�.n�2/ . By Theorem 6.5, j�u�.ŒM �ko/¤ 0.

Now let �2.M /D0 and j�u�.ŒM �ko/D0. By Theorem 6.5 the map u can be deformed
to a map f W M ! B�.n�2/ . By Proposition 4.3, cat.u/� n� 2. Since �2.M /D 0,
the universal covering of M is 2–connected. By Theorem 4.4, cat M � n� 2.

Proposition 6.7 Let M D Lm
p �Ln

q , m, n > 2, be given a ko–orientation for some
relatively prime p and q and let uW M ! BZpq be a classifying map of its universal
cover. Then u�.ŒM �ko/D 0.

Proof Note that ŒM �ko D ˙.1C v/.ŒL
m
p �ko � ŒL

n
q �ko/, where v 2 zko

0
.M / is in the

reduced ko–theory and the product is the cap product (see [18, Chapter 5, Proposi-
tion 1.9]). Therefore it suffices to show that u

p
� .ŒL

m
p �ko/ � u

q
�.ŒL

n
q �ko/ D 0, where

upW Lm
p !BZp and uqW Ln

q!BZq are classifying maps. This equality follows from
the fact that kom.BZp/ is q–divisible and kon.BZq/ is a q–torsion group.

Corollary 6.8 For m, n> 2 and odd, relatively prime p and q , or for p odd and q

even with nD 2k � 1 for even k , we have

cat.Lm
p �Ln

q/�mC n� 2:

Proof In this case the lens spaces are spin [11] and we can apply Proposition 6.7.
Then Theorem 6.6 and the fact that �2.L

m
p �Ln

q/D 0 imply the result.

For mD nD 3 we obtain a different proof of Corollary 4.2:

Corollary 6.9 cat.L3
p �L3

q/D 4 for all relatively prime p and q .

6.3 Coinvariants

The following lemma can be found in [6, Lemma 3.3]:

Lemma 6.10 A commutative diagram with exact rows

A0 //

f 0

��

A //

f
��

A00 //

f 00

��

0

0 // C 0 // C // C 00

defines an exact sequence

ker.f 0/! ker.f /! ker.f 00/! coker.f 0/! coker.f /! coker.f 00/:
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Let pW E� ! B� be the universal covering. Thus p is the projection onto the
orbit space of a free cellular �–action. Below we use the following abbreviations:
� D �1.B/, B D B� , Bk D B.k/ , E DE� and Ek DE�.k/ .

Proposition 6.11 p�W �n.E=E
n�1/! �n.B=B

n�1/ is an epimorphism.

Proof In the commutative diagram

�n.E
n=En�1/

p0�
//

��

�n.B
n=Bn�1/

j�
��

�n.E=E
n�1/

p�
// �n.B=B

n�1/

the homomorphisms p0� and j� are epimorphisms. The former is surjective since
it is induced by a retraction of a wedge of an n–sphere onto a smaller wedge; the
latter is surjective due to the cellular approximation theorem. Therefore, p� is an
epimorphism.

Recall that �s
� denotes the stable homotopy groups.

Corollary 6.12 For n� 5, the induced homomorphism

p0�W �
s
n.E;E

n�1/! �s
n.B;B

n�1/

is an epimorphism.

Proof This follows from the obvious natural isomorphisms

�n.E=E
n�1/D �s

n.E=E
n�1/D �n.E;E

n�1/;

�n.B=B
n�1/D �s

n.B=B
n�1/D �n.B;B

n�1/:

6.4 Proof of Lemma 6.2

For n� 5, the induced homomorphism

p�W �n.B;B
n�2/! �n.B=B

n�2/

factors through the group of coinvariants as p� D Np� ı q� ,

�n.B;B
n�2/

q�
�! �n.B;B

n�2/�
Np�
�! �n.B=B

n�2/;

where Np� is injective.
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Note that, for n� 5,

�n.B;B
n�2/D �n.E;E

n�2/D �s
n.E;E

n�2/; �n.B=B
n�2/D �s

n.B;B
n�2/;

and the composition

�n.B;B
n�2/

q�
�! �n.B;B

n�2/�
Np�
�! �n.B=B

n�2/

coincides with

�s
n.E;E

n�2/
q�
�! �s

n.E;E
n�2/�

Np�
�! �s

n.B;B
n�2/;

where
Np� ı q� D p�W �

s
n.E;E

n�2/! �s
n.B;B

n�2/

is the homomorphism induced by the projection p .

