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On finite derived quotients of 3–manifold groups

WILL CAVENDISH

This paper studies the set of finite groups appearing as �1.M /=�1.M /.n/ , where M

is a closed, orientable 3–manifold and �1.M /.n/ denotes the nth term of the derived
series of �1.M / . Our main result is that if M is a closed, orientable 3–manifold,
n� 2 , and G Š �1.M /=�1.M /.n/ is finite, then the cup-product pairing H 2.G/˝

H 2.G/!H 4.G/ has cyclic image C , and the pairing H 2.G/˝H 2.G/
^
�! C is

isomorphic to the linking pairing H1.M /Tors˝H1.M /Tors!Q=Z .

57M10; 57M60

1 Introduction

One of the most elementary invariants of a connected topological space M is its
first homology group H1.M /, which, via Hurewitz’s theorem, may be expressed
as �1.M /=�1.M /.1/ , the quotient of the fundamental group of M by its derived
subgroup. Somewhat more mysterious are the topological invariants given by the higher
derived quotients of the fundamental group, �1.M /=�1.M /.n/ , where �1.M /.n/

denotes the nth term of the derived series of �1.M /. This paper studies the groups
that appear as �1.M /=�1.M /.n/ when M is a closed, orientable 3–manifold in the
special case that �1.M /=�1.M /.n/ is finite. Our interest in these groups is motivated
by the following well-known question, which was conjectured by Roushon in [15] to
have a positive answer in the case that �1.M / is torsion free:

Question 1 Let M be a closed, orientable 3–manifold. If Œ�1.M / W �1.M /.n/� is
finite for all n, does the derived series of �1.M / stabilize, ie is �1.M /.i/ a perfect
group for some i?

A positive answer to this conjecture would supply an alternative proof of the virtual
positive Betti number conjecture for hyperbolic 3–manifolds, which was resolved by Ian
Agol in [1], building on work of Kahn and Markovic in [10] and Wise in [16]. Indeed,
when the derived series of �1.M / stabilizes, it is well known that �1.M /=�1.M /.i/

is a solvable group with 4–periodic cohomology for sufficiently large i . A group of
this form is extremely rare, and it is isomorphic to the product of a trivial, dihedral, or
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generalized quaternion group with a cyclic group of relatively prime order; see [13].
All of these groups have abelianization with p–rank at most three for every prime p .
It is a well-known result of Lubotzky (see [12]) that every hyperbolic 3–manifold has
a finite-sheeted covering space with arbitrarily large p–rank for all but finitely many
p ; so if the above conjecture is true, we can pass to a finite-sheeted covering space N

of any hyperbolic 3–manifold M such that �1.N /=�1.N /.n/ is infinite for some n.
It follows by a simple group-theoretic argument that M has a finite-sheeted covering
space with positive first Betti number.

The main thrust of this paper is that the finite groups that appear as �1.M /=�1.M /.n/

satisfy restrictive group-theoretic constraints. These constraints do not appear when
nD 1 since, by taking connected sums of lens spaces, one can easily show that any
finite abelian group appears as �1.M /=�1.M /.1/ ŠH1.M / for a closed orientable
3–manifold M . The question of which finite groups appear as �1.M /=�1.M /.2/ ,
however, is already more interesting. Note that if �1.M /=�1.M /.2/ is finite, then
�1.M /.1/=�1.M /.2/ is a finite group, and therefore the maximal abelian cover of
M has trivial first Betti number. Reznikov showed in [14] that the fundamental
groups of 3–manifolds with this property satisfy a number of nontrivial constraints,
and consequently not every metabelian group can appear as �1.M /=�1.M /.2/ . The
restrictions Reznikov discovered are especially interesting in light of the main result
of Cooper and Long in [5], which shows that any finite group appears as the group of
deck transformations of a regular covering �W M 0!M of closed 3–manifolds where
b1.M

0/D 0. This shows that Reznikov’s constraints do not arise from obstructions to
fixed-point free group actions on rational homology 3–spheres.

In this paper we build on the themes explored by Reznikov in [14] by showing that the
cohomology ring of a finite group of the form �1.M /=�1.M /.n/ for n � 2 directly
reflects information about the linking pairing on H1.M /, which is a nondegenerate
bilinear form H1.M /Tors˝H1.M /Tors!Q=Z whose definition we now recall. Given
an element Œa� 2 H1.M /Tors and a loop a representing Œa�, there exists an integer
n2N such that n � Œa�D 0. Since the 1–cycle n �a is homologically trivial, there exists
an immersed oriented surface †a in M such that the oriented boundary of †a is equal
to n � a . Given another class Œb� 2H1.M /Tors , there exists a loop b representing b

such that b is transverse to †a . The value of the linking pairing hŒa�; Œb�i is defined by
.b t†a/=n 2Q=Z, the algebraic intersection number of b and †a divided by n.

