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Systoles and kissing numbers
of finite area hyperbolic surfaces

FEDERICA FANONI
HUGO PARLIER

We study the number and the length of systoles on complete finite area orientable
hyperbolic surfaces. In particular, we prove upper bounds on the number of systoles
that a surface can have (the so-called kissing number for hyperbolic surfaces). Our
main result is a bound which only depends on the topology of the surface and which
grows subquadratically in the genus.

30F10; 32G15, 53C22

1 Introduction

In analogy with classical sphere packing problems in R”, Schmutz Schaller named
and studied kissing numbers for hyperbolic surfaces. This is a particular instance of a
more general analogy between the study of n—dimensional lattices (and their parameter
spaces) and the study of hyperbolic surfaces (and their parameter spaces). Both are
natural generalizations of the study of 2—dimensional flat tori. The natural parameter
spaces of these tori are H and H/ PSL, (Z); their higher-dimensional analogues include
on the one hand the spaces of lattices and on the other Teichmiiller and moduli spaces.

The classical kissing number problem is to bound the number of disjoint open unit
balls that can be tangent to a fixed unit ball; the lattice kissing number is the same
problem but where one asks that the centers of the spheres lie on some lattice. This is
in fact an equivalent problem to counting the number of systoles (up to isotopy) of the
underlying lattice. Another classical topic for flat tori is the study of Hermite constants.
This involves finding sharp upper bounds on the length of shortest non-trivial lattice
vectors or, in other words, bounds on the systole length of the quotient tori. Both of
these problems make perfect sense for finite-area hyperbolic surfaces and have been
studied by a variety of authors including Bavard [3] and Schmutz Schaller [17; 19].

Schmutz Schaller provided a variety of results on the length and the number of systoles
for complete hyperbolic surfaces in both the closed and finite area cases. Lower
bounds for either of these quantities can be found using arithmetic methods. Buser
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and Sarnak [8] were the first to show that there exist families S} of closed surfaces of
genus gi with gz — 0o as k — oo whose systole length grows like

sys(Sk) > 5 log gk

Katz, Schaps and Vishne [11] generalized this construction to principal congruence
subgroups of arbitrary arithmetic surfaces. Makisumi [12] showed that, in some sense,
this is the best one can hope for via arithmetic constructions. Schmutz Schaller [19]
found analogous results for kissing numbers: for any ¢ > 0, there is a family of closed
surfaces T of genus gz with g — 0o as k — oo whose number of systoles grows
like
. A—S
Kiss(Ty) > g7 -

For surfaces with cusps, families reaching these lower bounds (for both quantities)
are directly obtainable by considering principal congruence subgroups of PSL,(Z)
(see Schmutz Schaller [18], Brooks [S] and Balacheff, Makover and Parlier [2]). The
number of cusps in these examples grows roughly like g%/3.

Upper bounds for these quantities have also been studied, in particular for closed
surfaces. Via an easy area argument, one can obtain an upper bound on the systole
length of closed surfaces of genus g that grows like 2logg. This complements
Buser and Sarnak’s lower bound to show that the rough growth is logarithmic, but the
discrepancy between the % and the 2 remains mysterious. Schmutz Schaller, using a
disk packing argument of Fejes T6th, proved a very nice upper bound on systole length
which is actually sharp for the congruence subgroups of PSL,(Z) (see also Adams [1]
and Bavard [4]). We use this result in an essential way and give the exact formulation
in the sequel (Theorem 2.4).

For kissing numbers, the best known upper bounds are results of the second author [13].
In particular, there is a bound which depends only on the genus g and which grows
at most subquadratically in function of g. Again, there is a discrepancy between the
g*/3 lower bound and the g2 upper bound (although the latter cannot be sharp). Upper
bounds for kissing numbers of non-closed finite-area complete surfaces (ie surfaces
with cusps) have yet to be approached. Filling this gap is the main goal of our article.

One of the main consequences of what we obtain is the following:

Theorem 4.11 There exists a universal constant C > 0 such that, for any S € Mg p,
g > 1, its kissing number satisfies

. g

Kiss(S) <C(g +n)—————.
()= Cletmi
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Systoles and kissing numbers of finite area hyperbolic surfaces 3411

We obtain this result as a consequence of a number of results concerning the length
and the topological configurations of systoles.

In particular, concerning the length of systoles, we show the following:

Theorem 2.3 There exists a universal constant K <8 such thatevery S € Mg , (g #0)
satisfies
sys(S) <2logg + K.

The result is not surprising in view of the results for closed surfaces and Schmutz
Schaller’s bound, but it is interesting to note that it is asymptotically a stronger bound
when the growth of the number of cusps is bounded above by gl/ 2,

Our results on topological configurations of systoles can be summarized as follows:

Propositions 3.2 and 3.3 and Lemma 3.5 If @ and B are systoles of a surface
S € Mgy, then

i(a,B)<2

and, if i (o, B) = 2, then either o or B surrounds two cusps. Furthermore, for every
genus g > 0, there exists n(g) € N and a surface Sy of genus g with n(g) cusps
which has systoles that intersect twice.

