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Character varieties of double twist links

KATHLEEN L PETERSEN

ANH T TRAN

We compute both natural and smooth models for the SL2.C/ character varieties of
the two-component double twist links, an infinite family of two-bridge links indexed
as J.k; l/ . For each J.k; l/ , the component(s) of the character variety containing
characters of irreducible representations are birational to a surface of the form C �C ,
where C is a curve. The same is true of the canonical component. We compute
the genus of this curve, and the degree of irrationality of the canonical component.
We realize the natural model of the canonical component of the SL2.C/ character
variety of the J.3; 2mC 1/ link as the surface obtained from P 1 �P 1 as a series of
blow-ups.

57M25; 57N10, 14J26

1 Introduction

Given a complete orientable finite-volume hyperbolic 3–manifold with cusps, the
SL2.C/ character variety of M , X.M /, is an affine complex algebraic set associated
to representations �1.M / ! SL2.C/. Thurston [14] showed that any irreducible
component of such a variety containing the character of a discrete faithful representation
has complex dimension equal to the number of cusps of M . Such components are
called canonical components and are denoted X0.M /. Character varieties have been
fundamental tools in studying the topology of M (we refer the reader to Shalen [13] for
more), and canonical components encode a wealth of topological information about M ,
including containing subvarieties associated to Dehn fillings of M and identifying
boundary slopes of essential surfaces; see Culler and Shalen [3].

We consider the two-component double twist links J.k; l/ and compute the character
varieties of their complements in S3 . As pictured in Figure 1, the integers k and l

determine the number of half-twists in the boxes; positive numbers correspond to
right-handed twists and negative numbers correspond to left-handed twists. The link
J.k; l/ is a two-component link when kl is odd and a knot when kl is even. Macasieb,
Petersen and van Luijk [8] determined and analyzed character varieties of the J.k; l/

knots. In this paper, we extend this work to the two-component J.k; l/ links. These
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k

l

Figure 1: The link J.k; l/ is the result of �1=k and �1= l surgery on the
four-component link pictured on the left.

are hyperbolic exactly when jkj and jl j are greater than one; the J.˙1; l/D J.l;˙1/

links are torus links. We will now exclusively consider the hyperbolic J.k; l/ links.

In Definition 3.5 we define the Chebyshev polynomials Sj which are used through-
out the paper. Our first theorem establishes natural models for the SL2.C/ char-
acter varieties of the double twist links. With �1.k; l/ D �1.S

3 � J.k; l//, let
Xirr.k; l/ denote the closure of the set of all irreducible characters �� of representations
�W �1.k; l/! SL2.C/. Let X0.k; l/ denote a canonical component. In fact, a conse-
quence of this work is that for a given double twist link, there is only one canonical
component. For this natural model, we use the presentation for �1.k; l/ in Section 3
with x D ��.a/, y D ��.b/ and z D ��.ab�1/. The vanishing set of the characters
of reducible representations �1.k; l/! SL2.C/ is well-known and is given by

xyzC 4�x2
�y2

� z2

in C3.x;y; z/. These are all characters of abelian representations.

Theorem 1.1 Let k D 2mC 1 and l D 2nC 1. A natural model for the algebraic set
Xirr.k; l/ is the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.x;y; z/, where

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

The expression t is the trace of �.ˇ/, with the loop ˇ as pictured in Figure 2. In terms
of the presentation for the fundamental group in Section 3, the loop ˇ corresponds to
the word wk .
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Character varieties of double twist links 3571

Our next theorem establishes smooth models for these algebraic sets.

Theorem 1.2 Let kD2mC1 and lD2nC1. The algebraic set Xirr.k; l/ is birational
to C.k; l/�C , where the curve C.k; l/�C2.t; z/ is given by

C.k; l/D fSn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0g:

If k ¤ l then C.k; l/ is smooth and irreducible as considered in P1.t/�P1.z/, and
X0.k; l/DXirr.k; l/ is birational to C.k; l/�C .

The curve C.3; 3/D C.�3;�3/ is given by t D z . If k D l and jl j > 3 then C.l; l/

is the union of exactly two components: C0.l; l/, given by t D z , and C1.l; l/, the
scheme-theoretic complement of C0.l; l/ in C.l; l/. Both are smooth and irreducible
as considered in P1.t/ � P1.z/. The algebraic set Xirr.k; l/ is given by the union
X0.l; l/[X1.l; l/, where X0.l; l/ is birational to C0.l; l/�C and X1.l; l/ is birational
to C1.l; l/�C .

We next compute some invariants of these algebraic sets. Since Xirr.k; l/ is birational
to the product of a curve C.k; l/ and C , we compute the genus of this curve.

Theorem 1.3 Let k D 2mC 1 and l D 2nC 1 with jkj; jl j > 1. When k ¤ l the
genus of C.k; l/ is ��

jkj
2

˘
� 1

���
jlj
2

˘
� 1

�
:

The genus of C0.l; l/ is zero, and when jl j> 3 the genus of C1.l; l/ is
��
jlj
2

˘
� 2

�2 .

The degree of irrationality of an irreducible n–dimensional complex algebraic set X

is defined to be the minimal degree of any rational map from X to a dense subset of
Cn . This is denoted 
 .X / and is a birational invariant. When X is a curve this is
called the gonality of X . See Petersen and Reid [11] for a discussion on how gonality
and genus behave in families of Dehn fillings. In light of this, since J.k; l/ is �1=k

and �1= l filling of the four-component link in Figure 1, we compute the degree of
irrationality of the surfaces X0.k; l/ and X1.l; l/.

Theorem 1.4 Let k D 2mC1 and l D 2nC1. The degree of irrationality of X0.k; l/

is min
˚�
jkj
2

˘
;
�
jlj
2

˘	
when k¤ l . The degree of irrationality of X0.l; l/ is 1, and when

jl j> 3 the degree of irrationality of X1.l; l/ is
�
jlj
2

˘
� 1.

Finally, we study the J.3; 2mC1/ links realizing X0.3; 2mC1/ as a series of blow-ups
of P1 �P1 and show the following.
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Theorem 1.5 The desingularization of the natural model for the canonical component
of the SL2.C/ character variety of the double twist link J.3; 2mC 1/ is the conic
bundle over the projective line P1 which is isomorphic to the surface obtained from
P1 �P1 by repeating a one-point blow-up 9m times if m� 1, and �.6C 9m/ times
if m��2. Equivalently, it is isomorphic to the surface obtained from P2 by repeating
a one-point blow-up 1C 9m times if m� 1, and �.5C 9m/ times if m� �2.

Remark 1.6 For m� 1, the link J.3; 2mC 1/ is obtained by 1=m Dehn surgery on
the magic manifold. Hence Theorem 1.5 confirms Conjecture 3.1.3 in Landes’ thesis [7].

Acknowledgement This work was partially supported by a grant from the Simons
Foundation (number 209226 to Kathleen Petersen).

2 Character varieties

We will define our notation, but refer the reader to [8] for a detailed discussion
of character varieties. Let M be a complete finite-volume hyperbolic 3–manifold.
The SL2.C/ character variety of M is the set of all characters of representations
�W �1.M /! SL2.C/. The character associated to � is ��W �1.M /!C , defined by
��.
 /D tr �.
 /.

Let X.M / denote the SL2.C/ character variety, that is

X.M /D f�� j �W �1.M /! SL2.C/g:

The characters of reducible representations themselves form an algebraic set, which is
a subset of X.M /. We will call this set Xred.M /. The closure of the set of characters
of irreducible representations will be denoted by Xirr.M /. Any irreducible component
of X.M / which contains the character of a discrete faithful representation is contained
in Xirr.M / and is called a canonical component and denoted X0.M /.