The following theorem shows that the linking pairing on H1.M /Tors is isomorphic to the
2–dimensional cup-product pairing in H�.G/ for any finite quotient of qW �1.M /!G

such that ker.q/� �1.M /.2/ .
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Theorem 1.1 Let M be a closed, orientable 3–manifold, let � Š �1.M /, and let
qW �!G be a surjective homomorphism such that ker.q/� �.2/ . If G is finite, then
the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ is nondegenerate and has cyclic
image C <H 4.G/. Furthermore, there exists an embedding i W C !Q=Z such that
for any !1; !2 2H 2.G/,

i.!1 ^!2/D hŒM � _ zq�.!1/; ŒM � _ zq�.!2/i;

where ŒM � 2 H3.M / denotes the fundamental class of1 M , h�;�i denotes the
linking pairing on H1.M /Tors , and zqW M ! BG is a continuous map from M to the
classifying space of G such that zq�W �1.M /! �1.BG/ŠG is equal to q .

We remark that Theorem 1.1 does not hold when the quotient group �=�.2/ is infinite,
even when H1.M / D �=�.1/ is finite. To see this, let M be homeomorphic to
RP3 # RP3 , the connected sum of two copies of real projective 3–space, and let
G D �1.M /=�1.M /.2/ . The fundamental group �1.M / is isomorphic to the infinite
dihedral group D1Š11Z=2�Z=2, and hence H1.M /ŠZ=2˚Z=2. The commutator
subgroup of Z=2 � Z=2 is isomorphic to Z, so �1.M /.2/ is trivial and therefore
G D �1.M /Š �1.M /=�1.M /.2/ Š Z=2�Z=2. Recall that the infinite dimensional
real projective space RP1 is a classifying space for Z=2, and that the cohomology
ring H�.RP1/ is generated by a single degree 2 element of order 2. It follows
that the wedge sum RP1 _RP1 is a classifying space for Z=2 �Z=2. Since the
cohomology ring of a wedge sum of connected spaces is isomorphic to the direct sum
of the cohomology rings of the summands modulo the identification of the zeroth
cohomology groups, H�.G/ Š H�.RP1 _RP1/ Š ZŒx;y�=.xy; 2x; 2y/, where
deg.x/D deg.y/D 2. The elements x2 and y2 are linearly independent in H 4.G/,
so the image of the cup-product pairing H 2.G/˝H 2.G/! H 4.G/ is not cyclic.
This example can be modified to produce aspherical (indeed hyperbolic) examples of
such 3–manifolds using the techniques of Baker, Boileau and Wang in [3].

As a sample application of Theorem 1.1, we demonstrate how it can be used to derive
the following result of Reznikov [14, Theorem 12.5] from well-known results about
2–groups and their cohomology rings.

Theorem 1.2 (Reznikov) Let � be the fundamental group of a closed, orientable
3–manifold M such that H1.M / Š Z=2˚Z=2. If �=�.2/ is finite and hc; ci D 0

for all nontrivial c 2H1.M /, then the Sylow-2 subgroup of �=�.2/ is equal to the
quaternion group of order 8. If �=�.2/ is finite and hc; ci is nontrivial for some
nontrivial c 2 H1.M /, then the Sylow-2 subgroup of �=�.2/ is isomorphic to a
generalized quaternion group Q2k for k > 3.
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Proof Let G denote �=�.2/ , let S denote the Sylow-2 subgroup of G , and let
K denote G.1/ . Note that since G is metabelian, it follows that K is abelian. Let
K.2/ denote the 2–part of K and let K0 be the complementary subgroup of K so that
KŠK0˚K.2/ . Note that K0 is a characteristic subgroup of G and is therefore normal,
and that the order of G=K0 is equal to the order of S . Since S is a Sylow subgroup,
G=K0 Š S , and the inclusion S ,! G therefore has a right inverse r W G! S . This
shows that r�W H�.S/!H�.G/ is injective. It is a simple consequence of the universal
coefficients theorem (see Lemma 2.2 in Section 2 below) that r�W H 2.S/!H 2.G/ is
an isomorphism, and it follows from naturality of the cup product that the cup-product
pairing on H 2.S/ is isomorphic to the cup-product pairing on H 2.G/. Applying
Theorem 1.1, the cup-product pairing on H 2.S/ is therefore isomorphic to the linking
form on H1.M /Tors .