The above result is in contrast with closed surfaces, where systoles can intersect at
most once.

Finally, we obtain the following bound, which relates systolic lengths and kissing
numbers.

Theorem 4.10 If S € Mg , has systole of length sys(S) = £, then

L/2
Kiss(S) < 20n cosh(1¢) + 20067(2g —2+n).

The article is organized as follows. In Section 2 we prove our upper bounds on systole
length. Section 3 is dedicated to the study of the topological configurations of systoles.
In Section 4 we prove Theorems 4.10 and 4.11.
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3412 Federica Fanoni and Hugo Parlier

2 Bounds on lengths of systoles

We denote by Mg , the moduli space of surfaces of signature (g,7n), by which we
mean the space of all complete finite area hyperbolic surfaces of genus g with n cusps
up to isometry. We shall always assume that g and »n satisfy 3g —34+n > 0. A systole
of a surface S € My ; is a shortest closed geodesic. We think of systoles — and closed
geodesics in general — as being non-oriented. Given a surface S, we denote its systole
length (the length of one of its systoles) by sys(.S). The main objective of this section
is to show that every surface of genus g > 1, with or without cusps, has systole length
bounded above by a function which only depends on the genus.

For any cusp ¢, let H, be the associated open horoball region of area 2. By the collar
lemma (see for instance Chapter 4 of Buser [7]), two such regions are disjoint.

For any cusp ¢ and any non-negative r, define the set D, (c) to be
Dy(c):={peS|d(p.H) <rjUH,.
If D;(c) is homeomorphic to a once-punctured disk, we can compute its area, which is
area(D,(¢)) = 2¢".
Lemma 2.1 (a) If there are two cusps ¢ and ¢’ such that D,(c) and D,(c’) are
tangent, then the simple closed geodesic forming a pair of pants with them has length

4 arccoshe’”, so
sys(S) < 4arccosh(e”).

(b) If D,(c) is tangent to itself for some r > log 2, then

sys(S) < 2arccosh(e” —1).
Proof (a) Consider the pair of pants determined by the two cusps and the simple
closed geodesic y surrounding them. Cut it along the orthogonal from y to itself,
the shortest geodesic between the cusps and the perpendiculars from the cusps to y.

Consider one of the four obtained quadrilaterals; we denote its vertices by ¢, s, # and ¢
and the intersection point of dH, with a side by p, as in Figure 1.

Figure 1: One of the quadrilaterals
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Ci A

Figure 2: In the upper half-plane

Draw the quadrilateral in the upper half-plane, choosing infinity as the ideal point;
see Figure 2. We fix the two geodesics containing gc¢ and 7c tobe x =0 and x = 1.
The area of H, intersected with the quadrilateral is 1, so dH, is given by y = 1
and p =i. Moreover, d(p,q) = %d(Hc, Hy)=r,s0 g=ie”". Consider C; and C,,
the Euclidean circles representing the geodesics through ¢ and s and through s and ¢.

Since C; L {x =0}, C, L {x =1} and C; L C;, they have equations

Cy: x2+y? =R?,

Cr: (x—=1)2+)y?=1-R?
for some R. As g € C;, we have R = ¢”. By imposing d(t,s) = %6, we obtain
£ = 4 arccosh(e”).

(b) The cusp ¢ with the curve of length 2r from H, and back determines a pair of
pants with at least one simple closed geodesic as boundary.

If the pair of pants has two cusps and a boundary curve «, we can cut it along the
geodesic between the two cusps, the shortest geodesics between the cusps and o and
the geodesic containing curve of length 2r. We get two right-angled triangles with
two ideal vertices and %n and two quadrilaterals with three right angles and an ideal
vertex, as in Figure 3.

Figure 3: The cut pair of pants with two cusps
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|

Figure 4: The cut pair of pants with one cusp

By direct computation similar to before, we obtain
{(a) = 2arccosh(e” —1).

If the pair of pants has two boundary curves, we denote them by « and 8 and we
suppose that £(«) < £(8). We cut along the orthogonal from « to 8, the shortest
geodesics from « and § to the horoball and the geodesic containing the curve of
length 2r. We obtain four quadrilaterals, with three right angles and an ideal vertex,
pairwise isometric; see Figure 4.

Again by direct computation we have
£(a) = 2arccosh(ae”),
£(B) = 2arccosh((1 —a)e”),

where « is the area of H, intersected with one of the two quadrilaterals containing
a part of «. Since £(«) < £(B), we have a < % Moreover, « is longest when a is
maximum, that is, when a = % In this case

() = £(B) = 2arccosh(1e”).
Since by assumption » > log 2, we get that in both cases the curve o satisfies

£(a) < 2arccosh(e” —1). O

Remark 2.2 From the proof of the lemma we also have that, if D, (c) is tangent to
itself for some r <log2, then sys(S) < 2arcsinh 1.

We can now prove our bound on systole length for surfaces of genus g > 1.
Theorem 2.3 There exists a universal constant K < 8 such that every S € Mg

satisfies
sys(S) <2logg + K.
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Proof Set £ = sys(S). We begin by recalling the well-known situation where n = 0
(and thus g > 2). As the surface is closed, any open disk Dy/,(p) of radius %Z is
embedded in the surface and thus

area(Dy/2(p)) = 2Jr(cosh(%€) — 1) <area(S) =27(2g —2),

which in turn implies
{ <2logg+2log4.

