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Combinatorial cohomology of the space of long knots

ARNAUD MORTIER

The motivation of this work is to define cohomology classes in the space of knots
that are both easy to find and to evaluate, by reducing the problem to simple linear
algebra. We achieve this goal by defining a combinatorial graded cochain complex
such that the elements of an explicit submodule in the cohomology define algebraic
intersections with some “geometrically simple” strata in the space of knots. Such
strata are endowed with explicit co-orientations that are canonical in some sense.
The combinatorial tools involved are natural generalisations (degeneracies) of usual
methods using arrow diagrams.

57M25; 55N33, 57N80

The paper is organised as follows.

In Section 1 we build a prototypical cochain complex which contains all the essential
combinatorics while using the most simple input, namely a finite collection of finite
subsets of R (a coloured leaf diagram). The point of this preliminary is not only
theoretical, it serves to point out clearly that this part of our construction does not
depend on the material introduced later.

In Section 2 we show that the incidence signs of the previous cochain complex are
of a topological nature, as they are an essential ingredient in the computation of the
boundary of the meridian discs of some “geometrically simple” strata in the space
of knots, provided that these discs are correctly oriented. This property canonically
defines a co-orientation of simple strata.

Simple strata are represented by means of degenerated Gauss diagrams, ie whose arrows
are allowed to meet on the base circle. In Section 3, similarly to Polyak and Viro’s
formulas for finite-type invariants, we define cochains by counting subconfigurations
in those diagrams, with weights given by products of writhes. A little twist appears
here: we do not count the signs of arrows that participate in singularities; these signs
contribute implicitly, via the definition of the canonical co-orientation.

At the end of Section 3 we define the maps of the main cochain complex, as a slightly
twisted version of those of Section 1, and construct a Stokes formula relating it with
the boundary maps from Section 2, which model the meridians of simple strata. The
announced result follows.
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3436 Arnaud Mortier

Lastly, Section 4 is a review of examples, including new formulas for the low-degree
Vassiliev invariants obtained by integrating 1– and 2–cocycles over some canonical 1–
and 2–chains. In particular we give a method for integrating our 1–cocycle formulas
into knot invariants without any computations, over the two main canonical cycles in
the space of knots; namely the Gramain loop, and the Fox–Hatcher loop.
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1 Cohomology of coloured leaf diagrams in R

1.1 Polygons

A polygon is a finite subset of the oriented based circle S1 DR[f1g. We make no
distinction between a polygon and the corresponding singular 0–chain in C0.S

1;Z2/.
It is said to be even or odd according to the parity of its cardinality; in other words,
odd polygons are those representing the non-trivial homology class in H0.S

1;Z2/.

Let P and P 0 be two disjoint even polygons. Then they have a well-defined (mod 2)
linking number, denoted by lk.P;P 0/2Z2Df˙1g, which is the algebraic intersection
between P 0 and any 1–chain in C1.S

1;Z2/ whose boundary is P . The map lk is
symmetric, and bilinear in the sense that if P and P 0 are disjoint, as well as P and P 00 ,
then:

lk.P;P 0CP 00/D lk.P;P 0/ � lk.P;P 00/:

If P 0 is odd and P has two elements, again with P \P 0 D∅, we extend the notation
by setting

lk.P;P 0/D lk.P 0;P / def
D .�1/]Œmin.P/;max.P/�\P 0

;

where we agree that the point 1 is greater than any real number. Note that the same
formula holds when P 0 is even. The map lk can then be extended by symmetry and
bilinearity to any pair of disjoint polygons at least one of which is even.
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We define a partial order on the set of polygons by setting

P < P 0 () inf.P / < inf.P 0/:

1.2 Coloured leaf diagrams

A (coloured) leaf diagram in RD S1 n f1g is a finite collection of pairwise disjoint
polygons, none of which contains1. The elements of the polygons are called leaves of
the diagram and two leaves from the same polygon are said to have the same colour. The
terminology is inspired by the fact that such diagrams are meant to later be completed
into tree diagrams by connecting all leaves of a same colour by an abstract tree. We
define two Z–valued complexities associated with a leaf diagram L:

� The Gauss degree deg.L/, which is the total number of leaves minus the number
of colours (polygons) in L.

� The codimension �.L/, or cohomological degree, which is the total number of
leaves minus twice the number of colours in L.

The term “Gauss degree” comes from the theory of chord diagrams, where it denotes
the number of chords. For instance, a leaf diagram with d polygons, all of which have
cardinality 2, has Gauss degree d and codimension 0.

Leaf diagrams are regarded up to orientation-preserving homeomorphisms of the real
line S1nf1g. The Z–module freely generated by equivalence classes of leaf diagrams
of degree d and codimension i is denoted by Li

d
. Note that Li

d
is always finitely

generated and is trivial whenever i is greater than d � 1.

Remark 1.1 Special attention should be paid to polygons with only one leaf. Such
a polygon contributes �1 to the codimension and has no effect on the Gauss degree.
They are actually the only reason why the cohomological degree is not bounded and
N –valued. In our main application for this theory, they are naturally excluded, and
the spaces of diagrams with fixed Gauss degree are finitely generated. However, it
is harmless to allow them in the prototypical cochain complex and there may be a
theoretical interest in studying their meaning and the relations between the main and
“reduced” cohomology theories.

1.3 The " signs and prototypical complex

Let L be a leaf diagram. An edge of L is a closed connected part of the circle that lies
between two neighbouring leaves of L; in particular, an edge cannot contain a leaf in
its interior and it cannot contain 1. An edge is called admissible if its two boundary

Algebraic & Geometric Topology, Volume 15 (2015)



3438 Arnaud Mortier

points have different colours. From such an edge, we construct a new leaf diagram Le

in the following way. The polygons of Le are the polygons of L, except for the two
that have a leaf at the boundary of e : those two are merged into a single polygon in
Le and one of the two boundary points of e is removed from it (which one exactly has
no effect on the resulting diagram up to positive homeomorphism of R).

One easily checks the relations

deg.Le/D deg.L/ and �.Le/D �.L/C 1:

Consider the linear maps Li�1
d
! Li

d
defined on each generator by the formula:

L 7!
X

e admissible

Le:

It is easy to see that using Z2 coefficients, these maps turn the collection of spaces Li
d

into a graded cochain complex. Our goal is to define signs to lift this complex over Z.

The global sign Let P be an odd polygon in a leaf diagram L. We define the odd
index of P as the parity of the number of odd polygons in L that are greater than P .
Using the convention that a boolean expression has value �1 when it is true and 1

otherwise, this can be written as

Odd.P;L/ def
D

Y
P 0 odd

.P < P 0/:

We extend this definition to all polygons by setting Odd.P /D 1 whenever P is even.

Let e be an admissible edge in L, bounded by the leaves v and w lying in the polygons
Pv and Pw , respectively. Also, denote by Pvw the polygon of Le that results from
the merging of Pv and Pw .

We define the global sign associated with the edge e in L by

�glo.e;L/
def
D Odd.Pv;L/ �Odd.Pw;L/ �Odd.Pvw;Le/:

This will be the only contribution to the signs in the coboundary maps that depends on
polygons located far from e .