We now examine the possibilities for the group S . If S is abelian, then S ŠZ=2˚Z=2
and the cup-product pairing H 2.S/˝H 2.S/! H 4.S/ has 3–dimensional image
by the Künneth theorem. We may therefore assume that S is nonabelian. Since
H1.S/Š Z=2˚Z=2, S is a 2–group of maximal class (see [7, Section 5.4]), and is
therefore isomorphic to either a dihedral group, a semidihedral group, or a quaternion
group. The cup-product pairing on the second cohomology of a dihedral group of order
4k has image with rank larger than one (see [8]), and is degenerate on any semidihedral
group; see [6]. It follows that S is isomorphic to Q2k , a generalized quaternion group
of order 2k .

The cohomology ring H�.Q8/ of the quaternion group of order 8 has the feature that
any ˛ 2H 2.Q8/ satisfies ˛2D 0 (see [2]), whereas the cohomology ring of H�.Q2k /

for k > 3 has 2–dimensional elements with nontrivial squares; see [9]. Since the
cup-product pairing on H 2.S/ is isomorphic to the linking pairing on H1.M /Tors , it
follows that if hc; ci D 0 for all c 2H1.M /Tors , then S ŠQ8 ; otherwise S ŠQ2k

for some k > 3.

Given a manifold M , let zMab denote the maximal abelian cover of M . It is interesting
to note that there are only two isomorphism types of nondegenerate pairings .Z=2/2˝
.Z=2/2! Q=Z, and that both types appear as pairings on H1.M /Tors for a closed
orientable 3–manifold M such that b1. zMab/D 0. Examples of such manifolds are
given by the spaces S3=Q8 and S3=Q16 , where S3 is viewed as the group of unit
quaternions and Q2n is realized as the subgroup of S3 generated by ei�=n and j . It
has been shown by Kawauchi and Kojima in [11] that every nondegenerate pairing
A˝A!Q=Z on a finite abelian group A appears as the linking form of a 3–manifold
with b1.M /D 0. Given this result, it is interesting to ask the following:
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Question 2 Given a finite abelian group A, does every nondegenerate bilinear pairing
A˝A!Q=Z appear as the linking pairing of a 3–manifold M such that H1.M /DA

and b1. zMab/D 0?

Note that by Theorem 1.1, any pairing that appears in this way also appears as the
cup-product pairing on H 2.G/ for the finite metabelian group GŠ�1.M /=�1.M /.2/ .

The proof of Theorem 1.1 breaks into two parts. The first part, carried out in Section 2,
consists of showing that the linking pairing on H1.M / can be factored through the cup-
product pairing H 2.G/˝H 2.G/!H 4.G/. One consequence of this factorization is
the following theorem, which applies to quotients of �1.M / whose abelianization has
maximal order.

Theorem 1.3 Let � be the fundamental group of a closed, orientable 3–manifold M,
let ŒM �2H3.M / denote the fundamental class of M, and let qW �!G be a surjective
homomorphism onto a finite group G such that ker.q/� �.1/ . Then:

(i) H 2.G/˝H 2.G/!H 4.G/ is nondegenerate.

(ii) ord.zq�.ŒM �// �H1.M /D 0, where zqW M ! BG is a continuous map such that
zq�W �1.M /! �1.BG/ŠG is equal to q .

Note that this theorem provides information about how the fundamental class of the
manifold M behaves under finite quotient maps. Indeed, in the special case that
GŠH1.M /, this theorem shows that the image of the homomorphism zq�W H3.M /!

H3.G/ has maximal order, since the annihilator of H3.G/ is equal to the annihilator
of H1.G/ when G is an abelian group.

The second part of the proof of Theorem 1.1, carried out in Section 3, establishes the
following result using an argument known as spectral sequence comparison:

Lemma 1.4 Let � be the fundamental group of a closed, orientable 3–manifold M,
and let �W �1.M /! G be a surjective homomorphism. If ker.�/ � �.2/, then the
image of the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ is cyclic.

As we will show in section 4, Theorem 1.1 follows easily from Lemma 1.4 together with
the relationship between the cup-product pairing and the linking pairing established in
Section 2.