Suppose now that n > 1. We split the proof into three non-mutually exclusive cases.
The first situation we consider is when there are “many” cusps (how many will be
made explicit); in this case, two of the D, (r) have to meet for a “small” r and will
determine a short curve. In the second case, we assume that there are two cusps which
are close to each other and the systole length will be bounded by the length of the curve
surrounding them. In the final situation, there are “few” cusps and we further assume
any two are far away; in this case, we show that there is a cusp with a short loop from
its horoball to itself, which in turn determines a short curve.

Case 1 n>./2ng.

If the sets D, (c) are pairwise disjoint for different cusps ¢ and each homeomorphic to
a once-punctured disk, then

area( U D,(c)) =2ne” <area(S) =27(2g +n-2);

c cusp
thus,
o < n(2g—2+n).

n
Since n > /2mg, this implies

el < Vg =1 +r
/S
So, for some r < log(v/2m(g —1)/,/g + m), either two D, (c) are tangent to each
other or one is tangent to itself. Lemma 2.1 now implies
V2m(g—1) )
— + .
NE
Case 2 There are distinct cusps ¢ and ¢, with d(H,,, H,) <log(2n(g—14./27g)).

<4 arccosh(

By Lemma 2.1,

{ < 4arccosh(\/2n(g -1+ \/271g)),

and we are done.

Algebraic € Geometric Topology, Volume 15 (2015)



3416 Federica Fanoni and Hugo Parlier

Case3 0<n < ,/2mg and any two cusps ¢; and c; satisty

d(H.,, He,) > log(2n(g — 1+ /27g)).

We fix a cusp c¢. Since any two cusps are far away, for r <log(2n(g—1+ /27g))
the set D, (c) is disjoint from any other H,/. If it is also an embedded, once-punctured
disk, then

area(D,(c)) = 2¢" <area(S) <4n(g—1+ /27g).
SO

r <log(2n(g—1+ /27g)).

We deduce that, for some r < log(27(g — 1+ /27g)), D,(c) is tangent to itself. By
Remark 2.2, if r <log?2 then £ < 2arcsinh 1. Otherwise, by Lemma 2.1, we obtain

£ <2arccosh(2m(g — 1+ /2mg) —1).

Now any surface with n > 0 will be in one of the three cases detailed above and, as
such, we can deduce

S max{4 arccosh(+v/27 (g — 1)/J/g+m),4 arccosh(\/271(g —1+/2ng)),

2arccosh(2n(g— 1+ /27wg) — 1)}
<2logg +8. ]

Applying the techniques of the above theorem to punctured spheres, one can show
that the systole length of a punctured sphere is bounded by a uniform constant (which
doesn’t depend on the number of cusps). This is also a consequence of a theorem of
Schmutz Schaller, who provided a different bound for the systole length of punctured
surfaces.

Theorem 2.4 [17] For S € Mg, withn > 2 we have
6g—6+3
sys(S) < 4 arccosh g—+n

For n ~ g%, Schmutz Schaller’s bound grows roughly like 4(1 —«)logg. So our

bound is stronger for & < 4, while Schmutz Schaller’s is better for « > %
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3 Intersection properties of systoles

It is well known, via a simple cutting and pasting argument, that systoles on closed
surfaces pairwise intersect at most once. On surfaces with cusps, this is not necessarily
the case. For instance, on punctured spheres it is not difficult to see that systoles can
intersect twice (the simplest case is a four-times punctured sphere with at least two
systoles — they necessarily intersect and the minimal intersection number between two
distinct curves is 2). This phenomenon also occurs for surfaces with positive genus.
An example of this can be derived from Buser’s hairy torus (see [7, Chapter 5]) with
cusps instead of boundary curves and explicit examples in all genera are given in the
sequel. On the other hand, since systole length is bounded within each moduli space, it
follows from the collar lemma that the intersection number between any two systoles is
also bounded. This can be considerably sharpened: the first main result of this section
will be that two systoles on punctured surfaces can intersect at most twice.

We begin with some notation and well-known preliminary results. A curve is non-
trivial if it represents a non-trivial element of the fundamental group. A non-trivial
curve is essential if it does not bound a cusp. In particular, systoles are the shortest
essential curves of a surface. Given two closed curves o and 8, we denote by i(«, )
their geometric intersection number (the minimum number of transversal intersection
points among representatives in the isotopy classes [«] and [8]). Two curves are said
to intersect minimally if they intersect minimally among all representatives of their
respective isotopy classes. The unique geodesics in the isotopy classes of simple closed
curves are also simple and intersect minimally.

Let @ and B be simple closed geodesics on a surface S with i(«, ) > 2 and fix
orientations on them. The curve « divides B into arcs between consecutive intersection
points. We say such an arc is of fype [ if the orientations at the two intersection points
are different and of type II if the orientations are the same; see Figure 5.