Remark 1.2 When Pv and Pw are both odd, both booleans .Pv<Pw/ and .Pw<Pv/

appear in �glo , which results in a minus sign.
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The local sign From now on, for the sake of lightness, we will not mention that every
sign depends on L, since other diagrams like Le will not contribute any more.

If x is a leaf in L, we denote by Px the polygon that contains it. Define the evenisation
of Px with respect to x as

P .x/
x D

�
PxCx if Px is odd,
Px if Px is even.

As a set, PxCx corresponds to Px n fxg, so that the polygon P
.x/
x is always even.

As previously, let e be an admissible edge in L, bounded by the leaves v and w .
Recall the convention that a boolean expression takes value �1 when it is true and 1

otherwise. We define:

Linking number of e lk.e/D lk.P .v/
v ;P

.w/
w /:

Even index of Pv with respect to e

E.Pv; e/D
�

lk.vC1;Pw/ if Pv is even,
1 otherwise.

Odd consistency of e

 .e/D

�
.v < w/.Pv < Pw/ if both Pv and Pw are odd,
1 otherwise.

The local sign associated with the edge e is

�loc.e;L/D lk.e/ .e/E.Pv; e/E.Pw; e/:

Finally, we set
"L.e/D �loc.e;L/�glo.e;L/;

ıi
d .L/D

X
e admissible

"L.e/ �Le;

and extend this formula into a linear map ıi
d
W Li�1

d
! Li

d
.

Theorem 1.3 For each d � 1, the collection of spaces L�
d

and maps ı�
d

forms a
cochain complex of Z–modules.

Proof Let e and e0 be two edges in a leaf diagram L such that e is admissible. Then
e0 is admissible in Le if and only if e0 is admissible in L and e is admissible in Le0 .
We call such a couple bi-admissible. To prove the theorem, it is enough to show that for
any bi-admissible couple, the contribution of e and e0 in the computation of ı2L is 0
or, in other words, that the product "L.e/"L.e0/"Le0 .e/"Le

.e0/ is always equal to �1.
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Parities of the polygons
Total contribution of �glo to "L.e/"Le0 .e/

Pv Pw Pv0 Pw0

0 0 0 0 .Pvw < Pv0w0/

0 0 0 1 .Pvw < Pw0/

0 0 1 1 .Pvw < Pv0/.Pvw < Pw0/.Pvw < Pv0w0/

0 1 0 1 .Pw < Pw0/

0 1 1 1 .Pw < Pv0/.Pw < Pw0/.Pw < Pv0w0/

1 1 1 1
.Pv < Pv0/.Pw < Pv0/.Pvw < Pv0/.Pv < Pw0/.Pw < Pw0/

� .Pvw < Pw0/.Pv < Pv0w0/.Pw < Pv0w0/.Pvw < Pv0w0/

Table 1: Computation of ı2 when ]fPv;Pw;Pv0 ;Pw0g D 4 . By symmetry,
there are only six cases to consider. Note that the minus sign due to Pv and
Pw being odd in the last line (Remark 1.2) appears twice and cancels out.

If e and e0 are bounded respectively by v , w and v0 , w0 , then .e; e0/ is bi-admissible
if and only if e and e0 are admissible and the leaves v , w , v0 and w0 represent at least
3 different colours. We split the proof into two parts, accordingly.

First, assume that all leaves have pairwise different colours. In this case, every contribu-
tion from �loc appears twice and cancels out. So do the contributions of �glo involving
other polygons than those neighbouring e and e0 . The remaining contributions of �glo

are summarised in Table 1; 0 stands for “even”, 1 for “odd”. We show only the
contribution to "L.e/"Le0 .e/: the contribution to "L.e0/"Le

.e0/ contains exactly the
opposite boolean expressions. So the point is that in each row, there is an odd number
of booleans.

We now assume that v , w , v0 and w0 represent 3 colours, and without loss of generality
that w and w0 share the same one. We need not discuss the special case when w is
actually equal to w0 , since the following computations apply equally well in that case.
Table 2 details the contribution of each factor to the product "L.e/"L.e0/"Le0 .e/"Le

.e0/.
The proof that the product of all contributions is always �1 is straightforward, using
the bilinearity of lk and the formula

lk.aC1; b/D .a< b/ for all a; b 2R:

2 Simple singularities in the space of knot diagrams

2.1 Germs and the associated strata

By the space of long knots K we mean the (arbitrarily high, but finite)-dimensional affine
approximation of the space of all smooth maps R!R3 with prescribed asymptotical
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Parities Contributions

Pv Pw Pv0 lk E

0 0 0 lk.PvCPv0 ; wCw0/ lk.PvCPv0 ; wCw0/ lk.vC1; w0/ lk.v0C1; w/
0 0 1 lk.Pv0Cv0; wCw0/ lk.Pv0 ; wCw0/ lk.wC1; w0/
1 0 1 1 1

0 1 0 lk.PvCPv0 ; wCw0/ lk.PvCPv0 ; wCw0/ lk.vC1; w0/ lk.v0C1; w/
0 1 1 lk.Pv0Cv0; wCw0/ lk.Pv0 ; wCw0/ lk.vC1; v0/
1 1 1 1 1

Parities Contributions

Pv Pw Pv0  �glo

0 0 0 1 1
0 0 1 .v0 <w0/.Pv0 < Pvw/ .Pv0 < Pvw/

1 0 1 1 �1

0 1 0 1 1
0 1 1 .v0 <w0/.Pv0 < Pw/ .Pv0 < Pw/

1 1 1 ˙.Pv < Pw/.Pv0 < Pw/.Pv < Pv0w/.Pv0 < Pvw/

Table 2: Contribution of each factor after obvious simplifications, in the case
Pw DPw0 . By symmetry, there are only six cases to consider. In the last line,
 and �glo have the same contribution up to sign, which is C for  and
� for �glo .

behaviour, as defined by Vassiliev [23]. The discriminant † is the subset of all maps
in K that are not embeddings. A projection pW R3 ! R2 endows K n † with a
stratification, whose strata are defined by certain semi-algebraic varieties in multijet
spaces (see Example 2.4, and see David [5], Wall [25], Fiedler and Kurlin [8] and
references therein for an introduction to stratified spaces and the simplest examples
used in knot theory). Those strata can be represented by Gauss diagrams with additional
information of geometrical nature, ie involving derivatives (see Vassiliev [24]). We will
call such a stratum simple if the only geometric data are the writhes of the crossings,
and geometric otherwise.

Definition 2.1 An abstract germ is the datum of a finite number of complete ori-
ented graphs, together with an embedding of the disjoint union of their vertices into
RD S1 n f1g, such that

(1) each graph has at least two vertices,

(2) no graph has oriented cycles,
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(3) each edge of each graph is decorated with a sign C or �.

An abstract germ  has an underlying leaf diagram L. /, from which it inherits the
terminology of polygons, leaves, colours, edges, as well as the Gauss and cohomological
degrees deg and �. The edges of the graphs in  are called (signed) arrows, while the
word “edge” keeps the same meaning as in Section 1.3.