We remark that the methods of this paper are purely algebraic, and also apply to
Poincaré duality groups of dimension 3.
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2 The linking pairing on H1.M /Tors and cup products in
quotients of �1.M / with maximal abelianization

Throughout this paper, we will let M be a closed orientable 3–manifold, � de-
note �1.M /, h�;�i denote the linking pairing on H1.M /Tors , and ŒM � 2 H3.M /

denote the fundamental class of M . For functoriality reasons, we will regard the
image of the linking pairing h�;�i as an element of H0.M;Q=Z/, rather than
as an element of the abstract group Q=Z. It will also be convenient to work the
dual pairing �W H 2.M /Tors˝H 2.M /Tors!H0.M;Q=Z/, defined by �.!1; !2/D

hŒM � _ !1; ŒM � _ !2i. This pairing satisfies the well-known identity

(2-1) �.!1; !2/D ŒM � _ .!1 ^ˇ�1.!2//;

where ˇW H 1.M;Q=Z/!H 2.M;Z/ denotes the Bockstein homomorphism arising
from the short exact sequence 0! Z!Q!Q=Z! 0.

The following lemma shows how the linking pairing on H1.M /Tors relates to the
cup-product pairing H 2.G/˝H 2.G/!H 4.G/.

Lemma 2.1 Let qW �!G be a surjective homomorphism onto a finite group G , and
let zqW M ! BG be a continuous map from M to the classifying space of G such that
zq�W �1.M /! �1.BG/ŠG equals q . Given !1; !2 2H 2.G/,

zq�
�
�.zq�.!1/; zq

�.!2//
�
D zq�.ŒM �/ _ ˇ�1.!1 ^!2/:

Proof We begin by noting that the expressions on the left-hand side of the above iden-
tity are well defined, since H 2.G/ is a finite group, and therefore zq�.!/2H 2.M /Tors .
Note also that, since G is finite, H i.G;Q/ D 0 for all i > 0. It follows that
ˇW H 1.G;Q=Z/ ! H 2.G;Z/ is an isomorphism, and therefore the map ˇ�1 ap-
pearing on the right-hand side of the above equation is well defined as well.

Recall that the cup-product pairing H i.G;A/˝H j .G;Z/! H iCj .G;A˝Z/ Š
H iCj .G;A/ equips H�.G;A/ with the structure of a right H�.G/–module. Given a
short exact sequence 0!A!B! C ! 0 of G –modules, the connecting homomor-
phisms in the long exact sequence

� � � !H i.G;A/!H i.G;B/!H i.G;C /
ı
!H iC1.G;A/! � � �

fit together to give an H�.G/–module homomorphism ıW H�.G;C /!H�.G;A/; ie
given ˛ 2H�.G;C / and ! 2H�.G/, ı.˛/ ^ ! D ı.˛ ^ !/; see [4, Chapter V.3].
Since the Bockstein homomorphism ˇW H�.G;Q=Z/! H�.G;Z/ is given by the
connecting homomorphism in the long exact sequence in cohomology arising from
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the short exact sequence 0! Z! Q! Q=Z! 0, given ! 2 H 1.G;Q=Z/ and
� 2 H 1.G;Z/, ˇ.!/ ^ � D ˇ.! ^ �/. It follows that given �1; �2 2 H 2.G;Z/,
�1 ^�2 D ˇ.ˇ

�1.�1/ ^ �2/, and therefore

(2-2) ˇ�1.�1 ^�2/D ˇ
�1.�1/ ^ �2:

Recall that for a continuous map f W X ! Y between topological spaces, the cap
product satisfies the following naturality property for c 2Hi.X /; � 2H j .Y /:

(2-3) f�.c _f �.�//D f�.c/ _ �:

Applying these identities together with the identity (2-1) for the pairing � and naturality
of the cup product and the Bockstein homomorphism, we obtain

zq�
�
�
�
zq�.!1/; zq

�.!2/
�� (2-1)
D zq�

�
ŒM � _

�
zq�.!1/ ^ ˇ�1.zq�.!2//

��
D zq�

�
ŒM � _

�
zq�.!1/ ^ zq

�.ˇ�1.!2//
��

D zq�
�
ŒM � _ zq�

�
!1 ^ˇ�1.!2/

��
(2-3)
D zq�.ŒM �/ _ .!1 ^ˇ�1.!2//

(2-2)
D zq�.ŒM �/ _ ˇ�1.!1 ^!2/:

We now turn to the proof of Theorem 1.3, which will require several preliminary
lemmas.

Lemma 2.2 Let f W X ! Y be a continuous map between topological spaces such
that H2.X / and H2.Y / are finite. If f�W H1.X /!H1.Y / is an isomorphism, then
f �W H 2.Y /!H 2.X / is an isomorphism.