B B Type II

Type 1

Figure 5: The two kinds of arcs
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Note that the orientation at each intersection point depends on the choice of orientations
of « and B, but being of type I or II is independent of the choice of orientations.

Lemma 3.1 Ifo and B are systoles of a surface S € Mg, with i(a, B) > 2, all arcs
between consecutive intersection points are of type L

Proof By contradiction, suppose that 8 contains arcs of type II. If there are at least
two of them, there exists one, say B, of length at most % sys(S). Since B; divides o
into two arcs, one of the two is of length at most %sys(S ). Call this arc «; and
consider the curve o U 8.

If 1 U B; were essential, its geodesic representative would be shorter than sys(S),
which is impossible. Thus oy U 81 must be non-essential. However, one can construct
a curve y homotopic to @y U B; such that |y Na| = 1, so via the bigon criterion (see
for instance Farb and Margalit [9]) y and « intersect minimally. Thus

i(y,a) =1
and as such y is non-trivial in homology and is therefore essential, a contradiction.

If there is exactly one arc 8 of type II, there should be at least two (consecutive) arcs
B2 and B3 of type I. Then, if £(8;) < % sys(S), we can argue as before to obtain a
contradiction. If not, then £(8, U f3) < % sys(S). The arcs 5, B3 and o determine
an embedded four-holed sphere with a non-trivial curve of length at most sys(S). By
construction, the geodesic in the isotopy class of this curve is strictly shorter than the
systole, a contradiction. m]

Proposition 3.2 If o and B are systoles of S € Mgy, then i(a, B) < 2.

Proof Suppose by contradiction that i(c, 8) > 2. By Lemma 3.1, all arcs between
consecutive intersection points are of type I, so i(«, 8) is even. Thus there are at least
four intersection points and at least four arcs of 8 between consecutive intersection
points. This implies that there is an intersection point and two arcs 81 and 8, departing
from it with £(8; U B5) < % sys(S). We argue as in the proof of Lemma 3.1: 1, 8,
and o determine an embedded four-holed sphere with a non-trivial curve of length
at most % sys(S). By construction, the geodesic in the isotopy class of this curve is
strictly shorter than the systole, a contradiction. O

The next proposition shows that if two systoles intersect twice, there is a constraint on
the topological configuration of the two curves.

Algebraic € Geometric Topology, Volume 15 (2015)
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Proposition 3.3 If two systoles « and f intersect twice, one of them bounds two
cusps.

Proof The two curves cut each other into arcs o, oy and 81, B,. Without loss
of generality, we can assume £(oq) < £(B1) < %sys(S). Consider y; = a1 U B4
and y», = a7 U B,. As y; and y, do not surround bigons, they cannot be trivial and,
as they can be represented by curves of length strictly less than sys(.S), they must both
bound a cusp. Hence 8 bounds two cusps. |

An obvious consequence of Proposition 3.3 is that systoles on surfaces with at most
one cusp intersect at most once. In the case of tori this can be improved to show that a
surface with twice-intersecting systoles has at least three cusps.

Lemma3.4 IfS € M;,,and o and B are systoles of S, then i(«, ) < 1.

Proof Suppose two systoles & and f intersect twice. Then sys(S) > 4 arcsinh 1 (see
Gauglhofer and Semmler [10]) and, by Proposition 3.3, one of the two curves bounds
two cusps. Cut the surface along « and consider the one-holed torus component. The
length of the shortest closed geodesic y in the one-holed torus which doesn’t intersect o
satisfies (see Parlier [14])

cosh($€(y)) < cosh(%£(a)) + %
and £(y) > sys(S) = £(x), so

cosh(3£(a)) < cosh(3€(x)) + 3.
which contradicts £(«) > 4 arcsinh 1. a
On the other hand, we can prove that for every genus there is a punctured surface
with systoles intersecting twice. The constructions will involve gluing ideal hyperbolic
triangles. Any such triangle has a unique maximal embedded disk tangent to all three

sides. We say that two such triangles are glued without shear if their embedded disks
are tangent.

Lemma 3.5 Forevery g > 0, there exists n(g) € N and a surface S € My () With
two systoles intersecting twice.

Proof For g =0, we can set n(0) =4, as mentioned at the beginning of Section 3: any

four-times punctured sphere with at least two systoles will satisfy the requirement. To
show the existence of such a surface, pick any S € M 4. If it has only one systole y,
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Figure 6: The triangulation of the square

increase the length of y so that it is still a systole and there is another simple closed
geodesic on the surface of the same length.

For g > 1, we use a building block constructed as follows. Consider a square and a
triangulation of it with 32 triangles, given by first subdividing the square into a grid of
16 squares and then adding one diagonal for all squares, as in Figure 6.

Each of the triangles in the square will be replaced by an ideal hyperbolic triangle and
all gluings will be without shear.

For g =1, glue opposite sides of the square (again triangles are glued without shear)
to obtain a torus with 7(1) = 16 cusps.

For g > 2, consider a polygon obtained by gluing a 1 x (g — 1) rectangle and a
1 x 2(g — 1) rectangle along the long sides, as in Figure 7.