Thurston [14] showed that the complex dimension of any canonical component equals
the number of cusps of M . Canonical components encode much of the topology of M ,
often seen through the trace functions. Canonical components containing subvarieties
corresponding to Dehn fillings of M and their ideal points can be used to determine
essential surfaces in M (see [3]).

When M has only one cusp X0.M / is a curve. Several infinite families of these have
been studied. (See [1; 8; 16], for explicit computations. See [10] and [2] for examples
of families of manifolds with many components in their character varieties.) When M

has at least two cusps the algebraic geometry becomes more demanding, and only a
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few solitary examples have been computed. Landes [6; 7] computed a smooth model
for the canonical component of the SL2.C/ character variety of the complement of
the Whitehead link, a two-component link. (She explicitly showed that it is a rational
surface homeomorphic to the projective plane blown up at 10 points.) Harada [5]
computed the character varieties of the four arithmetic two-bridge link complements
(including the Whitehead link and the figure-8 knot). Our computation of the character
varieties of the double twist links is the first result to compute character varieties for
infinitely many 3–manifolds with two cusps.

3 Double twist links

Let J.k; l/ be the double twist link indicated in the right-hand side of Figure 1. This
link is �1=k and �1= l filling on two components of the four-component link shown
in the left-hand side of Figure 1. This is a knot when kl is even and a two-component
link when kl is odd. The link J.k; l/ corresponds to the continued fraction Œk;�l �. It
is hyperbolic, unless jkj or jl j is 1. Let X.k; l/ denote the SL2.C/ character variety
of S3�J.k; l/.

In [8] the character varieties of the J.k; l/ knots were computed. We now consider the
J.k; l/ links with two components, so both k and l are odd. Suppose k D 2mC 1

and l D 2nC 1. The link group of J.k; l/ is �1.k; l/ D �1.S
3 � J.k; l// and has

presentation
�1.k; l/D ha; b j aw

n
kb D wnC1

k
i;

where wk D .ab�1/mab.a�1b/m [8].

Definition 3.1 Let Fa;b D ha; bi be the free group on two letters a and b . For a
word u in Fa;b let  �u denote the word obtained from u by writing the letters in u in
reversed order.

We begin by simplifying the presentation of the link group.

Lemma 3.2 With wk D .ab�1/mab.a�1b/m and r D wn
k
.ab�1/m , we have

�1.k; l/D ha; b j r D
 �r i:

Proof We can rewrite the presentation of �1.k; l/ as

�1.k; l/D ha; b j aw
n
kb D .ab�1/mab.a�1b/mwn�1

k .ab�1/mab.a�1b/mi

D ha; b j wn
k D .b

�1a/mb.a�1b/mwn�1
k .ab�1/ma.ba�1/mi

D ha; b j wn
k.ab�1/m D .b�1a/mb.a�1b/mwn�1

k .ab�1/mai:
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Let c D .ab�1/ma and d D b.a�1b/m . Then wk D cd . It follows that

b.a�1b/mwn�1
k .ab�1/maD d.cd/n�1c D .dc/n D

 ���
.cd/n D

 �
wn

k :

Hence

�1.k; l/D
˝
a; b j wn

k.ab�1/m D
 ������

.ab�1/m
 �
wn

k

˛
D

˝
a; b j wn

k.ab�1/m D
 ��������

wn
k.ab�1/m

˛
:

Since r D wn
k
.ab�1/m , the lemma follows.

With coordinates x D tr �.a/, y D tr �.b/ and z D tr �.ab�1/, the character variety of
the free group Fa;b is isomorphic to C3Œx;y; z� by the Fricke–Klein–Vogt theorem
[4; 17]. Consider a word u in Fa;b . Define the polynomial Pu 2 CŒx;y; z� to be
Pu.x;y; z/D tr �.u/. It follows that for every word u in Fa;b the polynomial Pu is
the unique polynomial such that for any representation �W Fa;b ! SL2.C/ we have
tr �.u/D Pu.x;y; z/.

We now consider representations �W �1.k; l/! SL2.C/. By Lemma 3.2 the group
�1.k; l/ has a presentation with two generators and one relation and therefore is a
quotient of Fa;b . First, we establish some notation which we will use throughout the
manuscript.

Definition 3.3 Let k D 2mC 1 and l D 2nC 1. For �W �1.k; l/! SL2.C/ define

x D tr �.a/; y D tr �.b/ and z D tr �.ab�1/;

and for a word u in Fa;b define the polynomial Pu.x;y; z/ D tr �.u/ 2 CŒx;y; z�.
Further, let t D Pwk

and

'.x;y; z/D Prab �P �
r ab

:

For every representation �W �1.k; l/! SL2.C/, we consider x;y and z as functions
of � . Using the presentation above for �1.k; l/ with two generators and one relation,
we conclude that Prab D P �

r ab
, which is simply '.x;y; z/ D 0, in X.k; l/. In

fact, by [16, Theorem 1] X.k; l/ is exactly the zero set of '.x;y; z/. (See also [12,
Theorem 2.1]). Moreover, because of the format of the defining word, P �

r ab
D Pbar

[16, Theorem 1]. (That is, these polynomials in C3Œx;y; z� are identical.) Therefore,
'.x;y; z/D Prab �Pbar . We summarize this discussion in the following proposition.

Proposition 3.4 The polynomial '.x;y; z/ is given by Prab �Pbar . The character
variety X.k; l/ is the zero set of '.x;y; z/ in C3.x;y; z/.
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We wish to obtain a nice format for ' . We introduce a family of Chebyshev polynomials,
often called the Fibonacci polynomials, that will be essential to our computation of ' .
(These are slightly different polynomials than were used in [8]; the indices are shifted
by one.)

Definition 3.5 Let Sj .!/ be the Chebyshev polynomials defined by

S0.!/D 1; S1.!/D ! and SjC1.!/D !Sj .!/�Sj�1.!/

for all integers j .

It is elementary to verify the following lemmas.

Lemma 3.6 With ! D � C ��1 we have

Sj .!/D
�jC1���j�1

����1
:

The degree of Sj is j if j > �1 and �j � 2 if j < �1.

Lemma 3.7 Suppose the sequence ffj gj2Z satisfies the recurrence relation fjC1 D

!fj �fj�1 for all integers j . Then fj D Sj .!/f0�Sj�1.!/f�1 .

The following lemma can be verified by using Lemma 3.6.

Lemma 3.8 We have

(a) S2
j .!/CS2

j�1
.!/�!Sj .!/Sj�1.!/D 1,

(b) S2
j .!/�S2

j�1
.!/D S2j .!/,

(c) Sm�1.!/
�
!C .!2� 4/Sm�1.!/Sm.!/

�
CSm.!/D S3m.!/.

We now simplify the polynomial ' by writing the trace polynomials in terms of these
Chebyshev polynomials.

Proposition 3.9 We have

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:
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Proof By definition, t D Pwk
. By applying Lemma 3.7 twice, we have

Pwk
D P.ab�1/mab.a�1b/m

D S2
m.z/PabCS2

m�1.z/P.ab�1/�1ab.a�1b/�1

�Sm.z/Sm�1.z/.P.ab�1/�1abCPab.a�1b/�1/

D S2
m.z/PabCS2

m�1.z/Pba�Sm.z/Sm�1.z/.Pb2 CPa2/

D .S2
m.z/CS2

m�1.z//.xy � z/�Sm.z/Sm�1.z/.x
2
Cy2

� 4/:

The proposition follows.

Proposition 3.10 The polynomial '.x;y; z/ 2C3Œx;y; z� is

'.x;y; z/D .xyzC 4�x2
�y2

� z2/
�
Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

�
;

where t is as in Proposition 3.9.