Proof By naturality of the universal coefficients exact sequence, we have the following
commutative diagram of exact sequences:

0 // Ext.H1.Y /;Z/ //

f �

��

H 2.Y / //

f �

��

Hom.H2.Y /;Z/ //

f �

��

0

0 // Ext.H1.X /;Z/ // H 2.X / // Hom.H2.X /;Z/ // 0

Since H2.Y / and H2.X / are finite, the Hom terms in the above diagram are trivial
and therefore f �W H 2.Y / ! H 2.X / is completely determined by the morphism
f �W Ext.H1.Y /;Z/! Ext.H1.X /;Z/. If f�W H1.X /!H1.Y / is an isomorphism,
then f �W Ext.H1.Y /;Z/! Ext.H1.X /;Z/ is an isomorphism by functoriality, so the
lemma follows.
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Note that since finite groups have finite second homology groups, Lemma 2.2 can be
applied to any homomorphism between finite groups that induces an isomorphism on
the level of abelianizations. We will use the following simple consequence of this
lemma several times in what follows.

Lemma 2.3 Let M be a rational homology 3–sphere, let qW �1.M /!G be a surjec-
tive homomorphism onto a finite group, and let zqW M!BG be a continuous homomor-
phism from M to the classifying space of G such that zq�W �1.M /! �1.BG/ŠG is
equal to q . If ker.q/� �1.M /.1/ , then zq�W H 2.G/!H 2.M / is an isomorphism.

Proof We claim that the hypotheses of Lemma 2.2 hold in this setting. To see
that q�W H1.M / ! H1.G/ is an isomorphism, note that since ker.q/ � �.1/ , the
abelianization map � ! �=�.1/ Š H1.M / factors through q . It follows that the
homomorphism zq�W H1.M /!H1.G/ is injective. Since the map q is surjective, the
induced map zq�W H1.M /!H1.G/ is surjective as well.

Since H2.G/ is finite for any finite group G , it remains to check that H2.M / is
finite. This is a simple consequence of Poincaré duality and the universal coefficients
theorem, since H2.M / Š H 1.M / Š Hom.H1.M /;Z/, and Hom.H1.M /;Z/ D 0

since H1.M / is a torsion group.

The next lemma we will need is the following well-known result on the values taken
by the linking form.

Lemma 2.4 Let M be a 3–manifold. Given a 2 H 2.M /Tors , there exists b 2

H 2.M /Tors such that ord.�.a; b//D ord.a/.

Proof Let A denote H 2.M /Tors . It is a well-known consequence of Poincaré duality
that �W A�A!Q=Z is nondegenerate, so the homomorphism A! Hom.A;Q=Z/
given by a 7! �.a;�/ is injective. Given b 2A, let �b D ord.a/= ord.�.a; b//. Let d

be the greatest common divisor of f�b j b 2Ag. Then

ord.a/
d
��.a; b/D

�b � ord.�.a; b//
d

��.a; b/D
�b

d
� ord.�.a; b// ��.a; b/D 0

for all b , so .ord.a/=d/ � �.a;�/D 0, and therefore ord.�.a;�// divides ord.a/=d .
Since a 7! �.a;�/ is an isomorphism, ord.�.a;�//D ord.a/, so d D˙1. It follows
that for each prime p dividing ord.a/, there exists an element bp such that �bp

is
coprime to p , and hence the p–part of ord.a/ divides ord.�.a; b//. By taking a
multiple of bp if necessary, we can assume that ord.�.a; bp// is exactly equal to the
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p–part of ord.a/. Since the sum of a set of elements with pairwise coprime orders
n1; n2; : : : ; n` , in an abelian group has order given by n1 � n2 � � � � � n` ,

ord.�.a; b//D ord
�
�.a;

X
p

bp/

�
D ord

�X
p

�.a; bp/

�
D

Y
p

ord �.a; bp/D ord.a/:

The proof of Theorem 1.3 follows easily from the above lemmas.

Proof of Theorem 1.3 Let qW � ! G be a surjective homomorphism onto a finite
group such that ker.q/� �.1/ . Note that By Lemma 2.3, zq�W H 2.G/!H 2.M / is
an isomorphism.

We first show that the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ is nondegen-
erate. Given a nontrivial element !1 2H 2.G/, zq�.!1/ gives a nontrivial element of
H 2.M /Tors since zq� is injective. By Lemma 2.4, there exists an element � 2H 2.M /

such that the order of �.zq�.!1/; �/ is equal to the order of !1 , and since zq�W H 2.G/!

H 2.M / is surjective, there exists an element !2 2 H 2.G/ such that zq�.!2/ D �.
Applying Lemma 2.1 together with the fact that zq�W H0.M;Q=Z/!H0.G;Q=Z/ is
an isomorphism, we have

0¤ zq�.�.zq
�.!1/; �//D zq�.�.zq

�.!1/; zq
�.!1///D zq�.ŒM �/ _ ˇ�1.!1 ^!2/:

This shows that !1 ^ !2 ¤ 0, and since !1 was an arbitrary nontrivial element of
H 2.G/, the cup product pairing H 2.G/˝H 2.G/!H 4.G/ is nondegenerate.