Think of this polygon as a 4g—gon (with sides corresponding to sides of the squares).
Fix an orientation and choose a starting side, to identify the 4g sides following the
standard pattern alblal_lbl_l cea gbgaglbgl to obtain a genus-g surface. If we now
replace each 1 x 1 square by the building block (always gluing adjacent triangles
without shear), we get a surface of genus g with a decomposition into 32-3(g — 1)
ideal triangles. Since it is a triangulation, the number of edges is % -32-3(g—1). By
an Euler characteristic argument, this implies that the surface has n(g) = 46g — 46
cusps.

(1—-3)t

Figure 7: The polygon for g =3
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For any g > 1, consider the set Cg of curves surrounding pairs of cusps which are
connected by an edge between vertices of degree 6 in the triangulation of the surface.
By construction, each of these intersects another such curve twice and we defer the
proof that these curves are systoles to Lemma 3.6. O

We now prove our claim that the curves in Cg are indeed systoles.
Lemma 3.6 Forall g > 1, the curves in Cg are systoles.

Proof Consider the triangulation of the surface. For g = 1, all vertices are of degree 6.
When g > 2, the pasting scheme associates all exterior vertices of the 4g—gon and the
point in the quotient has degree 12g — 6 (to see this, simply apply the hand-shaking
lemma to the graph given by the triangulation). The remaining vertices are all of
degree 6. We denote by I' the graph dual to the triangulation. From what we have just
said, for g = 1, cutting the surface along I" decomposes the surface into hexagons.
When g > 2, cutting along I" decomposes the surface into hexagons and a single
(12g—6)—gon.

Any simple closed oriented geodesic y on the surface can be homotoped to a curve
on I'. At every vertex crossed by the curve, the orientations on the surface and on
the curve give us a notion of “going left” or “going right”. We can associate to y a
word w in the matrices L = ((1) }) and R = (i (1)), where each L corresponds to a
left turn and each R to a right turn. This way of understanding curves on “zero shear
surfaces” is fully explained in [6]. In particular, Brooks and Makover show how to

compute the length of these curves in terms of the associated word:
{(y) = 2arccosh(3 Tr(w)).

Each curve in Cg corresponds to the word wo = RL*RL* (or LR*LR* or any cyclic
permutation of these, depending on the choice of an orientation and a starting point
on the curve), which, via a simple computation, has trace 34. To show that the curves
in Cg are systoles, it is enough to show that all other words corresponding to simple
closed geodesics have trace at least 34.

We use the following remark (see for instance [15]):

Remark 3.7 If a word can be written as w = ---wy--- Wy --- Wy - -+, then
Tr(w) = Tr(we (1) *** Wo k)

for any cyclic permutation o of 1,..., k.
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Let y be a simple closed geodesic which is not in Cg . First we observe that we only
need to consider curves represented by circuits in I'. Indeed, if ¢ corresponds to a
closed path which contains an essential (ie not corresponding to a curve going around
a cusp) circuit 3/, a word representing y will contain a word representing y’. By
Remark 3.7, y’ is at most as long as y and we can consider y’ instead. Otherwise, if y
is formed from non-essential circuits, it should contain at least two of them. Note that,
since non-essential circuits surround a cusp, they trace a hexagon or a (12g—6)—gon.
If both these circuits surround hexagons, we are in one of the following situations:

oot

In case (a) a word associated to the curve contains RL>--- RL> and in case (b) it
contains LR?--- RL?. In both cases, by Remark 3.7 and a simple computation, their
traces are bigger than 34. Now, if one of the two circuits surrounds the vertex of the
triangulation of degree 12g — 6, the curve is even longer.

Suppose then that y is represented by an essential circuit. If it passes through five
consecutive edges of a hexagon (said differently, a corresponding word contains L*)
and is not in Cg, the following modification of the curve (see Figure 8) provides an
essential circuit. A word of the curve on the left contains L R* L, while the one of the
curve on the right contains R?, so the trace decreases (again by Remark 3.7) and we
obtain a shorter curve.

We now assume a word w representing ¥ does not contain L* or R* and as such it
is made of blocks of type L' R/ for 1 <1i, j < 3. If w is made of four or more such
blocks, then

Trw > Tr((LR)*) > 34.

Figure 8: Shortening a curve
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Moreover, the length of w is at least 7, as the shortest circuits in I" are of length 6
and correspond to curves surrounding cusps. With this in hand, one needs to check
the finite set of words w made of blocks as above, of length at least 7, and of trace at
most 33. To do this one can proceed as follows. The conditions on w give two systems
of equations for the exponents of L and R (a system for the words made of two blocks
as above and one for words made of three blocks). These systems can be solved to
get the set of words we are interested in. It is then straightforward to check that the
curves corresponding to these words do not correspond to simple closed geodesics on
the surface. |

4 Kissing number bound

In this section we will prove an upper bound for the kissing number depending on
the systole length. We then deduce a universal upper bound depending only on the
signature of the surface. To do so, we separate the systoles into three sets and we give
separate bounds for each of their cardinalities.