Condition .2/ above implies that a germ induces a total order on each of its polygons,
and a partial order on the set of all of its leaves, denoted by < . A knot is said to
respect  , and is called a  –knot, if it maps any two leaves with the same colour to a
classical crossing with over/under datum given by the order < , and writhe given by
the sign of the arrow between those leaves. These conditions may be inconsistent, so
that no knot can respect  ; otherwise,  is called a topological germ, or more simply
a germ. In that case the diagram of a generic  –knot is uniquely determined near
each imposed crossing up to local diagram isotopy. Out of the 2.

n
2/ ways to put signs

on a complete graph (consistently oriented) with n leaves, exactly 2n�1.n� 1/! are
topological.

The Z–module freely generated by (topological) germs with cohomological degree i is
denoted by Gi , because we will essentially think of meridians (that is, i–discs transverse
to the stratification) for which i is the dimension.

Remark 2.2 A  –knot may very well have crossings besides those required by  .
However, in a generic  –knot these additional crossings cannot be multiple.

If the leaves of  are fixed, the set of all  –knots in K is an affine subspace of
codimension 2 deg. /, because there are .]P � 1/ affine equations for each poly-
gon P (which are independent if dimK is large enough), and because the writhe
conditions are open, hence 0–codimensional. If the leaves are set free, ie the germ is
regarded up to positive homeomorphism of the real line, then the codimension drops to
2 deg. /� (number of leaves), which is equal to �. /.

Definition 2.3 The �. /–codimensional subspace of all knots in K that respect  up
to positive homeomorphism of the real line is denoted by K and called the simple
stratum associated with  .

In Section 2.3, we will show that a germ  defines canonically a co-orientation of K
(that is, an orientation of its meridian disc). That is the reason for calling it a germ.

Example 2.4 The strata of codimension 1 are described by the classical Reidemeister
moves. R-I and R-II strata are geometric, and R-III is simple. Indeed, choose a basis
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.e1; e2; e3/ of R3 such that e3 is the axis of the projection p . This splits a knot
parametrisation f W R!R3 into three coordinate functions f1;2;3 . Reidemeister strata
are then defined by writhe data together with the conditions (for example):

R-I 9x f 0
1
.x/D f 0

2
.x/D 0:

R-II 9x < y

f1.x/D f1.y/

f2.x/D f2.y/

f3.x/ < f3.y/

and det
�
f 0

1
.x/ f 0

1
.y/

f 0
2
.x/ f 0

2
.y/

�
D 0:

R-III 9y < x < z

f1.x/D f1.y/D f1.z/;

f2.x/D f2.y/D f2.z/;

f3.x/ < f3.y/ < f3.z/:

Note that the conditions do not depend on the choice of a basis for the projection
plane, .e1; e2/; this is a general observation, the stratification depends only on p . Also,
this stratification should not be confused with that of † used by Vassiliev [23] to define
finite-type cohomology classes. That one will not be used in the present paper.

Remark 2.5 When a germ is regarded up to homeomorphism, it may happen that a
knot respects it in several different ways. Note however that a generic  –knot cannot
have more singularities than imposed by  , so that the only source of multiplicity
lies in two-leaved polygons, which give 0–codimensional constraints. Rather than the
strata K , one may consider simplicial chains, whose local weight near a given  –knot
is equal to the number of ways that knot respects  ; this is the implicit choice in
Vassiliev’s calculus [24]. Here, algebraic intersection with such chains will be modelled
by means of the map T ı I which is defined in Section 3.2.

2.2 Boundary of simple strata

The boundary of a stratum K is defined by the generic ways for its constraints to
degenerate. There are essentially six basic ways, from which all others can be built.
They can be interpreted by thinking of a generic  –knot as a knot diagram some of
whose crossings, including all multiple crossings, are coloured in red (as in Figure 1).

Type † Two leaves of  that are consecutive with respect to the order < tend to be
mapped to the same point in R3 . The corresponding piece of boundary lies in †, so it
is harmless for our purposes (namely understanding the cohomology of K n†, which
is the relative homology of .K; †/).

Type 1 One edge of  whose boundary points have the same colour collapses into a
point x , accompanied by the condition f 0

1
.x/D f 0

2
.x/D 0.
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Type 2-1 Two branches of a red crossing tend to have the same direction in the knot
diagram; from the point of view of  , it results in a writhe not being well-defined
any more, and replaced with either a condition of positive or negative collinearity of
derivatives.

Type 2-2 Two edges of  that bound a bigon in the knot diagram collapse simulta-
neously. This produces the same geometric condition as in Type 2-1.

Type 3-2 One edge whose boundary points have distinct colours collapses.

Type 3-3 Three edges that bound a triangle in the knot diagram collapse simultane-
ously.

Types 1 to 3-3 correspond to generalised Reidemeister moves, in that the crossings
are allowed to be multiple. They are sorted according to how many red crossings they
involve.

Besides these basic types, it can happen that types 2-2, 3-2 and 3-3 are accompanied
by the simultaneous collapsing of an arbitrarily large number of triangles of type 3-3.
Indeed, in all of these cases, one can see on the knot diagram that a number of crossings
are locally present although they may not be imposed by the germ (red). Now these
crossings may also actually be present in the germ, in which case they can either
be regarded as far (which yields a basic type as above) or close, in which case they
participate in the collapsing. Then, these extra crossings may themselves be multiple
crossings from the beginning, and this phenomenon may repeat itself.

We are now ready to define precisely which kind of degeneracies will be of interest in
this paper.

Definition 2.6 We call a degeneracy    0 type 0 if it is of basic type 3-2 together
with finitely many non-multiple extra crossings as above, ie at most two polygons
with more than two leaves can be involved in the collapsing. It may involve type 3-3
degeneracies (it does as soon as there are extra crossings) but it is not regarded as
such. If the two polygons of the underlying type 3-2 degeneracy have m and n leaves,
respectively, then there are at most .m � 1/.n � 1/ extra arrows. Degeneracies of
basic type 3-2 with extra multiple crossings are naturally considered to fall down into
type 3-3. See examples in Figures 1 and 2.

Reidemeister farness We now define a class of germs that will allow us to avoid bad
geometric strata as well as the type 3-3 frenzy described earlier.

Definition 2.7 Let  be a germ. We say that two leaves in  are neighbours if they
are the two boundary points of an edge. Then  is called:
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Figure 1: A type 0 degeneracy with three out of possibly six extra arrows
involved, represented here with dashed lines for the sake of clarity. The result,
a germ with missing arrows, will be called a subgerm in Section 3. It is not a
new kind of stratum, rather it should be thought of as the formal sum of all
ways to complete it into an actual germ. The branches are numbered from the
highest to the lowest. In the underlying type 3-2 degeneracy, only the edge
labelled “1” collapses.

(1) R–I–close if it contains an arrow .v; w/ such that v and w are neighbours.

(2) R–II–close if it contains four distinct leaves v , w , x and y such that
� v and w are neighbours, and so are x and y ;
� v and w have distinct colours;
� v < x and w < y .