Note that the order of zq�.ŒM �/ _ ˇ�1.!1 ^ !2/ divides the order of zq�.ŒM �/, so
since

ord.!1/D ord.�.zq�.!1/; �//D ord
�
zq�.ŒM �/ _ ˇ�1.!1 ^!2/

�
;

the order of !1 divides ord.zq�.ŒM �// for all !1 2 H 2.G/. This shows that
ord.zq�.ŒM �// � H 2.G/ D 0. Since H 2.G/ Š H 2.M / Š H1.M /, ord.zq�.ŒM �//

annihilates H1.M / as well.

3 Cup products in H �.G/ for finite quotients G Š�1.M/=N

with N < �1.M/.2/

In this section we prove Lemma 1.4 from the introduction. Throughout this section,
we will let G be a finite group, and we will let �W �1.M /Š �! G be a surjective
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homomorphism such that ker.�/� �.2/ . We will also let QDH1.M /, N D Œ�; ��,
K D ŒG;G�, and we will refer to the maps labeled in the following commutative
diagram of exact sequences:

1 // N //

r

��

�
qı� //

�

��

Q //

id
��

1

1 // K // G
q // Q // 1

The above commutative diagram corresponds to a commutative diagram of continuous
maps of the form

zM //

zr

��

M
zqız� //

z�

��

BQ

id
��

BK // BG
zq // BQ;

where zM is the regular covering space of M corresponding to N <�1.M /. The map
z�� induces a morphism between the Lyndon–Hochschild–Serre spectral sequence for
the extension 1!K!G!Q! 1 and the Cartan–Serre spectral sequence for the
regular cover zM !M. The proof of Lemma 1.4 proceeds by analyzing this morphism.
We will require several preliminary lemmas.

Lemma 3.1 The cover zM is a rational homology 3–sphere and zr�W H 2.K/ !

H 2. zM / is an isomorphism.

Proof Since � surjects onto G , N Š �1. zM / surjects onto K and H1. zM / surjects
onto H1.K/. By assumption ker.�/ � �.2/ Š ŒN;N � D N .1/ and r D �jN , so
ker.r/ � N .1/. The abelianization map N ! N=N .1/ Š H1. zM / therefore factors
through r , and so zr�W H1. zM /!H1.K/ is an isomorphism. Since K is a finite group,
its abelianization H1.K/ is also finite, so H1.M;Q/ Š H1.K/˝Q is trivial, and
therefore zM is a rational homology 3–sphere. The result then follows by Lemma 2.3
in Section 2.

To set some notation for the next lemmas, let .Ek/
˛ , .dk/

˛ and .Ek/
ˇ , .dk/

ˇ denote
the pages and differentials in the cohomological spectral sequences H r .Q;H s.K//D

)H rCs.G/ and H r .Q;H s. zM //D)H rCs.M / respectively.

Algebraic & Geometric Topology, Volume 15 (2015)



On finite derived quotients of 3–manifold groups 3365

Lemma 3.2 There exists a commutative diagram with exact rows of the form

(3-1)

0 // .E1;2
4
/˛ //

��
4
��

.E
1;2
3
/˛
.d

1;2

3
/˛
//

��
3
��

.E
4;0
3
/˛ //

��
3
��

.E
4;0
4
/˛ //

��
4
��

0

0 // .E1;2
4
/ˇ // .E1;2

3
/ˇ
.d

1;2

3
/ˇ
// .E4;0

3
/ˇ // .E4;0

4
/ˇ // 0

where the middle two homomorphisms labeled ��
3

are isomorphisms.

Proof Note that since the first cohomology group with integral coefficients is trivial
for any finite group, .E2/

˛ has the following form:

H 0.Q;H 3.K// H 1.Q;H 3.K// H 2.Q;H 3.K// H 3.Q;H 3.K// H 4.Q;H 3.K//

H 0.Q;H 2.K// H 1.Q;H 2.K// H 2.Q;H 2.K// H 3.Q;H 2.K// H 4.Q;H 2.K//

0 0 0 0 0

Z 0 H 2.Q/ H 3.Q/ H 4.Q/

By assumption the manifold M is orientable, so Q acts on zM by orientation preserving
homeomorphisms. It follows that Q acts on H 3. zM ;Z/ Š Z trivially, and hence
H i.Q;H 3. zM ;Z//ŠH i.Q/ for all i . Furthermore, since zM is a rational homology
3–sphere and H 1. zM /Š Hom.H1. zM /;Z/D 0, .E2/