For a surface S, let &(S) be the set of its systoles and Kiss(S) := |&(S)| be the
kissing number of S. We say that & and 8 bound a cusp if they form a pair of pants
with a cusp. We define:

A(S) :={o € &(S) | @ bounds two cusps}.
B(S):={ax e &(S)\ A(S) | « and B bound a cusp for some € S(S)\ A(S)}.
C(S):=6(S)\ (4(S)U B(S)).

Note that by Proposition 3.3 two systoles in &(S) \ 4(S) intersect at most once.
4.1 Boundson |[A(S)]

As seen in Lemma 2.1, a curve of length £ bounds two cusps ¢ and ¢’ if and only if
the distance between H, and H./ is

d(¢) = 2logcosh($¢),

To bound |A4(S)| we will bound the number of pairs of cusps at distance d(sys(.S)).

Lemmad4.1 Let S be a surface with sys(S) = { and ¢ a cusp of S. There are at most
|2 cosh(%ﬁ)J cusps ¢’ which satisfy d(H,, Hy) = d({).
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Proof Suppose c¢; and c;, are two cusps such that
d(He, He)) = d(He, He,) = d({).
Since sys(S) = £, the distance between H., and H,, is at least d({). Consider

o the segment « realizing the distance between H. and H,, ,
e the segment B realizing the distance between H. and H.,,

¢ the shortest arc y of dH, bounded by the endpoints of o and .

Let § be the unique geodesic segment freely homotopic with endpoints on dH,,
and dH,, to the curve o U B U y. Then its length is at least d({):

By a direct computation on the (non-geodesic) hexagon determined by «, 8, § and
the three horocycles, one can show that

{ _
)= cosh(%ﬁ)

Since d0H, has length 2, the number of cusps around ¢ at distance d({) is bounded

above by
2

1/cosh(1¢)’

which proves the claim as we are bounding an integer. |
As a consequence, we get the following:

Proposition 4.2 For S € Mg, with sys(S) = ¢,
|A(S)| < %nLZ cosh(%ﬁ)J.

Proof There are n cusps, each of which can be surrounded by at most |2 cosh(%@)]
cusps at distance d(£). The result follows as each curve surrounds two cusps. |
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Remark 4.3 We can get another upper bound for A(S) using the Euler characteristic
as follows.

Consider the set of punctures; if there is a systole bounding two of them, we join
them with a simple geodesic lying in the pair of pants determined by the systole. We
complete this set of geodesics into an ideal triangulation (decomposition into ideal
triangles) of the surface. The number of vertices of the triangulation is the number of
punctures n. If e is the number of edges, the number of triangles is %e. The Euler
characteristic of the compactified surface is 2g — 2, so
n—e+%e =2-12g.
From how we constructed the triangulation, it is clear that |A(S)| < e, so we get

|[A(S)| <3(n+2g—2).

Interestingly, this bound can also be seen as a corollary of the above proposition. If we
use Schmutz Schaller’s upper bound on systole length (Theorem 2.4) in Proposition 4.2
above, this is exactly the resulting bound.

For surfaces of genus at least one, we will use the bound from the remark above, but
for punctured spheres we will use Proposition 4.2 directly.

4.2 Bound on |B(S)|

Consider a cusp c; we define two associated sets:
B(c) :={a € B(S) | « and B bound ¢ for some 8 € B(S)},
B(c)® :={(a, B) € B(S) x B(S) | « and B bound c}.
Suppose (. B), (y.8) € B(c)®. Then y has to pass through the pair of pants given

by «, B and ¢, so y must intersect & or . Since curves in &(S) \ A(S) pairwise
intersect at most once, i(c, ) = i(8, y) = 1 (and the same for §).

Any curve o € B(c) is at a fixed distance D(¢) from H.. By a direct computation in
the pair of pants bounded by « and §, one obtains

_ cosh(%ﬁ))
Dm_m@m@@'

When curves in B(S) intersect they do so exactly once and we can obtain a lower
bound on their angle of intersection of curves in B(S). (Note that the lemma holds for
any pair of systoles that intersect once.)
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)

Figure 9: The result of cutting the torus 7" along o

Lemma 4.4 Let S be a surface of signature (g,n) # (1,1). If « and B are systoles
of length £ intersecting once, their angle of intersection satisfies

2/4/5, €<2arccosh%,
V2 cosh(1€) +1/(cosh(1€) + 1), €= 2arccosh 3.

In particular, the angle of intersection is bounded below by a function 6, that behaves
like e=4/* as € goes to infinity.

sin Z(«, B) = sin @y := {

Note that [13, Lemma 2.4] also gives a lower bound on the angle of intersection, with
the same order of growth.

Proof Consider the two systoles and the one-holed torus 7' they determine. Since
(g,n) # (1, 1), the boundary component § of 7 is a simple closed geodesic.