Proof As mentioned above, by [16, Theorem 1] X.k; l/ is the zero set of '.x;y; z/
and P �

r ab
D Pbar . By applying Lemma 3.7 we have

Prab �Pbar D Pwn
k
.ab�1/mab �Pbawn

k
.ab�1/m

D Sn.t/.P.ab�1/mab �Pba.ab�1/m/

�Sn�1.t/.Pw�1
k
.ab�1/mab �Pbaw�1

k
.ab�1/m/

D Sn.t/.P.ab�1/mab �Pba.ab�1/m/

�Sn�1.t/.P.a�1b/m �Pab.a�1b/m.ba/�1/;

where

P.ab�1/mab �Pba.ab�1/m D Sm.z/.Pab �Pba/

�Sm�1.z/.P.ab�1/�1ab �Pba.ab�1/�1/

D�Sm�1.z/.Pb2 �Pbaba�1/

D Sm�1.z/.xyzC 4�x2
�y2

� z2/;

P.a�1b/m �Pab.a�1b/m.ba/�1 D Sm.z/.P1�Pab.ba/�1/

�Sm�1.z/.P.a�1b/�1 �Pab.a�1b/�1.ba/�1/

D Sm.z/.xyzC 4�x2
�y2

� z2/:

Hence

Prab �Pbar D .xyzC 4�x2
�y2

� z2/.Sn.t/Sm�1.z/�Sn�1.t/Sm.z//:
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The character variety X.k; l/ is clearly reducible. The set of reducible characters,
Xred.k; l/, can easily be determined, as in [1], for example. We have the following,
from which Theorem 1.1 follows immediately.

Proposition 3.11 The vanishing set of

xyzC 4�x2
�y2

� z2

in C3.x;y; z/ is the set of characters of reducible representations �1.k; l/! SL2.C/.

A natural model for the algebraic set Xirr.k; l/ is the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.x;y; z/, where t is as in Proposition 3.9.

In light of this, we wish to understand the vanishing set of the difference Sn.t/Sm�1.z/�

Sn�1.t/Sm.z/. The equation Sn.t/Sm�1.z/D Sn�1.t/Sm.z/ can be written as

Sn.t/

Sn�1.t/
D

Sm.z/

Sm�1.z/

when Sn�1.t/Sm�1.z/¤ 0, so we can think of it as lying in a product of projective
lines. We will make use of this approach when proving smoothness and irreducibility.

Definition 3.12 Let V .k; l/ be the vanishing set of Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.x;y; z/.

By Proposition 3.11 the components of X.k; l/ containing characters of irreducible
representations, those included in Xirr.k; l/, are contained in V .k; l/ and V .k; l/ is a
natural model for this set.

4 The structure of V.k; l/

The set V .k; l/ is the closure of the set of characters of irreducible representations.
The equation Sn.t/Sm�1.z/�Sn�1.t/Sm.z/ is relatively simple, except that t itself
is a function of the natural variables x;y , and z . Explicitly, by Proposition 3.9,

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

We will show that there is a relatively simple model for Xirr.k; l/ up to birational
equivalence.
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Definition 4.1 Let uD xSm.z/�ySm�1.z/ and v D ySm.z/�xSm�1.z/.

It follows that

t D uv� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

By the definitions of u and v ,

x D
uSm.z/C vSm�1.z/

S2
m.z/�S2

m�1
.z/

and y D
vSm.z/CuSm�1.z/

S2
m.z/�S2

m�1
.z/

:

We will show that this substitution of u and v for x and y corresponds to a birational
map, simplifying the definition of t . Then we will show that substituting t for u

is another birational map, thus eliminating the problem of having nested variables.
This has the fortunate consequence that the equation Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

contains no u, so we can conclude that the algebraic set V .k; l/ is birational to the
product of a curve and C .

Definition 4.2 Let U.k; l/ be the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.u; v; z/, where

t D uv� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

Before showing that V .k; l/ is birational to U.k; l/ we prove a lemma.

Lemma 4.3 On V .k; l/, S2
m.z/�S2

m�1
.z/D 0 only for a set of codimension one.

Proof By definition Sj .z/ is a Chebyshev polynomial, and by Lemma 3.8 we have
that S2

m.z/�S2
m�1

.z/D S2m.z/. Moreover, letting z D � C ��1 , we can write

S2m.� C �
�1/D

�2mC1���2m�1

����1
:

Therefore, if S2
m.z/�S2

m�1
.z/D 0 then �2mC1 � ��2m�1 D 0 and so �4mC2 D 1.

It follows that
� D e2�is=.4mC2/

D e�is=.2mC1/

for some 0� s � 4mC 2. When s D 2r is even (1� r �m),

z D � C ��1
D 2Re.�/D 2 cos

�
2�r

2mC1

�
Algebraic & Geometric Topology, Volume 15 (2015)
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and z is a root of Sm.z/CSm�1.z/. When s D 2r C 1 is odd (0� r �m� 1),

z D 2 cos
�
.2rC1/�

2mC1

�
and z is a root of Sm.z/�Sm�1.z/.

First, we will show that Sm.z/� Sm�1.z/ D 0 only for a set of dimension one on
V .k; l/. By Lemma 3.8,

S2
m.z/CS2

m�1.z/� zSm.z/Sm�1.z/D 1:

Since Sm.z/D Sm�1.z/, we obtain S2
m.z/D 1=.2� z/ and

t D�S2
m.z/..x�y/2C 2z� 4/D

1

z� 2
..x�y/2C 2.z� 2//D

.x�y/2

z� 2
C 2:

We conclude that
.x�y/2 D .z� 2/.t � 2/:

On V .k; l/, Sn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0. Since Sm.z/D Sm�1.z/ we get

Sm.z/.Sn.t/�Sn�1.t//D 0:

Since z is as above, we see that Sm.z/ ¤ 0 since S2
m.z/ D 1=.2 � z/. Hence

Sn.t/�Sn�1.t/D 0. It follows that

t D 2 cos
�
.2sC1/�

2nC1

�
;

where 0� s � n� 1. We conclude that

.x�y/2 D 4
�

cos
�
.2rC1/�

2mC1

�
� 1

��
cos

�
.2sC1/�

2nC1

�
� 1

�
:

This defines x�y explicitly, and therefore determines a set of dimension one in V .k; l/.
Since the dimension of V .k; l/ is two, this is a codimension-one set.

We complete the proof by showing that Sm.z/ C Sm�1.z/ D 0 only for a set of
dimension one on V .k; l/. Note that z D 2 cos

�
2�r

2mC1

�
, where 1� r �m. We have

S2
m.z/CS2

m�1.z/� zSm.z/Sm�1.z/D 1:

Since Sm.z/D�Sm�1.z/, we obtain S2
m.z/D 1=.2C z/ and

t D S2
m.z/..xCy/2� 2z� 4/D

1

2C z
..xCy/2� 2.zC 2//D

.xCy/2

2C z
� 2:

We conclude that
.xCy/2 D .t C 2/.zC 2/:
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On V .k; l/ we have Sn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0, and hence

Sm.z/.Sn.t/CSn�1.t//D 0:

Since z is as above, we conclude that Sn.t/CSn�1.t/D0. This means tD2 cos
�

2�s
2nC1

�
(where 1� s � n). Hence

.xCy/2 D 4
�

cos
�

2�r

2mC1

�
C 1

��
cos

�
2�s

2nC1

�
C 1

�
:

This defines x C y explicitly, and therefore determines a set of dimension one in
V .k; l/. Since the dimension of V .k; l/ is two, this is a codimension-one set.

The next result now easily follows.

Proposition 4.4 The set V .k; l/�C3.x;y; z/ is birational to U.k; l/�C3.u; v; z/.

Proof As discussed above, the substitution defines a rational map between V .k; l/

and U.k; l/, namely

.x;y; z/ 7!