ˇ has the following form:

Z 0 H 2.Q/ H 3.Q/ H 4.Q/

H 0.Q;H 2. zM // H 1.Q;H 2. zM // H 2.Q;H 2. zM // H 3.Q;H 2. zM // H 4.Q;H 2. zM //

0 0 0 0 0

Z 0 H 2.Q/ H 3.Q/ H 4.Q/

The map z� induces a morphism between these two spectral sequences, ie a se-
quence of homomorphisms ��

k
W .Ek/

˛! .Ek/
ˇ such that ��

k
ı .dk/

˛ D .dk/
ˇ ı ��

k
,

��
kC1

is the map induced on homology by ��
k

, and the map ��
2
W H r .Q;H s.K//!

H r .Q;H s. zM // is induced by the Q-module homomorphism q�W H s.K/!H s. zM /.
Since q�W H 2.K/!H 2. zM / is an isomorphism by Lemma 3.1 and q�W H s.K/!

H s. zM / is trivially an isomorphism for s 2 f0; 1g, the maps ��
2
W .E

r;s
2
/˛! .E

r;s
2
/ˇ

are isomorphisms for all pairs .r; s/ such that s � 2.
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Since the first row of each spectral sequence vanishes, the differentials .d i;2
2
/˛ , .d i;2

2
/ˇ

and .d i;1
2
/˛ , .d i;1

2
/ˇ , whose domain or range lie in the first row, are trivial for all i .

It follows that 0th row of the E3 –page of each spectral sequence is identical to the
0th row of the E2 –page, ie .Ei;0

3
/˛ Š .E

i;0
2
/˛ and .Ei;0

3
/ˇ Š .E

i;0
2
/ˇ for all i . Since

none of the d2 –differentials have image lying in the 0th or first columns, it also follows
that for j 2 f0; 1g, .Ej ;2

3
/˛ Š .E

j ;2
2
/˛ and .Ej ;2

3
/ˇ Š .E

j ;2
2
/ˇ .

Note that the E
1;2
3

terms of both spectral sequences are outside the range of the d3

differential, and that the d3 differential vanishes on the E
4;0
3

terms. This implies that
the rows in the following commutative diagram are exact:

0 // .E1;2
4
/˛ //

��
4
��

.E
1;2
3
/˛
.d

1;2

3
/˛
//

��
3
��

.E
4;0
3
/˛ //

��
3
��

.E
4;0
4
/˛ //

��
4
��

0

0 // .E1;2
4
/ˇ // .E1;2

3
/ˇ
.d

1;2

3
/ˇ
// .E4;0

3
/ˇ // .E4;0

4
/ˇ // 0

The fact that ��
2

induces isomorphisms on E
r;s
2

for s � 2 implies that ��
3

induces
isomorphisms .E1;2

3
/˛! .E

1;2
3
/ˇ and .E4;0

3
/˛! .E

4;0
3
/ˇ , since ��

3
is induced by ��

2

and each of these groups are isomorphic to the corresponding entries on the E2 –page
of the spectral sequence. This shows that the middle two homomorphisms in the above
commutative diagram are isomorphisms.

Lemma 3.3 The term .E
1;2
4
/ˇ is trivial.

Proof The term .E
1;2
4
/ˇ is isomorphic to .E1;2

1 /ˇ , so it suffices to show that .E1;2
1 /ˇ

is trivial. The term .E
1;2
1 /ˇ lies on the third diagonal of the E1–page for the spectral

sequence H r .Q;H s. zM //D)H rCs.M /. Since H r .Q;H s. zM // is annihilated by
jQj for any r � 1, the group E

r;s
k

is torsion for all r � 1. The groups .Ei;3�i
1 /ˇ give

successive quotients in the filtration

.E3;0
1 /ˇ Š F3

3 � F3
2 � F3

1 � F3
0 DH 3.M /Š Z:

Since Z is torsion free and .E3;0
1 /ˇ is torsion, .E3;0

1 /ˇ Š 0. This implies that

.E2;1
1 /ˇ Š F3

2 =F
3
3 Š F3

2 =.E
3;0
1 /Š F3

2 ;

so F3
2
� Z is torsion and hence trivial as well. Applying this argument once more, we

find that .E1;2
1 /ˇ Š F3

1
=F3

2
must vanish as well.

Lemma 3.4 The term .E
4;0
4
/˛ is isomorphic to .E4;0

4
/ˇ .
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Proof By Lemma 3.3, the term in bottom left of the commutative diagram (3-1) from
Lemma 3.2 is trivial. The commutativity of the diagram together with the fact that
the second vertical map is an isomorphism shows that .E1;2

4
/˛ is also trivial. Since

the first 3 maps in this commutative diagram of exact sequences are isomorphisms,
a straightforward diagram chasing argument shows that the last map ��

4
W .E

4;0
4
/˛!