As o and B are systoles of §, they are also systoles of 7. As such they satisfy the
systole bound for 7' that depends on the length of §, namely

cosh(%ﬁ((?)) > cosh({) — %

We first consider the case when £ > 2 arccosh % We have cosh(%ﬁ) — % > 1 and the
condition stated above is non-empty. Cut 7" along o (see Figure 9) and consider the
shortest curve & connecting the two copies of «. By hyperbolic trigonometry, using
cosh(%ﬁ(é)) > cosh(%ﬁ) — %, a direct computation provides

4 cosh(%ﬁ)2 — cosh(%ﬁ) —1

hh >
oSt = cosh(%ﬁ) +1

Now consider one of the two right-angled triangles determined by arcs of «, 8 and /4.

We h
© nave sinh(%h)

— 1
m = smh(zﬁ),
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Figure 10: Geodesics around a horoball
which, together with the estimate on /, yields

2cosh(%€) +1
cosh(%ﬁ) +1

sin Z(«, B) >

If £ < 2 arccosh % we deduce the inequality sin Z (e, ) > 2/+/5 by arguing as above,
but replacing the estimate cosh(%E(S)) > cosh(%ﬁ) — % by £(8) > £. |

Fix (a, B) € B(c)® and denote by P the pair of pants they determine with ¢. As
they form a pair of pants with two boundary curves of the same length, there is an
isometric involution ¢ of P that sends « to B (a rotation of angle 7 around the cusp).
Note that, for any (y, §) € B(c)?, the involution sends ¥ NP to § NP because of
the symmetry of the pair of pants determined by y, § and p. If we quotient P by ¢
and we consider the image of B(c), we get a set of geodesics at distance D({) from a
horoball of area 1, all pairwise intersecting with angle at least 8y. This observation is
crucial to show the following result.

Lemma 4.5 If (g,n) # (1, 1), the number of elements in B(c) is bounded above by
cosh(1¢ 2
m(l) = — (f) —
smh(EE) sm(EQg)

Proof The situation is as in Figure 10, which locally represents the elements of B(c)
under the quotient by ¢. Note that every element in the quotient by ¢ represents two
elements from B(c).

The inner circle (which we’ll refer to as the inner horocycle) represents the quotient
horoball of area 1 and the external one is the horocycle at distance D(f) from the
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horoball of area 1. By looking at the unique orthogonal geodesics between elements
of B(c)/¢ and the inner horocycle, we can determine a cyclic ordering on the elements
of B(c)/¢. Two neighboring geodesics with respect to this ordering determine a subarc
on the inner horocycle as follows. We consider the orthogonal geodesic between them
and the inner horocycle and take the subarc of the horocycle which forms a pentagon
with the two geodesics and the orthogonal (see Figure 10). By a direct computation,
using the lower bound on the angle of intersection, this subarc on the inner horocycle
is of length at least

sinh(%@)

cosh(%¢)

These subarcs are all disjoint and are of the same number as the elements of B(c)/¢
(keep in mind that any two elements of B(c)/¢ intersect).

sin(%ég).

From this we deduce an upper bound on |B(c)/¢|:
1

(sinh(%ﬁ)/cosh(%ﬁ)) sin(%eg) '
Now 2|B(c)/¢| = | B(c)|, which completes the proof. a

As a consequence, we obtain an upper bound on | B(S)|.

Proposition 4.6 If S € Mg ,, (g,n) # (1, 1), has systole of length sys(S) = £, then
|B(S)| <nm(£).

Proof We have

B(S)= ] B()
¢ cusp
and, for every cusp ¢,
|B(c)| =m({). d

4.3 Bound on |C(S)|

By definition, elements of C(.S) are systoles that satisfy

e two curves in C(S) intersect at most once, and

¢ two disjoint curves in C(S) do not bound a cusp.

We follow a similar argument to one found in [13] to obtain an upper bound on |C(.S)].
In particular, we will need a collar lemma for systoles.
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Lemma 4.7 Let sys(S) = £ and consider «, § € C(S). If « and 8 do not intersect,
then they are at distance at least 2r (£), where

r({) = arcsinh ——.
2sinh(¢)

Proof Fix a pair of pants with & and 8 as boundary and consider the third boundary

component y. Since « and B are in C(S), they do not bound a cusp, so y is a simple

closed geodesic of length at least £. The result follows by a standard trigonometric

computation. O

As a consequence, if @ and  in C(S) pass through the same disk of radius (£) then
they intersect.

Moreover, we have seen in Lemma 4.4 that there is a lower bound on the angle of
intersection of systoles intersecting once. With this in hand we prove the following:

Lemma4.8 If (g,n)# (1,1), sys(S) =¥, and o and B in C(S) pass through a disk
of center p and radius r({), then the distance between p and the point ¢ of intersection

between o and B satisfies
d(p.q) < R(0),
where
. l 1
sinh(R(£)) = {5/(8 sinh(30)). £ < 2arccosh 3,

(cosh(%ﬁ) + 1)/(2 sinh(%ﬁ) 2 cosh(iI ¢)+1), £=>2arccosh %
Note that R({) is bounded for £ > 2 arcsinh 1.

Proof The proof is analogous to the proof of [13, Lemma 2.6]. Fix py € @ and pg €
lying in D, ) (p). We have two triangles of vertices p, py, ¢ and p, pg, q, and the
sum of the two angles 6, and g at ¢ is the angle of intersection Z(c, B). Suppose
Oy > %A(a, B) and consider the angle 7 of the triangle p, py, g at py; see Figure 11.