�
xSm.z/CySm�1.z/

S2
m.z/�S2

m�1
.z/

;
ySm.z/CxSm�1.z/

S2
m.z/�S2

m�1
.z/

; z

�
;

with inverse

.u; v; z/ 7!
�
uSm.z/� vSm�1.z/; vSm.z/�uSm�1.z/; z

�
:

It suffices to see that S2
m.z/ � S2

m�1
.z/ D 0 only for a set of codimension one on

V .k; l/, which follows from Lemma 4.3.

We now wish to perform one more birational transformation.

Definition 4.5 Let W .k; l/ be the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C3.t; v; z/.

For each odd integer l , let W0.l; l/ denote the component of W .l; l/ given by tD z and
if jl j> 3 let W1.l; l/ denote the projective closure of the scheme-theoretic complement
of W0.l; l/ in W .l; l/.

First, we prove a lemma.

Lemma 4.6 On U.k; l/, v D 0 only for a set of dimension zero.
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Proof If v D 0 then since

t D uv� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/

we conclude that

t D�z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

The defining polynomial for U.k; l/ is Sn.t/Sm�1.z/�Sn�1.t/Sm.z/. Upon substi-
tuting the above polynomial in ZŒz� for t we see that this defining polynomial can be
expressed as a polynomial in ZŒz�. As a result, this has a finite number of roots. For
each of these z values, there is one associated t , and hence we have a finite number of
points on U.k; l/ where v D 0.

Now we are prepared to show the following.

Proposition 4.7 The set U.k; l/�C3.u; v; z/ is birational to W .k; l/�C3.t; v; z/.

Proof Since t is linear in u, we define the rational map from C3.u; v; z/ to C3.t; v; z/

by this replacement. That is, define the rational map

.u; v; z/ 7!

�
.uC z.S2

m.z/CS2
m�1

.z//� 4Sm.z/Sm�1.z//

v
; v; z

�
which has rational inverse

.t; v; z/ 7!
�
tv� z.S2

m.z/CS2
m�1.z//C 4Sm.z/Sm�1.z/; v; z

�
:

The result now follows from Lemma 4.6.

Definition 4.8 Let C.k; l/ be the curve given by the vanishing set of

Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

in C2.t; z/. For each odd integer l , let C0.l; l/ denote the component of C.l; l/ given
by t D z and if jl j> 3 let C1.l; l/ denote the projective closure of the scheme-theoretic
complement of C0.l; l/ in C.l; l/.

With this definition, the surface W .k; l/ is a product of the curve C.k; l/ and C . We
have shown that V .k; l/ is birational to W .k; l/, which is equivalent to the following,
proving the first portion of Theorem 1.2.

Theorem 4.9 The algebraic set Xirr.k; l/ is birational to W .k; l/, which is, in turn,
isomorphic to C.k; l/�C .
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5 Smoothness and irreducibility of W.k; l/

We will show that if k ¤ l then W .k; l/ is smooth and irreducible, and if k D l

then W .l; l/ has two irreducible components. Since W .k; l/ is the product of C.k; l/

and C , we will focus on the curve C.k; l/. Our proof is similar to [8], but with small
modifications. Recall that kD 2mC1 and l D 2nC1. The equation Sn.t/Sm�1.z/D

Sn�1.t/Sm.z/ can be written as

Sn.t/

Sn�1.t/
D

Sm.z/

Sm�1.z/

when Sn�1.t/Sm�1.z/¤ 0.

Definition 5.1 Let

hj D Sj=Sj�1; �j D S 0j Sj�1�Sj S 0j�1 and Hn D S 00j Sj�1�S 00j�1Sj :

We can rewrite the defining equation for W .k; l/ as hn.t/ D hm.z/, and with this
notation the derivative is h0j D�j=S

2
j�1

.

The following lemma can be verified by using Lemma 3.6.

Lemma 5.2 We have

(a) .!2� 4/�j .!/D S2j .!/� .2j C 1/,

(b) .!2� 4/2Hj .!/D .2j � 2/!S2j .!/� .4j C 2/S2j�1.!/C .4j C 2/! .

We will need the following lemma (see [8, Lemma 2.6]) to connect smoothness and
irreducibility.

Lemma 5.3 Let C � P1 �P1 be a smooth projective curve of bidegree .a; b/ with
a; b > 0. Then C is irreducible and its genus is .a� 1/.b� 1/.

The proof of smoothness will follow from comparing valuations at potential critical
points. We begin with a few lemmas. In the case that mn < 0 we use the following
lemma.

Lemma 5.4 Let ! 2C be a root of �n . If n> 0 then jhn.!/j> 1, and if n< 0 then
jhn.!/j< 1.
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Proof Suppose that �n.!/ D 0. By Lemma 5.2, S2n.!/ D 2n C 1. We have
Sn�1.!/ 6D 0 (otherwise

Sn.!/S
0
n�1.!/D S 0n.!/Sn�1.!/��n.!/D 0;

which cannot occur, since Sn�1 is separable and relatively prime to Sn in CŒ!�).
Hence hn.!/ D Sn.!/=Sn�1.!/ is well-defined. Write ! D � C ��1 . We have
S2n.!/D 2nC 1, ie

�2nC1
� ��.2nC1/

D .2nC 1/.� � ��1/:

Assume n > 0. Then �2nC1� ��.2nC1/ and � � ��1 are in the same half-plane. It
follows that �2nC1� �2nC1 and � � � are in the same half-plane. Since both these
values are purely imaginary, we conclude .�2nC1� �2nC1/.� � �/� 0, with equality
if and only if �2nC1 is real.

Let ˛ D �� D j� j2 > 0. We have

j�nC1
� ��.nC1/

j
2
� j�n

� ��n
j
2

D .�nC1
� ��.nC1//.�nC1

� ��.nC1//� .�n
� ��n/.�n

� ��n/

D .˛nC1
C˛�.nC1/

� .˛n
C˛�n//� .�2nC1

� �2nC1/.� � �/=�nC1�nC1

D .˛� 1/.˛2nC1
� 1/=˛nC1

� .�2nC1
� �2nC1/.� � �/=˛nC1

� 0:

Equality holds if and only if j� j2 D ˛ D 1 and �2nC1 is real, so if and only if
�2nC1 D˙1. If �2nC1 D˙1, the equation �2nC1���.2nC1/ D .2nC 1/.� ���1/

implies that � D ��1 , so � D˙1 and ! D˙2. If ! D˙2 then

jhn.!/j D jSn.!/=Sn�1.!/j D .nC 1/=n> 1:

The proof for n< 0 is similar. In that case �2nC1� �2nC1 and � � � are in opposite
half-planes and (˛� 1/.˛2nC1� 1/� 0.

In the remaining case (mn> 0) we can use non-archimedean places instead of complex
absolute values. For any root ! of �n , we have S2n.!/D 2nC 1. It follows that

h2
n.!/� 1D

�
Sn.!/

Sn�1.!/

�2

� 1D
S2n.!/

S2
n�1

.!/
D

2nC 1

S2
n�1

.!/
:

Lemma 5.5 For any field F with characteristic not dividing 2n, the polynomial Sn�1

is separable over F and we have .�n;Sn�1/D .1/ in F Œ!�.

Proof We have .�nC1��n�1/Sn�1 D �
2n� 1, and the reduction of this polynomial

to F is separable. It follows that Sn�1 is separable over F , ie .Sn�1;S
0
n�1

/ D .1/.
Since �n D S 0nSn�1�SnS 0

n�1
, we have .�n;Sn�1/D .SnS 0

n�1
;Sn�1/D .1/.
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Lemma 5.6 Let p be a prime dividing 2nC 1. Let K be a number field containing a
root ! of �n . Let v be a valuation on K with v.p/D 1. Then v.Sn�1.!//D 0.