(3) R–III–close if it contains six distinct leaves v , w , x , y , z and t such that
� fv;wg, fx;yg and fz; tg are pairs of neighbours;
� v , w and y have pairwise distinct colours;
� v < x , y < z and w < t .

We define R–farness of germs, and therefore of simple strata, as the negation of all of
these properties. In other words,  is R–far if no generic  –knot can be subject to
a generalised Reidemeister move involving only red crossings, that is, basic types 1,
2-2 and 3-3 cannot occur. For instance, the germ in Figure 1 is three times R-III–close.

2.3 Meridian systems and the @i map

Roughly speaking, our goal is to define cohomology classes in the space of knots
as intersection forms with R–far simple strata. This requires us to understand in
which meridian spheres these strata occur. By the previous discussion we mainly
need to consider the meridians of simple strata. The geometric strata resulting from
2-1 degeneracies will later prove to be completely harmless (see Lemma 3.10).

Let f be a knot respecting an i–germ  (that is, a germ with codimension �. /D i ),
and Di

f
a piecewise linear (PL) i–disc about f in K , transverse to the stratification.
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Then the boundary of Di
f

intersects finitely many .i�1/–strata, at points f1; : : : ; fp ,
and can be covered with PL discs Di�1

fk
with pairwise disjoint interiors. Since  is

simple, every meridian stratum k is necessarily simple, and the degeneracy k 

is either of type 0 (see Definition 2.6) or of type 3-3.

Definition 2.8 (Reduced meridian system) The cellular boundary map (over Z)
associated with the above decomposition of @Di

f
depends only on  . It is called the

meridian system of  . The reduced meridian system of  is the induced map with
target restricted to those Ck

such that k  is of type 0. We denote it by

@ W C !
M

0

Ck
:

When i D 0, D0
f

consists of a single point and has a canonical orientation, ie there is a
canonical generator of C Š Z, which we denote by 1 .

We now show that the signs " used to construct the cochain complex from Section 1
provide a combinatorial realisation of this boundary map, and a preferred generator for
each module C .

Definition 2.9 (k –splittings) Let  be a germ and � one of the graphs of  with
n leaves, n� 3. A splitting of  along � is a germ s together with the datum of a
type 0 degeneracy s  resulting in the creation of the graph � . It has to involve two
graphs �1 and �2 with k and nC1�k leaves, respectively (we assume k �nC1�k ),
together with .k�1/.n�k/ two-leaved graphs. If k � 3, s has a favourite edge e.s/

which is the only edge bounded by �1 and �2 that gets shrunk in the degeneracy. In
Figure 1, with k D 3 and nD 6, e.s/ would be the edge labelled “1”, and all visible
crossings should be red, so that the six-vertex graph on the right is complete.

When k D 2, the choice of �1 (and also �2 if nD 3) and therefore e.s/ is not unique;
see an example in Figure 2. However, k is uniquely defined and we have a notion of
k –splitting.

Definition 2.10 Let � be a graph with two leaves in a germ  . We define the
consistency �.�/ to be C1 if the order defined by R and that defined by < agree
on � , and �1 otherwise. We let �w.�/ denote the product of �.�/ with the sign of
the unique arrow in � . The maps � and w are set to C1 for graphs with more than
two leaves.

Lemma 2.11 Let s be a (2–)splitting of  , and let L.s/ be the underlying leaf
diagram of s . Then the sign

�w.�1/�w.�2/"L.s/.e.s//
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does not depend on the choice of �1 and �2 .

This lemma is the key ingredient to show that our signs " are of a topological nature.
It will be proved at the end of this section.

We set
@i. /D

X
all splittings

�w.�1/�w.�2/"L.s/.e.s// � s

and extend this into a linear map @i W Gi ! Gi�1 . The reason for this map to not be
graded with respect to the Gauss degree lies essentially in the bunch of two-leaved
polygons that appear as a result of splitting a germ.

Theorem 2.12 (1) The maps @i and spaces Gi together form a chain complex.

(2) There is a unique collection of maps

� W C ,! G�. /

such that � .1 / D  if �. / D 0, and such that all the following diagrams
commute:

G�. / G�. /�1

C
L

0 Ck

@�./

@

�
L

0 �k

(3) The map � maps C isomorphically onto the submodule Z �G�. / . Hence the
preimage ��1

 . / defines a canonical co-orientation of the simple stratum K .

Figure 9 in Section 4.2 shows the co-orientation of the 2–stratum
1

depending on the signs of the arrows.

Proof The proof of the first point is identical to that of Theorem 1.3. One only has to
notice that the signs �w always appear twice and cancel themselves in the computation
of @ı@, and that the collection of two-leaved polygons that result from a splitting does
not affect the computations, because they are even polygons.

We prove points (2) and (3) simultaneously, by induction on i .
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When iD0, there is nothing to prove. The case iD1 also needs to be treated separately.
Here it suffices to notice that on the two sides of a Reidemeister III move, the sign
�w.�1/�w.�2/"L.s/.e.s// takes opposite values; indeed, such a move switches the
signs lk.P1;P2/, E.P1; e/ and E.P2; e/, and leaves the remaining signs unchanged.
So � is defined uniquely by mapping to  the generator of C that is oriented from
the negative side to the positive side. Point (3) is then satisfied, and it implies that the
direct sum of any collection of maps � is injective.

Now let i � 2 and assume that (2) and (3) hold up to i � 1. The crucial point is the
following:

Lemma 2.13 If i � 2, then in the cell decomposition of a meridian sphere Si�1
 made

of meridian discs, the union of all .i�1/–discs corresponding to type 0 degeneracies is
connected.

Assuming this lemma, consider a germ  2 Gi . By definition, @i lies in
L

0 Ck
,

so by induction (3) it has a unique preimage x by
L

0 �k
. By part (1) of the

theorem and by induction (2), x lies in the kernel of
L

0 @k
. In other words, it

is a relative cycle in .S ;S n
S

0 Dk
/. Also, it has local weight ˙1, so it is a

generator of Hi�1.S ;S n
S

0 Dk
/, which by Lemma 2.13 is canonically isomorphic

to Hi�1.S / Š Hi.D ;S / Š C . By pushing x through these isomorphisms, we
obtain a generator of C , and � is uniquely defined by the fact that it must map this
generator to  . This finishes the proof of Theorem 2.12, up to Lemma 2.13.

Proof of Lemma 2.13 If  has at least two graphs � and � 0 with more than two
leaves, then any two splittings along � and � 0 , respectively, have a piece of boundary
in common. If  has only one graph with n> 2 leaves, then n must be at least 4 so
that i D n� 2� 2. Here, any two 2–splittings sliding different branches of the knot
away have a common piece of boundary, and any k –splitting (k � 3) has a common
boundary piece with n� 1 distinct 2–splittings.

Proof of Lemma 2.11 We first prove the result in one particular case, then proceed by
induction, using a number of “moves” that allow one to join any splitting of any germ.