Also note that �s
�.E;E

i/ inherits a �–module structure via the �–action.

We extract from the diagram generated by p and exact �s
�–homology sequence of the

triple .En;En�1;En�2/ the following two diagrams:

�s
nC1

.En;En�1/
NjnC1

//

p1
�

��

�s
n.E

n�1;En�2/ //

p2
�

��

K //

˛

��

0

�s
nC1

.Bn;Bn�1/
jnC1

// �s
n.B

n�1;Bn�2/ // K // 0;

where K and K are the cokernels of jnC1 and NjnC1 , and

0 // H //

ˇ

��

�s
n.E

n;En�1/
Njn
//

p3
�

��

�s
n�1

.En�1;En�2/

p4
�

��

0 // H // �s
n.B

n;Bn�1/
jn
// �s

n�1
.Bn�1;Bn�2/;

where H and H are the kernels of jn and Njn . Note that the homomorphisms p3
� and

p4
� are the direct sums of the augmentation homomorphism

�W Z�! Z:

The homomorphisms p1
� and p2

� are direct sums of the mod 2 augmentation homo-
morphisms

N�W Z2�! Z2:
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Also note that pi
� ˝� 1Z is an isomorphism for i D 1, 2, 3, 4. Taking the tensor

product of the first diagram with Z over Z� would give a commutative diagram with
the two left vertical arrows isomorphisms. Then, by the five lemma, ˛0 D ˛˝� 1Z is
an isomorphism.

We argue that ˇ0Dˇ˝�1Z is a monomorphism. Note that ker.ˇ/�ker.p3
�/D

L
I.�/,

where I.�/ is the augmentation ideal.

Claim ker.ˇ/˝� ZD 0:

Proof We show that x˝� 1 D 0 for all x 2 ker.ˇ/. Let x D
P

xi , xi 2 I.�/. It
suffices to show that xi ˝� 1 D 0 for all xi . Note that xi D

P
nj .j � e/, j 2 � ,

nJ 2 Z. Note that . � e/˝� 1D 0 since

. � e/˝� 1D  ˝� 1� e˝� 1D  .e˝� 1/� e˝� 1D e˝�  .1/� e˝� 1D 0:

The tensor product with Z over Z� of the exact sequence

ker.ˇ/!H ! im.ˇ/! 0

implies that

ˇ0 D ˇ˝ idW H ˝� ZDH� ! im.ˇ/˝� ZD im.ˇ/

is an isomorphism. The latter equality follows from the fact that both im.ˇ/ and Z are
trivial �–modules. Then ˇ0 is a monomorphism as the composition of an isomorphism
ˇ0 and the inclusion im.ˇ/!H .

We consider the diagram of short exact sequences:

0 // K
N�
//

˛

��

�s
n.E

n;En�2/
N 
//

p�
��

H //

ˇ

��

0

0 // K
�
// �s

n.B
n;Bn�2/

 
// H // 0

Then we apply the tensor product with Z over Z� to this diagram to obtain the
following commutative diagram with exact rows:

K�

N�
//

˛0

��

�s
n.E

n;En�2/�
N 
//

Qp�
��

H�
//

ˇ0

��

0

0 // K
�
// �s

n.B
n;Bn�2/

 
// H

Lemma 6.10 implies that Qp� is a monomorphism.
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Next we consider the diagram generated by .E;En;En�2/ and .B;Bn;Bn�2/,

�s
nC1

.E;En/ //

��

�s
n.E

n;En�2/ //

��

�s
n.E;E

n�2/ //

��

0

�s
nC1

.B;Bn/ // �s
n.B

n;Bn�2/ // �s
n.B;B

n�2/ // 0;

and tensor it with Z over Z� to obtain the following commutative diagram with exact
rows:

�s
nC1

.E;En/� //

p0�

��

�s
n.E

n;En�2/� //

Qp�
��

�s
n.E;E

n�2/� //

Np�
��

0

�s
nC1

.B;Bn/ // �s
n.B

n;Bn�2/ // �s
n.B;B

n�2/ // 0

Since p0� is an epimorphism (see Corollary 6.12) and Qp� is a monomorphism by the
monomorphism version of the five lemma, we obtain that Np� is a monomorphism.