Proof The polynomial �n is monic, so ! is an algebraic integer. Let p be the prime
associated with v , and Fp be its residue field. Then the characteristic p of Fp does not
divide 2n, so by Lemma 5.5 the reduction of Sn�1.!/ to Fp is not 0. This implies
v.Sn�1.!//D 0.

We now address smoothness.

Proposition 5.7 Let k and l be any odd integers with k ¤ l . Then C.k; l/ is smooth
over Q.

Proof Suppose P D .t0; z0/ is a singular point on the affine part of C.k; l/. Then
Sn�1.t0/ 6D 0 and Sm�1.z0/ 6D 0. (If Sn�1.t0/D 0 then Sm�1.z0/D 0. Since P is a
singular point, we also have S 0

n�1
.t0/D 0 and S 0

m�1
.z0/D 0. This is impossible since

Sj is separable.) Then C.k; l/ can be given around P by hn.t/D hm.z/. The fact that
P is a singular point is then equivalent to the fact that t0 and z0 are critical points for
hn and hm , respectively. (We have �n.t0/D�m.z0/D 0, ie h0n.t0/D h0m.z0/D 0.)

First, consider the case when kl < 0. The points at infinity are smooth by [8,
Lemma 5.6]. The proposition follows from Lemma 5.4. That is, the values of hk at
its critical points are all different from each other, and they are also different from the
values of hl at all its critical points when k 6D l .

Now, assume that kl > 0 but k ¤ l . Assume P .t0; z0/ is a singular point over Q of
the standard affine part of C.k; l/. Let K be the number field Q.t0; z0/. We have
�n.t0/D�m.z0/D 0 and C.k; l/ is given around P by hn.t0/D hm.z0/. It follows
that h2

n.t0/� 1D h2
m.z0/� 1, ie

(�)
2nC 1

S2
n�1

.t0/
D

2mC 1

S2
m�1

.z0/
:

Let p be any prime such that vp.2nC1/ 6D vp.2mC1/. By symmetry we may assume
vp.2nC1/> vp.2mC1/. Let p be any prime of K above p , and let v be the valuation
on K associated to p , normalized so that v restricts to vp on Q. By Lemma 5.6,
we have

v

�
2nC 1

S2
n�1

.t0/

�
D v.2nC 1/ > v.2mC 1/� v

�
2mC 1

S2
m�1

.z0/

�
:

This contradicts the equality (�), and we conclude that no singular point P exists on
the affine part. By [8, Lemma 5.6] there are no singular points at infinity.
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Proposition 5.8 Let l be any odd integer. Then the curve C1.l; l/ is smooth over Q.

Proof Let F D Sn.t/Sn�1.z/�Sn�1.t/Sn.z/ and G D F=.z� t/. Then C1.l; l/ is
defined by G.t; z/D 0. Any singular point of C1.l; l/ is also a singular point of C.l; l/.
By [8, Lemma 5.6] we find that C.l; l/ is smooth at all points at infinity, so C1.l; l/ is as
well. Assume that P D .t0; z0/ is a singular point of the standard affine part of C1.l; l/.
Then P is also a singular point of C.l; l/. Note that �n.t0/D0 and �n.z0/D0, and we
may rewrite F.P /D0 as hn.t0/Dhn.z0/. Recall .!2�4/�n.!/DS2n.!/�.2nC1/.

Since S2
n .!/� !Sn.!/Sn�1.!/C S2

n�1
.!/ D 1 and S2

n .!/� S2
n�1

.!/ D S2n.!/,
we have

hn.!/C h�1
n .!/D !C

1

Sn.!/Sn�1.!/

and

hn.!/� h�1
n .!/D

S2n.!/

Sn.!/Sn�1.!/
:

Since hn.t0/D hn.z0/ and S2n.t0/D S2n.z0/D 2nC 1, we conclude that t0 D z0 .

Recall that Hn D S 00n Sn�1�SnS 00
n�1

. By l’Hôpital’s rule, we have

�Hn.t0/D Fzz.t0; t0/

D lim
z!t0

Fz.t0; z/

z� t0
D 2 lim

z!t0

F.t0; z/

.z� t0/2
D 2 lim

z!t0

G.t0; z/

z� t0

D 2Gz.t0; t0/:

The fact that C1.l; l/ is singular at P D .t0; t0/ implies that 0DGz.P /D�
1
2
Hn.t0/.

Hence, by Lemma 5.2 we have

.2n� 2/t0S2n.t0/� .4nC 2/S2n�1.t0/C .4nC 2/t0 D .t
2
0 � 4/2Hn.t0/D 0:

Since S2n.t0/D 2nC 1, we obtain S2n�1.t0/D nt0 . Since

S2
2n.t0/� t0S2n.t0/S2n�1.t0/CS2

2n�1.t0/D 1;

we conclude that t0 D ˙2. This is a contradiction, since �n.˙2/ 6D 0 by direct
calculation. We are done.

Proposition 5.9 The algebraic set C.k; l/ is smooth and has one irreducible compo-
nent if k ¤ l . The curve C.3; 3/D C.�3;�3/ is given by t D z . If k D l and jl j> 3

then C.k; l/ has two irreducible components, C0.l; l/ and C1.l; l/. Both C0.l; l/ and
C1.l; l/ are smooth.
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Proof By Lemma 5.3 it suffices to show that C.k; l/ is smooth. If k¤ l , then C.k; l/

is smooth by Proposition 5.7. If k D l then C1.l; l/ is smooth by Proposition 5.8. The
proposition follows since C0.l; l/ is given by t D z and is smooth.

We have shown that if k ¤ l then Xirr.k; l/ is a single irreducible component. When
kD l and jl j> 3, we have shown that Xirr.k; l/ comprises two irreducible components,
and we now identify the canonical component.

Lemma 5.10 If k¤ l then X0.k; l/ is birational to C0.k; l/�C . The curve C.3; 3/D

C.�3;�3/ is given by t D z and X0.3; 3/ is birational to C.3; 3/�C . If k D l and
jl j > 3 then X0.l; l/ is birational to C0.l; l/ �C and there is one more irreducible
component of Xirr.l; l/, birational to C1.l; l/�C .

Proof By Theorem 4.9, Xirr.k; l/ is birational to C.k; l/�C . Proposition 5.9 shows
that X0.k; l/DXirr.k; l/ when k ¤ l .

By the definition of C0.l; l/ it suffices to show that t D z corresponds to the canonical
component. By construction, z D ��.ab�1/ corresponds to the loop ˛ pictured in
Figure 2. Moreover, t D ��.wk/ corresponds to the loop ˇ pictured in the figure.
When k D l the symmetry induced by flipping the four-plat upside down swaps these
loops. On the level of the character variety this symmetry induces the identity t D z .
(The symmetry acts trivially on x D ��.a/ and y D ��.b/.) For any discrete faithful
representation, t D z must hold on the level of characters since the loops corresponding
to z and t must have the same length (since they are swapped by the symmetry). The
symmetry sends each meridian to a loop freely homotopic to itself, with the reverse
orientation, and does the same for each longitude. Therefore, the symmetry induces a
symmetry on any Dehn filling of the link. We conclude that t D z must be satisfied by
all Dehn fillings as well. By work of Thurston [14], all but finitely many Dehn fillings
of one cusp of the link are on canonical components, and so are dense in X0.k; l/. (See
[9] and also [8, Section 2.3]) The fact that there are exactly two irreducible components
in this case follows from Proposition 5.9.

We summarize this section in the following theorem.