First note that by symmetry of the formula in f�1; �2g we need not check separately
the case nD 3, even though �2 is not uniquely determined. Figure 2 shows a splitting
C.2; n�1/ of a germ with only one graph, n leaves and only C signs. The orientations
of the arrows in the .n�1/–gon depend on the way to connect virtually the branches
of the .n�1/–crossing; they are not shown because the sign " only depends on the
underlying polygon. One easily sees that �w.�1/ is �1 in C.2; n�1/ for any choice
of �1 , and only the maps lk and E can contribute non-trivially in ". Let P1 and P2

denote the underlying polygons to �1 and �2 (so that ]P1 D 2).
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Figure 2: The germ C.2; n� 1/ , a 2–splitting of the positive n–branch crossing

Now:

� lk.P1;P2/ is C1 if �1 is the topmost arrow (�1–candidate) in the diagram in
the right of Figure 2, and alternates up to .�1/n for the bottom arrow.

� E.P1; e.s// has the same alternating property and is �1 for the bottom arrow

� If n� 1 is even, E.P2; e.s// has the same value C1 for any choice of �1 (and
this also holds obviously if n� 1 is odd).

This proves that the sign �w.�1/�w.�2/"L.s/.e.s// is .�1/n for any choice of �1 in
C.2; n� 1/.

We now prove the invariance of the result under the following moves:

(1) Adding a bystander graph.

(2) Making one crossing change in the .n�1/–crossing.

(3) Making one crossing change at one of the n� 1 �1–candidates.

(4) Reversing the orientation of a branch of the .n�1/–crossing.

(5) Sliding the branch that was split away from the n–crossing to the other side of
the .n�1/–crossing.

(6) Changing the order in which the n local branches are virtually connected.

(7) Moving the point 1 to an adjacent region.

Note that reversing the orientation of the branch of the knot that was split away can be
formally realised by move (5) followed by n� 1 moves of type (4).

We always neglect the orientation and sign changes on �2 , which are harmless. Move (1)
may only modify the contribution of �glo , but it does so in the same way for all choices
of �1 , essentially because �1 is always even. Move (2) has no effect at all. Move (3)
only changes �.�1/ and w.�1/ into their opposite, so that �w.�1/ remains the same.
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w w w�w 1 1

Move .4/ Move .7/

Figure 3: The effect of moves (4) and (7) on germs

Move (6) commutes with the other moves, so it suffices to see that it does not affect
the result for C.2; n� 1/.

The effect of move (5) on the germ is identical to changing the sign of all �1–candidates,
and then formally applying the effect of n� 1 moves of type (4). So we are left with
the two moves (4) and (7), shown in Figure 3. Move (4) does not affect any signs for
choices of �1 other than the one in the picture; for this one, �w is changed into its
opposite, and so is E.P1; e.s//. If n� 1 is odd, nothing else changes; otherwise, both
the linking number of e.s/ and the even index of P2 are also reversed.

For all choices of �1 except the one visible in Figure 2, the only effect of move (7) is
to change E.P1; e.s//. For the choice of �1 in Figure 2, it changes �, and nothing
else if n� 1 is odd; otherwise it also changes both even indices of P1 and P2 .

3 Main result

We now introduce a degenerate version of arrow diagrams, designed to count subgerms
in the spirit of Polyak and Viro [20]. Subgerms are the algebraic artefact that allows
one to see whether a knot respects a germ, and in how many ways. They also appear
naturally as the result of type 0 degeneracies.

3.1 Tree diagrams

Let P be a polygon in S1 n f1g of cardinality greater than 1. A spanning tree for P

is a maximal collection of ordered pairs .v; w/ with v , w 2 P , still called arrows,
such that the corresponding abstract oriented graph is a tree. The number of arrows in
a spanning tree is always equal to the cardinality of the underlying polygon minus 1.

A tree diagram is a finite collection of pairwise disjoint polygons in S1 nf1g endowed
with spanning trees. We keep denoting such diagrams by the letter “A” to respect the

Algebraic & Geometric Topology, Volume 15 (2015)



Combinatorial cohomology of the space of long knots 3451

tradition of arrow diagrams, and save “T ” for single spanning trees. Tree diagrams
naturally inherit the Gauss and cohomological degrees defined for leaf diagrams,
namely:

� The Gauss degree deg.A/ of a tree diagram is equal to its total number of arrows.

� The cohomological degree �.A/ is the Gauss degree minus the number of colours
(trees).

Again, tree diagrams are regarded up to positive homeomorphisms of the real line
S1 n f1g. The Z–module freely generated by equivalence classes of tree diagrams of
degree d and codimension i is denoted by Ai

d
. Note that Ai

d
is trivial whenever i is

greater than d � 1, and whenever i or d is negative (see Remark 1.1).

The triangle relation Observe that a spanning tree T defines a partial order on the
underlying polygon: say that v <T w if T contains the arrow .v; w/, and extend this
definition by transitivity, which is possible because T is a tree. We say that T is
monotonic if the relation <T is total. Accordingly, a tree diagram is called monotonic if
all of its trees are so. Monotonic spanning trees for a given polygon P are in one-to-one
correspondence with total orders on P . Denote by r.T / the set of all monotonic
spanning trees that correspond to total orders compatible with <T .

Definition 3.1 The triangle relation is the equivalence relation on Ai
d

generated by
the equalities

(3-1) AD
X

T 02r.T /

AT 0 ;

where A is a tree diagram that contains T as a spanning tree and AT 0 is the diagram
obtained from A by replacing T with T 0 . We denote the quotient Z–module by zAi

d .
It is naturally isomorphic to the subspace of Ai

d
spanned by monotonic tree diagrams.

Remark 3.2 This relation originated in the work of Polyak [18; 19] and also Polyak
and Viro [21] on arrow diagrams. It owes its name to the fact that it is locally generated
by the relation schematically depicted in Figure 4.

D C D C

Figure 4: Local triangle relations. Only a part of a spanning tree is shown;
the remaining invisible parts should be identical for all three diagrams in a
given equality.
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Definition 3.3 The Reidemeister farness of monotonic diagrams is defined similarly to
that of germs (see Definition 2.7).The submodule of zAi

d generated by R–far monotonic
diagrams is denoted by zAi

d;far . This definition makes sense since any ˛ 2 zAi

d has a
unique representative involving only monotonic diagrams.

3.2 The pairing of tree diagrams with germs

Definition 3.4 (Partial germs and signed tree diagrams) A partial germ is a leaf
diagram in which every polygon is enhanced into a connected abstract graph with
oriented and signed arrows. The difference with germs is that here the graphs need
not be complete. A partial germ in which every graph is a tree is called a signed tree
diagram.

Partial germs inherit the degrees deg and � from their underlying leaf diagrams. The
corresponding Z–modules of signed tree diagrams are denoted by Ti;d and Ti .

Definition 3.5 A subgerm of a germ  is the result of forgetting an arbitrary number
of its arrows in such a way that every graph corresponding to a polygon with more
than two leaves remains connected, although two-leaved polygons may completely
disappear. This condition means that subgerms must remember the codimension of  ,
but the Gauss degree may drop.