Then sin(n) _ sin(fy)

sinh(d(p.q)) ~ sinh(d(p. pa))’
Using 6y > %L(a, B), d(p, pa) < r({) and Lemma 4.4, we obtain the result. O

We are now in a position to obtain a bound on |C(S)].

Proposition 4.9 If S € Mg ,, g # 0 and (g,n) # (1,1), has systole of length

sys(S) = £, then
eZ/Z
|C(S)| 52007(2g—2+n).
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Figure 11: o and B passing though a disk of radius r(£)

Proof If ¢ <2arcsinh 1, then all systoles are pairwise disjoint, so
|C(S)| <Kiss(S) <3g—3+n.

We now suppose that £ > 2 arcsinh 1. Consider S=5 \ U, cusp Dy ey (c), where
w(f) = arcsinh ——

sinh(%ﬁ)

is the width of a collar around a systole. By the collar lemma, each curve of C(S) is

contained in S. We cover S with disks of radius r(£). Then the cardinality of C(S)
is bounded above by

F(S)G(S)
H(S)
where
F(S) = #{balls of radius r(£) needed to cover S },
G(S) = #{curves in C(S) crossing a ball of radius r({)},
H(S) = #{number of balls of radius r(£) a curve in C(S) must cross}.

To bound |C(S)|, we need to give upper bounds for F(S) and G(S) and a lower
bound for H(S).

Upper bound for F(S) We have

F(S) < max #{embedded balls of radius %r(ﬁ) which are pairwise disjoint}
area(g) < area(S)
" area(ball of radius 1r(£)) ~ 27 (cosh(3r(£)) — 1)

<8(2g —2+n)et/?.

Upper bound for G (S) We proceed as in the proof of [13, Theorem 2.9], by reason-
ing in the universal cover and estimating how many geodesics, pairwise intersecting at
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an angle of at least 6y, can intersect a disk of radius r(£). We obtain
7 sinh(R(£) + arcsinh 1) - Sm
2 arcsinh sin(6y) ~ 2arcsinhsin(6y)

G(S) =

Lower bound for H (S) To cover a curve of length £ with disks of radius r(£) we
need at least £/(2r(£)). So
£
H(S) > > {sinh(¢).
(5) 2arcsinh(1/(2 sinh(%ﬁ))) (4 )

By putting the three bounds together and considering that sinh(%ﬁ) arcsinh sin(6y) is
bounded below by % for £ > 2 arcsinh 1 we obtain the claimed result. a

4.4 Proof of main results

Using Propositions 4.2, 4.6 and 4.9, we get an upper bound for the kissing number of a
surface in terms of its signature and its systole length.

Theorem 4.10 If S € Mg, with g > 1, (g,n) # (1,1), has systole of length
sys(S) = £, then

£/2
Kiss(S) <20n cosh(%@) + 20067(2g —2+n).

As a consequence, we can get a bound on the kissing number which is independent of
the systole length.

Theorem 4.11 There exists a universal constant C (which we can take to be 2 x 10*)
such that, for any S € Mg ,, g > 1, its kissing number satisfies

_ &
log(g +1)

Proof This follows from the bounds in Theorem 4.10 and bounds on systole lengths.
Precisely, we insert the Schmutz Schaller bound (Theorem 2.4) into the term cosh(%i)
and we use Theorem 2.3 for the ¢¢/2 /¢ term. For (g,n) = (1, 1), we recall the well-
known fact that Kiss(S) < 3 (there can be at most 3 distinct curves that pairwise
intersect at most once on a one-holed torus). O

Kiss(S) = C(g +n)

Remark 4.12 Przytycki [16] obtained an upper bound for the number of simple
closed curves pairwise intersecting at most once. Using this and our bound on |A(S)|
(Proposition 4.2), one can obtain an upper bound for the kissing number which is
cubic in the Euler characteristic. Our upper bound, on the other hand, is subquadratic
in |x(S)|, like the one for closed surfaces in [13].
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The upper bound of Theorem 4.11 is linear in the number of cusps if we fix the genus.
For punctured spheres we can obtain a more meaningful bound.

Theorem 4.13 For every S € M, ,, the number of systoles satisfies

Kiss(S) < %n — 5.
Proof By Proposition 4.2 and Schmutz Schaller’s upper bound for the systole, we

have 2(3n—6) 12]_5
n n— n
RS e b Cal B
Moreover, systoles are separating, so can only intersect an even number of times. This
implies that systoles in &(S) \ A(S) are pairwise disjoint and hence part of a pants
decomposition. Note that any pants decomposition of a sphere contains at least two
curves bounding two cusps; indeed, the dual graph to the pants decomposition is a tree,
so it has at least two leaves, which correspond to curves bounding two cusps. This

implies that

|&(S)\ A(S)| < #curves in a pants decomposition —2 = n — 5. |

By using short pants decompositions where every curve is of equal length, it is easy to
obtain a family of punctured spheres with a number of systoles that grows linearly in
the number of cusps. Matching the %n upper bound from this theorem seems much
more challenging.
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