Theorem 1.2 Let kD2mC1 and lD2nC1. The algebraic set Xirr.k; l/ is birational
to C.k; l/�C , where the curve C.k; l/�C2.t; z/ is given by

C.k; l/D fSn.t/Sm�1.z/�Sn�1.t/Sm.z/D 0g:

If k ¤ l then C.k; l/ is smooth and irreducible as considered in P1.t/�P1.z/, and
X0.k; l/DXirr.k; l/ is birational to C.k; l/�C .
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a b

˛ k

l

ˇ

k�2

l�2

Figure 2: Meridian loops on double twist links and the four-plat presentation

The curve C.3; 3/D C.�3;�3/ is given by t D z . If k D l and jl j > 3 then C.l; l/

is the union of exactly two components: C0.l; l/, given by t D z , and C1.l; l/, the
scheme-theoretic complement of C0.l; l/ in C.l; l/. Both are smooth and irreducible
as considered in P1.t/ � P1.z/. The algebraic set Xirr.k; l/ is given by the union
X0.l; l/[X1.l; l/, where X0.l; l/ is birational to C0.l; l/�C and X1.l; l/ is birational
to C1.l; l/�C .

We conclude this section with a few remarks about symmetries. The proof of Lemma
5.10 relied on analysis of the symmetry which flips the four-plat upside down. For
all k and l , the link complement S3�J.k; l/ has a non-trivial symmetry group. In
the case when k ¤ l this is generated by two involutions. The first is the flip about
a vertical axis through the k half-twists. (In the left projection in Figure 2 this axis
is the vertical axis through the middle of the diagram.) The second symmetry is the
analogous symmetry through an axis through the l half-twists. (In the left projection
in Figure 2 this axis is a circle through the middle of the l half-twists which goes
horizontally through the k box.)

These symmetries both take the loop corresponding to a to a loop freely homotopic
to the loop corresponding to b�1 , and fix the free homotopy class of the un-oriented
loop corresponding to ab�1 . Since they are involutions, the effect on the character
variety is that x D ��.a/ is sent to y D ��.b/D ��.b

�1/ and z D ��.ab�1/ is fixed.
By definition, t D ��.wk/ is given by

.xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

We conclude that these symmetries fix t . Therefore, the induced action of the symmetry
group on C3Œx;y; z� when k ¤ l is given by .x;y; z/ 7! .y;x; z/. (This is the action
of an index-two subgroup when k D l .)
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Recall that

'.x;y; z/D .xyzC 4�x2
�y2

� z2/
�
Sn.t/Sm�1.z/�Sn�1.t/Sm.z/

�
:

The abelian component of the character variety is given by .xyzC 4�x2�y2� z2/

and is preserved by this action. As there are points on this component where x¤ y , we
conclude that the action preserves this component set-wise but not point-wise. (For ex-
ample, the point .2;�2; 2/ is sent to .�2; 2; 2/.) The set of irreducible representations
is given by .Sn.t/Sm�1.z/�Sn�1.t/Sm.z//. Since t and z are fixed, this component
(or in the case when k D l , these two components) is fixed by these symmetries. When
k ¤ l , since x¤ y for infinitely many representations on this component, we conclude
that the action preserves this component set-wise but not point-wise. Similarly, when
k D l these symmetries preserve both z D t and the other component set-wise but not
point-wise.

We conclude that even the non-geometric representations algebraically preserve this
symmetry. However, when k D l the additional symmetry fixes the un-oriented free
homotopy class of loops corresponding to a and similarly for b , but takes the un-
oriented loop corresponding to ab�1 to a loop freely homotopic to one corresponding
to wk . This is not freely homotopic to .ab�1/˙1 . It is this that induces the factoring
of the defining equation, ' . In this case, when jl j > 3 there is a component which
corresponds to necessarily non-geometric representations which do not algebraically
preserve this symmetry.

6 Further invariants

We have shown in Theorem 1.2 that, when k¤ l , X0.k; l/ is birational to C0.k; l/�C ,
and that C0.k; l/ is smooth and irreducible in P1 � P1 . We have also shown that
Xirr.l; l/ is birational to the union of C0.l; l/�C and C1.l; l/�C . We now compute
the genus of these curves, and the degree of irrationality of X0.k; l/ and X1.l; l/.

Lemma 6.1 When k ¤ l the bidegree of C.k; l/ is
��
jkj
2

˘
;
�
jlj
2

˘�
. The bidegree of

C1.l; l/ is
��
jlj
2

˘
� 1;

�
jlj
2

˘
� 1

�
.

Proof By Lemma 3.6, S�1 D 0 and the degree of Sj is j when j > 0 and �j � 2

when j < �1. Therefore, the bidegree of C.k; l/ is .a; b/, where aD n if n> 0 and
a D �n� 1 if n < �1, and b D m if m > 0 and b D �m� 1 if m < �1. This is
equivalent to aD

�
jkj
2

˘
and bD

�
jlj
2

˘
. The computation for C1.l; l/ follows from this

using the definition of C1.l; l/.
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Theorem 1.3 Let jkj; jl j> 1. When k ¤ l the genus of C.k; l/ is��
jkj
2

˘
� 1

���
jlj
2

˘
� 1

�
:

The genus of C0.l; l/ is zero, and for jl j> 3 the genus of C1.l; l/ is
��
jlj
2

˘
� 2

�2 .

Proof The result follows from the following, by Lemma 6.1. If C is a smooth
projective curve in P1�P1 of bidegree .a; b/ then the genus is .a�1; b�1/ (see [8]).

Definition 6.2 Let X be an irreducible (affine or projective) complex variety of
dimension n. The degree of irrationality of X , 
 .X /, is the minimal degree of any
rational map from X to a dense subset of Cn . When X is a curve, this is also called
the gonality of X .

The gonality, in its relation to character varieties and Dehn filling, is discussed at
length in [11]. Moreover, the gonality of the components of the SL2.C/ and PSL2.C/
character varieties are computed (Theorem 9.2, Theorem 9.4). We now compute the
degree of irrationality of our sets.

Theorem 1.4 The degree of irrationality of X0.k; l/ is min
˚�
jkj
2

˘
;
�
jlj
2

˘	
when k¤ l .

The degree of irrationality of X0.l; l/ is 1, and the degree of irrationality of X1.l; l/ is�
jlj
2

˘
� 1.

Proof The degree of irrationality of a surface of the form C � C is equal to the
gonality of C ; see [18, Proposition 1] and [15]. (If C is a non-singular projective
curve then C �C is a non-singular projective surface since the fibers have genus zero.)
Following [11, Lemma 9.1] if C is a smooth irreducible curve in P1�P1 of bidegree
.a; b/ with ab ¤ 0 then the gonality of C is minfa; bg. The result now follows from
Lemma 6.1.

7 Desingularization of X0.3; 2m C 1/

The simplest subfamily of the hyperbolic two-component double twist links is when
kD 3 (so nD 1). This family includes the Whitehead link 52

1
D .8=3/ which is J.3; 3/,

and 62
2
D .10=3/ which is J.3;�3/. In this section we first determine the singular points

of the natural model of X0.3; l/, where lD2mC1 in Proposition 7.5. In Proposition 7.7
we determine the degenerate fibers of the map �W S! P1 , .x W y W u; z Ww/ 7! .z Ww/.
We then show in Theorem 1.5 that the desingularization of the natural model for
X0.3; 2mC 1/ is a series of blowups of P1 �P1 .
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By Theorem 1.2, X0.3; l/D Xirr.3; l/ is birational to C.3; l/�C , where C.3; l/ is
given by tSm�1.z/D Sm.z/ in C2.t; z/. Since this defining polynomial is linear in t

we conclude that C.3; l/ is itself birational to C and X0.3; l/ is indeed birational
to C2 . The Whitehead link, J.�3;�3/D J.3; 3/ is a degenerate case of the J.3; l/

links, where X0.3; 3/DXirr.3; 3/ is given by t D z up to birational equivalence.