.E
4;0
4
/ˇ is an isomorphism as well.

Lemma 3.5 The term .E
4;0
4
/ˇ is cyclic.

Proof Note that there is an exact sequence

.E
0;3
4
/ˇ

.d
4;0

4
/ˇ

�����! .E
4;0
4
/ˇ �! .E

4;0
5
/ˇ �! 0:

Since E
4;0
5
ŠE

4;0
1 and H 4.�/D 0, it follows that .d4;0

4
/ˇ is surjective. The group

.E
0;3
4
/ˇ is isomorphic to a subgroup of

.E
0;3
2
/ˇ ŠH 0.Q;H 3. zM //Š Z;

so since .E4;0
4
/ˇ is isomorphic to a quotient of .E0;3

4
/ˇ, .E4;0

4
/ˇ is cyclic.

Lemma 3.6 The map q�W H 4.Q/!H 4.G/ has cyclic image.

Proof Recall that the image of q�W H 4.Q/!H 4.G/ is isomorphic to .E4;0
1 /˛, and

that .E4;0
1 /˛ is isomorphic to a quotient of .E4;0

4
/˛ . By Lemma 3.4,

.E
4;0
4
/˛ Š .E

4;0
4
/ˇ;

and by Lemma 3.5, .E4;0
4
/ˇ is cyclic. Since quotients of cyclic groups are cyclic, the

result follows.

We are now ready to prove Lemma 1.4, which is an immediate consequence of
Lemma 2.2 from the previous section and Lemma 3.6.

Proof of Lemma 1.4 Let !1 and !2 be elements of H 2.G/. By Lemma 2.2,
q�W H 2.Q/!H 2.G/ is surjective, so there exist ˛1; ˛22H 2.Q/ such that q�.˛1/D

!1 and q�.˛2/D !2 . It follows that

!1 ^!2 D q�.˛1/ ^ q�.˛2/D q�.˛1 ^˛2/;

so any cup product of elements in H 2.G/ lies in q�.H 4.Q//. By Lemma 3.6, the
image of q�W H 4.Q/!H 4.G/ is cyclic.
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4 The proof of Theorem 1.1

We now turn to the proof of the main theorem.

Proof of Theorem 1.1 Since ker.q/� �.2/ and �.2/ � �.1/ , the nondegeneracy of
the cup-product pairing follows from Theorem 1.3. The cyclicity of the image C of
the cup-product pairing H 2.G/˝H 2.G/!H 4.G/ follows from Lemma 3.6, so it
remains to demonstrate the existence of the desired embedding i W C !Q=Z.

Let  W H 4.G/!H0.G;Q=Z/ denote the map ˛ 7! zq�.ŒM �/ _ ˇ�1.˛/, and let i

denote the restriction of  to C . By Lemma 2, given !1 and !2 in H 2.G/,

(4-1) i.!1 ^!2/D zq�.ŒM �/ _ ˇ�1.!1 ^!2/D zq�.�.zq
�.!1/; zq

�.!2///:

After identifying H0.G;Q=Z/ and H0.M;Q=Z/ with Q=Z in the natural way, the
last term of this equation is equal to hŒM � _ zq�.!1/; ŒM � _ zq�.!2/i.

It remains to check that i W C ! Q=Z is injective. Given an abelian group A, let
exp.A/ denote the maximal order of an element of A. Note that for a finite abelian
group A, exp.A/D exp.A˝A/. Since C is cyclic and is isomorphic to a quotient
of H 2.G/˝H 2.G/, it follows that the order of C divides exp.H 2.G/˝H 2.G//D

exp.H 2.G//. It therefore suffices to show that i.C / contains an element of order
exp.H 2.G//.

By Lemma 2.4 there exist elements �1; �2 2H 2.M / such that the order of �.�1; �2/ is
equal to exp.H 2.M //. Since ker.q/��.1/, q�W H 2.G/!H 2.M / is an isomorphism
by Lemma 2.3, so exp.H 2.G//D exp.H 2.M //, and there exist elements !1 and !2

such that q�.!i/D �i . Equation (4-1) above therefore shows that

i.!1 ^!2/D zq�.�.�1; �2//;

and since zq�W H0.M;Q=Z/!H0.G;Q=Z/ is an isomorphism,

ord.i.!1 ^!2//D ord.zq�.�.�1; �2///D ord.�.�1; �2//D exp.H 2.G//:
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