We set I. / to be the formal sum of all subgerms of  that are signed tree diagrams.
It is understood that subgerms are counted with multiplicity if the removal of distinct
sets of arrows yields homeomorphic results. This defines a linear map

IW Gi! Ti :

If � is a signed tree diagram, we define T.�/ as the underlying tree diagram, multiplied
by the product of the signs of all arrows of two-leaved polygons. Again this extends
into a linear map

TW Ti;d !Ai
d :

Remark 3.6 The fact that the map T disregards the signs of arrows associated with
polygons that have more than two leaves should be interpreted this way: for these
polygons, the signs of the arrows have already contributed by entering the co-orientation
defined by germs on their associated strata. In other words, when a simple crossing
merges with others into a multiple crossing, we stop regarding its writhe as making
sense individually. See Lemma 2.11 and Theorem 2.12.
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Definition 3.7 For ˛ 2 zAi

d and  2 Gi , we set

hh˛;  ii D h˛;T ı I. /i;

where h � ; � i is the Kronecker delta on tree diagrams, extended by bilinearity.

We have to prove that this is a good definition, that is:

Lemma 3.8 Let r 2Ai
d

be a triangle relator, ie the difference between the two sides
of (3-1). Then

hhr;  ii D 0 for all  2 Gi :

Proof The result follows immediately from the fact that the graphs of  are complete
and consistently oriented, considering the generating relations from Figure 4.

This elementary proof should be compared with that of Lemma 1.9 of Mortier [16].
There, the result was deeply related to the fact that the germ was topological. Here, all
the topology is confined to the implicit co-orientation associated with germs, and this
lemma also holds for abstract germs.

Definition 3.9 Let c be a PL i–chain in K n† that is transverse to the stratification.
Then c intersects finitely many simple i–strata p , with intersection numbers �p

defined by the co-orientation from Theorem 2.12. For ˛ 2 zAi

d , we set

f˛; cg D

��
˛;
X
p

�pp

��
:

We are now in a position to see why degeneracies of type 2-1 do not deserve particular
attention.

Lemma 3.10 Let � be an almost simple stratum, that is, a boundary component of
a simple i–stratum corresponding to a type 2-1 degeneracy. Let S� be the meridian
sphere of � . Then

f˛;S�g D 0 for all d � 0 and ˛ 2 zAi

d;far:

This means that the cocyclicity condition for R–far cochains is empty around such
strata.
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˙

� C

0

(A) (B)

� � �

� � �

:::

::: :::

:: ::

Irrelevant pieces
of the sphere

Figure 5: Meridian of an almost simple stratum for a simple (A) and multiple
(B) crossing

Proof Denote by a the arrow in the i–germ  that is subject to a 2-1 degeneracy. The
situation is quite different according to whether or not a is part of a multiple crossing.

First assume that a is isolated. Then S� intersects exactly two simple strata 0 and ˙ ,
corresponding respectively to  with the arrow a forgotten, and  with the arrow a

duplicated into two arrows with opposite writhe, which intersect or not depending on
the geometric condition of � . We have precisely the two sides of a usual Reidemeister II
move. Moreover, since the co-orientation of a germ depends only on the configuration
of its graphs with more than two leaves, 0 and ˙ induce opposite orientations on S�
(see Figure 5(A)), so that, up to sign,

f˛;S�g D hh˛; 0� ˙ii:

The result follows by classical arguments.

Now assume that a is part of a multiple crossing, with k � 3 branches (two of which
have tangent projections). This time S� intersects 2k�2 simple i–strata, obtained
from � by duplicating a into two arrows with opposite sign, and then forming two
new multiple crossings by sharing the remaining k � 2 branches among those two.
However, one of the two arrows aC and a� must remain isolated so that subgerms
stand a chance to be R-II–far. Hence, only two diagrams may contribute, C and � , as
indicated by Figure 5(B). One can see in the picture that they have a piece of boundary
in common (in fact, two); that is the key allowing us to compare their orientations.
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Indeed, direct computation shows that C and � induce the same orientation on their
common boundary, hence they induce opposite orientations on S� , and again, up to
sign,

f˛;S�g D hh˛; C� �ii:

Now since ˛ is R-II–far, the isolated duplicate of a must be deleted for a subgerm to
contribute, so that the relevant subgerms in C are also subgerms in � , with the only
difference given by the sign of a. But this sign is disregarded by hh � ; � ii, because a is
a part of a multiple crossing.

3.3 Cohomology of tree diagrams and of the space of knots

Given a tree diagram A, an edge is called admissible if it is so in the underlying leaf
diagram L. For such an edge e there is a natural way to define a tree diagram Ae that
is a lift of Le . Namely, if e is bounded by the leaves v and w , the arrows of Ae are the
arrows of A with w replaced with v every time it appears. This edge-shrinking process
is compatible with the triangle relations. We define a linear map Qıi

d
W zAi�1

d ! zAi

d on
the generators by

Qıi
d .A/D

X
e admissible

�.�v/�.�w/"L.e/ �Ae;

where � is the consistency from Definition 2.10, and �v and �w are the graphs
containing the leaves v and w , respectively.

We are now ready for the main theorem of this paper.

Theorem 3.11 (1) The collection of maps Qıi
d

and sets zAi

d forms a graded, finite
cochain complex. We denote by H i

d;far the submodule of those i th homology
classes in degree d that have a representative cocycle in zAi

d;far .

(2) (Stokes formula) For any d � 0, i � 1, ˛ 2 zAi�1

d;far and  2 Gi ,

hh Qıi
d .˛/;  ii D hh˛; @i. /ii:

(3) There is a natural map

H i
d;far!H i.K n†/

induced by the pairing f � ; � g. For i D 0, the image of this map consists of
invariants induced by homogeneous Goussarov–Polyak–Viro formulas [10] for
long virtual knots. For i D 1, the image consists of arrow-germ formulas as
defined by the author in [16].
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Remark 3.12 The farness constraint could be lightened, by allowing R-III–close
diagrams. In the case i D 0, this is harmless (there are no additional equations) thanks
to Lemma 3:2 of [15], and it yields all GPV invariants [15, Theorem 3:6]. For higher
values of i , it would require us to compute the proper " signs to associate with type
3-3 degeneracies and to consider subgerms whose graphs are not necessarily trees.

One could also think of removing the R-I– and R-II–farness condition; by contrast,
this would require one to handle arbitrary geometric strata, resulting in a far more
complicated story. For iD0 it is pointless, R-I– and R-II–farness is actually a necessary
condition for cocyclicity [15, Lemma 3:4]. For i D 1 it brings no new cohomology
classes [16, Theorem 2:11].

Conjecture 3.13 The image of the map H i
d;far ! H i.K n†/ consists of Vassiliev

cohomology classes of degree at most d .

This conjecture holds when i D 0, when i D 1 and d D 3 (the case of the Teiblum–
Turchin cocycle; see Turchin [22] and Vassiliev [24]), and also over Z2 when d D iC1

(the extreme case of diagrams with only one tree).

Proof of Theorem 3.11 (1) This follows from Theorem 1.3 after noticing that the
additional contribution �.�v/�.�w/ always cancels itself out in Qı ı Qı .