We begin by homogenizing the defining polynomial for X0.3; l/, where l D 2mC 1.
Recall that

t D .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//

� z.S2
m.z/CS2

m�1.z//C 4Sm.z/Sm�1.z/:

Since S2
m.z/CS2

m�1
.z/� zSm.z/Sm�1.z/D 1, this simplifies to

t D xy � zC .xyzC 4�x2
�y2

� z2/Sm.z/Sm�1.z/:

The defining polynomial for the natural model of X0.3; l/ is tSm�1.z/� Sm.z/ in
CŒx;y; z�. We now homogenize it.

Definition 7.1 Let Tj D Tj .z; w/D w
j Sj .z=w/.

The following is a direct consequence of the Chebyshev identity

S2
j .!/CS2

j�1.!/�!Sj .!/Sj�1.!/D 1:

Lemma 7.2 We have

T 2
j Cw

2T 2
j�1� z Tj Tj�1 D w

2j :

It is now elementary to determine the homogenous defining polynomial.

Lemma 7.3 The homogenization of the defining polynomial tSm�1.z/� Sm.z/ in
P2 �P1 D f.x W y W u; z W w/g is

F D
�
.xyw�u2z/w2m

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/TmTm�1

�
Tm�1

�u2w2mTm:

We now determine the singular points in the projective closure of our natural model
in P2 � P1 . To find singular points, we consider solutions .x W y W u; z W w/ of
F D Fx D Fy D Fu D Fz D Fw D 0.

First, we compute these partial derivatives; the results are elementary to verify by direct
calculations.
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Lemma 7.4 The first-order partials of F as in Lemma 7.3 are given by the following:

Fx D .yw
2m
C .yz� 2xw/TmTm�1/w Tm�1;

Fy D .xw
2m
C .xz� 2yw/TmTm�1/w Tm�1;

Fu D�2u
�
.zw2m

C .z2
� 4w2/TmTm�1/Tm�1Cw

2mTm

�
;

Fz D
�
�u2w2m

C .xyw� 2u2z/TmTm�1

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/.TmTm�1/z

�
Tm�1

C
�
.xyw�u2z/w2m

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/TmTm�1

�
� .Tm�1/z �u2w2m.Tm/z;

Fw D
�
.2mC 1/xyw2m

� 2mu2zw2m�1
C .xyzC 8u2w� 2x2w� 2y2w/TmTm�1

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/.TmTm�1/w

�
Tm�1

C
�
.xyw�u2z/w2m

C .xyzwC 4u2w2
�x2w2

�y2w2
�u2z2/TmTm�1

�
� .Tm�1/w �u2.2mw2m�1TmCw

2m.Tm/w/:

We can now determine the singular points.

Proposition 7.5 The singular points .x W y W u; z W w/ 2 P2 �P1 of F are

� .1 W 0 W 0; 1 W 0/; .0 W 1 W 0; 1 W 0/,

� .1 W 0 W 0; z W 1/; .0 W 1 W 0; z W 1/, where z is a root of Sm�1.z/,

� .1 W 1 W 0; z W 1/, where z is a root of Sm.z/�Sm�1.z/,

� .1 W �1 W 0; z W 1/, where z is a root of Sm.z/CSm�1.z/.

The number of singularities is 4m if m� 1, and is �.2C 4m/ if m� �2.

Proof We break the analysis down into cases.

First, we consider the case when .w W z/D .0 W 1/. We have Fx D Fy D 0, F D�u2

and Fu D�2u. Hence uD 0. Now we have Fz D 0 and Fw D xy . Thus xy D 0. In
this case, there are two singular points, .1 W 0 W 0; 1 W 0/ and .0 W 1 W 0; 1 W 0/.

Next, we consider the case when w D 1. First we assume that Sm�1.z/D 0. Then

Fx D Fy D 0; F D�u2Sm.z/; Fu D�2uSm.z/:

Since Sm.z/ 6D 0, we have u D 0. Then Fz D xyS 0
m�1

.z/ and Fw D xy.Tm�1/w .
Since S 0

m�1
.z/ 6D 0, we must have xy D 0. In this case, the singular points are

.1 W 0 W 0; z W 1/; .0 W 1 W 0; z W 1/, where z is a root of Sm�1.z/.
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Finally, we assume that w D 1 and Sm�1.z/ 6D 0. We have

Fx D yC .yz� 2x/Sm.z/Sm�1.z/D y.S2
m.z/CS2

m�1.z//� 2xSm.z/Sm�1.z/;

Fy D xC .xz� 2y/Sm.z/Sm�1.z/D x.S2
m.z/CS2

m�1.z//� 2ySm.z/Sm�1.z/:

If x and y are not simultaneously equal to 0, we must have S2
m.z/�S2

m�1
.z/D 0.

We first consider the subcase when x D y D 0, so .x W y W u/D .0 W 0 W 1/. Then, by
Lemma 3.8,

F D Sm�1.z/
�
�zC .4� z2/Sm�1.z/Sm.z/

�
�Sm.z/D�S3m.z/:

Since S3m.z/ is separable in CŒz�, there are no singular points in this case.

Therefore, we may assume that xy ¤ 0 and S2
m.z/�S2

m�1
.z/D 0. We consider the

cases that Sm.z/�Sm�1.z/D 0 and Sm.z/CSm�1.z/D 0 separately.

First assume that Sm.z/�Sm�1.z/D 0. Then Fx D Fy D 0 is equivalent to x D y .
Since S2

m.z/D 1=.2� z/, we have F D u2Sm.z/ and Fu D 2uSm.z/. Hence uD 0.
Now we have

Fz D
�
Sm.z/Sm�1.z/C .z� 2/.Sm.z/Sm�1.z//

0
�
x2Sm�1.z/:

From S2
m.z/CS2

m�1
.z/� zSm.z/Sm�1.z/D 1 and Sm.z/D Sm�1.z/ we get

.z� 2/.S 0m.z/CS 0m�1.z//D�Sm.z/:

It follows that Fz D 0. We have

Fw D
�
.2mC 1/C .z� 4/Sm.z/Sm�1.z/C .z� 2/.TmTm�1/w

�
x2Sm�1.z/:

From T 2
mCw

2T 2
m�1
�z TmTm�1Dw

2m (by Lemma 7.2) and Sm.z/D Sm�1.z/ we
get

.2� z/
�
.Tm/wC .Tm�1/w

�
Sm.z/C 2S2

m.z/D 2m:

It follows that

.2mC 1/C .z� 4/Sm.z/Sm�1.z/C .z� 2/.TmTm�1/w D 1C .z� 2/S2
m.z/D 0:

Hence Fw D 0. The corresponding singular points are .1 W 1 W 0; z W 1/, where z is a
root of Sm.z/�Sm�1.z/.

Finally, assume that xy D 0 and Sm.z/C Sm�1.z/ D 0. Similar to the above, the
singular points are .1 W 1 W 0; z W 1/, where z is a root of Sm.z/CSm�1.z/.

Definition 7.6 Let S D Z.F / � P2 � P1 be the vanishing set of F and zS be the
desingularization of S .
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Now we determine the degenerate fibers; we determine all .z W w/ 2 P1 such that
F D Fx D Fy D Fu D 0 has at least one solution .x W y W u/ 2 P2 .