7 On the category of the sum

The following theorem was proven by R Newton [16] under the assumption that
cat M , cat N > 2.

Theorem 7.1 For closed manifolds M and N there is the inequality

cat.M # N /�maxfcat M; cat N g:

His proof is based on obstruction theory. Here we present a proof that works in full
generality. Our proof is an application of the following:

Theorem 7.2 (W Singhof [21, Theorem 4.4]) For any closed n–manifold M with
cat M D k � 2, there is a categorical partition Q0; : : : ;Qk into manifolds with
boundary such that Qi \Qj is an .n�1/–manifold with boundary (possibly empty)
for all i , j and each Qi admits a deformation retraction onto an .n�k/–dimensional
CW complex.

For B�A�X , a homotopy H W A�I!X is called a deformation of A in X onto B

if HA�f0g D 1A , H.A� f1g/D B , and H.b; t/D b for all b 2 B and t 2 I D Œ0; 1�.
The following is well known:
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Proposition 7.3 Let A�M be a subset contractible to a point in an m–manifold M

and let B �A be a closed n–ball which admits a regular neighborhood. Then there is
a deformation of A in M onto B .

Proof of Theorem 7.1 Let n D dim M D dim N . Suppose that cat M , cat N � k .
We show that cat.M #N /� k . If k D 1, the statement obviously follows from the fact
that M and N are homeomorphic to the sphere. We assume that k�2. Let Q0; : : :Qk

be a partition of M into M–contractible subsets as in Singhof’s theorem. We may
assume that Q0\Q1¤∅. Moreover, we may assume that there is a closed topological
n–ball D�Q0[Q1 with a collar in Q0[Q1 and D0DD\Q0 , D1DD\Q1 such
that the triad .D;D0;D1/ is homeomorphic to the triad .B;BC;B�/, where B is the
unit ball in Rn , BCDB\Rn

C , B�DB\Rn
� , and Rn

CDf.x1; : : :xn/2Rn j xn� 0g

and Rn
� D f.x1; : : :xn/ 2 Rn j xn � 0g are the half-spaces. Additionally we may

assume that the collar of D intersected with Q0\Q1 defines a collar of D\Q0\Q1

in Q0\Q1 .

Similarly, we may assume that there is a categorical partition V0; : : : ;Vk of N as in
Theorem 7.2 and a closed n–ball D0 with a collar such that the triad .D0;D0

0
;D0

1
/ is

homeomorphic to the triad .B;BC;B�/, where D0
0
DD0\V0 , D0

1
DD0\V1 .

We may assume that the connected sum M # N is realized as a subset M # N D

M [N n Int D �M [h N for some homeomorphism hW D0!D that preserves the
triad structures.

Let W0 D .Q0 n Int D/ [ .V0 n Int D0/, W1 D .Q1 n Int D/ [ .V1 n Int D0/ and
Wi D Qi [ Vi for i D 2; : : : ; k . Note that Qi \ Vi D ∅ for i � 2. By Singhof’s
theorem each Qi can be deformed to an .n�k/–dimensional subset Si contractible
in M . Since k � 2, there is a contraction of Si to a point in M that misses a given
point. Hence, there is a contraction of Si to a point in M that misses the ball D . Thus
Qi for i � 2 can be contracted to a point in M # N . Similarly, for i � 2 the set Vi

can be contracted to a point in M # N . Hence the sets Wi for i � 2 are categorical.

Let Ai DQi \ @D for i D 0, 1. We show that there is a deformation of Qi n Int D in
M #N to Ai . The collar of Qi\D in Qi allows us to construct a homeomorphism of
Qi n Int D to Qi homotopic to the identity. Hence Qi n Int D can be deformed onto an
.n�k/–dimensional subset Si contractible in M . A contraction of Si to a point can
be chosen missing c0 2 Int D . By Proposition 7.3 there is a deformation of Qi n Int D

in M n fc0g onto Ai fixing Ai . Similarly, for i D 0, 1 there is a deformation of
Vi n Int D0 in N n fc0

0
g to Ai D Vi \ @D

0 fixing Ai where c0
0
2 Int D0 . Applying the

radial projections from c0 and c0
0

gives us such deformations in M # N . Pasting these
two deformations defines a deformation of Wi , i D 0, 1, in M # N to Ai . Since the
sets Ai are contractible, it follows that the sets Wi , i D 0, 1. are categorical.
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