(2) For simplicity we omit the subscripts and superscripts in the maps @i and Qıi
d

.
By linearity we may also assume that ˛ is a tree diagram and  a germ. Note that ˛
cannot be a subgerm of both a k –splitting and an l –splitting of  for k ¤ l , so the
proof can be split according to the at most unique value of k such that the right-hand
side stands a chance to be non-zero when @. / is restricted to k –splittings. As a last
preliminary, note that we prove the formula at the level of Ai

d;far , ie before the quotient
by triangle relations.

If k > 2, then because ˛ is R–far we see that any subgerm of a term in @. / that
contributes non-trivially to the right-hand side must exclude every two-leaved graph that
resulted from the splitting. Similarly, if k D 2, at most one of these graphs may have
survived. Also, if none of them has survived, then the subgerm’s possible contribution
is cancelled out by the corresponding subgerm in the opposite 2–splitting (where the
sliding branch has been pushed in the opposite direction); indeed, according to parity,
the signs of these splittings differ either by E.P1; e.s//, or by E.P1; e.s//, E.P2; e.s//

and lk.e/. Thus we see that for any value of k , we can restrict I.@. // to certain
subgerms such that the corresponding subgerms of  are signed tree diagrams. Note
also that these subgerms have a well-defined preferred edge e.s/.
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We now use a divide and conquer trick. Arrange the non-trivial contributions to the
right-hand side according to which edge of ˛ corresponds to e.s/. This edge must
clearly be admissible in ˛ , so a corresponding arrangement can be realised in the
left-hand side. Now it is easy to see that the contributions in each pack are naturally in
one-to-one correspondence, and that the signs match.

(3) The map ˛ 7! f˛; � g makes tree diagrams into cochains in K . By Theorem 2.12,
Lemma 3.10 and the Stokes formula, it maps cocycles to cocycles and coboundaries to
coboundaries, thus inducing a map H i

d;far!H i.K n†/.

For i D 0, the map Qı1
d

is isomorphic to the map dƒ from [16] restricted to Gauss
degree d , and this isomorphism is compatible with the Stokes formulas. There, it is
proved that Goussarov–Polyak–Viro invariants are exactly the kernel of a certain map
dƒ˚d�˚d I˚d II , and our R–farness condition ensures that the diagrams live in the
kernel of d�˚ d I˚ d II .

For i D 1, we use the result and terminology of [16, Theorem 2:11]. By our R–farness
condition the condition of the theorem is satisfied, and also the cube equations associated
with –strata are empty. Now it is straightforward to check that the tetrahedron
equations associated with –strata yield the kernel of the map Qı2

d
restricted to edges

that are bounded by one leaf from the triangle, and the remaining equations from
–strata are encoded by the restriction of Qı2

d
to the complementary set of edges.

Finally, considering the number of leaves in the polygons, the kernel of Qı2
d

is the
intersection of the kernels of these two restrictions.

4 Examples and comments

An essential aspect of our construction is that it is of a virtual nature. That is, the
equations do not care about the fact that the germs at which we evaluate the bracket
hh˛; � ii may or may not correspond to classical knots. A major benefit is that it makes
the theory simple and computable. Taking care of classicality would be much more
complicated: to the best of our knowledge there is no complete characterisation of
Gauss diagrams of classical knots that do not require actually trying to draw the knot,
although there are some powerful invariants which detect non-classicality in a lot of
cases, such as Manturov’s Gaussian parity [13], the Miyazawa polynomial (see for
instance Kamada [12]) and Dye and Kauffman’s arrow polynomial [6].

On the side of drawbacks, the map H i
d;far ! H i.K n†/ is unlikely to surject onto

the subgroup of Vassiliev cohomology classes. For instance, the Vassiliev invariant of
order 3 given by Polyak and Viro’s formula v3 in [10, Theorem 2] cannot be found
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1 1

1

Figure 6: The 1–cocycle z̨1
3

in H 0
3;far (a virtual version of v3 is constructed by Chmutov and Polyak [4], but its non-

homogeneity makes it of a strongly different nature). However, our cochain complex
produces a formula for v3 , quite unexpectedly, not from H 0

3;far but from H 1
3;far , by

integrating a 1–cocycle over the Fox–Hatcher loop (see Section 4.1). More precisely,
we have the following as a corollary of Theorem 4.2:

Theorem 4.1 The tree diagram z̨1
3

in Figure 6 is an R–far 1–cocycle. Moreover, the
integration of z̨1

3
on the Gramain loop and the Fox–Hatcher loop of a knot K yield

respectively the Gauss diagram formulasZ
rot.K /

z̨
1
3 D

�� 1

;K

��
D v2.K/;Z

FH.K /
z̨

1
3 D

��
C � � ;K

��
D 6v3.K/�w.K/v2.K/;

where w.K/ denotes the blackboard framing of the diagram of K considered. In
particular the map H 1

3;far!H 1.K n†/ has rank at least 1. If Conjecture 3.13 holds,
then this rank is 1 and z̨1

3
is a realisation of the Teiblum–Turchin cocycle over the

integers.

The first line features Polyak and Viro’s formula for v2 [20], while the formula in
the second line is new. As far as we know, this is the first time a Gauss diagram
invariant specific to classical knots is found without using Gauss diagram identities
(as in Östlund [17]). The only step where we did leave the comfortable field of virtual
arguments is when we used the existence of the Fox–Hatcher loop!

Note that the second formula is unbased, which is a general phenomenon when inte-
grating over the Fox–Hatcher loop. It denotes an invariant of closed knots (and hence
of long knots since the two theories are equivalent). The evaluation bracket is then
defined similarly to the based version, but it counts subdiagrams with multiplicity,
which is given by the order of their symmetry group (see [17, Sections 2:2 and 2:4;
14, Section 4:1:2]).
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4.1 Formal integration of 1–cocycles

A deep result due to Hatcher [11] states that the connected component of K n †
corresponding to a non-satellite long knot K has the homotopy type of S1 if K is a
torus knot, and of S1 �S1 if K is hyperbolic. For those knots there are essentially
two interesting elements in H1.KK /: the Gramain loop, rot.K/, which consists of a
rotation of a long knot around its axis, and the Fox rolling, or Hatcher loop, FH.K/,
which consists of sliding the ball at infinity (in S3 ) along the knot.

The Gramain loop does not depend on the Reidemeister moves we use to represent it.
However, the Fox–Hatcher loop depends on a framing choice: indeed, each time one
adds C1 to the framing of K , the ball at infinity makes one positive full spin on itself,
which amounts to a negative spin of K , hence it adds � rot.K/ to FH.K/.

Let A be a monotonic tree diagram of codimension 1, so that its only polygon with
more than two leaves is a triangle T . If the highest (respectively lowest) point of this
triangle with respect to the order <A is also the lowest (resp. highest) of all leaves
in A with respect to the R order, then we define a new diagram

R h
rot A (resp.

R l
rot A) of

codimension 0 by forgetting the arrow containing that point, with sign rule as indicated
in Figure 7. Otherwise, we set

R h
rot AD 0 (resp.

R l
rot AD 0). This defines linear maps

zA1

d !
zA0

d�1 .