Proposition 7.7 The degenerate fibers of �W S! P1 , .x W y W u; z Ww/ 7! .z Ww/, are

� ��1.1 W 0/D f.x W y W u/ 2 P2 j u2 D 0g,

� ��1.z W 1/D f.x W y W u/ 2 P2 j u2 D 0g, where z is a root of Sm�1.z/,

� ��1.z W1/Df.x Wy Wu/2P2 j .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//D0g,
where z is a root of S3m.z/,

� ��1.z W 1/D f.x W y W u/ 2 P2 j .x�y/2� .2� z/u2 D 0g, where z is a root of
Sm.z/�Sm�1.z/,

� ��1.z W 1/D f.x W y W u/ 2 P2 j .xCy/2� .2C z/u2 D 0g, where z is a root of
Sm.z/CSm�1.z/.

Proof We break the analysis down into cases.

First, we consider the case when .z W w/D .0 W 1/. We have Fx D Fy D 0, F D�u2

and Fu D�2u. Hence uD 0. Note that ��1.1 W 0/D f.x W y W u/ 2 P2 j u2 D 0g.

Next, we consider the case when w D 1. First we assume that Sm�1.z/D 0. Then

Fx D Fy D 0; F D�u2Sm.z/; Fu D�2uSm.z/:

Hence uD 0. In this case ��1.z W 1/D f.x W y W u/ 2 P2 j u2 D 0g.

Finally, we assume that w D 1 and Sm�1.z/ 6D 0. Note that if x and y are not
simultaneously equal to 0, we must have S2

m.z/�S2
m�1

.z/D 0.

We first consider the subcase when x D y D 0, so .x W y W u/D .0 W 0 W 1/. Then

Fx D Fy D 0; F D�S3m.z/; Fu D�2S3m.z/:

Hence S3m.z/D 0. In this case

��1.z W 1/D
˚
.x W y W u/ 2 P2

j .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//D 0
	
:

As a result we may assume that xy ¤ 0. Therefore

Sm.z/�Sm�1.z/D 0 or Sm.z/CSm�1.z/D 0:

If Sm.z/�Sm�1.z/ D 0 then F D Fx D Fy D Fu D 0 is equivalent to x D y and
uD 0. In this case

��1.z W 1/D f.x W y W u/ 2 P2
j .x�y/2� .2� z/u2

D 0g:
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If Sm.z/CSm�1.z/D 0 then F D Fx D Fy D Fu D 0 is equivalent to x D�y and
uD 0. In this case

��1.z W 1/D f.x W y W u/ 2 P2
j .xCy/2� .2C z/u2

D 0g:

Next, we consider desingularization. Since S is birational to P1 �P1 , we can blow
down zS over P1 some number of times so that it becomes a fiber bundle P1 �P1

over P1 .

Definition 7.8 In the following, let � denote the Euler characteristic of a surface. Let
Ssing be the set of singular points of S and Nsing D jSsingj. Furthermore, let N be
such that zS is obtained from P1 �P1 by N one-point blow-ups.

We have
�. zS/D �.S �Ssing/CNsing �.P

1/D �.S/CNsing

(see [5, Lemma 2.2]).

By definition, zS is obtained from P1 � P1 by N one-point blow-ups. Then since
�.P1 �P1/D 4, using P1 �P1 in place of S in the above, we have

�. zS/D �.P1
�P1/CN D 4CN:

It follows that N D �.S/CNsing� 4. We summarize this as a lemma.

Lemma 7.9 We have N D �.S/CNsing� 4.

Proposition 7.10 The Euler characteristic of S is �.S/D
�

4C 5m if m� 1;

�5m if m� �2:

Proof Let 'W S ,! P2 �P1 Ü P1 �P1 be the rational map defined by

.x W y W u; z W w/ 7! .x W y; z W w/:

Let P be the set of points .0 W 0 W 1; z W 1/ where z is a root of S3m.z/. The map ' is
not defined at points in P . Let U WD S �P . We now determine '.U /.

Write F DGCu2H , where

G D
�
xyw2mC1

C .xyzw�x2w2
�y2w2/TmTm�1

�
Tm�1;

H D
�
�zw2m

C .4w2
� z2/TmTm�1

�
Tm�1�w

2mTm:
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Note that '.U / is the collection of all points .x W y; z Ww/ 2 P1�P1 except those for
which F.x Wy; z Ww/2CŒu� is a nonzero constant. The polynomial F.x Wy; z Ww/2CŒu�
is a nonzero constant whenever H D 0 and G 6D 0, which is equivalent to

w D 1; S3m.z/D 0 and .xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z// 6D 0:

Hence '.U / D P1 �P1 �Q, where Q is the set of points .x W y; z W 1/ 2 P1 �P1

satisfying S3m.z/D 0 and

.xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z// 6D 0:

Note that �.Q/D 0.

Let L be the set of points .x W y; z W 1/ 2 P1 �P1 satisfying S3m.z/D 0 and

.xSm.z/�ySm�1.z//.ySm.z/�xSm�1.z//D 0:

Note that fG DH D 0g � P1 �P1 is equal to L. Hence

�.L/D �.'�1.L//D

�
6m if m� 1;

�.6mC 4/ if m� �2:

Recall that

G D
�
xyw2m

C .xyz�x2w�y2w/TmTm�1

�
wTm�1:

Since T 2
mCw

2T 2
m�1
� zTmTm�1 D w

2m , we have

G D .xTm�ywTm�1/.yTm�xwTm�1/wTm�1:

Let B WD Z.G/ be the zero set of G in P1 �P1 . Then B D B1[B2[B3 , where

B1 D Z.w/D P1
� f.1 W 0/g;

B2 D Z.Tm�1/D P1
� f.z W 1/ j Sm�1.z/D 0g;

B3 D Z.xTm�ywTm�1/[Z.yTm�xwTm�1/

are subsets in P1 �P1 .

We have B3 D B31[B32 , where

B31 D Z.xTm�ywTm�1/ and B32 D Z.yTm�xwTm�1/:

Note that .x Wy; z Ww/2B31\B32 if and only if xDy and TmDwTm�1 , or xD�y

and Tm D�wTm�1 . Hence

B31\B32 D f.1 W 1; z W 1/ j Sm.z/�Sm�1.z/D 0g

[ f.1 W �1; z W 1/ j Sm.z/CSm�1.z/D 0g:
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It follows that

�.B31\B32/D

�
2m if m� 1;

�.2mC 2/ if m� �2:

Then

�.B3/D �.B31/C�.B32/��.B31\B32/D

�
4� 2m if m� 1;

6C 2m if m� �2:

We have B1\B2 D∅, B1\B3 D f.1 W 0; 1 W 0/; .0 W 1; 1 W 0/g, and

B2\B3 D f.1 W 0; z W 1/; .0 W 1; z W 1/ j Sm�1.z/D 0g:

Hence

�.B/D �.B1/C�.B2/C�.B3/��.B1\B2/��.B1\B3/

��.B2\B3/C�.B1\B2\B3/

D

�
2C .2m� 2/C .4� 2m/� 0� 2� .2m� 2/C 0D 4� 2m if m� 1;

2� .2mC 2/C .6C 2m/� 0� 2C .2mC 2/C 0D 6C 2m if m� �2:

It follows that

�.U /D 2�.P1
�P1

� .B tQ//C�.B �L/C�.'�1.L//

D 2�.P1
�P1/��.B/� 2�.Q/��.L/C�.'�1.L//

D

�
4C 2m if m� 1;

2� 2m if m� �2:

Then

�.S/D �.U /C�.P /D

�
.4C 2m/C 3mD 4C 5m if m� 1;

.2� 2m/� .3mC 2/D�5m if m� �2:

Proposition 7.10 and Proposition 7.5 along with the fact that

N D �.S/CNsing� 4

give

N D �.S/CNsing� 4D

�
.4C 5m/C 4m� 4D 9m if m� 1;

.�5m/C .�.2C 4m//� 4D�.6C 9m/ if m� �2:

This calculation completes the proof of Theorem 1.5.
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