With the same notations, let .a; b/ and .b; c/ denote the two arrows of T . We con-
struct two unbased diagrams by replacing the arrow .a; b/ with .a;1/ (resp. .b; c/
with .1; c/) while forgetting the point 1, and give them signs depending only on
the relative position of a, b and c in the cyclic order; see the rule in Figure 8. The
difference is denoted by

R
FH A and defines a map zA1

d !
zA0

d .

� �

1 1
1 1

1 1
1 1

Figure 7: Sign rules for
R h

rot (on the left) and
R l

rot (on the right)
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1
�

Figure 8: Sign rule for
R

FH . It does not depend on the position of the point 1 .

Theorem 4.2 Let ˛ 2 zA1

d;far\Ker ı2
d

. Then for any classical knot K ,

.1/

Z
rot.K /

˛ D

��Z h

rot
˛C

Z l

rot
˛;K

��
:

In particular, the right-hand side defines a finite-type invariant of K of degree at
most d � 1. However,

R h
rot ˛C

R l
rot ˛ might not lie in Ker ı1

d�1
.

.2/

Z
FH.K /

˛ D

��Z
FH
˛;K

��
:

The right-hand side defines a regular invariant of K . Its value on a diagram of K with
trivial blackboard framing defines a finite-type invariant of K of degree at most d .
(Recall that here the bracket on the right counts subdiagrams with their potential
multiplicity due to symmetry.)

This theorem can be proved by analysing the presentation of rot from [7, Figure 144],
and that of FH given by Fox [9] from the viewpoint of Gauss diagrams, as in the proof
of [16, Theorem 3:3]. Reidemeister farness is crucial in the proof, not only for the
theory to work properly, but to have good control of the non-trivial contributions to the
integrals. For example, the 1–cocycle formula from [16, Theorem 3:2], which allows
R-III–close diagrams, is impossible (for us) to integrate directly on the Fox–Hatcher
loop, because of uncontrollable contributions.

Gauss diagram identities This theorem can be useful even when applied to a cocycle
that is trivial in H 1.Kn†/. Indeed, it may happen that the integration of such a cocycle
is not formally zero. When this happens, it means that we have found a Gauss diagram
identity, that is, a formula for the trivial invariant. But since there are no such formulas
for virtual knots, we have there a non-trivial obstruction to classicality.

Among the low-degree examples, we have thereby a new proof that the Gauss diagram
formulas ��

� ;K

��
and

��
�

1

1

;K

��
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vanish for classical knots, which was first stated by Polyak and Viro [20] and proved
by Östlund [17].

4.2 Higher-degree examples

A number of higher-degree formulas come for free as, in general, zAi

iC1;far ŠH i
iC1;far ,

whose rank grows at least quadratically with i . All of those can be proved to be
Vassiliev classes at least over Z2 using Vassiliev’s homological calculus [24]. One
could study their non-triviality by using the results of Budney [1] and Budney and
Cohen [2], which are the state of the art and an excellent sequel to and completion of
Hatcher’s work on the topology of spaces of knots. We study here the cocycles in H 2

3;far .

Our main motivation for computing higher-degree examples lies in reinterpreting a result
of Budney, Conant, Scannell and Sinha [3], which states that it is possible to compute
the invariant v2 by counting an appropriate kind of quadrisecant with appropriate signs.

In the present language, a quadrisecant of a knot is a particular direction of projection
for which the knot respects a germ with one polygon and four leaves. Hence, counting
quadrisecants with signs is precisely what 2–cocycles in H 2

3;far do. More precisely,
given a knot K , consider a sphere in R3 , centred at the origin and with radius large
enough to intersect K only in two points where it is arbitrarily close to its axis.
Each point in that sphere defines a different direction of projection, except for the two
intersection points with the axis of K . So we do not have a 2–cycle, but still a canonical
2–chain, where evaluating our cocycles makes sense since generically the quadrisecants
stay far away from the knot axis during an isotopy of K . We call that 2–chain S1.K/.

The module zA2

3;far has two generators

v2
3 D and Qv2

3 D

1

and both are cocycles.

Theorem 4.3 For any knot K ,

v2.K/D hhv
2
3 ;S1.K/ii D

X
w.a; b/w.c; d/;

where the sum is over all quadrisecants of K of type
1

c b

a d

and w.a; b/ denotes the writhe of the simple crossing between the branches a and b .
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�pq

�p

�pq

pq

p

pq

qr �r qr

�qr r �qr

1

p

q

r

Figure 9: The meridian of a germ with underlying tree diagram v2
3

. The
numbers p , q , r are the writhes of the arrows as indicated in the middle
diagram. A sign between two diagrams indicates the co-orientation.

One can see that this is a new point of view on [3, Proposition 6:2], with a much
simpler formula to think of. Indeed, the quadrisecants counted by v2

3
are precisely

those which “determine the cycle .1342/” in the language of [3, Section 6].

Proof We begin with the second equality. It is proved by analysing the co-orientation
defined by v2

3
and understanding what orientation it defines on S1.K/. The natural

orientation of the plane in Figure 9 (ie the co-orientation of the codimension-2 stratum
in the middle of the picture), as defined by Theorem 2.12, is counterclockwise if and
only if the product of writhes pqr is C1.

Now we need to draw the picture of Figure 9 on the sphere S1 . For this, observe
the following. Choose a point x on S1 which defines a diagram Kx with exactly
one generic triple point, say f .t1/ >x f .t2/ >x f .t3/; the set of such points is a 1–
submanifold X �S1 . By moving the centre of S1 so that it lies on the line containing
the triple point, the derivatives f 0.t1/, f 0.t2/ and f 0.t3/ project to a generic triple of
vectors v1 , v2 , v3 2 TxS1 .

Fact The direction of TxX lies in the angular region determined by the directions
of v1 and v3 that does not contain the direction of v2 .
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4 3

2

1

3

2

1

p

�p

qr
�qr

Figure 10: Orientation of S1 induced by v2
3

To see this, think of the top and bottom branches as locally spiraling around the medium
branch; see also Figure 10: the zones labelled p and �p contain the directions from
which one sees a triple point between branches 1, 2 and 3.

Figure 10 reads like this. Independently of the direction of the furthest branch (4), we
know that the branch of X that slides 4 away and keeps the triple point f1; 2; 3g lies
in the region bounded by 1 and 3 that does not contain 2. Also, it appears that the
orientation p=�p (defined by the middle horizontal line of Figure 9) depends only
on the orientation of the branch 3 as indicated. It is then easy to see that the splitting
of the remaining triple point is supported by the direction 2, and that the orientation
qr=�qr depends only on the orientation of the branch 2.

To conclude, the relative position of p and qr in Figure 10 is dictated by the sign q

(writhe of the crossing between branches 2 and 3). Hence the orientation induced on
S1 by v2

3
is dictated by the sign pqr � q D pr , which is the result announced.

Using this formula, it is straightforward to see that hhv2
3
;S1.K/ii is a Vassiliev invariant

of degree at most 2; therefore it suffices to check the first equality for the trefoil.
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